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A B S T R A C T   

The adverse effects of coal and gas energy production with the subsequent rapid increase in energy consumption 
emphasize the importance for Australia to adopt more renewable energy sources to counteract these dismissive 
contributions to climate change. This work presents a data mining approach for optimally selecting the best 
locations for installing a distributed hybrid renewable energy generation system for rural regions in Western 
Australia. The K-Means and K-Medoids clustering algorithms were used to divide the constructed dataset into 
clusters. In total, 69 locations were selected for the overall dataset, proceeding with the filtering process. The 
returned cluster data were graphically rendered on a Western Australia map for the region. The clustering al
gorithms were evaluated using the Dunn index, such that K-Means performed to a higher degree than K-Medoids, 
given our dataset’s nature. After passing the generated clusters to HOMER software to generate the potential 
wind and solar energy output for each centroid, K-Medoids produced a set of locations that generated higher 
solar and wind energy on average. However, due to the reduced internal validation, K-Medoids might not be as 
valuable as K-Means, it does not cluster the data points very well, and within-cluster location energy re
quirements are not considered in our study.   

1. Introduction 

Global energy consumption has seen a dramatic increase in recent 
years. Non-renewable sources remain some of the most inefficient en
ergy sources and significantly contribute to climate change [1]. Despite 
the clear environmental benefits of renewable energy, its adoption is 
greatly hindered by its reliance on natural factors, such as hours of solar 
irradiation, wind speed, and wind strength. As such, the energy pro
duction by renewable energy is inconsistent [2]. 

Several sectors have been identified for renewable energy concepts, 
including sunlight, wind, rain, tides, waves, and geothermal heat [3,4]. 
Nowadays, many countries in the world use renewable energy, and it is 
expected that the growing renewable energy markets will continue and 
improve powerfully in the future [5,6]. Australia, as a developed 
country, possesses the potential to use renewable energies; furthermore, 
solar energy has been known as a sound source of renewable energy in 
Australia [7,8]. 

When it comes to solar energy, the utilization of solar photovoltaic 

(PV) systems has gained global recognition and acceptance in recent 
years for generating hot water. These systems operate efficiently, as 
evidenced by research conducted by Refs. [3,9]. Additionally, solar 
thermal heating and cooling systems harness thermal energy from sun
rise and find applications in commercial settings [10]. Conversely, solar 
panels are influenced by weather conditions, making their energy pro
duction reliant on sunlight. Consequently, the effectiveness of solar 
energy collection can be noticeably impacted by rainy or cloudy days, 
affecting the power output of PV systems. 

Also, wind energy, as one of the most useable renewable energies in 
the world, possesses the most negligible negative impact on the climate 
compared to other energies, such as fossil fuels. This is because wind 
energy generates zero-emission energy. Demolli et al. [11] presented a 
technique for predicting long-term wind power with the aid of machine 
learning algorithms, utilizing daily wind speed data. The findings 
demonstrated the successful application of machine learning in effi
ciently forecasting wind power values, even for locations different from 
those used to train the model. 
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While Australia does utilize certain fossil fuels, a substantial portion 
of its energy and electricity production is attributed to clean sources 
such as solar and wind energy. This trend is driven by the numerous 
favorable environmental effects associated with these renewable energy 
forms, setting them apart from fossil fuels [12,13]. On the flip side, there 
exist numerous drawbacks when it comes to the utilization of wind 
energy. For instance, crucial factors like site-specific weather data 
encompassing wind speed and load prerequisites play a pivotal role, 
constituting a notable challenge in the adoption of wind energy. More
over, the evaluation of an existing system’s efficiency mandates the 
availability of appropriate weather data [14]. 

Furthermore, a primary drawback associated with sole reliance on 
renewable energies is their intermittent nature, as their output hinges on 
weather conditions. Consequently, to enhance overall energy genera
tion, it is advisable to implement a combination of these energy sources. 
To determine the optimal configuration involving the quantity of 
photovoltaic panels and wind turbines, a suitable optimization mecha
nism is essential. An added advantage of the hybrid system is the 
reduction in the need for battery storage and diesel backup, contributing 
to its appeal. Thus, the hybridization of photovoltaic and wind turbine 
technologies emerges as an optimal solution for mitigating energy re
quirements. Hybrid renewable energy systems typically involve the 
integration of multiple renewable energy types to bolster system effi
ciency and uphold a robust equilibrium in energy supply [15–18]. [19] 
evaluated the performance of wind-solar hybrid renewable energy sys
tems using the Loss of Power Supply Probability (LPSP) index. The study 
concludes that the LPSP index can be used to optimize the design of 
hybrid renewable energy systems. 

Finding the best locations to install a distributed hybrid renewable 
energy system is a challenging task, and data mining-based approaches 
are known as a powerful tool to tackle this problem [20–22]. There exist 
numerous works based on data mining approaches in the field, for 
example, geographical information system (GIS)-based spatial data 
mining approach [23], a data mining-based optimal demand response 
program [24], heuristic algorithms [25], and other approaches [26,27]. 

Regarding the planning of hybrid renewable installations, there ex
ists a wealth of literature on the subject ([28–31]. For example [32], 
proposed a decision support system, which could assist decision-makers 
in locating single-sources as well as hybrid renewable energy system 
installations to meet the requirement of energy production. In another 
study [33], proposed an optimal design and techno-economic assess
ment of a hybrid renewable energy system on Sebesi Island, South 
Lampung Regency, Indonesia. The above-mentioned study proposed the 
planned hybrid system from a technological, economic, and environ
mental perspective [34]. explored the viability of a hybrid renewable 
energy system (HRES) consisting of photovoltaic (PV) and biomass en
ergy for a rural village in India. The HRES was designed, optimized, and 
analyzed for economic, renewable energy, and environmental aspects 
[35]. discussed the optimal design of off-grid hybrid renewable energy 
systems (HRESs) by addressing the levelized cost of energy (LCOE) and 
CO2 emissions simultaneously using the ε-constraint method and par
ticle swarm optimization (PSO) algorithm. The study investigates 
various combinations of components such as photovoltaic panels, wind 
turbines, batteries, hydrogen, and diesel generators to develop 
cost-emissions Pareto fronts of different HRES configurations [36]. 
proposed a Geographic Information Systems (GIS) and Multi-Criteria 
Decision Analysis (MCDA)-based methodology to locate optimal FPV 
sites, exemplified by selecting San Giovanni Dam in Sicily among seven 
watersheds, demonstrating benefits for high-temperature regions [37]. 
addressed an extensive review, which examines trends, models, and 
challenges in hybrid renewable energy research spanning 2000 to 2022. 
They synthesized diverse energy systems, compared methodologies, 
addressed uncertainty, and outlined future prospects. 

