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Abstract: The paper presents a comprehensive overview of intelligent video analytics and human
action recognition methods. The article provides an overview of the current state of knowledge in the
field of human activity recognition, including various techniques such as pose-based, tracking-based,
spatio-temporal, and deep learning-based approaches, including visual transformers. We also discuss
the challenges and limitations of these techniques and the potential of modern edge AI architectures
to enable real-time human action recognition in resource-constrained environments.

Keywords: intelligent video analytics; edge AI; visual transformers; human activity recognition;
video surveillance; pose-based HAR; tracking-based HAR; spatio-temporal-based HAR; deep
learning-based HAR

1. Introduction

Independent security systems, known as security or CCTV cameras, register video
footage, and video surveillance cameras monitor specific areas. A single security camera
typically produces fifteen to sixty pictures a second, resulting in 3 million images daily.
Global information provider IHS Markit reports that in 2015 in the UK alone, 5 million
CCTV cameras recorded 25 billion hours of video sequences. Supervisors registered
around 350 million operating security cameras worldwide until 2016. In 2017, there
were 176 million surveillance cameras in China’s private and public sectors, increasing to
2.7 billion by the end of 2022 [1].

Over the past twenty years, video surveillance systems based on CCTV have become a
widely used and effective method of deterring, preventing, and detecting crimes [2–4]. Mon-
itoring solutions have migrated from single-unit solutions to intelligent multi-camera net-
work structures, including edge-based architectures of wireless video sensor networks [5]
with security and bandwidth constraints [6]. The scope of application and operation of
video surveillance systems is extensive, even if limited to human activity recognition.
Systems often require complex implementation procedures, resulting in the need to em-
ploy specialized surveillance companies to ensure correct security during mass events [7].
Statistical data confirm that the introduction of CCTV systems to monitor areas with an
increased level of risk allows for a significant reduction (even by 50%) in the number of
robberies and acts of antisocial behaviour by increasing the effectiveness of the services
responsible for the implementation of security tasks [8–11]. Nevertheless, the same reports
indicate that the current surveillance systems also possess many imperfections: low credi-
bility of the recorded content, often resulting from systems’ poor technical capabilities or
difficult registration conditions, the unreliability of the human factor, and the immaturity of
legislative procedures in monitoring and response. The essence of monitoring concerning
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the security aspect of citizens should be an efficient flow of complete information between
system operators and the police [12,13].

The number of video surveillance system installations and the amount of information
collected is rapidly increasing, creating problems in collecting and processing information
by supervisors. Research shows that, on average, after twenty minutes of observing one
screen, the operator may overlook 90% of what is happening in the monitored place [8].
The current development directions of IP CCTV solutions [5] are systems of intelligent
analysis of dynamic scenes with the automatic detection of many moving objects [14] and
understanding their behaviours [15–17]. Due to the functional requirements, the market
distinguishes the development of active and passive video surveillance systems. Passive
systems usually record the monitored zone’s video stream for evidence in the event of a
crime. Active systems support the supervisors with additional information from the pre-
sented or processed image. The most advanced research concerns IVA [18]. Such systems
attempt to obtain a description of events in the monitored zone and then take appropriate
actions based on the interpretation of monitored events [16]. The necessary image reg-
istration and processing are associated with difficulties analogous to those occurring in
computer vision systems, remarkably the variability of illumination, observation point, ori-
entation, and distance from the observed object. It is challenging to build a general-purpose
intelligent surveillance system [19] and continuously supply it with electrical power [20].
That is why professionals adapt existing systems to specific requirements [21,22]. The most
significant difficulty is developing generalized algorithms to solve specific IVA-related
problems. Therefore, intelligent surveillance systems usually comprise a library of modules
with algorithms for specific applications [23]. The increasingly popular no-code/low-code
computer vision platforms reduce the entry threshold into computer vision-based solutions
for non-professionals, where applications are built visually from developed components.
Gartner predicts [24] that by 2024 more than 65% of applications will be developed with
no/low code development.

This survey provides a comprehensive overview of HAR methods chosen specifically
for potential use with surveillance cameras, categorizing them into four distinct groups. It
also discusses the advantages and disadvantages of each group, including their efficiency
and suitability for IVA applications. Finally, it synthesizes the most recent and relevant
research on these methods, providing readers with up-to-date insights into the strengths
and limitations of each class of methods. The paper offers information on suitable datasets
to make models more useful for practical use in intelligent video surveillance challenges.
This will make it easier for readers to comprehend the value of data in creating HAR models
and allow them to choose relevant datasets for their unique IVA applications. It is a helpful
resource for academics and industry professionals who want to enhance the efficiency and
dependability of IVA systems for the challenge of human action recognition techniques
from the monocular camera in video surveillance.

2. Intelligent Video Analytics

The typical workflow in intelligent video surveillance systems includes the follow-
ing stages: image acquisition, object and motion detection, object classification, object
tracking, analysis and understanding of behaviour and activity, people identification, and
information fusion in multi-camera systems [25–31].

Virtually every intelligent surveillance system detects objects and motion. Motion de-
tection requires segmenting adjacent areas representing moving and stationary objects [32].
The most popular approaches to motion segmentation include temporal differencing, back-
ground subtraction, and optical flow [25,26,31]. Statistical background subtraction is a more
frequently used segmentation method due to its resistance to disturbances, shadows, and
changes in lighting [33,34]. Researchers usually use optical flow [35] to detect the movement
of a point or specific feature [36] in a video sequence using traditional or modern methods
such as FlowFormer [37] or PanoFlow [38]. However, most optical flow approaches are
unsuitable for real-time applications because of their vulnerability to interference and
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difficulty in putting algorithms into practice. The unequivocal detection of moving areas in
a video sequence allows attention to focus on these areas during subsequent processes, such
as tracking or behaviour analysis, and speed up the entire processing process [39,40]. The
subsequent processing steps, including object tracking, behaviour analysis, and recognition,
strongly depend on the detection effect.

An unambiguous classification of moving objects is necessary to track them and
analyse their behaviour accurately. Classification is understood here as a standard pattern
recognition task. The most popular categories of approaches used to classify objects include
classification based on recognized shape and motion [26]. Motion classification is sometimes
greatly facilitated because, in general, human movement exhibits periodic properties.

Table 1 provides a broader context for using HAR methods in IVA systems by outlining
the different workflow elements and operations involved in implementing such solutions.
As one can see, the HAR particular classes of recognition strategies described in the paper
are just one part of the overall workflow, which includes data acquisition, pre-processing,
object detection, object tracking, event detection, decision making, and alert generation.
Depending on the specific use case, some or all of these elements may be present in an IVA
system. Tracking an object in a system with many cameras in real-time under changing
conditions is a complicated task [28]. The object tracking task uses the classification results.
It becomes more complex when more moving objects [15,41–43] appear on the scene, which
is treated as a background when tracking the selected object [44]. We can treat the tracking
problem as a correspondence problem finding a visual object in two consecutive image
frames [45]. The position of an object during tracking is usually transformed into 3D
coordinates. We can divide tracking methods into four main categories based on [26,44,45]:
regions, contours [46], features [47], model, and a hybrid that combines the advantages of
region- and feature-based methods or a combination of these methods. Sequential Monte
Carlo methods [48], particularly condensation algorithms [49], dominate the group of
generalized tracking methods.

