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Abstract

Quantum state tomography, which aims to find the best description of a quantum state—the
density matrix, is an essential building block in quantum computation and communication.
Standard techniques for state tomography are incapable of tracking changing states and often
perform poorly in the presence of environmental noise. Although there are different approaches to
solve these problems theoretically, experimental demonstrations have so far been sparse. Our
approach, matrix-exponentiated gradient (MEG) tomography, is an online tomography method
that allows for state tracking, updates the estimated density matrix dynamically from the very first
measurements, is computationally efficient, and converges to a good estimate quickly even with
very noisy data. The algorithm is controlled via a single parameter, its learning rate, which
determines the performance and can be tailored in simulations to the individual experiment. We
present an experimental implementation of MEG tomography on a qutrit system encoded in the
transverse spatial mode of photons. We investigate the performance of our method on stationary
and evolving states, as well as significant environmental noise, and find fidelities of around 95% in
all cases.

1. Introduction

Characterising quantum systems becomes increasingly important as quantum technologies begin to scale up.
Experiments often require verification of the prepared quantum state and detection of errors as the state
evolves, e.g. through deliberate evolution or environmental perturbations. Thus, quantum state tomography
(QST)—finding the density matrix that best describes a quantum system—is a task central to quantum
information processing. However, QST is notoriously resource-intensive [1]. Reconstructing the d-by-d
density matrix of a d-dimensional quantum system up to a fixed precision requires O(d?) parameters that
can only be obtained after measuring at least O(d”) copies of the quantum state [2]. Most common
algorithms for QST (e.g. maximum likelihood estimation [3] and least squares regression [4]) require a
tomographically complete set of measurements and are done in post-processing, thus precluding real-time
control of experiments based on the QST results.

Current experimental realisations of quantum devices often suffer from perturbations that change over
time which might happen faster than a complete set of measurements can be performed. It might also be of
interest to the experimentalist to observe the evolution of states in an experiment. Both these scenarios
require online QST—Ilearning algorithms that continuously update the estimate of the state description [5],
and thus enable real-time control and diagnosis of errors. Recent proposals for this include Bayesian
approaches [6, 7], adaptive measurements [8—11], and machine learning techniques [11-15]. All these
techniques are also related to continuous learning [16, 17]—weak measurements over time to characterise
a systems evolution, motivated by feedback control to correct errors—and Hamiltonian

© 2022 The Author(s). Published by IOP Publishing Ltd
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identification/learning [18, 19]—algorithms to determine Hamiltonian parameters governing the dynamics
or unknown structures in the system, motivated by distinguishing and quantification of errors.

Moreover, arbitrary noise from the environment or from imperfect measurements can easily surpass the
signal strength in experiments. This degrades our ability to accurately estimate the quantum state, hence the
robustness of techniques is crucial. Usual efforts to circumvent this issue experimentally try to improve the
signal-to-noise ratio (SNR), which is not always feasible or indeed possible. Some theoretical work exist,

e.g. [20, 21] where the noise is formalised into the measurement, or [22] where an algorithm robust to noisy
data is designed. However, none of these consider dynamical states and we are not aware of any experimental
demonstrations.

Here, we focus on QST using the matrix-exponentiated gradient (MEG) method [13, 14]. The reduced
computational complexity per iteration of MEG, O(d®) in contrast to maximum likelihood and least squares
regression which are both O(d*), makes it a good candidate for online QST. The MEG algorithm is also
efficient—it does not require a full set of measurements for each state estimate—and robust—simulations
show convergence even with very noisy measurements. Additionally, the MEG update rule ensures that the
estimated state is physical (i.e. a positive-semi definite density matrix), which is generally not guaranteed in
most tomography methods unless the estimate is projected back into the physical space, causing a bias
towards low-rank states in the estimator [23].