The novelty of this study lies in its pioneering focus on addressing a 
critical research gap within the realm of hybrid renewable energy 
optimization. While various studies have explored potential renewable 

energy sites across Australia, this study distinguishes itself by exclu
sively targeting the unique landscape of rural Western Australia. By 
harnessing cutting-edge clustering algorithms and leveraging intricate 
geographic attributes, such as solar irradiation and wind speeds, we aim 
to unlock the untapped potential of these underutilized rural regions. 
Our approach offers a fresh perspective on renewable energy integra
tion, providing a transformative pathway toward sustainable energy 
independence for these communities. To achieve our research goals, the 
study’s objectives are as follows.  

• Identify areas with high solar exposure, temperature, and frequency 
of sunny days, making them potentially optimal for solar energy 
generation.  

• Identify areas with high wind speed and frequency that might be 
suitable for wind energy generation.  

• Apply clustering algorithms to group locations based on several 
factors, including existing energy usage and solar and wind energy 
generation potential.  

• Utilize the clustered data to determine the most suitable locations for 
installing hybrid renewable energy systems. 

This paper presents a data mining approach for optimally selecting 
the best locations for installing a distributed hybrid renewable energy 
generation system for rural regions in Western Australia. The remainder 
of the paper is structured as follows. Section 2 presents the motivation 
for this study. Section 3 shows the research methodology. Section 4 
describes data collation. Sections 5 and 6 illustrate modeling and results. 
Section 7 depicts the validation and verification of the proposed model, 
while section 8 provides the discussion. Finally, section 9 presents the 
conclusion, addressing limitations and potential directions for future 
research. 

2. Motivation 

According to the Department of Primary Industries and Energy and 
the Department of Human Services and Health, rural zones are divided 
into three different categories: large rural centers (25,000–99,999), 
small rural centers (10,000–24,999), and other rural areas (<10,000). 
Thus, all rural zones in Australia are considered to have a population of 
less than 100,000. Rural towns contain approximately 28% of Austral
ia’s total population1, which correlates to a rural total of 7,210,516 
based on Australia’s overall population of 25, 750, 200 (September 
2021) (Statistics 2020). Even though rural towns in Australia have 
adequate energy connectivity and transmission, the provided electricity 
is generated from predominantly non-renewable resources, namely 
fossil fuels (76%), including coal (54%), gas (20%), and oil (2%).2 Only 
7% of electricity generation from 2019 to 2020 was from renewable 
sources.3 As such, the aim of this study is to extract the optimal locations 
for hybrid renewable energy plants utilizing solar photovoltaic and wind 
energy sources within Western Australia (WA), ultimately allowing 
maximal utilization of renewable energy resources. Urbanised locations 
within WA, such as Perth, Bunbury, or Geraldton, were not considered in 
this work. Wind (17.5%), solar photovoltaic (18.1%), and solar hot 
water (4.4%) energy contribute a combined 40% of renewable energy 
production, equating to only 2.8% of Australia’s total energy generation 

1 Australian Government: Department of Industry, Science, Energy and Re
sources. (2020). States and territories. https://www.energy.gov.au/data/state 
s-and-territories. 

2 Australian Government: Department of Industry, Science, Energy and Re
sources. (2020). States and territories. https://www.energy.gov.au/data/state 
s-and-territories. 

3 Australian Government: Department of Industry, Science, Energy and Re
sources. (2020). States and territories. https://www.energy.gov.au/data/state 
s-and-territories. 
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(167.6 PJ)4. With this in mind, Western Australia’s energy consumption 
from 2019 to 2020 was 1271.9 PJ, which is 21.2% of total energy 
consumption in Australia.5 The major disparity between Australia’s 
energy generated from solar and wind plants compared to WA’s total 
energy consumption contributed to our decision to exclude urbanised 
locations from our study. 

While Australia does rely on certain amounts of fossil fuels, the 
adoption of clean energy sources like solar and wind energy holds 
substantial importance in the nation’s energy and electricity generation. 
The evaluation of viable sites for implementing renewable energy sys
tems in rural areas of Australia has been a subject of investigation in 
several studies. In this study, we aim to address a research gap in the 
hybrid renewable energy optimization field by investigating the poten
tial locations for installing a distributed hybrid renewable energy gen
eration system in rural Western Australia. While several studies have 
explored the potential locations for renewable energy systems in rural 
regions across Australia [38–43], to the best of our knowledge, this is the 
first study specifically focusing on rural Western Australia. Our study 
recognizes the importance of not only evaluating the technical feasi
bility and energy output of hybrid renewable energy systems but also 
understanding their potential to positively impact surrounding pop
ulations, economies, and the environment. By assessing areas with high 
solar exposure and wind speeds for optimal energy generation, we aim 
to not only contribute to renewable energy integration but also shed 
light on the significant advantages that these systems offer, such as 
reduced electricity fees, lower maintenance costs, and decreased 
greenhouse gas emissions. 

