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A B S T R A C T   

One of the key concerns in the 21st century, alongside the growing population, is the increase in energy con-
sumption and the resulting global warming. The impact of CO2, a prominent greenhouse gas, has garnered 
significant attention in the realm of CO2 capture and gas purification. CO2 absorption can be enhanced by 
introducing some additives into the aqueous solution. In this study, the accuracies of some of the most up-to-date 
computational approaches are investigated. The employed machine learning methods are hybrid-adaptive neuro- 
fuzzy inference system (Hybrid-ANFIS), particle swarm optimization-adaptive neuro-fuzzy inference system 
(PSO-ANFIS), least-squares support vector machines (LSSVM) and genetic algorithm-radial basis function (GA- 
RBF). The developed models were used in estimating the solubility of CO2 in binary and ternary amines aqueous 
solutions. i.e. blends of monoethanolamine (MEA), triethanolamine (TEA), aminomethyl propanol (AMP), and 
methyldiethanolamine (MDEA). This modeling study was undertaken over relatively significant ranges of CO2 
loading (mole of CO2/mole of solution) as a function of input parameters, which are 0.4–2908 kPa for pressure, 
303–393.15 K for temperature, 36.22–68.89 g/mol for apparent molecular weight, and 30–55 wt % for total 
concentration. In this work, the validity of approaches based on different statistical graphs was investigated, and 
it was observed that the developed methods, especially the GA-RBF model, are highly accurate in estimating the 
data of interest. The obtained AARD% values for the developed models are 18.63, 8.25, 12.22, and 7.54 for 
Hybrid-ANFIS, PSO-ANFIS, LSSVM, and GA-RBF, respectively.   

1. Introduction 

It is important for our planet to have CO2 in its atmosphere, while a 
significant increase in the concentration of this gas can lead to serious 
effects such as global warming and climate change (Zhang et al., 2023b). 
For this reason, there has been a lot of interest in new methods for 
minimising CO2 emissions to the atmosphere (Li et al., 2023), which can 
be applied to various industrial plants (Mosadegh et al., 2020). 

Absorption (Zhang et al., 2023c), Adsorption (Li, 2023), Cryogenics 

(Safdarnejad et al., 2015), and Membrane (Amirkhani et al., 2020b) 
based separation methods are among the methods of reducing CO2 
emissions which have been investigated earlier. The adsorption method 
has many benefits compared to the other mentioned approaches (Ola-
jire, 2018). There are some disadvantages to activated carbon use, such 
as low selectivity of CO2/N2 (Ben-Mansour et al., 2016). Other adsor-
bents such as zeolite, alkali metals, amine-based adsorbents, micropo-
rous organic polymers, and metal-organic frameworks have also been 
studied. The adsorption methods for reducing CO2 emissions in the in-
dustry normally require low-temperature conditions for adsorbents 
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(Hussin and Aroua, 2019). As of today, no serious invention focusing on 
CO2 capture using the adsorption methods has been reported, or the 
information is limited. To achieve techno-economic systems for this 
process, providing efficient adsorbents is important. There are satisfac-
tory results from the experiments performed in the laboratory; however, 
applying the same methods to industrial scales remains a challenge 
(Hussin and Aroua, 2019). 

For the process of CO2 capture, various technologies can be used, as 
mentioned earlier (Amirkhani et al., 2020a). However, the most popular 
system is absorption by an amine-based solvent (Zhang et al., 2023a) 
mainly because it is inexpensive and can be used for relatively high flow 
rates of flue and industrial gases (Ghanbari-Kalajahi and Haghtalab, 
2023). It should be noted that one of the differences between absorption 
and adsorption processes is that the former uses the total amount of the 
material used, but the latter uses the surface to occur. As mentioned 
earlier, the use of amine-based aqueous solutions in the process of ab-
sorption has grown and has been used significantly (He et al., 2023). In 
terms of cost and feasibility, there are limitations to the use of this 
process for post-combustion technologies. To begin with, the power 
which is used to compress the gas should be increased due to the low 
partial pressure of CO2 in the flue gas outlet flow. The absorption col-
umn may not be large enough to support the large amounts of flue gases 
from plants (Dash and Wadibhasme, 2017). There are solutions to these 
issues, such as a quicker reaction between CO2 and the solvent, a lower 
rate of degradation, and a larger solvent capacity (Sreedhar et al., 2017). 
For these reasons, blending amine solvents can be used to enhance the 
efficiency of the CO2 capture process (Chen et al., 2022). By this method, 
we can boost the solubility at equilibrium and decrease the amount of 

energy used in the solvent regeneration process. The solubility of CO2 in 
such systems has been studied previously by different research groups 
(Aghel et al., 2022). 