Understanding and interpreting movement plays an essential role in intelligent surveil-
lance systems. Recognition of human movement from the video stream starts the process of
extracting information about movement from an image sequence. The surveillance system
can learn patterns of movement, e.g., walking, extracting the features that determine move-
ment dynamics by decomposition of a tracked movement [50–53]. There are three leading
methods of extracting motion information from an image sequence: information from
optical flow feature analysis [54], information from trajectory-based features [44,55–57],
and information from region-based features [58].

The CCD, thermal imaging, and night vision cameras are the three most popular image
recording devices in surveillance systems [19]. Simultaneous acquisition and presentation
of images from cameras of various technologies, such as vision and thermal imaging, ensure
optimal day/night vision in various weather conditions [59]. The separate processing of
image information results in individual and different results with the inherent flaws of each
image acquisition technology. In the case of vision cameras, these provide low-contrast
images at night, in bad weather, and at long distances. In the case of thermal imaging
cameras, low resolution, poor contrast in rainfall as well as ambiguity in the intuitive
interpretation of the images from long distances. Data fusion, i.e., the superimposition
of images from cameras of different technologies and the presentation of the resulting
image on one screen, improves image quality, eliminates the weaknesses of the combined
technologies, and increases the efficiency and comfort of the operator [59,60]. In surveillance
systems, there is also a need to simultaneously present the image from many cameras
partially covering the viewing areas or automatically switch such cameras when the tracked
object appears in the field of view of another camera. Using photogrammetric measurement
methods from multiple cameras at the initial image processing stage facilitates the exact
data fusion process [61,62].
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Table 1. Typical workflow elements and operations for implementing IVA systems with HAR methods.

Workflow Element Operation HAR Method

Data Acquisition Capture video data using
sensors (e.g., cameras) -

Pre-processing Filter, stabilize, and/or
enhance the video data -

Feature Extraction Extract relevant features from
the video data

Pose-Based, Tracking-Based,
Spatio-temporal-Based, Deep

Learning-Based

Object Detection Detect objects of interest in the
video data -

Object Tracking Track objects of interest over
time Tracking-Based

Human Action Recognition Recognize human actions
from video data

Pose-Based, Tracking-Based,
Spatio-temporal-Based, Deep

Learning-Based

Event Detection Detect events of interest (e.g.,
abnormal behaviour) -

Decision making
Analyse the output of the IVA

system and make decisions
based on predefined rules

-

Alert Generation Generate alerts based on the
decisions made by the system -

The assessment of motion detection performance, object tracking [33,63], object clas-
sification, intent detection, behaviour, and identification in intelligent video surveillance
systems are complex, but the performance impacts the product. The performance is one of
the leading topics of the annual challenges around PETS [22], or currently ActivityNet [64]
and MMAct [65], with many algorithms, strategies, and benchmark datasets. The 2D
PETS datasets include indoor and outdoor human and vehicle tracking with single and
multi-camera, posture classification, facial expression, and interaction. ActivityNet is a
large-scale activity recognition challenge that aims to cover many complex human activities
in people’s daily lives. MMAct is a multimodal dataset for action understanding based on
diverse modalities.

Companies’ current area of interest concerns developing methods and analyses that
effectively detect human and object behaviour based on activity patterns [66,67]. Most
current video surveillance systems use solutions that allow for effective image processing,
mainly in motion or object detection and object tracking in single-camera systems. Object
tracking works well in open terrain, but its effectiveness drops when more than one object
is in the scene or occlusions occur [68]. The manufacturers of current systems focus mainly
on defined patterns of behaviour. This approach shows low effectiveness and often leads to
many ambiguities in the events identified by the system. Essential strategies for developing
intelligent video surveillance components in the next decade will include interpreting
tracked objects in 3D space and advanced real-time behaviour analysis by the adaptive
discovery of behaviour patterns.

In recent years, edge processing [69] has grown in popularity, and many large com-
panies have developed small chips to suit the image processing workload. The most
well-known products are Google Coral™, Intel Movidius™, NVIDIA Jetson™, Qualcomm
Snapdragon™, Apple A-series™, Xilinx Alveo™, and Kneron™. A separate group of deep
learning solutions is lightweight image recognition algorithms and the related edge AI
trend. The principle of operation of each of the edge processing products is similar. The soft-
ware includes a dedicated optimizer model that takes models pre-trained in the MXNet [70],
TensorFlow [71], Caffe [72], ONNX or other less popular frameworks. The available models
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can recognize images, human faces, bodies, or objects, on the edge device integrated with
the computer system. The software transforms them into a simplified internal represen-
tation of a specific architecture. These are hardware architectures for the aforementioned
four products: tensor processing unit, vision processing unit, graphics processing unit, and
neural processing unit. The particular inference engine loads the simplified representation
of the model. The efficiency of inference is so low that it is not yet suitable for solving
human action recognition problems in real-time from a video stream of at least at 25/30 fps.
However, one of the disadvantages of edge AI recording and analysis is the cost of cameras
with sufficient computing power. At the same time, having cheaper cameras and leaving
the processing to the server can be less costly.

Many surveillance architectures evolved from the cloud to the edge model and are
called hybrids. Edge cloud design [73] is increasingly seen as a natural advancement of
cloud computing and an enabler of the coming industrial revolution with the widespread
IoT. It includes fog computing, cloudlet, mobile edge, micro data centres, and many
others [74]. Video analytics over the cloud offers the benefits of server systems, such
as centralized, top-down control, and advanced AI analytics, but without server costs
and maintenance needs. It is usually provided as video surveillance as a service (VSaaS)
model. Hence, there is no upfront cost, including video recording, storage, remote viewing,
management alerts, and cybersecurity. The main differences between the most popular IVA
architectures are present in Table 2.

Table 2. Main differences between cloud, hybrid, and edge IVA architectures.

Feature
IVA Architectures

Cloud Hybrid Edge

System Centralized Decentralized Decentralized

Power Consumption High Compute Power High Compute Power Limited Compute Power

Latency High Latency Lowered Latency Lowest Latency

Bandwidth High Bandwidth Lowered Bandwidth Lowest Bandwidth

Security Secure and Public Secure and Private Public

Scalability Endless Scalability Limited Scalability Lowest Scalability

Model Endless Scalability Limited Scalability Lowest Scalability

The rest of the paper describes different HAR methods that can be used as an al-
gorithmic component of an IVA system. The methods are grouped into four categories:
pose-based methods, tracking-based methods, spatio-temporal-based methods, and deep
learning-based methods. For each group of methods, the paper discusses the pros and
cons of using them for HAR, including their accuracy, efficiency, and suitability for dif-
ferent applications. Overall, the paper provides a comprehensive overview of different
HAR methods that can be used in an IVA system and provides valuable insights into each
method’s strengths and weaknesses, helping readers make informed decisions about which
method may be best suited for their particular application.