By focusing on rural Western Australia, we intend to fill this gap in 
the literature by providing a comprehensive analysis that encompasses 
both the technical and socio-economic aspects of renewable energy 
integration. We believe that this holistic approach is essential for making 
informed decisions and promoting sustainable energy solutions that 
benefit not only the energy sector but also the overall well-being of 
communities. 

Each location dramatically affects the performance of renewable 
energy systems. Western Australia is one location that has received 
minimal attention compared to other areas. Western Australia also had 
some of the highest levels of solar irradiation and high wind speeds – 
this, combined with its low renewable energy usage, made it highly 
attractive for the topic of our report. Renewable energy systems can 
significantly benefit rural areas. Numerous articles concentrate solely on 
analyzing the efficiency and constraints of established energy systems, 
neglecting to delve into the ways in which these systems contribute to 
the well-being of the local communities. Specifically, the economic ad
vantages linked to renewable energy systems often go unaddressed, 
including factors such as the elimination of electricity fees, diminished 
maintenance expenses, and the absence of greenhouse gas emissions. 

Rural areas typically have lower energy demands than suburban 
areas, meaning it is possible to completely power a rural area using 
renewable energy. Herein, we intended to extract the optimal locations 
(locations with high amounts of consistent solar exposure and wind 
speed) to install hybrid renewable energy plants utilizing solar photo
voltaic and wind energy sources. With specific rural areas within 
Western Australia, we applied HOMER software (free trial version) and 
various clustering techniques to determine which areas would be able to 
support hybrid renewable energy systems and provide adequate power 
to surrounding regions. 

Some questions regarding the current study are listed as follows.  

⁃ What areas within rural Western Australia experience high amounts 
of solar irradiation?  

⁃ What areas within rural Western Australia experience high wind 
speeds and wind frequency?  

⁃ How do different clustering techniques (K-Means, K-Medoids) affect 
the organization of clusters?  

⁃ What degree of energy output (kWh/yr) should we expect from a 
hybrid renewable energy system within each cluster?  

⁃ What locations within Western Australia best support installing 
hybrid renewable energy systems? 

In conclusion, this study seeks to bridge the research gap in rural 
Western Australia by providing valuable insights into the potential for 
renewable energy integration, thus contributing to the sustainable 
development and energy independence of rural communities in the 
region. 

3. Research methodology 

In the methodology section, our primary contribution lies in the 
novel approach we employed to identify optimal locations for installing 
hybrid renewable energy systems in rural Western Australia. While we 
utilized HOMER software and various clustering techniques, including 
K-Means and K-Medoids algorithms, the main focus of our methodology 
was to demonstrate how these tools were applied to the specific context 
of rural Western Australia. To achieve each of our research objectives 
and answer our research questions, the experimental method involves 
the analysis of geographical locations and their associated meteorolog
ical data through centroidal clustering algorithms. The methodology for 
this research started with the data collection of rural locations in 
Western Australia from online sources, including ‘Townsites LGATE- 
248 W A GeoJSON’ as well as ‘Back4App List of Australian Cities’. 

The clustering algorithms categorize locations into groups based on 
similarities between their field values. The K-Means and K-Medoids 
clustering algorithms were used to divide the constructed dataset into 
clusters. The optimal value of K (K = 7) was determined by utilizing the 
elbow curve as well as the silhouette score. Such groups contain a 
centroid location that can be within the dataset or not, which is iden
tified as the optimal location for installing a solar and wind hybrid 
renewable energy system. In total, 69 locations were selected for the 
overall dataset, proceeding with the filtering process. The returned 
cluster data were graphically rendered on a Western Australia map for 
the region. Using the Dunn index, the clustering algorithms were eval
uated, such that K-Means (0.1458) performed to a higher degree than K- 
Medoids (0.0715), given the nature of our dataset. The potential energy 
of this system was calculated by simulating the system through the use of 
the HOMER Pro software (free trial version) using a control configura
tion. After passing the generated clusters to HOMER software to 
generate the potential wind and solar energy output for each centroid, K- 
Medoids produced a set of locations that generated higher solar and 
wind energy on average. These data were then used in a cross- 
comparison between the K-Means and K-Medoids clustering algo
rithms to determine their effectiveness for datasets within this field of 
study (Fig. 1). In summary, our contribution to the study goes beyond 
the mere description of software usage. Instead, it lies in the thoughtful 
application and adaptation of software tools to address the specific 
research objectives and challenges in exploring the potential for 
renewable energy systems in rural Western Australia. 

4. Data collation 

Our research utilized two main datasets: The Townsites LGATE-248 
W A GeoJSON dataset and the Back4App dataset. The former provides 
an area polygon for each town or city within Western Australia. This 
polygon is defined by several coordinate points, allowing for a detailed 
geographic representation of each area. Moreover, it labels each town or 

4 Australian Government: Department of Industry, Science, Energy and Re
sources. (2020). States and territories. https://www.energy.gov.au/data/state 
s-and-territories.  