In this work, we experimentally demonstrate real-time, online QST based on MEG using a
high-dimensional (d>2) quantum system encoded in the transverse spatial mode of single photons. We
achieve fidelities of up to 95% even in the presence of significant noise due to statistical fluctuations
(e.g. very low count rates) and environmental effects (e.g. an ambient light source). To our knowledge, this is
the first experimental O(d®) online tomography implementation to date. A similar O(d”) online algorithm
has been proposed recently [15], however, an experiment is still lacking.

2. Methods

2.1. Experimental setup and measurement

The quantum states are encoded in the transverse spatial mode—the shape—of single photons. We describe
these modes in the Laguerre-Gaussian basis {|I;, p;) } [24], where each randomly chosen state is given by the
superposition |¢)=".¢|l;,p;) (with >_|ci|*> = 1). For the investigated qutrits in the experiment we use the
three logical basis states {|0) = | — 1,0),|1) = 0,2),|2) = |1,0)}, keeping the Gouy phase of the same order
and therefore preventing the shape from rotating as the photons propagate [25]. The experiment is
conducted with highly attenuated CW laser light (Thorlabs, mean photon number |a|* = 0.01) together
with two spatial light modulators (SLM, Meadowlark Optics) and a single photon detector (Perkin-Elmer,
~100 Hz dark count rate). The first SLM is used to prepare the unknown quantum state |¢);) via a hologram
that changes phase and amplitude of the initial state |l = 0,p = 0) from the laser source. A second hologram
displayed on the other SLM is then measuring the state |¢,,) from one randomly chosen basis set (see
section 2.3 for details). Finally, a single-mode fibre and the detector are acting as a local filter with the
number of detected photons proportional to the overlap |(t,,]t;)|* between the prepared and measured
mode. We note that, although all experiments were performed on a qutrit (d = 3) as proof of principle, the
setup is capable of preparing and measuring much higher dimensions as shown in previous work [26]. The
schematic, details, and characterisation of this simple but effective prepare-and-measure experiment are
described in [26].

2.2. Algorithm overview

MEG tomography [13, 14] is an online algorithm adapted from machine learning techniques that can
estimate and track quantum states. The idea is to construct an iterative procedure, in which an estimate j; of
the (mixed or pure) quantum state at the iteration ¢ is updated to a more accurate estimate p.y, given a new
measurement performed on the unknown quantum state. The MEG update rule [14] for the estimate p,; is
given by:

s exp(log(p;) — 1n:VL;)

Pt = exp(log(p;) —n:VL,)’ (0
where 7); is the learning rate, and L, is the loss function,
L= (tr(piXe) — )7, (2)
and its gradient is given by:
VL, =2(te(p:Xs) — y0) Xr- (3)
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The pair (X;,y;) denotes the measurement record where X, is the measurement operator and y; is the
experimentally obtained average value of measuring the state with operator X;. The measurements have to be
informationally complete as a requirement for performing any quantum tomography procedure. Therefore,
at each iteration, a measurement operator X, is chosen at random from a complete set of bases, and together
with the measurement result y;, the estimate of the state p, is updated to pry;. The learning rate 7,
determines the weight given to the new obtained information at each iteration. For tomography on
stationary states, 1), can be chosen to decrease continuously with the number of iterations while for online
state tracking it needs to be constant or adaptive, depending on former measurement outcomes.

2.3. MEG estimation extensions
We generalised the originally proposed MEG in [14] to make it applicable to qudits (d >2), and also
introduced modifications to make the algorithm more suitable for our experiment.

2.3.1. Measurement schemes

We extended MEG to work with general higher-dimensional systems d > 2 and local Pauli measurements.
We use two measurement schemes to perform our state estimation and online tracking. The first scheme is
utilising Mutually Unbiased Bases (MUBs) [27], measurements that are optimal for extracting
information [28]. For a d-dimensional quantum system, we have a maximum of d + 1 basis sets, each set
consistent of d states. However, complete sets of MUBs are not know for every dimension and so it is
important to also introduce a second scheme using generalised Pauli operators [29]. These operators are
given by the set {ut, vjr, wi}:

ujr = [7) (k[ + k) (i 0<j<k<d (4a)

vie = —ij) (k| + k) (1], 0<j<k<d (4b)

1
2 A
wl#» il GULLUE LS 0<i<d (4e)
=0

The operators reduce to the Pauli and Gell-Mann matrices for d =2 and d = 3, respectively. The total
number of operators is d> — 1, and for each operator, there are d eigenstates that can be measured. The
extension to generalised Pauli operators gives us eigenbases which are orthonormal and informationally
complete, thus making the algorithm applicable to any dimension. Projective measurements of MUBs and
eigenbases of Pauli operators are conveniently implemented in the experiment, thus making our setup ideal
for testing the MEG algorithm.