3. Human Action Recognition Methods

The topic of HAR in videos is an increasingly popular field, as evidenced by the num-
ber of publications each month. Google Scholar collated 10,000 scientific articles published
between 2020 and 2022. on HAR. More detailed information on HAR provides extensive
literature with various methods and comprehensive reviews [75–83]. The following sum-
mary presents only the selected aspects and main directions in this area to determine the
selection of research directions needed to develop the methods and algorithms necessary
to choose the method more effectively.

Workflows of various approaches for HAR can differ significantly, especially regarding
the methods used for feature extraction, action segmentation, and classification (Table 3).
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Table 3. Typical workflow elements and operations for implementing different HAR.

Workflow
Element

Pose-Based
Methods

Tracking-Based
Methods

Spatio-
temporal-Based

Methods

Deep
Learning-Based

Methods

Data Collection

Use sensor
devices (e.g.,
cameras) to

capture pose
images/videos

of humans
performing

various actions.

Use sensors to
capture the

movement of the
object/person

over time.

Use sensors to
capture the

movement of the
object/person

over time while
also capturing

spatial
information.

Collect
large-scale,

labelled datasets
of images or

videos of
humans

performing
various actions.

Feature
Extraction

Extract features
from the pose

images/videos,
such as joint

positions, angles,
and velocities.

Extract features
related to the

motion, such as
velocity,

acceleration, and
trajectory.

Extract motion
and spatial
information

features, such as
optical flow and

histogram of
oriented
gradients
(HOG).

Use deep
convolutional

neural networks
(CNNs) to

automatically
extract features

from raw images
or videos.

Action
Segmentation

Segment the
pose

images/videos
into individual

action
sequences.

Segment the
object/person

movement into
individual action

sequences.

Segment the
object/person
movement and

spatial
information into
individual action

sequences.

Use recurrent
neural networks

(RNNs) to
segment the
video into

individual action
sequences.

Classification

Classify the
individual action
sequences into

pre-defined
action

categories.

Classify the
individual action
sequences into

pre-defined
action

categories.

Classify the
individual action
sequences into

pre-defined
action

categories.

Use CNNs or
RNNs to classify

the individual
action sequences
into pre-defined

action
categories.

Post-processing

Perform
smoothing,
filtering, or
temporal

alignment on the
predicted action

sequences.

Perform
smoothing,
filtering, or
temporal

alignment on the
predicted action

sequences.

Perform
smoothing,
filtering, or
temporal

alignment on the
predicted action

sequences.

Perform
post-processing
on the predicted
action categories,

such as
non-maximum
suppression or

ensembling.

Pose-based methods typically extract features related to joint positions, angles, and
velocities and may involve techniques such as skeletonization and joint detection. Action
segmentation may include detecting the start and end of action sequences based on changes
in common positions or velocities.

Tracking-based methods may use motion-based features such as velocity, acceleration,
and trajectory and may involve techniques such as optical flow or motion history images.
Action segmentation may involve detecting changes in motion patterns or transitions
between different motion patterns.

Spatio-temporal-based methods typically involve extracting features that combine
motion and spatial information, such as optical flow or histogram of oriented gradients
(HOG). Action segmentation may involve detecting changes in movement and spatial
patterns or transitions between different spatial and motion patterns.
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Deep learning-based methods typically involve using deep neural networks to learn
features from raw image or video data automatically. They may include techniques such as
convolutional neural networks (CNNs), recurrent neural networks (RNNs), or transformers.
Action segmentation may involve using RNNs to learn temporal patterns in the data and
segment action sequences. Thus, while there may be some overlap in the workflows of
different HAR approaches, the specific methods and techniques used can differ significantly,
depending on the system.

Transfer learning [84] and continual learning [85] are essential concepts in deep
learning-based methods for HAR. Transfer learning involves using pre-trained models to
transfer knowledge to new tasks. In contrast, continual learning, also known as lifelong
learning [86], consists of updating a model incrementally as new data becomes available.
Other related concepts include federated learning [87], which involves training a model
across decentralized devices, and gossip learning [88] federated variant that does not re-
quire an aggregation server; multi-task learning, which consists of preparing a single model
to perform multiple associated tasks; ensemble learning [89], which combines various
models to make predictions; and reinforcement learning, which involves an agent learning
to make decisions in an environment through trial-and-error interactions. Researchers are
exploring ways to incorporate these concepts into HAR algorithms to improve performance
and efficiency.

The field of visual analysis of human actions and behaviour [90,91] currently has
broad practical applications in industry, medicine, and surveillance. The biggest market
includes IVA [68,92–94], but also monitoring and supporting systems for ambient-assisted
living [95–98] and rapidly growing applications involving visually controlled interactions
between people and robots [99–101].

The dynamic development of the evidence management market [102] has increased
cameras to over 1.5 million worldwide. According to IDC’s predictions [103], the global
amount of data created, captured, and replicated worldwide will increase to 175 zettabytes
(1 zettabyte = 1 trillion gigabytes) by 2025. There are still many open problems where the
task of human action recognition is far from being solved.

3.1. Pose-Based Methods

Detecting, associating, and tracking human skeleton keypoints is a computer vision
problem involving human pose estimation [104] and tracking. Significant processing
resources required to execute skeleton keypoints tracking in live video data limit the
precision of human posture estimation results in real-time. Thanks to recent advancements,
new real-time applications are now conceivable. As a result, state-of-the-art approaches
often rely on customizing CNN architecture for human posture inference. As depicted in
Table 4, the workflow of common elements and operations for human action recognition
using pose-based methods consists of several stages, including pose estimation, feature
extraction, and classification.

Table 4. Workflow of common elements and operations for human action recognition using pose-
based methods.

Workflow Elements Variety of Operations

1. Pose Estimation (a) Model-based methods, (b) Deep learning
methods, (c) Hybrid methods.

2. Feature Extraction: (a) Handcrafted features, (b) Deep
learning-based features.

3. Classification: (a) SVM, (b) Random Forest, (c) Neural
Networks.

The two most popular strategies for pose-based methods are top-down and bottom-up.
The top-down approach begins with a person detector and estimates body parts inside the
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identified bounding boxes. The bottom-up approach begins by estimating each body part
individually, then grouping them to create a unique configuration. Among models suitable
for pose-based methods, three are the most popular [105]: Kinematic or skeleton-based
for 2D and 3D pose estimation, volumetric for 3D pose estimation, and planar or contour-
based composed of one shape or geometric body parts. Recent research has also addressed
reliable tracking and pose estimation in natural scenes. Table 5 shows a comparison of
several pose estimation methods based on their accuracy, the number of joints they can
estimate, their approach (e.g., top-down or bottom-up), and their backbone architecture.
The table provides a useful overview of the strengths and weaknesses of each method.
The most established 2D real-time multi-person keypoint detection is OpenPose [106], and
its faster commercial competitor wrnchAI. Next, are the AlphaPose framework [107,108]
and Mask R-CNN [109] based on feature pyramid network (FPN) [110] and a ResNet101
backbone [111]. HRNet [112] maintains high-resolution representation for pose estimation,
while DeepCut [113] follows a bottom-up approach, detects people, and subsequently
estimates their body configurations. DeepPose captures all joints and uses deep neural
network regressors for pose estimation [114], and DensePose maps all human pixels from
RGB image to its 3D body surface [115].

Table 5. Summary of selected pose estimation methods on various benchmarks.