5 Western Australia Government. (2020). Townsites (LGATE-248). Retrieved 
from https://data-downloads.slip.wa.gov.au/LGATE248/GeoJSON. 
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city’s name, providing a list of locales within the Western Australia re
gion. On the other hand, the Back4App dataset, referenced in Energy 
(2020), offers a broader picture, encompassing all cities across Australia. 
Unlike the LGATE-248 dataset, it does not provide a polygon represen
tation but assigns a singular coordinate to each location. A unique 
feature of the Back4App dataset is its inclusion of population data for 
each city, offering demographic insights not present within the LGATE- 
248 dataset. For our needs, we pursued a strategy of retrieving the 
common locations between them. This was necessitated by the lack of 
specificity in the Back4App dataset concerning a location’s situatedness 
within or outside Western Australia - it merely provided information 
that a location was somewhere within Australia. However, the LGATE- 
248 dataset was more precise, including only localities found within 
WA. By cross-referencing these datasets, we could identify which loca
tions listed in the Back4App dataset were indeed in Western Australia 
while gaining access to corresponding population data. Using a CSV 
manipulator package in Python, the combined data from LGATE-248 
and ‘Back4App List of All Cities in Australia’ was compiled and 
filtered to only include cities containing a population of less than 
100,000. Based on the analysis of data sources, there are 69 rural lo
cations within WA. These cities and associated latitudes and longitudes 
were used to extract monthly averages of the clearness index6, solar 
irradiation7, and wind speed8at each location. The data for solar global 
horizontal irradiance (GHI) feature a clearness index and daily radiation 
(kWh/m2/day). The clearness index measures the clearness of the at
mosphere, defined as the surface radiation divided by the extra- 
terrestrial radiation. It is a fraction of the solar radiation transmitted 
through the atmosphere to strike the surface and ranges between 0 and 
1. The clearness index has a high value under clear, sunny conditions 
and a low value under cloudy conditions9. Global horizontal irradiance 
is the total solar radiation incident on a horizontal surface. HOMER 
software incorporates sophisticated algorithms and databases that 
encompass a wide range of geographic, climatic, and technical param
eters. It allows us to simulate and assess renewable energy potential 
within specific regions by utilizing historical weather data, geographical 
coordinates, and other relevant inputs. 

HOMER uses solar GHI to calculate the flat-panel photovoltaic 

output (energy generated from solar panels)10. The only feature 
returned for wind data is the wind speed (m/s). Any type of configura
tion, not including the latitude and longitude of the location, does not 
affect the solar and wind data from NASA’s Prediction of Worldwide 
Energy Resource (POWER) database. While our study does not involve 
direct equipment-based measurements, our utilization of the HOMER 
software ensures a robust and scientifically rigorous analysis of hybrid 
renewable energy potential in rural Western Australia. This approach 
allows us to provide valuable insights into optimal locations for 
renewable energy integration without the need for physical data 
collection devices. 

The process of collecting and collating the data in a form suitable for 
using clustering, which in this case was in a spreadsheet, as a CSV file, is 
explained below.  

• Collecting the locations required for clustering: Locations were 
filtered to only include rural localities — towns/cities with a popu
lation of less than 100,000. We extracted locations from Townsites 
LGATE-245 W A GeoJSON, Back4App list of Australian Cities.  

• The HOMER Pro software was implemented with inserted latitude 
and longitude, and the solar and wind resources were downloaded 
for the respective locations, which can be found in the Resources 
Solar GHI and Wind tabs. Within these resources, the three afore
mentioned variables can be seen with monthly averages in Fig. 2. 

These results were manually mapped into a spreadsheet with the 
structure shown.  

• Rural location:  
o Name: Location (1), Location (2), …  
o Latitude: Latitude (1), Latitude (2), …  
o Longitude: Longitude (1), Longitude (2), …  

• Clearness Index:  
o Months 1–12: CI for Jan … Dec (1), CI for Jan … Dec (2), …  

• Daily Radiation:  
o Months 1–12: DR for Jan … Dec (1), DR for Jan … Dec (2), …  

• Avg. Wind Speed:  
o Months 1–12: WS for Jan … Dec (1), WS for Jan … Dec (2), … 

Each record in the spreadsheet contains information related to one 
location, including latitude, longitude, and the monthly average of each 
solar and wind variable. 

Fig. 1. Flowchart of research methodology.  

6 https://www.homerenergy.com/products/pro/docs/3.11/how_homer_ca 
lculates_clearness_index.html.  

7 https://www.homerenergy.com/products/pro/docs/3.11/generating_ 
synthetic_solar_data.html.  

8 https://www.homerenergy.com/products/pro/docs/3.11/generating_synth 
etic_wind_data.html.  

9 HOMER Energy. Global Horizontal Irradiance (GHI). Retrieved from http 
s://www.homerenergy.com/products/pro/docs/latest/globalhorizontalirradia 
nceghi.html. 

10 Scikit-learn. 2.3 Clustering. Retrieved from https://scikit − learn.org/sta
ble/modules/clustering.htmlk – means. 
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5. Modeling 

Clustering is an unsupervised machine learning technique of iden
tifying and grouping similar data points in larger datasets; in simpler 
words, the aim is to segregate groups with similar traits and assign them 
into clusters. In this research, as we searched for the most optimal 
location for the plants, we decided to utilize centroid clustering tech
niques to identify the optimal location within each cluster. Centroid 
clustering machine learning techniques are iterative clustering algo
rithms in which the data points are grouped according to how close a 
data point is to the centroid of the clusters. The K-Means clustering al
gorithm is a widespread algorithm that falls into this type. In these 
models, the number of clusters required at the end must be declared 
beforehand, which makes it vital to have prior knowledge of the dataset. 
Centroidal clustering methods differ from other clustering methods as 
they generate or obtain a central data point used to describe a given 
cluster. 

The adoption of both centroid clustering methodologies, encom
passing the K-Means algorithm alongside the K-Medoids algorithm, was 
influenced by their inherent capabilities and alignment with the goals of 
our research. The K-Means algorithm, which identifies central data 
points within clusters, aligns seamlessly with our goal of pinpointing 
optimal locations for hybrid renewable energy plants. Its simplicity, 
interpretability, and computational efficiency are well-suited for our 
emphasis on energy generation, enabling us to efficiently analyze and 
interpret the clustering results. Similarly, the K-Medoids algorithm, a 
variant of K-Means, was chosen for its ability to identify representative 
data points that exemplify the characteristics of each cluster, providing a 
robust and intuitive alternative. This selection is motivated by our 
study’s focus on rural Western Australia and the need for an effective 
methodology to address our research objectives. By incorporating both 
centroid clustering techniques and the K-Medoids algorithm, we ensure 
a comprehensive exploration of potential hybrid renewable energy plant 
locations, aligning with our overarching goal of sustainable energy 
integration and development in rural regions. However, other types 
include distribution-based clustering and hierarchical clustering. 
Distribution-based clustering assumes all data points belong to a 
Gaussian distribution and groups samples accordingly; as the distance 
from the distribution center increases, the probability that a point be
longs to the distribution decreases. Hierarchical clustering creates a tree 
of clusters such that a given cluster can be a child of at most one cluster 

and be related to several child clusters. This type of clustering is suited 
for classifying and categorizing points into classes rather than arbitrarily 
grouping.11 It is important that our study implemented centroidal 
clustering methods as they return a set of cluster centroids, which 
represent potential locations for a network of hybrid renewable energy 
systems that provide maximum energy generation. 