The experimental methods to study absorption can be time- 
consuming and costly. Therefore, developing models to predict/esti-
mate the absorption in this process is significantly helpful and can 
address different issues in process design (Zhong et al., 2023). That 
being said, modeling using AI, which is considered as one of the most 
practical methods of machine learning, has been very popular due to its 
valid, rapid and low-cost procedures, as well as being convenient to use 
(Dashti et al., 2021a). 

Sipocz et al. suggested a feed-forward type of an ANN, which con-
tains multilayers and analyzes the nonlinearity of input and output pa-
rameters (Sipöcz et al., 2011). In their study, they simulated the 
post-combustion CO2 capture, which was based on amine. Another 
group presented the carbon dioxide content in aqueous blends con-
taining piperazine, monoethanolamine, and triiso-propanolamine in 
partial pressure values below atmospheric pressure, and broad temper-
ature and concentration ranges. Same group has used an ANN which 
estimates properties such as viscosity and corrosion. The efficiency of 
some neural networks, including radial basis function and back propa-
gation multi-layer perceptron has been evaluated by Shahsavand et al. 
(2011). The experimental data of CO2 capture by methyldiethanolamine 
and diethanolamine at several concentration values were used as the 
data required for training the algorithm. Another study estimated the 
thermal conductivity of ionic liquids based on properties such as the 
molecular weight of the liquid, pressure and temperature (Hezave et al., 
2012). ANN has also been used in prediction of the level of sulfur in 

Abbreviations 

AARD Average absolute relative deviation 
AI Artificial intelligence 
AMP Aminomethyl propanol 
ANFIS Hybrid adaptive neuro fuzzy inference system 
ANN Artificial neural network 
CCS Carbon capture and storage 
CH4 Methane 
CO2 Carbon dioxide 
CSA Coupled simulated annealing 
DEA Diethanolamine 
EXP Experimental 
FCM Fuzzy C-means 
FDM Finite difference method 
GA Genetic algorithm 
LSSVM Least squares support vector machine 
MDEA Methyldiethanolamine 
MEA Monoethanolamine 
ML Machine learning 
MLP Multilayer perception 
MNN Maximum number of neurons 
MOFs Metal-organic frameworks 
MSE Mean squared error 
Mwa Apparent Molecular weight 
N2 Nitrogen 
P Pressure 
PSO Particle swarm optimization 
R2 Coefficient of determination 
RBF Radial basis function 
RMSE Root mean squared error 
STD Standard deviation 
T Temperature 
TEA Triethanolamine 

VLE Vapor-liquid equilibrium 

Symbols 
x Total concentration 
α Solubility capacity 
g/mol Gram/Mole 
K Degree of Kelvin 
kPa Kilo Pascal 
wt% Weight percentage 
x1, 2 Input feature values 
A1, 2 Fuzzy set of input variables x1 
B1, 2 Fuzzy set of input variables x2 
Oi Output number (ANFIS) 
μi Membership function (ANFIS) 
wi Weight function (ANFIS) 
wi Normalized weight function (ANFIS) 
fi Function of the Sugeno-type fuzzy (ANFIS) 
Π Node (ANFIS) 
xn Input vectors (LSSVM) 
yn Output vectors (LSSVM) 
b Transposed form of the weight matrix (LSSVM) 
w Transposed form of the weight matrix (LSSVM) 
f(x) Decision function (LSSVM) 
g(x) Mapping data function (LSSVM) 
ξ Slack parameter (LSSVM) 
α Lagrange multipliers (LSSVM) 
β Lagrange multipliers (LSSVM) 
Xp

i Input parameters (RBF) 
tp Target value (RBF) 
N Number of main functions (RBF) 
∅ Activation function (RBF) 
f(x) Radial basis function (RBF) 
r Distance between the x and data centers (RBF) 
σ Spread coefficient (RBF)  
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hydrogen sulfide at relatively high pressure and temperature values 
(Mohammadi and Richon, 2008). 