Method Accuracy (%) Joints Approach Backbone

OpenPose [106] 93.8 25 Top-Down and
Bottom-up VGG-19

AlphaPose [107] 87.7 18 Top-Down ResNet

Mask R-CNN [109] 91.4 17 Top-Down ResNet

HRNet [112] 95.0 17 Bottom-Up HRNet

DeepCut [113] 91.0 15 Bottom-Up VGG

DeepPose [114] 70 16 Top-down ResNet

DensePose [115] 74.7 24 Top-down ResNet

MediaPipe [116,117] 88.8 33 Bottom-Up MobileNet

Yolo [118] - 17 Bottom-Up CSPDarknet

Kinect SDK [119] 83.5 25 Top-Down -

wrnchAI [120] 88.4 57 Bottom-Up -

PoseNet [121] 86.8 17 Top-Down MobileNet

ST-GCNs [122] 93.2 18 Bottom-Up -

AGC-LSTM [123] 94.5 25 Top-down GC-LSTM

BeomJun et al. [124] compared and analysed the major pose estimation frameworks.
Pose-based methods for HAR use an explicit skeletal representation for motion description.
The topology of the human skeleton is an important parameter. YOLOv7 [118], a one-shot
multi-person pose detector, has a topology with 17 landmarks for a single person, while
MediaPipe [116] has 32 keypoints for a single-person skeleton. These methods estimate
human pose by identifying skeleton anatomical joints or keypoints in each video frame.
Video frames have a sequential nature, so using RNNs, such as Bayesian CG-LSTM [125],
hierarchical bi-RNN [126] or AGC-LSTM [123] and graph convolutional networks [122],
has made these architectures very common. We do not recommend using skeleton-based
representations to describe human-like objects moving in a real-life environment with
constraints causing regular silhouette occlusions. We mentioned important works because
pose-based methods represent one of the main promising directions for HAR. More in-
formation and many open problems connected with this direction are addressed in the
following surveys [105,127–131].
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3.2. Tracking-Based Methods

While developing an effective system for tracking humans in the video stream, one
should address some considerations. The tracking-based methods [132] must be capable of
following the tracked human object even under visually difficult situations such as changing
illuminations, occlusions, cluttered backgrounds, and complicated human movements,
all of which can cause tracking issues. In addition to changes in the environment where
a human object is found, the human object can change itself. Such change calls for a
consistent tracking system to possess a mechanism that can adapt to the actual human
object’s appearance. Table 6 provides an overview of the workflow, common elements, and
operations used for human action recognition with tracking-based methods.

Table 6. Workflow of common elements and operations for human action recognition using tracking-
based methods.

Workflow Elements Variety of Operations

1. Object Detection (a) Background subtraction, (b) Haar cascades,
(c) Deep learning-based methods.

2. Object Tracking: (a) Optical Flow, (b) Kalman Filter, (c) Deep
learning-based methods.

3. Classification: (a) SVM, (b) Random forest, (c) Neural
Networks.

A system dealing with live video must be able to handle data quickly. The speed of
the viewed object determines the processing speed, but at least 25 fps must be established
to provide a near-real-time effect. As a result, a quick and efficient implementation is
essential, as is the selection of high-performance algorithms. Tracking algorithms can use
visual features [133] such as histogram of gradient (HOG) [134] colour [135], Haar [136]
and popular learning methods such as support vector machine (SVM) [137], or ensemble
learning methods, e.g., boosting [138]. To localize objects, deterministic methods [135]
and stochastic methods [138] have been used. Compensation for appearance changes can
be achieved using robust mixture models [139] or online boosting [136]. An additional
problem is the minimization of the occlusion of surrounding objects [140]. Current reviews
of classic object-tracking methods are included in [141,142]. Most of the selected object-
tracking methods refer to two categories:

1. Tracking methods using detection (e.g., [143]). For the assignment methods, optimal
allocation methods, such as the Hungarian, optimal flow, or graph-based discrete
optimization methods, are used. These methods recognize each tracked object in each
frame and then group objects from consecutive frames so that each group creates a
separate trajectory. The group of tracking methods using detection include:

(a) a multiphase cascade method with a moving time window [144];
(b) methods based on a generalized solution of optimal cliques in generalized min-

imum clique problem (GMCP) graphs [145] and globally optimal generalized
maximum multi clique (GMMCP) problems [146];

(c) a method of generalized linear allocation of short GLA tracklets [147];
(d) methods based on the estimation of the similarity measure of ADMM dynam-

ics [148] i IHTLS [149];
(e) a simultaneous tracking method with object segmentation, using a multi-label

conditional random field to determine the optimal set of trajectories [150];
(f) a method to detect and track homogeneous objects with high density [151]

using gradients and contours;
(g) a machine learning method with appearance discrimination using high-certainty

tracklets [152], and incremental linear discriminant analysis [153].



Sensors 2023, 23, 4258 10 of 31

2. Methods of tracking using correlations whose main advantage is the speed obtained
by using FFT:

(a) a robust tracking method with accurate scale estimation [154] using a HOG
descriptor [134]. The method uses a discriminative correlation filter in the
MOSSE method [155]. The method [154] is faster than competitive methods:
2.5 times faster than [156], 25 times faster than ALSA [157], and 250 times faster
than SCM [158].

(b) The method [159] uses dense space-time context learning for tracking.
(c) The fast-tracking method with kernel correlation filters [160] based on HOG

descriptors.

An alternative tracking approach is represented by methods based on clustering trajectories:

1. the method [161] clusters paths constructed from points detected by the SURF detector
using the SIFT/SURF descriptor for comparison;

2. the method [42] clusters paths constructed from points of extreme contour curvature.

A typical single- and multi-object tracking approach uses a detector for object lo-
calization and re-identification for object association. Hundreds of methods have been
competing in SOT [162], GOT [163], MOT, and MOTS challenges since 2015 [164–168].
Recent trends indicate interesting directions into trackers derived from deep learning-based
transformers [169–171] applying visual attention [172] for object tracking. Some authors
address similar methods for long-term tracking scenarios [173–175]. For the comprehen-
sive, up-to-date summary, this [176] work investigates the present state of DL-based visual
tracking algorithms, evaluation metrics, and benchmarks in-depth with leading visual
tracking methods.

3.3. Spatio-Temporal Methods

This section provides an overview of the selected and most representative space-
time methods for action recognition in temporally and spatially trimmed videos. Al-
gorithms and methods have been improving over the years, and the problem shifted
from recognizing actions in videos recorded in laboratories to realistic datasets such as
HMDB51 [177], UCF101 [178], Hollywood2 [179] or VMASS [180], MCAD [181], surveil-
lance camera fight [182], and RWF-2000 [183] datasets created directly from surveillance
cameras (Section 3.5).