5.1. Choosing K 

Due to the nature of our chosen clustering algorithms, the chosen 
value of K, i.e., the number of clusters, was predetermined when running 
the algorithms. We adopted the elbow method to select the optimal K 
value as well as the silhouette coefficient to validate our selected value. 

The utilization of both the elbow method and the silhouette coeffi
cient for determining the optimal number of clusters (K) and validating 
the clustering outcomes is motivated by their complementary contri
butions. The elbow method offers a visual indication of the point where 
adding more clusters ceases to significantly enhance clustering perfor
mance, aiding in selecting a reasonable K value. Meanwhile, the 
silhouette coefficient provides a quantitative measure of cluster quality 
by assessing both cohesion and separation, ensuring that clusters are not 
only internally coherent but also well-separated from each other. This 
combined approach enhances the robustness of our clustering analysis, 
striking a balance between cluster compactness and distinctiveness. 
While alternative methods like the Davies-Bouldin index or Gap statistic 
could be considered, the elbow method and silhouette coefficient offer a 
pragmatic and widely accepted strategy, facilitating both intuitive 
interpretation and quantitative evaluation of clustering solutions within 
the context of our research. 

5.1.1. Elbow curve method 
The elbow method is a commonly-used heuristic that can potentially 

determine the optimal number of clusters in a dataset. The elbow curve 
graph plots the inertia for each value of K. Inertia is the summed value of 
each squared distance from each sample to its cluster center within each 
cluster. The smaller the value, the more coherent and compact the 
clusters are. When finalizing results from clustering algorithms, inertia 
should be minimized. The general method works on picking the “elbow” 
of the curve as the number of clusters to use. The “elbow” of the curve is 
defined as the point that initiates a linear decrease in inertia for each 
proceeding value of K. The rationale is that we use the cut-off point 

Fig. 2. Clustered column chart indicates monthly average wind speed (m/s) and average solar irradiation (kWh/m2/day). The line graph indicates the clearness 
index, with corresponding intervals noted on the right y-axis. 

11 Google. Clustering Algorithms. Retrieved from https://developers.google. 
com/machine%20-%20learning/clustering/clustering%20-%20algorithms. 
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where the diminishing returns are no longer worth the additional cost. 
In the context of clustering, we should choose a number of clusters 
where adding another cluster does not improve the data modeling. 

5.1.2. The silhouette coefficient 
The silhouette coefficient is a popular metric that is used to calculate 

the goodness of a clustering technique. Specifically, the silhouette value 
measures how similar an object is to its own cluster compared to other 
clusters. This value is calculated using the (a) mean intra-cluster dis
tance and (b) mean nearest-cluster distance for each sample. For a given 
sample, the silhouette coefficient is calculated using the following 
mathematical expression: 

Silhouette coefficient=(b − a)/max(a, b) (1) 

Its value is contained within the range [1, − 1], and it can also be 
used to assist in the calculation of the most optimal value of K. If the 
silhouette coefficient is calculated and averaged across each sample 
within the dataset for each value of K, it can be used as a secondary 
parameter next to the elbow curve method for choosing the optimal K. 
As the maximized value of the silhouette coefficient correlates with high 
validity for clustering algorithms, the true maximum and local maxi
mums are preferred when choosing K. If the elbow curve is difficult to 
interpret, the local maximums of the silhouette coefficient can be 
observed. 

5.2. Selection of optimal K-value for centroidal clustering algorithms 

Herein, K-Means and K-Medoids are both centroid-based clustering 
algorithms, where determined centroids are the selected locations for 
the hybrid renewable system. K-Means is a centroid-based algorithm 
that calculates the distance to assign a point to a cluster. In K-Means, 
each specific cluster is associated with a centroid. The key objective of 
the K-Means algorithm is to reduce the sum of distances between the 
points and their respective cluster centroid. In Fig. 3, it is difficult to 
distinguish the point at which the inertia begins to decrease linearly. 
When analysing the curve, the point at which it appears to start 
decreasing linearly is at K = 5. However, the corresponding value in the 
silhouette coefficient graph (Fig. 4) displays the true minimum value for 
all values of K. We wish to maximize the silhouette coefficient, so this 
value of K is not suitable. 

A limitation of the K-Means algorithm is that the centroids are the 
mean of points present in that cluster rather than the actual point. 
Hence, we decided to explore another method known as the K-Medoids 
algorithm (Figs. 5 and 6), which selects actual data points as cluster 
centers (medoids) and, thereby, allows for more straightforward inter
pretability of the cluster centers. 

Applying the same methodology for K-Medoids, we attained the 

corresponding inertia values by looping through different values of K. 
The elbow curve (Fig. 5) demonstrates an inflection point when K = 7— 
this value is further validated by the silhouette coefficient (Fig. 7), 
indicated by the maximum value at K = 7. Based on the selection process 
for K-Medoids, we may analogously choose to adopt this value for K- 
Means. The suitability of K = 7 for K-Means is further supported by its 
silhouette score (Fig. 4), which depicts a local maximum at K = 7. 

Fig. 3. Elbow curve for K-Means.  

Fig. 4. Silhouette score for K-Means.  

Fig. 5. Elbow curve for K-Medoids.  

Fig. 6. Silhouette score for K-Medoids.  
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6. Results 

The following subsections present the results of the clustering algo
rithms along with the simulated solar and wind energy production per 
annum. 