2.3.2. Modified update rule

The learning rate is usually chosen to be adaptive to guarantee convergence in the case of noisy
measurements as shown in [14]. However, upon exploring the effect of choosing different learning rates, we
found that a constant learning rate is sufficient to obtain an estimate with the maximum possible accuracy
obtainable given our experimental capabilities. Thus, we fix the learning rate to be , = n = 5.

The measurement schemes we use provide us with more information at each iteration. In the case of
MUB measurements, we randomly select a basis at each iteration. In order to calculate the probabilities, we
need to projectively measure all states of that basis for normalisation of the measurement counts. The same
holds when we use generalised Pauli measurements, we still need to measure all the eigenstates of a given
Pauli operator. Therefore, we modify the loss function to include multiple measurement results obtained at a
given iteration as follows:

d

L= (u(px®) —)" (5)

i=1
with gradient:
VL =23 (w(px’) 5" x, ©)
i=1
where X\ = [4i) (10| is the projector of the ith state of the MUB (or eigenstate of the Pauli operator) basis
that was randomly chosen at iteration ¢ out of d + 1 (or d* — 1) possible bases, and ygl) is the measured
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probability. Although this modification is motivated by how we perform our measurements, it is beneficial
for many experimental platforms, where often several projective measurements are necessary to calculate
probabilities.

Since we are restricting the experiments to pure states in our investigations—true for systems that have
very high control over their preparation, we can increase the estimation accuracy using this prior
information. The method we use is to project the state into the subspace of its largest eigenvalue, or
equivalently, finding the pure state closest to our estimate in fidelity. We illustrate this method with an
example: we can write the estimated density matrix p, of a pure quantum state |¢,) in the form:

ﬁt = >\|¢t><¢t| + (1 - )\)pAnoisea (7)

where the parameter A € [0, 1] indicates the noise strength, and ppoise = I;/d is the completely mixed state
representing the noise in the estimate, with I; the d dimensional identity matrix. The special cases A =0 and
A =1 correspond to the noiseless and completely noisy states respectively. Now, let |y;) be an eigenstate of 5,
with eigenvalue 7, i.e. p¢|y:) = V¢|7). Then, we can write:

¥ = (Vel el ve) (8a)
= Ml () + (1 — ) 1) (b
= Mool + 12 )

From there, we can see that the maximum eigenvalue is:

Yomee = A+ 122, ©)
which is obtainable when there is maximum overlap between ~y, and ¢;, in the best case | (v:|¢,)|* = 1,
i.e. |v;) = |#;). This shows that the true pure state |¢,) is an eigenvector of the density matrix j;
corresponding to the maximum eigenvalue, in other words, closest to our estimator in fidelity. So, after each
iteration we calculate the eigenvalues of the state estimate and select the corresponding eigenvector to be the
estimate of the pure state |¢,) with density matrix j,. Finally, the infidelity

1—fpg, ) =1— (tr NIV /,5¢> is used for benchmarking of the algorithm. Here, f{ g, 2y ) is

the fidelity and Q¢ is the density matrix of the theoretical prepared state |¢/;). Our results show convergence
to the unknown state within experimental limitations, most prominently mode-dependent losses, in all
investigated situations and even for excessive experimental noise. We note that MEG estimates a full density
matrix and hence related parameters of interest (as sometimes used in other tomography schemes,

e.g. shadow tomography [30, 31]) can be calculated with high accuracy.