Correlation equations based on empirical data were created to model 
the vapor-liquid equilibrium (VLE) and absorption rate of CO2 in a 
ternary aqueous amine solvent. The model was incorporated into the 
PRO/II® commercial software using a user-added subroutine (Lee et al., 
2019). Another study utilized 2D mathematical modeling with the finite 
difference method (FDM) to explore the impact of different ionic liquids, 
their concentrations, and liquid and gas flow rates on the CO2 absorption 
process in membrane contactors (Darabi and Pahlavanzadeh, 2020). Gas 
mixture adsorption investigations involving metal-organic frameworks 
(MOFs) were conducted through molecular simulations. In this research, 
artificial neural networks (ANNs) were employed to predict the sepa-
ration factor of CO2 and CH4, gas adsorption performance, and heat of 
adsorption (Yulia et al., 2021). To predict CO2 solubility data in three 
types of aqueous amine blends, a new simplified Kent-Eisenberg model 
was developed. Additionally, a multilayer neural network model with 
the Levenberg-Marquardt backpropagation algorithm was created based 
on 500 reliable published experimental data (Li et al., 2022). In another 
approach, Nassef proposed a cost-efficient method that leverages AI and 
modern optimization techniques to enhance CO2 solubility in carbon 
capture and storage (CCS) (Nassef, 2023). 

Machine learning can be used as a robust approach to estimate 
different measures for the process of CO2 equilibrium absorption (Liu 
et al., 2017). In this work, precise machine learning (ML)/AI models and 
algorithms have been developed to estimate the solubility of CO2 in 
aqueous amines mixtures, including Hybrid-ANFIS, PSO-ANFIS, LSSVM, 
and GA-RBF which are known as high-speed and precise methods. The 
solubility estimations are based on the total concentration of the solu-
tion, apparent molecular weight, temperature and pressure, which are 
obtained using a relatively large set of experimental data. The accuracy 
of the developed models is so high. 

2. Methodology 

This section explains a theoretical description of the developed 
machine-learning models to estimate CO2 sorption in blended amine 
solutions. The machine learning models are Hybrid-ANFIS, PSO-ANFIS, 
LSSVM, and GA-RBF. 

2.1. ANFIS model 

The adaptive neuro-fuzzy inference system (ANFIS) technique is 
usually used in highly nonlinear and complex systems because it in-
volves both fuzzy inference systems and ANN methods (Amirkhani et al., 
2022). This study implemented the Takagi-Sugeno fuzzy system using 
five layers and two inputs. The inputs and the single output of this 

algorithm are shown as x1, x2 and f. The equations below explain the 
common fuzzy rules (Dashti et al., 2020). 

Rule 1: 

If x1 is A1 and x2 is B1 and etc.; then f1 = a1x1 + b1x2 + … + r1; (1)   

Rule 2: 

If x1 is A2 and x2 is B2 and etc.; then f2 = a2x1 + b2x2 + r2; (2) 

where the consequent parameters are a1, b1, r1, a2, b2, r2. The pa-
rameters A1, A2, B1, and B2 represent the linguistic labels. This approach 
is based on a feed-forward neural network with five layers and different 
functions, which are shown in Equations (3)–(7). By having the inputs 
node in the first layer, the membership relation between inputs and 
outputs can be explained as: 

O1,i = μAi(x), i = 1, 2 (3) 

where, O1,i denotes the output of the ith node and μAi represents a 
membership function (MF) like Gaussian MF. 

In layer 2, every node is a constant node denoted as Π and the output 
of nodes within this layer is determined by computing the product of all 
incoming signals, as illustrated. is as shown below: 

O2,i =wi = μAi(x) × μBi(x), i = 1, 2 (4) 

In layer 3, the weight function would be normalized as shown below: 

O3,i =wi =
wi

w1 + w2
, i = 1, 2 (5) 

Layer 4, also known as defuzzy layer, gives the product of the pre-
vious layer’s output and the function of the Sugeno-type fuzzy rule: 

O4,i= wifi =wi (aix+ bix2 +…+ ri), i= 1, 2 (6)  

In layer 5, we add all the outputs of the rules, as shown in Equation (7). 

O5,i=

∑n

i=1
wifi =

∑

i
wifi

∑

i
wi

, i = 1, 2 (7) 

More details about this method can be found elsewhere (Amirkhani 
et al., 2021). Fig. 1 Shows the schematic of ANFIS model. 