6.1. Geographical cluster maps 

Figs. 7 and 8 illustrate the generated clusters for K-Means and K- 
Medoids, respectively, which can be distinguished via their colors. 
Centroids within a cluster are clearly seen due to their increased size and 
thick black outline. Fig. 9 provides a graphical representation of the 
merged clustering algorithms. Figs. 7 and 8 exhibit several salient dif
ferences despite an overall similarity. One such distinction, mentioned 
earlier, lies in the selection of centroids; while K-Means determines a 
centroid based on the mean of points within a given cluster, K-Medoids 
uses an actual data point as the centroid. This difference is particularly 
noticeable in the purple/circle cluster in Fig. 8 and the dark blue/circle 
cluster in Fig. 8. Another key feature is the singular lime/diamond 
cluster, found in northern WA, depicted in Fig. 8, while the K-Means 
algorithm generated two separate clusters, lime/square and green/X, in 
the same northern region, as shown in Fig. 7. A similar trend can be 
observed in the southwest of WA, where K-Means produced a singular 
cluster, orange/pentagon (Fig. 7), as opposed to the K-Medoids algo
rithm that separated the same general region into two distinct clusters, 
green/pentagon and purple/star (Fig. 8). 

6.2. Energy results from HOMER 

All results were retrieved using the HOMER Pro Microgrid Analysis 
Tool (free trial version). The settings for the configuration are listed 
below. 

Fig. 7. Generated cluster map for K-Means (rural locations in West
ern Australia). 

Fig. 8. Generated cluster map for K-Medoids (rural locations in West
ern Australia). 

Fig. 9. Generated cluster map with merged clustering methods.  
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• Wind Turbine: Generic 3 kW  
• Solar Panel: Generic Flat Plate PV  
• Battery: Generic 1-kWh Lithium-Ion Battery 

The selected parameters, namely the Generic 3 kW Wind Turbine, 
Generic Flat Plate PV Solar Panel, and Generic 1-kWh Lithium-Ion 
Battery, were chosen based on a balance between representing typical 
technologies and conducting a feasibility assessment within the scope of 
our study. 

While a design process for the maximization of renewable sources 
within the identified clusters could indeed be pursued, it is important to 
consider our research’s practical constraints and objectives. Our primary 
focus was to evaluate the potential energy output and feasibility of 
hybrid renewable energy systems within specific rural areas of Western 
Australia. By utilizing representative values for the wind turbine, solar 
panel, and battery, we aimed to offer a preliminary analysis of the en
ergy potential, rather than an exhaustive optimization of each individual 
component. 

Given the wide range of possible configurations and the complexities 
of optimizing renewable sources at a microgrid scale, we made a 
deliberate choice to use generic parameters to provide a foundational 
assessment of the renewable energy potential. This approach allowed us 
to focus on the overarching goal of identifying optimal locations for 

hybrid renewable energy systems, while acknowledging that more 
detailed design processes and optimization studies could be pursued in 
future research to fine-tune the system parameters. 

6.2.1. K-means clustering results 
The bar graph in Fig. 10 represents the culmination of the K-Means 

clustering results, in which the simulated energy production is in kWh 
per annum. Each unit located on the y-axis is an exponent of 7 (i.e., e^7). 
It is pertinent to point out that the green/X and lime/square centroids 
have a clear difference in solar panel energy production, which will be 
clarified in the analysis of the results. Additionally, an average of all the 
centroids is located in the last side-by-side bars. Table 1 presents the 

Fig. 10. K-Means clustering results of produced energy by wind and solar.  

Table 1 
K-Means: Cluster centroids’ colour/shape and location.  

Cluster Centroid Colour/Shape Coordinates 

Orange/Pentagon − 33.03464714, 115.56349762 
Lime/Square − 22.10418125, 117.8515975 
Green/X − 17.3153575, 125.5691025 
Light Blue/Star − 31.74793733, 116.53323933 
Dark Blue/Plus − 28.04230667, 114.48807 
Purple/Circle − 29.68602, 121.93785 
Magenta/Diamond − 34.14196538, 117.63305846  
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cluster centroids’ colour/shape and location of K-Means. 

6.2.2. K-medoids clustering results 
Similarly, Fig. 11 presents the bar graph for the K- Medoids clus

tering results. Unlike the bar graph of K-Means, it is evident that there is 
only one significant disparity in solar panel and wind turbine energy 
production for the lime/diamond centroid. Table 2 shows the cluster 
centroids’ colour/shape and location of K-Medoids. 

6.3. Results analysis 

Across the large majority of clusters, solar panel energy production 
was higher than their wind turbine counterpart. From Figs. 7–9, the 
exception to this can be seen in the dark blue/plus cluster 
(− 28.04230667, 114.48807) and magenta/diamond cluster 
(− 34.14196538, 117.63305846) from the K-Means cluster centers. The 
K-Medoids clusters contain no such instances of wind turbine energy 
production exceeding solar panel energy production. From K-Means, the 
green/X cluster center (− 17.3153575, 125.5691025) has the single 
highest solar panel energy production across both sets of clusters, 

producing 14, 550, 168 kW h of energy per year. Inversely, this center’s 
wind turbine energy production is the lowest out of any center. This 
cluster sits in the center of the Wunaamin Conservation Park, a largely 
uninhabited area in the northern region of Western Australia. 
Comparing the light blue/star K-Means center (− 31.74793733, 
116.53323933) with the orange/pentagon K-Medoids center 
(− 31.54977, 116.46743), there is a dramatic difference in energy pro
duction despite a minor difference in location. Solar energy production 
increased by 2,409,144 kWh, while wind energy production increased 

Fig. 11. K-Medoids clustering results of produced energy by wind and solar.  

Table 2 
K-Medoids: Cluster centroids’ colour/shape and location.  