3. Results

3.1. State estimation and online tracking

We investigated the qutrit (d = 3) state estimation and online tracking performance of MEG using mutually
unbiased bases (MUBs) and generalised Pauli operator measurements, which makes the algorithm generic
and applicable to higher dimensions. We also investigated the MEG performance in the presence of small and
large statistical noise, and also environmental noise. In all cases we continuously evolve the prepared state in
time following:

|¢he) = exp (—iowt)|tho), (10)

12 the rate of change dependent on the total amount of iterations

tot
fior- The rate of change was chosen to allow the state to evolve to a minimum fidelity compared to the initial
state and then back to its initial state. We studied three possible cases of o: 05 3 which is the 3-dimensional
zero matrix, o, which is the generalised 3-dimensional Pauli Z matrix given by [29, 32]:

where o is a Hermitian matrix and w =

L (1 0 0
0, = 01 0], (11)
V3 0 0 =2
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Figure 1. MEG on qutrits for (a) high signal rates (N 2 10° photons per measurement) using MUBs, (b) low signal rates

(N 2 10? photons per measurement) using MUBs, and (c) low signal rates using generalised Pauli operators. In each case, three
scenarios according to different time evolutions of the states (equation (10)) are investigated: stationary (blue), o, (red), and a
random unitary o, (black). Solid lines are median performances of the algorithm out of 50 randomly chosen states (according to
Haar measure). The shaded regions are the interquartile ranges.

Table 1. MEG performance indicators. Top: iterations needed to reach 10% infidelity. Bottom: mean infidelity. All values achieved with a
constant learning rate ) = 5. Uncertainties are the boundaries of the interquartile ranges, i.e. a mean infidelity of (5.3 73:2) % means that
the middle 50%—between 25%-75%, sorted by their infidelity—of our investigated states showed infidelities between 3.1% and 8.5%.

MUB Pauli operators

Signal rate (Hz) 0=033 o=o0, o =o; 0=033 o=o0, o =o;

Iterations for infidelity < 10%

10 14 17 13 t2¢ 16 72 30 +32 23 168 24 38
10° 44 41 471

Mean infidelity (%)
10? 53132 54434 56131 49128 54135 507133
10° 3.47F18 5122 47423

and o, which is a general random Hermitian matrix. The zero matrix results in the identity evolution leaving
the initial state stationary, while the other two matrices simulate a rotation in the Hilbert space of a qutrit. To
ensure a fair comparison, the learning rate—a crucial parameter for performance and convergence of the
algorithm—is kept constant at 17 = 5, which shows good performance in all cases albeit not optimal for

o = 03 3. The learning rate can be optimised individually, dependent on investigated scenario and physical
system.

An initial baseline measurement using MUBs and high signal rates (N ~ 10° photons per measurement)
is shown in figure 1(a). The high count rate ensures that statistical Poissonian distributed counting noise
(AN =+/N~10%), background (Np,ek =~ 50) and dark counts (Ng, &~ 100), are negligible and do not
deteriorate the performance. For this case, the algorithm finds density matrices with a median purity above
99.6% in all investigated scenarios, as to be expected for our system where we have a high degree of control
over the state preparation. Since the fidelities in the experiments are very high, we plot the infidelity,
1—f(pg, Q¢), for clarity. The solid lines in figure 1(a) are the median infidelities of 50 randomly chosen
states of qutrits (according to Haar measure), with the shaded regions bounded by the upper and lower
quartile (50 +25)%.

In theory, MEG can estimate any quantum state with arbitrary precision and accuracy given an infinite
amount of iterations. However, experimental imperfections such as misalignment and mode-dependent loss
significantly limit the minimum infidelities achievable by QST algorithms (not just MEG). The infidelities
for MEG listed in table 1 are similar to those obtained using other QST algorithms applied to our system,
e.g. root-approach and maximum-likelihood estimators [33] where we set the rank to 1.