2.2. CSA-LSSVM algorithm 

Support Vector Machine (Vladimir and Vapnik, 1995) is a strong 
method which predicts nonlinear functions and can also be used in 
classification problems (Dashti et al., 2021b), including difficult and 

Fig. 1. Schematic of ANFIS architecture for a two-input x1, y1 and one output f. Copyright 2016, Reproduced with permission from (Ghiasi et al., 2016), Elsevier 
Science Ltd. 
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complex ones. This technique deals with mapping a set of experimental 
data points which are nonlinearly mapped into a higher dimensional 
space. This data set can be shown as {(x1, y1), …, (xn, yn)}, where xi and 
yi represent input and output vectors, respectively. In this study, the 
output parameter is solubility. The main goal of the support vector 
machine method is to find the best hyper-plane in classification, which 
maintains the minimum distance from the data points (Suykens and 
Vandewalle, 1999). In this method, the decision function in the case of 
linearity in data classification can be written as (Chamkalani et al., 
2014): 

f (x)=wtg(x) + b (8)  

where b and w represent the transposed form of the weight matrix, and g 
(x) indicates the function used for mapping the data. Provided that the 
difference in data from the two categories is recognizable, the conditions 
the value of the above function is subjected are as follows: 
{

f (xi) ≥ 1 if yi = +1
f (xi) ≥ − 1 if yi = − 1 (9) 

Some of the data used for training the algorithm form the support 
vectors provided that the conditions above are satisfied (Cristianini and 
Shawe-Taylor, 2000). If the case of interest deals with problems with 
linear separation capacity in the feature margin, there would be a lim-
itless number of decision functions, all meeting the conditions above. A 
proper dividing plane is the hyper-plane, which has the maximum dis-
tance from the plane that passes the data points. An ideal separator is a 
plane that gives the highest margin and lowest noise utilising slack 
margin as follows (Cristianini and Shawe-Taylor, 2000): 

min
(

1
2
‖w‖2

)

+ C
∑n

i=1
ξi (10)  

In Equation (10), ξ and C represent the slack parameter and a constant. 
The former shows the difference between the data in their corresponding 
inaccurate and actual categories. The latter parameter, which has a 
positive value, shows a compromise between the highest margin and the 
minimum error. This deterministic strategy deals with convex optimi-
zation, for which the method of Lagrange multipliers was used to solve it 
(Baylar et al., 2009): 

g(w, b,α, ξ, β)=
1
2

wtw+
C
2
∑n

i=1
ξi −

∑n

i=1
αi(yi[wtxi + b] − 1+ ξi

)

−
∑n

i=1
βiξi

(11)  

where α and β parameters are the Lagrange multipliers, we can deal with 
this problem using the Lagrangian Saddle Point when the values 
assigned to αi are positive. In order to address the linearity and non- 
linearity of the cases, and also because of the specific form of the sup-
port vector machine algorithm, the practical approach is to obtain sparse 
solutions (Suykens and Vandewalle, 1999). 

In order to do a convex optimization, support vectors are created, 
and to do tasks such as predicting the functions or performing re-
gressions. We can use the support vector machine method. To do so, we 
use quadratic programming subject to inequality constraints. Due to the 
constraints in the optimization part of the model, estimating the func-
tions through the support vector machine approach is considered 
computationally expensive (Wang and Hu, 2005). This method is 
time-consuming for an extensive set of functions (Wang and Hu, 2005). 

2.3. Radial basis function neural network (RBF-NN) 

The radial basis function network is among one of the most popular 
ANN algorithms due to its high precision and sufficiently good perfor-
mance. In these algorithms, radial basis functions are, in fact, activation 
functions. The application of these networks is expanded to various 
areas, for example, system control, clustering, pattern classification, 
time series forecasting, spline interpolation and function approximation. 
In most cases, there are three layers in RBF-NNs: input, single hidden, 
and output layers (Tatar et al., 2016). Unlike the modeling procedure of 
RBF and MLP neural networks, there are similarities in the structure of 
these two algorithms (Tatar et al., 2013). 

In RBF-NN, the weights are obtained in the training phase. Selecting 
and optimizing the parameters involved in the algorithm is considered a 
significant task that can lead to a sufficiently precise estimation (Park 
and Sandberg, 1991). 

A lot of difficult mapping problems can be answered by RBF-NNs 
using intermediate layers. Typically, upon any variation in data, the 
statistical approaches correct the variables in the network accordingly. 
RBF-NNs share some features, including (Chen et al., 1991).  

(i) In the training phase, the weights are assigned from the input to 
the hidden layer and, after that, from the hidden to the output 
layer.  

(ii) The networks are able to ideally interpolate the data.  
(iii) The output nodes utilize linear summation functions.  
(iv) Some sorts of radial basis functions, for example, Gaussian, are 

applied by hidden nodes. 
(v) The training phase takes less time to be completed than in stan-

dard ANN approaches. 