Cluster Centroid Colour/Shape Coordinates 

Orange/Square − 31.54977, 116.46743 
Lime/Diamond − 20.31215, 118.61059 
Green/Pentagon − 32.5269, 115.7217 
Light Blue/Plus − 33.8305, 117.15946 
Dark Blue/Circle − 30.74614, 121.4742 
Purple/Star − 33.6356, 115.14899 
Magenta/X − 28.77897, 114.61459  
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by 1,769,897 kWh. Compared to the dark blue/plus K-Means cluster 
(− 28.04230667, 114.48807), the magenta/X K-Medoids cluster 
(− 28.77897, 114.61459) produced dramatically higher solar energy of 
3,802,432 kWh. However, wind energy production is higher in the dark 
blue/plus K-Means center, with an increase of 776,848 kWh. Overall, 
the highest combined energy production from solar and wind energy 
was obtained by the magenta/X K-Medoids cluster center (located at 
− 28.77897, 114.61459), which points to the coastal city of Geraldton. 
From the K-Means clustering results, the highest combined energy pro
duction was achieved by the purple/circle center (− 29.68602, 
121.93785), which sits in a largely uninhabited region approximately 
630 km northeast of Perth. 

7. Validation and verification 

The results obtained using the HOMER software and clustering al
gorithms were further validated and verified heuristically by examining 
and comparing cluster attributes of each clustering method. In other 
words, the results were compared to experimental or synthetic data to 
assess how well the clustering algorithms performed. As previously 
mentioned, the silhouette coefficient, or silhouette score, is a form of 
validation for selecting an optimal K value. In this section, we describe 
the Dunn index, another validation technique that evaluates the per
formance of clustering algorithms for artificially made datasets. 

Fig. 12. Artificial clusters generated using dummy datasets. Each cluster contains 10 data points. Dunn index values are 1.5652, 0.4794, 0.2155, and 0.1516, 
respectively. 
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7.1. Cluster attributes 

Compactness, connectedness, and separation of the cluster partitions 
are three cluster attributes reflected in our internal validation measures. 
Herein, compactness and separation are pertinent components of the 
Dunn index. Specifically, compactness measures how close data points 
are within the same cluster (inertia/within-cluster variation). This value 
is also utilized in the silhouette coefficient to assist in choosing the 
optimal K value. Separation measures how well-separated a cluster is 
from other clusters. 

7.2. Dunn index 

The Dunn index is a metric that can be used to evaluate clustering 
algorithms, whereby a higher value is considered better. The Dunn index 
was chosen for its ability to quantify cluster compactness and inter- 
cluster separation, applying to two practical implications of our study. 
More compact clusters promote efficient energy distribution, as energy 
can be shared efficiently within each cluster to meet local demands. 
Simultaneously, the strategic placement of centroids within the 
respective cluster serves to minimize transmission distances, thereby 
minimizing energy loss. The index is calculated as the lowest intercluster 
distance (i.e., the smallest distance between any two cluster centroids) 
divided by the highest intracluster distance (i.e., the largest distance 
between any two points in any cluster). We then utilized the finalized 
model above to generate our clusters, cluster centers, and cluster maps. 
To further validate our results, we passed our generated labels into a 
customized algorithm to calculate the Dunn index of 0.1458 for K-Means 
and 0.0715 for K-Medoids. We can assess the validity of these algorithms 
based on how closely our measurements adhere to our expectations and 
understanding of clustering algorithms. Accordingly, there is a high 
correlation between higher index values and overall well-defined clus
ters. However, the Dunn index has its limitations. While it can represent 
the overall degree of clustering in our algorithm, it does not provide a 
complete picture of the distribution of the clusters. In other words, the 
Dunn index may not necessarily reflect the shape of the clusters. This can 
be likened to how an average may produce misleading results if the data 
is extremely skewed. Nevertheless, the high correlation does give a good 
indication of the accuracy of clustering in our dataset. To verify the 
correlation between more well-defined and less-defined clusters, we 
compared the Dunn index with corresponding artificial datasets of 
varying degrees of spread data points. Fig. 12 presents examples of such 
artificial clusters, ranging from extremely tight to sparsely distributed 
clusters. Further research may be required to comprehend the subtleties 
between one Dunn index and another, the relevance of the difference 
between two Dunn index values, and the nature of the clusters. Addi
tionally, we assessed the extent to which our measurement results 
correspond to other valid clustering measurements. To verify this, we 
analyzed the artificial clusters to compare the results of the Dunn index 
based on the spread of clustering and data distribution. As mentioned 
previously, by comparing these clusters with our results, we observed a 
high correlation between higher Dunn index values and more well- 
defined clusters. Therefore, our Dunn index values accurately repre
sent the nature of our clusters and their relation to other clusters. In 
cases where there are more complex cluster shapes, we would also 
compare the Dunn index of artificial datasets that emulate the clusters so 
that we can more accurately assess the validity of the Dunn index on 
unusual cluster shapes. Therefore, based on our assessment of the last 
two points, we can verify that our results are accurate and valid for the 
purposes of this study (Fig. 12). 

8. Discussion 

With the dramatic increase in global energy consumption, there is an 
increased urgency to research the higher efficacy of different renewable 
energy sources. Even though renewable energy offers clear 