Table 7 shows that deep learning methods can be considered spatio-temporal-based
approaches too. There are certainly many other deep learning methods beyond those
described in the above table that could be used to analyse human movement. However,
the focus of the table is to provide an overview of some commonly used and effective deep
learning methods for HAR rather than to provide an exhaustive list. After conducting
broad research with many different spatio-temporal-based HAR methods [184], we focus
in this section on the bag of visual words (BoVW) approach to presentation among the
most promising and actual classic spatio-temporal methods. The BoVW approach has been
widely used and benchmarked for human action recognition and is still relevant today. By
describing BoVW in detail in the spatio-temporal-based section of the table, we highlight
the fact that it is one of the foundational approaches in this field and has been used as
a benchmark to compare the performance of newer deep learning methods. For BoVW
in a video stream, a part of an image is the visual equivalent of a word, and it can be
represented by a bag of quantized invariant local descriptors [185]. This approach provides
a flexible choice of processing algorithms using features computed independently over
each set of automatically detected RoIs. Finally, such a method structure is easily scalable
and robust to the occlusion of motion regions, representing people or partial visibility in a
video stream. Figure 1 presents the BoVW approach pipeline divided into ten steps. First,
the videos are acquired and annotated for a supervised learning problem.



Sensors 2023, 23, 4258 11 of 31

FEATURE 
DETECTION

FEATURE 
DESCTIPTION

DIMENSIONALITY 
REDUCTION

FEATURE 
ENCODING

NORMALIZATION

CLASSIFICATION

PREPROCESSING

MODEL 
GENERATION

VIDEO 
ACQUISITION

CODEBOOK 
GENERATION

FEATURE 
DETECTION

FEATURE 
DESCTIPTION

DIMENSIONALITY 
REDUCTION

FEATURE 
ENCODING

NORMALIZATION

CLASSIFICATION

PREPROCESSING

MODEL 
GENERATION

VIDEO 
ACQUISITION

CODEBOOK 
GENERATION

Figure 1. An illustration of the bag of visual words approach pipeline.

Table 7. Workflow of common elements and operations for human action recognition using spatio-
temporal-based methods.

Workflow Elements Variety of Operations

1. Feature Extraction: (a) Trajectory-based features, (b) Dense
Trajectories.

2. Motion Representation: (a) Bag of Words, (b) RNNs, (c) CNNs,
(d) Transformers.

3. Classification: (a) SVM, (b) Random forest, (c) Neural
Networks.

Pre-processing is optional. The videos can always be unified, e.g., rescaled or com-
pressed. The feature detector chooses areas in the video that are volumes for computing
features. Among the most popular are DI [186] and STIP [187], which provide sparse
representation. However, using feature detectors is optional. Random sampling [188] and
dense sampling [189] do not detect regions for feature extraction, which speeds up the
final method. According to the current research, the dense sampling approach outperforms
STIP [189]. Next, features within these sub-volumes are computed by the feature descriptor,
popular descriptors include HOF, HOG [190], MBH [191], and fast GBH [188]. In the next
phase, the dimensionality of the features is reduced by the popular PCA algorithm, which
is a crucial element for performance [192]. Feature encoding clusters similar descriptors.
Here, simple k-means and BoVW histogram or GMM and FV are utilized. These methods
need a model and codebook to be established. The PCA model and codebook are usu-
ally learned from a subset of descriptors, e.g., as in [193]. The final representations are
normalized and classified, usually by SVM with the RBF-χ2 kernel for BoVW histogram
descriptor and linear for FV. Many methods utilize different algorithms and combinations
for each described phase of this approach. Some selected methods are presented below.
This description is informative to analyse the method flowcharts in Appendix A. Unless
stated otherwise, the methods mentioned use GMM with k = 256, FV, and SVM. The
authors of the above cited examples often provide a study of different parameters. We take
into account only the best reported results.

Heng Wang et al., in their work [189], compared the most popular descriptors, such
as Cuboids, ESURF, HOF, HOG/HOF, HOG, and HOG3D, in combination with different
detectors such as Harris3D, Cuboids, Hessian and Dense. The authors presented results
on the following datasets: KTH, UCF, and Hollywood2. One of the essential conclusions
for further research is that dense sampling detectors outperform sparse approaches. Based
on the assumption of dense detectors, the dense trajectories method is a source approach
for the best up-to-date methods that utilize hand-crafted features. For the most promising
methods, flowcharts with the most critical blocks related to Figure 1 have been drawn and
shown in Appendix A for visual comparison of the structures. First, the flowcharts for
HAR by dense trajectories [194] and HAR with improved trajectories [195] are presented in



Sensors 2023, 23, 4258 12 of 31

Figures A1 and A2. The one-against-rest approach is used in these multi-class classification
cases, and the classes with the highest score are selected. The gradient boundary histograms
for action recognition [188] pipeline in Figure A3 takes advantage of the random sampling
method encoding local and the root channel separately. Pengs et.al, in their comprehensive
study of BoVW methods [192], proposed the pipeline (Figure A4) composed of different
BoVW methods and many different low-level descriptors. An efficient video representation
and a robust approach for action recognition [196] combined iDT with spatial pyramid and
spatial FV to preserve spatio-temporal features in the video presented in Figure A5. Beyond
Gaussian pyramid: Multi-skip feature stacking for action recognition [197] (Figure A2)
proposes efficient feature extraction at different time scales, encoding, and classification
for action recognition similar to [198] (Figure A6). An efficient and effective human action
recognition in the video through motion boundary description with a compact set of trajec-
tories was presented in [199]. The method goes further with improved dense trajectories
leading to better accuracy. The motion vector is interpolated between skipped frames
to avoid computing optical flow and speed up the method. The following modification
is that the number of trajectories per frame decreases below a threshold. A trajectory is
also discarded in the case of too little motion within it. Fisher linear discriminant analysis
(FLDA) is utilized for further dimensional reduction, working with sparse representation-
based classification. Evaluation results demonstrate that there are fewer trajectories per
frame than in iDT, and the methods are fast. Accuracy was also improved, but which
change was crucial for this result was not evaluated. Action recognition with stacked
fisher vectors [200] shows that SFV is effective in combination with standard FV. Here,
the iDT is taken as the input, and a two-stage clustering structure is provided. This is
a kind of mid-level approach without learning discriminative action parts. At the very
beginning, a 396-dimensional descriptor is computed. It combines HOF, HOG, and MBH
descriptors in sampled sub-cuboids. There are 600 to 6000 subcuboids, which differ across
the datasets. Next, PCA and whitening reduce the dimension to 200. For each sub-cuboid,
a consecutive FV is computed. This representation is, in turn, reduced by max-margin and
further again by PCA and whitening, having 200 elements in the end. Another FV encodes
the descriptors of a cuboid. Single-stage FV and SFVs are complementary. Its combination
is one of the best available methods. Uijlings et al. [201] described popular descriptors in
more detail and explained how to efficiently implement these algorithms to find a balance
between accuracy and speed. The paper’s authors [202] enriched video representation by
focusing on encoding objects for actions and obtaining the best result by fusing FVs and
SFVs and object-based proposed representation.

3.4. Deep Learning Methods

In modern DL architectures used for HAR, information concerning objects is usually
included in video frames for the spatial and temporal dimensions of their movement. As
shown in Table 8, the workflow for human action recognition using deep learning-based
methods includes common elements and operations.

Table 8. Workflow of common elements and operations for human action recognition using deep
learning-based methods.