The function f(x) can be defined as f(Xp) = tp∀p = 1, …,D, where 
Xp = [Xp

i : 1,2,…,N]), which has D dimensions, indicates the input pa-
rameters. Also, N shows the number of data points and tp represents the 
target value, on which Xp is projected using RBF. There are N main 

Table 1 
Details of the PSO-ANFIS model for estimating the CO2 
solubility.  

Parameter Value 

Iterations 500 
No. of particles 1000 
Wmin 0.5 
Wdamp 0.99 
C1 1 
C2 2 
Number of fuzzy rules 10  

Fig. 2. The convergent of GA to the optimum model.  
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Fig. 3. Regression plot for the solubility of CO2 prognostication by (a) ANFIS, (b) PSO-ANFIS, (c) LSSVM and (d) GA-RBF.  

Fig. 4. Relative deviation of the estimated CO2 solubility values for both test and train data points by (a) Hybrid-ANFIS, (b) PSO-ANFIS, (c) LSSVM and (d) GA-RBF.  
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functions of this type involved in RBF-NN, presented as ∅ (‖x − xp‖) in 
hidden layer nodes. The activation function is indicated by ∅ , which is 
nonlinear and dependent on the difference between x and xp. ‖x − xp‖ is 
the Euclidean norm and represents this difference. The basis function is 
f(x)=

∑N
p=1wp ∅(‖x − xp‖) and is obtained by linearly combining a 

number of basic functions (Halali et al., 2016). 
Based on both observation and theory, not all the features of the 

interpolation function depend on the type of ∅(r). Here was used the 
Gaussian form of this function, which is well-known and acceptable for 
this study and is defined as (Halali et al., 2016): 

∅(r)= exp
(

−
σ2

r2

)

(12)  

where r shows how far the point x and center are from each other, and σ, 
which is a positive value, represents the width and shows how flat the 
function is. RBF-NNs have been widely studied by other groups as well 
(Barati-Harooni et al., 2016). 

3. Data collection and analysis 

In this study, the data on the solubility of CO2 were gathered from the 
experiments done by other groups. The solubility data were obtained 
under different conditions. The 413 data points were separated into 
training and test sets. Due to several reasons such as unreliable data or 
unconsidered parameters in tests such as humidity and purity or grades 
of amines, these data could not correlate well by ML models. The former 
set contains around 80% of the available experimental data, while the 
rest forms the test set. The solutions corresponding to each set are the 
same. The operating conditions are dissimilar. The test set assesses the 
performance of the algorithm based on any given inputs. 

One significant step is determining the independent parameters 
related to the correlation, which occurs before the training phase. The 
model should be able to differentiate between various types of aqueous 
solutions in blends. As mentioned earlier, the conditions at which the 
data are acquired should be considered. The solubility of CO2 depends 
on parameters, such as the set of temperature (K), the total concentra-
tion (wt. %), pressure of CO2 (kPa) and its apparent molecular weight 
(g/mol). Note that the type of the solution and its concentration affect 
the apparent molecular weight, which is often used to reduce the 
computational effort. In the developed algorithm, the input parameters 
are apparent molecular weight, the pressure of CO2, total concentration 
and temperature: 

α= f (T, x,PCO2 ,Mwa) (13) 

The apparent molecular weight is defined as: 

MWa =
∑NC

i=1
xiMWi (14)  

where i and NC represent the counter and the number of components. 

4. Results and discussion 

In this section, details and necessary explanations about the methods 
for the development of models are described. In addition, different 
models performances are compared by statistical and graphical 
methods, and their applicability in the estimation of real data is 
assessed. 

4.1. Model development 

The MLP-ANN algorithm includes four neurons in the input and one 
in the output layer. That being said, in the developed algorithm, the 
count of neurons in the hidden layer was altered from one to thirty. It 
was observed that the multilayer perceptron algorithm gives the best 
accuracy with a hidden layer containing 28 neurons, which corresponds 
to the best efficiency. 

According to other research work, estimating the membership 
functions is not a straightforward task to be done using any specific 
equation. As a result, to do so, the trial and error method is suggested. 
The Gaussian membership function, which other researchers have also 
used, gave the best results. It should be noted that seventeen rules were 
incorporated in the ANFIS based on the Fuzzy C-means method. The 
ANFIS membership functions associated with the input parameters can 
be seen in Fig. S1 (supplementary information). For the training phase, 
the number of epochs was selected as 2000. Also, in the beginning, 
hybrid learning was used to estimate the parameters. 