We next show the robustness of MEG to noise using MUBs, reducing the count rate per iteration to
N = 102. This means that the values for Poissonian, dark, and background noise become comparable and
play a significant role in state estimation and tracking. Robustness to statistical noise in the limit of a small
number of repeated preparations of the unknown state—here the number of photons—is especially
interesting for systems like ions and superconducting qubits, as the preparation is considerably more time
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Figure 2. Tracking of a quantum state under randomly chosen Hermitian evolution o, using MUBs. MEG can track the
theoretical (dashed) deterministic evolution of a state experimentally (solid). The three probability components p; for the logical
basis states i = 0, 1,2 (blue, red, black) follow the theory nicely. Starting at an initial guess of a completely mixed state, useful
predictions for p; are obtained very effectively after 3—4 iterations.

consuming compared to our system. Again, we benchmark the performance of MEG by calculating the
infidelity in each iteration, see figure 1(b). State estimation and online tracking are in excellent agreement
with an overall mean infidelity ~5.5%, slightly higher than in the high count rate case, but well within the
uncertainty bars. This already shows the robustness of the modified algorithm to statistical noise. We would
like to highlight here that the unitary state evolution (following equation (10)) is done in preparation. The
noise is added to the measurement, not the preparation. Infidelities below 10% are achieved within around 15
iterations, four times more than in the baseline measurement with high count rates (see table 1 for details).

We furthermore studied the performance of MEG under high statistical noise, but using generalised Pauli
operator measurements rather than MUBs, shown in figure 1(c). As generalised Pauli operators can be
mathematically defined, using them instead of MUBs is a powerful tool to describe states far beyond the
qubit. We observe that state estimation and online tracking are again in excellent agreement and the overall
mean infidelity ~5.1% is slightly better than in the MUB case, but overlapping within uncertainty bars. This
demonstrates that generalised Pauli measurements are a viable path to extend MEG towards arbitrary high
dimensions in realistic experimental settings. The initial convergence towards the unknown state is slower
with around 25 iterations necessary to reach an infidelity of 10%. This is to be expected as MUBs span the
qutrit state space more efficiently compared to the Pauli operator measurements. Table 1 shows details of the
performance.

Since a changing state leads to changing probabilities of finding a system in a particular state, we also
show that we are able to follow these probabilities. Figure 2 illustrates one example of these probabilities
pi = |(i|1b;)|” for the logical basis states |i),i = 0,1,2, out of the 50 randomly chosen qutrits analysed in
figure 1 using MUBs. The theoretically expected probabilities in the experiment (dashed lines) are followed
nicely by online state tracking of the deterministic evolution in the experiment (solid lines). This confirms
that the low infidelities directly correspond to the capability to predict measurement outcomes on the states
well. We also highlight that MEG quickly converges to a useful estimate (after 3-4 iterations), even though
the initial guess is a completely mixed qutrit (p; = 1/3Vi) to avoid bias in the results. The small offset
between theory and experiment could be further decreased by using an adaptive learning rate.

3.2. Noisy MEG

We tested the efficacy of MEG under significant environmental noise experimentally—by adding a light bulb
close to the detector while keeping the signal rate at N ~ 10? photons per measurement—and in
simulations—adding Poissonian distributed noise to the raw data. The strength of the noise in the
experiment is controlled via the distance and angle of the light bulb to the single photon detector. As a proof
of principle demonstration, we only looked at stationary states using MUBs in our experiment, yet the
simulations show similar behaviour for all estimation and online tracking scenarios investigated in the
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Figure 3. MEG performance under excessive environmental noise in experiment (exp, solid) and simulation (sim, dashed) with
low signal rates (~10* photons per measurement), using MUBs. Median performance out of 50 randomly chosen states |t}
(experiment) and 20 runs each (total of 50 x 20 = 1000 traces) of added Poissonian distributed noise (simulation). Uncertainty
ranges omitted for clarity.

previous section. The median infidelities of 50 randomly chosen states for different methods
(solid—experiment, dashed—simulation) and environmental noise strengths (colours) are shown in
figure 3. Shaded uncertainty ranges similar to figure 1 are omitted for clarity. As expected, the achievable
infidelity and number of iterations to get there both become higher as the environmental noise increases,
however, MEG is showing exceptional robustness.