Workflow Elements Variety of Operations

1. Data Preparation: (a) Data augmentation, (b) Pre-processing,
(c) Data balancing.

2. Network Design:
(a) CNNs, (b) RNNs, (c) Transformers,
(d) Attention mechanisms, (e) Hybrid

networks.

3. Training: (a) Backpropagation, (b) Regularization,
(c) Optimization.
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Since 2014, the most popular supervised DL model is the CNN, effectively applied
for video HAR when Karpathy et al. [203] proposed a single-stream CNN to fuse temporal
information from consecutive frames using pre-trained 2D convolutions. Later, Simonyan
and Zisserman [204] presented a two-stream network architecture more suitable for the
HAR task. The Simonyan method distinguishes temporal and spatial information using
two separate streams for a CNN with three fully connected and five convolutional layers.
The spatial part is trained on still images from the ImageNet challenge dataset [205]. The
temporal part needs the stacking multiple-frame optical flow to be computed beforehand.
The multi-task learning was performed on the most popular benchmarks UCF101 [178]
and HMDB51 [177] datasets for the temporal part, and the accuracy of the computed
soft-max scores were fused by linear SVM. These two papers form the backbone of most
DL methods for HAR, differing in how spatio-temporal information is combined. Many
other papers on single-, two- [206] or three-stream [207,208] architectures have evolved
from these propositions. The most popular DL-based architectures applicable in HAR are
presented in [209]. Due to their high computational complexity, multi-stream architectures
are unsuitable for real-time surveillance applications where operators can adjust the system
to new recognition classes. DL methods usually need a lot of computational time and data.
They are challenging to analyse in detail, but selected variants with working code can
compete with other methods in terms of accuracy. Some of the methods extend input from
2D performing 3D convolutions by 3D CNN with spatio-temporal information [210,211].
Combined methods use deep learning and hand-crafted features. Wang et al. in [212]
combined the iDT approach with DL features. The best results were obtained by fusing
DL descriptor with the traditional iDT approach at the FV level. A similar combination
with improved FV (iFV) is presented in [213]. The VLAD [214] was used to encode spatio-
temporal descriptors in combination with CNN [215–219]. Optical flow is a useful but
inefficient motion model for CNN-based propositions, including two-stream [220,221]
or faster modifications [222] and dynamic versions [223]. Some methods use CNN with
skeleton sequences [224] to encode spatio-temporal information into texture patterns,
others [225] use RGB-D representation for action scene flow. Temporal long-term relations
are learned using sequential RNN [226] and LSTM [227–229] architectures. The workflow
of common elements for human action recognition using deep learning-based methods,
including data preparation, network design, and training, is presented in Table 8.

The idea of attention mechanism applied to computer vision [230] tries to estimate
dependencies between relevant elements in consecutive video frames according to certain
domains trying to learn the most important features or regions in an image or video by
assigning different levels of attention to different parts of the input. According to [230], the
channel attention mechanism (C) determines the importance of different channels (what to
pay attention to), such as colour channels, in an RGB image. Spatial attention (H and W)
determines the essential regions within an image based on their spatial location (where to
pay attention). In contrast, temporal attention (T) is used to determine the critical frames
in a video (when to pay attention). Branch attention combines these different attention
mechanisms and provides a more comprehensive attention model.

These attention mechanisms are effective in various computer vision tasks, such as
object detection, semantic segmentation, and video classification. By focusing on the
most important features, attention mechanisms can help to improve the performance and
efficiency of deep learning models in these tasks. Long et al. [231] applied attention to
better capture temporal patterns in videos, and Dai et al. [232] proposed a spatio-temporal
attention mechanism for feature learning processing to enhance the HAR performance.

The latest DL trend visual transformers (ViT) [233] could be a gamechanger in trying to
parallelize operations by replacing the known drawbacks of sequential RNN architectures
and, at the same time, limit the bias of locality from CNNs by using self-attention and
two-stage training mechanisms. The main elements of ViT are presented in [234]. ViT’s
self-attention layer allows incorporating of global information throughout the entire image.
To recreate the visual structure from the training data, ViT learns to encode the relative
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placement of the patches. Transformers lack prior knowledge of visual structure, resulting
in increased training periods and the need for enormous datasets for model training.
ViT separates the picture into visual tokens, whereas CNN employs pixel arrays. The
video transformer network [235,236] for temporal relationships uses a long-former [237]
to process the whole video in one pass. Action transformer networks try to aggregate
spatio-temporal context cues around a selected person only using RGB frames [235]. Other
propositions optimize the method of capturing spatio-temporal relations in videos [238,239].
Plizzari et al. [239] proposed a spatial self-attention module and temporal self-attention
transformer for inter-frame correlations to model the human skeleton structure.

Despite the exceptional performance of transformer models for standard HAR bench-
marks and intriguing prominent features, there are significant problems related to their
practical use. The demand for enormous volumes of training data and the highest comput-
ing costs are the most significant barriers. Visualizing and interpreting transformer models
has also proven challenging. We present a summary of these problems in this part, along
with some recent initiatives to overcome these constraints.

Transformers provide an easy way to see what they are paying attention to [240],
while this does not give a complete indication of the types of associations learned by the
model [241], it does provide some insight into what it considers significant for specific
samples [242]. Few studies have attempted to interpret transformers further than this
for vision [243]. We only identified a small portion of research depicting these attention
activations for individual samples in the ViT literature.

3.5. Datasets for Method Evaluation

There are always complex problems to solve in videos from a surveillance camera, such
as changing light conditions, background clutter, and occlusions. Numerous datasets are
available for benchmarking and comparing human action recognition methods [244]. The
most up-to-date paper [245], published in May of 2022, presents an excellent vast summary
with a catalog of the 704 existing multimodal human movement datasets available for
researchers prepared in labs and the real world. Table 9 indicates the most popular datasets
from real-life scenarios considered when selecting the most representative datasets to
evaluate the most promising methods. The state-of-the-art methods often use HMDB51,
Hollywood2, and UCF101 for benchmarking. We have followed this direction and extended
this set of benchmarks with one additional test with the VMASS2 dataset, where all video
streams come from surveillance camera networks in the metropolitan area. Several publicly
available datasets have also been widely used in the research community to evaluate
the performance of IVA algorithms. Some of the most popular datasets: RWF-2000, XD-
Violence, and UCF-Crime, include videos with registered violence. Weizmann and KTH
are datasets of human actions and objects captured using a static camera. Weizmann was
performed by nine people and KTH by 25 actors. The VMASS dataset includes a diverse
range of human actions captured from various surveillance camera angles under different
lighting conditions, making it a challenging and comprehensive dataset to evaluate the
performance of IVA algorithms. On the other hand, the UCF sport action and UCF11
datasets consist of human actions captured from YouTube videos. The UCF101 dataset
includes 101 different human activities, while the HMDB51 dataset contains 51. The
key features of the VMASS dataset include its large scale, diverse action categories, and
multimodal annotations, which provide a rich resource for developing and evaluating
new IVA algorithms. Each of these datasets include a diverse range of human actions
recorded using various cameras and under different conditions, making them well-suited
for assessing the robustness and accuracy of IVA algorithms.
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Table 9. Selected datasets for benchmarking human action recognition methods from real-life scenarios.