The PSO-ANFIS model is based on finding the optimum parameters 
of ANFIS, which can be obtained using the PSO algorithm (Kennedy and 
Eberhart, 1995). MATLAB software was used to set up the PSO-ANFIS 
algorithm. This algorithm uses PSO to help the hybrid model better 
correlate the inputs and output. This model can have high accuracy, 
especially in the case of non-linearity, and therefore can improve the 
algorithm’s efficiency. As mentioned earlier, the particle swarm opti-
mization parameters should be properly selected. The trial and error 
method was applied (Table 1). Fig. S2 (supplementary information) 
demonstrates the PSO-ANFIS membership functions associated with the 
input parameters. 

The tuning or penalty parameters used in the LSSVM approach are σ2 

and γ. A frequently used optimization approach is CSA (Xavier-de-Souza 
et al., 2009), which gives a satisfactory data fit. Applying the coupled 
CSA algorithm in this study gave us the optimised values of σ2 and γ as 
10.17 and 4761454.1, respectively. 

In RBF, the Maximum Number of Neurons (MNN) and Spread are 
known as the key hyperparameters, which directly affect the precision 
and efficiency of the algorithm. There are multiple methods to obtain 
the optimised values of these parameters, such as trial and error. The 
trial and error method is normally challenging and takes a lot of time to 
give the desired results, especially for a nonlinear algorithm such as RBF. 
GA (Hassan et al., 2005) was used as a strong and robust tool for 
obtaining the optimised values of the above-mentioned hyper-
parameters. The best values of MNN and Spread, which were calculated 
after 55 generations, are 91 and 99.514, respectively. Fig. 2 presents 
how the GA algorithm converges to the mentioned optimum values by 
showing MSE variations versus generation sequences. It is clear that 
these values were obtained after 55 generations. 

Table 2 
Estimation accuracy of different models.  

Model 

Parameters Train Test Total 

Hybrid-ANFIS 
R2 0.8481 0.9031 0.8607 
MSE 0.0089 0.0067 0.0085 
STD 0.2232 0.2475 0.2284 
%AARD 19.18 16.45 18.63 
PSO-ANFIS 
R2 0.9705 0.9678 0.9699 
MSE 0.0017 0.0022 0.0018 
STD 0.2391 0.2589 0.2434 
%AARD 8.17 8.545 8.25 
LSSVM 
R2 0.9132 0.9288 0.9166 
MSE 0.0051 0.0050 0.0051 
STD 0.2284 0.2611 0.2356 
%AARD 12.41 11.43 12.22 
GA-RBF 
R2 0.9794 0.9054 0.9625 
MSE 0.0012 0.0065 0.0023 
STD 0.2395 0.2535 0.2426 
%AARD 7.00 9.70 7.54  
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Table 3 
Details of the data used in this study, and the AARD% of the developed models for each blended amine solution.  

No. Mixed 
aqueous 
solution type 
(wt. %) 

Pressure 
range (kPa) 

Temp. range 
(K) 

Apparent 
molecular 
weight (g/mol) 

Overall 
concentration 
range (wt. %) 

No. 
data 

%AARD Ref. 

ANFIS PSO- 
ANFIS 

LSSVM GARBF 

1 
2 
3 
4 

(24.0 %) 
MEA + (6.0 
%) TEA 
(18.0 %) 
MEA + (12.0 
%) TEA 
(12.0 %) 
MEA + (18.0 
%) TEA 
(6.0 %) 
MEA + (24.0 
%) TEA 

1.07–122 313.2–373.2 36.22–52.08 30–30 140 14.40 
13.73 
17.86 
24.71 

6.30 
6.77 
6.91 
11.19 

9.46 
7.24 
10.16 
13.56 

3.94 
6.85 
5.98 
7.84 

Cheng et al. (2010) 

5 
6 
7 
8 

(1.5 %) DEA 
+ (28.5 %) 
AMP 
(3.0 %) DEA 
+ (27.0 %) 
AMP 
(4.5 %) DEA 
+ (25.5 %) 
AMP 
(6.0 %) DEA 
+ (24.0 %) 
AMP 

1.92–92.77 303–323 39.59–40.31 30–30 59 13.54 
15.15 
16.87 
15.09 

8.43 
5.88 
5.44 
5.62 

7.20 
10.40 
10.82 
10.18 

8.42 
6.42 
5.34 
5.82 

(Kundu and 
Bandyopadhyay, 2006) 