environmental benefits, there are some key flaws mainly stemming from 
its reliance on natural factors, such as hours of solar irradiation, wind 
speed, and wind strength. Herein, our proposed method identifies the 
optimal locations (particularly locations with high amounts of consis
tent solar exposure and wind speed) to install hybrid renewable energy 
plants, utilizing solar photovoltaic and wind energy sources. We 
collected data from various online sources, determined the wind and 
solar energy produced from our chosen rural locations using HOMER, 
and finalized our dataset for the K-Means and K-Medoids clustering al
gorithms. Our results show that K-Means achieved a higher Dunn index 
than K-Medoids, where a higher value means a better cluster. We also 
utilized the elbow curve method and silhouette coefficient to choose the 
correct K value. In addition, by representing the clusters and their 
centroids on cluster maps, we can see that the clusters generated by K- 
Means are logically more sensible in terms of energy production 
compared to K-Medoids. Hence, it can be suggested that K-Means will be 
the better clustering algorithm to utilize in our specific use case. Our 
clustering results were then inserted into the HOMER software to 
generate the potential energy output from these proposed locations. On 
average, solar panel and wind turbine energy production from K- 
Medoids was higher than the cluster centers found from K-Means clus
tering. The green K-Means cluster center (− 17.3153575, 125.5691025) 
has the single highest solar panel energy production out of all the 
clusters from both algorithms, while the highest combined energy pro
duction from solar and wind energy can be seen at the magenta K- 
Medoids cluster center (− 28.77897, 114.61459). While the K-Medoids 
algorithm has a lower Dunn index and does not cluster the dataset as 
well as K-Means, it generated more solar and wind energy on average 
compared to K-Means. Although K-Medoids might generate more energy 
on average, a specifically given cluster may only provide energy to a few 
locations, while another cluster may provide energy to more locations. 
This can be observed in the purple K-Means cluster, which sits in a 
largely uninhabited region 630 km northeast of Perth that generates the 
highest combined energy production, whereas the dark blue K-Means 
cluster located in the center of a coastal city produces limited energy. 
With a poorer clustering score from dark blue K-Medoids, the energy 
generated might not be able to be provided to enough locations and, 
thus reducing its overall value. 

The proposed methodology focused on identifying optimal locations 
for hybrid renewable energy plants in rural Western Australia, consid
ering solar photovoltaic and wind energy sources. Herein, we also 
employed the K-Means and K-Medoids clustering algorithms for regional 
grouping and explored the potential energy output of the proposed lo
cations. Regarding the energy production comparison between K-Means 
and K-Medoids, our findings showed that K-Medoids, on average, 
generated higher solar and wind energy. The variation in energy pro
duction can be attributed to the geographical and climatic differences 
between regions, emphasizing the need for location-specific analyses. 
An interesting observation is the discrepancy between energy produc
tion and cluster locations. For instance, the purple K-Means cluster, 
situated in a sparsely populated area northeast of Perth, exhibited the 
highest combined energy production. In contrast, the dark blue K-Means 
cluster, located in a coastal city center, had limited energy production. 
Such discrepancies highlight the importance of not solely relying on 
clustering scores but considering the actual energy supply capacity to 
nearby regions. 

To summarize, our study provides valuable insights into renewable 
energy optimization in rural Western Australia. The comparison of 
clustering algorithms and the assessment of energy production in spe
cific locations contribute to the ongoing research in this field. However, 
it is crucial to recognize the limitations of our study, such as the reliance 
on specific datasets and the regional focus on Western Australia. Future 
research could benefit from broader datasets and comparisons across 
various geographical regions to gain a more comprehensive under
standing of renewable energy site selection. 
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9. Conclusion 

The clustering and energy generation analysis results are inconclu
sive due to the disparity between the better clustering performance of K- 
Means and the potential energy production of K-Medoids. We hypoth
esized that the clustering algorithm with the greatest Dunn index and 
silhouette coefficient values would return the maximum potential en
ergy production. Despite our inconclusive results, we obtained insight 
into the effectiveness of both clustering algorithms in terms of their 
validity scores, establishing that K-Means has a greater clustering per
formance for geographical and meteorological data. The obtained 
cluster centroids and associated cluster map can be used as an assistive 
resource for the national planning of energy generation systems to aid in 
the ongoing global aim of increasing the use of renewable energy while 
diminishing the use of coal, gas, and other non-renewables. This data 
has not been generated within the field of hybrid renewable energy in 
Western Australia, thus promoting and providing an opportunity for 
deeper analysis and improved research. 

One limitation of this study is our lack of focus on the overall cost of 
building such energy plants. Since we mainly investigated which loca
tions had high amounts of solar energy and wind exposure, we did not 
manage to consider the overall cost or annual operation costs of such a 
plant. Therefore, these topics could be a potential direction for future 
research. Also, another limitation of the methodology presented in this 
paper is HOMER software. This software has a detailed economic 
calculation that takes account of all economic factors, but the detailed 
calculation is not revealed. Also, it is just a black box with limited 
flexibility in changing the input data without the capability to check and 
change the economic calculation method. It is worth mentioning that 
this study focuses on a specific region of Australia. The insights gained 
from this research provide a valuable foundation for future studies 
within the country. 

There are several facets of our methodology that we did not include 
in our study to maintain an achievable study scope. These factors can be 
improved in future research. Specifically, we failed to recognize the 
importance of parameter optimization for the clustering methods. If 
given the opportunity, the K-Means and K-Medoids algorithms may have 
performed to a higher degree and returned a greater average silhouette 
coefficient and Dunn index if we had chosen the optimal parameters. 
Furthermore, we did not consider optimizing the installment and oper
ational costs of the hybrid renewable energy systems; this is due to the 
fact that a co-component of this topic is the inclusion of energy demand 
and cost of transport for each location. Researching each location’s 
energy requirements would provide satisfactory results to optimize in
stallment and operational costs. In an optimized system, each cluster’s 
hybrid renewable system would generate approximately the summed 
required energy of each location in the given cluster. 

Future studies incorporating the facets mentioned above would 
highly contribute to this field as it would be suitable for real-world 
application in Western Australia. Also, the work could be expanded to 
evaluate the feasibility of using hybrid renewable energies in different 
areas of Australia, considering different case studies. Moreover, it would 
be valuable to investigate how the approach works for larger test cases 
with thousands of variables and what’s the performance of the method 
in a large-scale optimization problem. Besides, the uncertainty is 
another challenging topic for this case as future work, and we will try to 
answer these questions: “how the approach can handle the un
certainties” and “What’s the model’s sensitivity to the change of 
computational parameters?” 
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