Name Videos Classes

RWF-2000 [183] 2000 2

KTH [246] 2391 6

XD-Violence [247] 4754 9

Weizmann [248] 90 10

UCF sport action [249] 150 10

UCF11 (YouTube) [250] 1160 11

Hollywood2 [179] 1707 12

UCF-Crime [251] 1900 13

Olympic Sports [252] 783 16

UCF50 [253] 6676 50

HMDB51 [177] 6849 51

MultiTHUMOS [254] 400 65

UCF101 [178] >13,000 101

NTU RGB+D 120 [255] 114,000 120

VMASS2 [180] >6,000,000 400

Kinetics 700 [256] 650,000 700

4. Discussion

In this paper, we briefly presented the state of knowledge of modern IVA architectures,
which has become a generally available trend in video surveillance systems in recent years.

4.1. IVA Systems

Despite the shortcomings of advanced IVA technologies, most systems struggle with
the problems of business continuity, efficient alerting and response, and the inability to
dynamically track a detected event in the camera network. Despite technological advance-
ments, the current systems do not have modules to effectively recognize the actions and
behaviours of a broad spectrum of events and scenes observed under various lighting and
weather conditions. In addition, the systems available on the market do not have modules
that allow operators to train systems to learn events directly from the video stream. Each
function related to adapting the existing video surveillance system involves a tedious pro-
cess of collecting specific data, developing new models based on it, and then implementing
them into the existing infrastructure. Due to the requirements of many algorithms, such
implementation often forces companies to replace the existing computing equipment with
new ones to support computationally demanding algorithms. For the needs of distributed
surveillance systems, the VSaaS service has been introduced, which allows the customer’s
attention to focus on specific areas or events that interest them. The provider of such a
service bears the equipment costs and maintenance in this variant created on-demand in a
distributed environment of many connected cameras or other multimodal devices forming
local surveillance systems while simultaneously being part of the global network of the
IoT. These local infrastructures are parts of a more extensive ecosystem, causing an even
greater demand for algorithms and services to increase their situational awareness of the
monitored sites.
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The main research directions regarding recognizing people’s actions from a video
stream have been presented. These include pose estimation, tracking, deep learning, and
space-time-based methods. This part summarizes each of the directions listed above.

4.2. Tracking-Based Methods

The current generation of visual trackers has a problem with scene understanding.
Existing approaches cannot detect global structures and existent objects or interpret dy-
namic circumstances meaningfully. In this few-data regime scenario, newer trackers based
on adversarial learning may be an alternative and include additional attributes such as
spatiotemporal information.

The fundamental goal of modern tracking methods is to create unique neural networks
that are simultaneously resilient, accurate, and efficient. Most recent studies have not pre-
trained or fine-tuned their backbone networks to utilize generic characteristics and prevent
catastrophic forgetting of general patterns. Researchers suggest various machine learning-
based strategies to overcome this issue and have demonstrated by preliminary works that
adequate backbone network training can improve tracking performance.

Despite significant developments in short-term trackers, long-term trackers are dis-
regarded. On the other hand, long-term trackers seem more useful in real-world circum-
stances where the tracking object may often disappear or remain occluded for an extended
time. After a failure, these trackers should be able to detect the tracking object again and
then continue monitoring the proper object in the video stream.

The modern direction—deep learning-based visual tracking approaches have recently
examined various uses of deep features, a fusion of hand-crafted and deep features, search
strategies, various topologies, and training on datasets, and how to cope with missing
training data. However, these are not stable solutions, and many difficulties remain
unsolved, and others will need to be investigated further in the future.

Existing tracking-based methods may struggle with tracking multiple people simulta-
neously, especially when they are close together or appear similarly. Multi-person tracking
is a challenging problem in HAR that requires developing effective methods to handle
occlusion, appearance changes, and interactions between individuals.

4.3. Pose-Based Methods

Despite the promising results, some 2D human pose recognition problems still need to
be solved in future studies. Processing efficiency is one of the known problems. Specific
frameworks, such as OpenPose, may accomplish near real-time processing on dedicated
hardware with a moderate computational capacity. However, more efficient human pose
estimation techniques on commercial devices are required in real-world applications.

Another issue is the shortage of data for unusual positions. Whereas existing 2D hu-
man pose estimation datasets are big enough for traditional postures, they have inadequate
training data for unexpected poses, such as fighting. Model bias and poor performance in
unique postures may occur from data imbalance.

The next problem concerns recognizing a person in crowded and natural situations
with multiple bodies and other objects occluded. Person detectors may miss the borders
of highly overlapping human bodies. In occluded situations, the difficulty of keypoint
association is also more evident for bottom-up techniques.

Model generalization is one of the challenges for 3D pose-based methods. Motion
capture systems are a bottleneck because they require high-quality 3D ground truth posture
annotations, which are expensive and difficult to install in a random environment. As a
result, most current datasets have been collected from confined scenarios. On these datasets,
state-of-the-art algorithms produce promising results, but their performance declines when
applied to real-world data.

The 3D human pose estimation requires substantially more computation than 2D
estimation. It is challenging to develop computationally efficient 2D human posture
estimate pipelines while keeping high pose estimation accuracy. Due to extreme mutual
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occlusions and poor resolution content of each individual, the performance of existing 3D
human pose estimation algorithms suffer significantly in crowded scenes. Nevertheless,
the critical findings are worth discussing since pose-based techniques are one of HAR’s
most promising avenues.

4.4. Deep Learning-Based Methods

Neural networks are continuously becoming more advanced and are often applied
to computer vision problems such as HAR. Some of the modern methods from the above
mentioned research also use elements of deep learning—the most studied and utilized
methods are CNN and, more recently, ViT. Since ViT is much more advantageous than CNN,
we have listed the common disadvantages of these methods that should be considered
when selecting these methods.

Transformer models are known for their ability to scale to high levels of parametric
complexity, while this is a fantastic trait that enables the formation of massive models, it
comes at a hefty cost in training and inference, e.g., according to estimates. The process of
training the GPT3 model with 175 billion parameters might cost OpenAI USD 4.6 million.
The high computing cost of transformer models also affects computer vision models. Image
generators based on sequence-based transformers (such as iGPT) have a high computation
cost, limiting their application to high-resolution inputs. In transformers, the time and
memory cost of the fundamental self-attention process grows quadratically with the number
of image patches.

Transformer designs often require a lot of training to determine the underlying
modality-specific principles because they do not natively incorporate prior knowledge
to deal with the visual input. The self-attention system must automatically uncover re-
lationships between video frames by analysing an extensive library of video sequences.
This process leads to lengthier training durations, higher computational needs, and the
processing of big datasets. To achieve a decent performance on the ImageNet benchmark
dataset, the ViT [257] model, for example, requires hundreds of millions of pictures. The
difficulty of training a transformer in a data-efficient manner is still an open research subject,
although recent studies show promising progress.

These significant drawbacks make this direction promising but not mature enough
for practical application and research. Nevertheless, the topic of DL to recognize actions
in a video is pervasive. There are many comprehensive reviews of the use of classic DL
methods to identify human actions [258] as well as video transformers applied to computer
vision tasks [233,234,259].