9 
10 
11 

(6.0 %) DEA 
+ (24.0 %) 
AMP 
(12.0 %) 
DEA + (18.0 
%) AMP 
(18.0 %) 
DEA + (12.0 
%) AMP 

1.61–364.9 313.15–353.15 40.31–42.23 30–30 46 24.25 
8.42 
10.72 

11.74 
4.11 
4.45 

19.60 
8.72 
9.16 

9.07 
4.14 
5.05 

(Seo and Hong, 1996) 

12 
13 
14 
15 
16 
17 
18 

(25.0 %) 
DEA + (5.0 
%) AMP 
(20.0 %) 
DEA + (10.0 
%) AMP 
(10.0 %) 
DEA + (15.0 
%) MDEA 
(10.0 %) 
DEA + (20.0 
%) MDEA 
(20.0 %) 
DEA + (10.0 
%) MDEA 
(10.0 %) 
DEA + (35.0 
%) MDEA 
(10.0 %) 
DEA + (20.0 
%) MDEA 

2.8–2908 313.15–393.15 41.90–62.13 25–45 69 7.67 
13.37 
23.50 
15.79 
31.34 
43.14 
79.13 

4.19 
9.44 
8.83 
5.36 
19.68 
11.57 
11.35 

5.66 
10.21 
17.86 
14.97 
32.21 
35.67 
11.69 

5.78 
7.84 
9.60 
3.36 
17.49 
11.24 
58.90 

(Murrieta-Guevara 
et al., 1998b) 

19 (12.5 %) 
DEA + (32.5 
%) MDEA 

0.4–1999.1 313.15–393.15 61.78–68.89 45–55 99 21.67 14.00 15.40 7.70 (Rebolledo-Libreros, M. 
a.E. and Trejo, A.J.F.p. 
e., 2004) 

20 (12.5 %) 
DEA + (32.5 
%) MDEA 
+ (4.0 %) 
AMP 

20.26 8.32 14.26 9.26 

21 (12.5 %) 
DEA + (32.5 
%) MDEA 
+ (6.0 %) 
AMP 

13.55 6.45 11.11 3.90 

22 (12.5 %) 
DEA + (32.5 
%) MDEA 
+ (10.0 %) 
AMP 

14.40 10.59 10.56 3.53  

Total 0.4–2908 303–393.15 36.22–68.89 25–55 413 18.63 8.25 12.22 7.54   
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4.2. Finding the best approach 

In this section, the efficiency and capability of different models were 
compared. To evaluate the accuracy of the proposed models, four sta-
tistical parameters were used: correlation factor (R2), standard deviation 
(STD), root mean squared error (RMSE), and average absolute relative 
deviation (AARD). The formulas for these parameters are given below. 

R2 = 1 −

∑n
i=1

[
xestimated

i − xexperimental
i

]2

∑n
i=1[xestimated

i − xm]
2 , xm =

∑n
i=1xexperimental

i

n
(15)  

AARD% =
100
n

∑n

i=1

⃒
⃒xestimated

i − xexperimental
i

⃒
⃒

xexperimental
i

(16)  

MSE =
1
n

∑n

i=1

(
xexperimental

i − xestimated
i

)2 (17)  

STD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

(
(xestimated

i -xm)
2

n

)√
√
√
√ (18) 

Fig. 3 shows the regression values, which also verify the validity of 
the four approaches. This means that the models were not over- or 
undertrained. Hybrid-ANFIS, PSO-ANFIS, LSSVM, and GA-RBF tech-
niques have the R2 values of 0.8607, 0.9699, 0.9166 and 0.9625, 
respectively. 

Fig. S3(supplementary information) shows the trend plots for three 
phases of trained and tested data points of the developed model. This 
figure clarifies the precision and the enhancement of the improved 
model. It also exhibits the anticipations of the executed model track the 
trend of reported data with a satisfactory accuracy. Fig. 4 shows the 
relative deviations between the estimated values from each approach 
and actual data. We can see that the deviation values are mostly close to 
zero, confirming a good agreement between the estimated results and 
experimental data. In addition, it is concluded that GA-RBF approach 
has a higher efficiency than the rest of the methods. 

The values of the MSE, standard deviation, AARD% and R2 were 
calculated to compare the efficiency and accuracy of the mentioned 
methods, as shown in Table 2. Lower values of AARD% (near zero) and 
higher values of R2 (near 1), shows the best and accurate model. As a 
result, GA-RBF and PSO-ANFIS models with R2 value of 0.9054 and 
0.9678 and AARD% of 9.70 and 8.55 (for test data) show the best ac-
curacy as well as the fastest convergence in estimating the solubility of 
CO2. 