We observe that up to Ny« =~ 2 kHz of experimental and simulated noise (not shown explicitly in the
figure), the infidelities are comparable to the no noise case within uncertainty bars. This corresponds to a
SNR & 0.05, so only one in 20 photons carry the actual information on the unknown quantum state prepared
in the experiment. Here and in figure 3, Ny, relates purely to environmental noise from the light bulb,
excluding other noise sources like e.g. dark counts. It is however noteworthy that even at 0 kHz of artificially
introduced noise, the naturally occurring counting noise together with background and dark count rates are
almost double the signal count rate, i.e. ~170 compared to ~100 photons per measurement. Experimental
and simulated data for Np,¢ = [1,2.5] kHz show good overlap within uncertainty bars, indicating the validity
of the noise model in simulation. Therefore we expect to achieve infidelities of around 10% up to
SNR ~ 0.01 (orange dashed line). The seemingly smoother performance of the simulations stems from 20
runs of randomly added shot-to-shot noise for each of the 50 investigated states. In other words, the results
from simulations reflect the median infidelity of 50 x 20 = 1000 traces, compared to 50 in the experiment.

4. Discussion

We have presented an efficient tomography algorithm to track the continuous evolution of quantum states
despite significant environmental noise. Our approach, MEG tomography, uses machine learning techniques
to iteratively update an estimate of a quantum state in real time. We have extended the original online
tomography proposal [14] to arbitrary high-dimensional systems (qudits) and experimentally demonstrated
the algorithm with a qutrit encoded in the shape of photons. We have shown that MEG is highly resilient to
noise: we are able to estimate the quantum state with high fidelities, and accurately predict probabilities of
measurement outcomes for different types of evolution and signal strengths.

Although very useful, online QST of dynamical and/or noisy quantum states is a fairly new and mostly
unexplored research area. Theoretical proposals cover either noisy environments [20] or evolving
states [34—36], but we are not aware of any investigations into the robustness of tracking dynamical states
with high noise in any of the proposed algorithms. More recently, there have been some experimental
demonstrations of state tracking [10, 37] which naturally involves some noise due to the statistical nature of
measurements. However, neither of these works explicitly mentions or characterises the performance under
changing or high noise explored in our work. As discussed in [14], MEG can be used to estimate any type of
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quantum state. This includes mixed states as well as entangled states, as long as the measurements are from an
informationally-complete set. Our robust technique will enable applications that benefit from efficient online
tomography, e.g. quantum process tomography [38, 39] and quantum error mitigation [40]/correction [41].

Our results can be extended to process tomography through the Choi-Jamiotkowski isomorphism [42,
43], which allows us to represent a channel using a quantum state that lives in a d*-dimensional Hilbert
space. In this case, the process estimation becomes state estimation, and MEG could be utilised for the
procedure. This provides a more efficient solution compared to standard process tomography which requires
computational complexity O(d®) by using a tomographically complete set of states in preparation and
measurement, even O(d'?) for an over-complete set [44]. The bottleneck of the standard procedure comes
from the matrix-vector multiplications required for the estimation procedure. On the other hand, for the
MEG update rule, the bottleneck operation is the matrix exponential which is computationally more efficient
(see [14] and references within).

On the theoretical side, there are many interesting extensions to this work. One direction is exploring the
use of continuous monitoring (weak measurements) combined with MEG. This can have applications in
quantum control where we want to track an evolving state without completely collapsing it. Another
extension is to study the theoretical convergence of MEG [14] to state tracking (time-varying true states), as
well as the case of including the additional projection step for pure state estimation. Intuitively, the good
performance of MEG can be thought of to be similar to that of a moving-average filter, where noise gets
averaged out over time. The effect is comparable to increasing the number of shots per measurement over
many measurements. A more rigorous analysis could be done as future work. Finally, a convergence analysis
of simple models such as the example given in equation (7) can also provide more insight on the theoretical
performance of MEG.
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