5. Conclusions

This paper comprehensively reviews existing human action recognition methods for
intelligent video analytics. We examined the advantages and disadvantages of spatio-
temporal, pose-based, tracking-based, and deep learning-based approaches, as well as the
potential applications of each. Spatio-temporal methods use motion information to capture
action patterns, while pose-based techniques utilize body posture to identify human actions.
Tracking-based methods use tracking algorithms to identify action sequences, and deep
learning-based methods utilize neural networks to classify human activities. Additionally,
we compared classic and edge AI intelligent video analytics systems in the cloud, on-
premises, and on edge. Popular edge AI neural systems such as Google Coral, Intel Myriad,
and Kneros are increasingly used for human action recognition. Google Coral is a system-
on-module based on a low-power edge TPU chip, Intel Myriad X is designed for computer
vision at the edge, and Kneros is an AI-enabled system-on-module. Deep learning models
can be deployed on such neural systems using a wide variety of pre-trained models from
the Model Zoo, or custom models can be built and trained with the help of AutoML.
Classic AI systems are typically hosted in the cloud, while edge AI systems are designed
to run locally on-premises or at the network’s edge. Furthermore, this paper outlined the
challenges and opportunities of human action recognition in intelligent video analytics,
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suggesting possible future research directions. We also provided an in-depth analysis of
important aspects of current methods and their potential to improve smart video analytics.
Due to the previously mentioned shortcomings of the stability and performance of the
presented methods, it is tough to choose one particular class of HAR methods and develop
a comprehensive surveillance system enabling the training and real-time recognition of
moving objects in broad-spectrum weather conditions. The modern deep learning-based
HAR methods show the most promising results but in limited cases. The newest variants
of these methods often have high algorithmic and overall computational complexity.

To construct a commercial system to recognize actions from a video stream, each activ-
ity in the video data processing pipeline should be explainable, avoiding the unexpected
operation of algorithms, and stable, predictable architecture should simplify utilization
and allow regular system maintenance and upgrades without the necessity of replacing the
current system with an entirely new one.

This review serves as a guide for researchers and practitioners to better understand the
last 20 years of research, the current state-of-the-art human action recognition technologies
for intelligent video analytics and identify potential opportunities for future research.
One classic group of spatio-temporal methods is based on stable, known, and simple
spatial and temporal feature detection and description algorithms. Most methods from
the spatio-temporal group proved to work fast and predictably with real-world video data
in many practical applications. The class of BoVW methods seems to be more robust to
environmental changes since they rely on the appearance of objects rather than their spatial
relationships. Additionally, BoVW techniques provide better generalization capabilities, as
they are less likely to overfit when presented with new data. Finally, BoVW methods are
easier to implement and require less training data than other models. Therefore, BoVW
methods are good candidates as human action recognition modules in intelligent video
analytics before ViT-based methods become more mature with a cheaper entry point. Visual
transformers (ViTs) are a more recent approach to image recognition, and have already
shown promising results in various computer vision tasks. Unlike BoVW, ViTs rely on
self-attention mechanisms to capture the relationships between image features without the
need for explicit spatial binning or pooling. This allows ViTs to model more complex and
abstract relationships between features, making them more suitable for tasks that require
a higher level of understanding of the input images. However, ViTs currently require a
large amount of training data and computational resources to achieve a state-of-the-art
performance, a major limitation in some applications. In contrast, BoVW methods are
relatively simple to implement and require less data to train, making them more suitable
for applications with limited data and computational resources.

Overall, both BoVW and ViT approaches have their strengths and weaknesses, and
the choice between them depends on the specific requirements and constraints of the appli-
cation. It is worth remembering that each method has unique characteristics and strengths.
A comprehensive approach to analysing human movement may involve combining these
methods depending on the specific task.
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Abbreviations
The following abbreviations are used in this manuscript:

IVA Intelligent video analytics
CCTV Closed circuit television
CCD Charge-coupled device
HAR Human activity recognition
VSaaS Video surveillance as a service
BoVW Bag of visual words
RoI Region of interest

Appendix A. Bag of Visual Words—Promising Classic Representations
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Figure A1. An illustration of the dense trajectories method [194]. TS : Trajectory shapes; SM Norm:
Norm by Sum of Magnitudes; KM: K-means with K = 4000, 100,000 randomly selected features
performed eight times, selected result with the lowest error; NL SVM: Non-linear SVM with the
RBF-χ2 kernel.
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Figure A2. This figure illustrates the backbone for two different approaches to HAR. Variant 1 uses
the improved dense trajectories method [195], which includes Trajectory Shapes (TS), Norm by Sum
of Magnitudes (SM Norm), Gaussian Mixture Model (GMM), Root SIFT Norm (RS Norm), Fisher
Vector (FV), and Power and L2 Norm (PL2 Norm). Variant 2 is an extended method that builds
on Variant 1 and incorporates multi-skip feature stacking [197]. It uses iDT + Human Detection to
extract descriptors and skips frames to reduce the number of frames processed. Skipping each 2nd
frame adds 0.5 more frames and descriptors, equivalent to having a 0.5 longer video, while skipping
each 3rd frame adds 0.3 more frames, and skipping each 4th frame adds 0.25 more frames. Variant 2
includes RS Norm, TS, SM Norm, GMM, FV, and PL2 Norm.
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Figure A3. An illustration of the gradient boundary histogram method [188]. Random Sampling:
A total of 10,000 root patches at half spatial resolution, eight (2 × 2 × 2) overlapping part patches.
Eight spatial and two temporal scales. Initial patch size 28 × 28 × 14. Each patch is subdivided into
2 × 2 × 2 cells, which together with eight bins gives 64 dim descriptor TS: Trajectory shapes; SM
Norm: Norm by Sum of magnitudes; GMM: Gaussian Mixture Model; FV: Fisher Vector; SRL2 Norm:
Square Rooting and L2 norm.
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Norm with factor α = 0.5 which is signed square rooting and then intra L2 Norm.
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Figure A5. An illustration of the robust and efficient INRIA method [196]. Additional annotations
with video, bounding boxes with humans, bring improvement. RS Norm: Root SIFT Norm; Spatio-
Temporal Pyramid: Parallel the same steps in smaller cuboids. H3 enlarges the dimension four
times, T2 enlarges it three times T2 + H3 enlarges the dimension six times; GMM: Gaussian Mixture
Model; FV: Fisher Vector; PL2 Norm: Power Norm with factor α = 0.5 which is signed Square Rooting
and then L2 Norm.
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Figure A6. An illustration of the efficient feature extraction, encoding, and classification method
for AR [198]. MPEG compression and decompression for estimation of motion flow (used instead
of optical flow) during pre-processing step. MPEG flow (16 × 16) + estimated flow (to increase the
spatial resolution by a factor of 2). A very comprehensive spatio-temporal pyramid; a total of 24 cells,
two scales: 32 × 32 × 15 with spatial stride 16 and temporal stride 548 × 48 × 15 with spatial stride
24 and temporal stride 5 descriptor’s area: 2 × 2 × 3; GMM: Gaussian Mixture Model; FV: Fisher
Vector; FLANN: Fast Library for Approximate Nearest Neighbors SSR Norm: Signed Square Root
(power normalization with an α factor of 0.5) and L2 Norm.
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