Table 3 shows the details of employed data, and the AI models AARD 
% values for estimating the CO2 absorption in blended amine solution. 
Table 3 demonstrates that GA-RBF accuracy is higher than other models 
in the case of solutions no. 1, 3, 4, 5, 7, 9, 13, 15, 16, 17, 19, 21 and 22. 
Table 3 clearly indicates that in the case of blended amine solutions no. 
2, 6, 8, 10, 11, 12, 14, 18 and 20, the AARD% of the PSO-ANFIS model is 
lower than the GA-RBF model. LSSVM accuracy in the case of blended 
amine solution no.5 is higher than in other models. 

Figs. 5–7 indicate a trend of the general behaviour of the developed 
models and experimental results. It can be seen that estimated and 
experimental data are in good agreement. It can be inferred that (a) at 
constant temperature and composition, and the CO2 absorption raises 
with elevating pressure (b) at constant pressure and composition, the 
CO2 absorption reduces with rising temperature and (c) at constant 
temperature and concentration in the ternary mixture, the increase in 
concentration significantly increases the CO2 loading capacity of the 
aqueous blended amine system. Fig. 6 indicates the impacts of adding 
AMP in various concentrations to the aqueous solution of 32.5 wt% 
MDEA and 12.5 wt% DEA in the solubility data for CO2 at 313.15 K. As 
can be seen, CO2 absorption rises by the increment of the concentration 
of AMP. This obviously demonstrates the pros of having the third 
alkanolamine in the solution of MDEA with DEA (Rebolledo-Libreros 

Fig. 5. Solubility of CO2 in an aqueous solution of 32.5 wt% MDEA, 12.5 wt% 
DEA and 10 wt% AMP at different temperatures and its estimation using 
GA-RBF. 

Fig. 6. Solubility of CO2 at 313.15 K, in an aqueous solution of 32.5 wt% MDEA 
and 12.5 wt% DEA: without AMP; with 4 wt% AMP; with 6 wt% AMP and with 
10 wt% AMP and its estimation using GA-RBF. 

Fig. 7. Solubility of CO2 at 313.15 K, in an aqueous solution of 10 wt% DEA: 
with 15 wt% MDEA; with 20 wt% MDEA and with 35 wt% MDEA and its 
estimation using GA-RBF. 
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and Trejo, 2004). Fig. 7. Shows the effect of adding MDEA to DEA +
MDEA solution. It is evident that MDEA has a limited impact on CO2 
absorption, especially at elevated pressures. It is well-established that 
the reactivity towards CO2 follows the order of primary (AMP) > sec-
ondary (DEA) > tertiary (MDEA) alkanolamines. It demonstrates that 
blending amine with AMP are more effective to those with MDEA 
(Murrieta-Guevara et al., 1998b). 

The optimal amine mixture can be determined using the data 
collected in this study. As depicted in Table S1 of the supplementary 
data, it is evident that a solution comprising 25% DEA and 5% AMP 
yields the highest CO2 absorption, reaching 1.2 mole of CO2 per mole of 
alkanolamine. This maximum loading was achieved under the condi-
tions of a pressure of 2908 kPa and a temperature of 298 K. (Murrie-
ta-Guevara et al., 1998a). 

5. Conclusions 

In this work, several machine learning approaches, namely Hybrid- 
ANFIS, PSO-ANFIS, LSSVM and GA-RBF, were used to estimate the 
solubility of CO2 in binary and ternary amines aqueous solutions. The 
blinded amine solutions were blends of ethanolamine (MEA), trietha-
nolamine (TEA), aminomethyl propanol (AMP), methyl diethanolamine 
(MDEA). The solubility was changed by different factors, including 
partial pressure of CO2 (kPa), apparent molecular weight (g/mol), total 
concentration (wt. %), and temperature (K) of the solutions. These pa-
rameters were the inputs to the algorithm, which can be used over large 
ranges of pressure and temperature values corresponding to various 
blends. The performances of the AI methods were assessed, and the GA- 
RBF method results in an AARD% of 7.54. The utilization of GA-RBF 
with exceptional accuracy demonstrates the novelty and reliability of 
this model. A key benefit of this algorithm is its capability to handle 
intricate relationships between CO2 concentration and solubility 
without being constrained by factors like concentration and tempera-
ture. The findings from this research can serve as a valuable resource for 
scientists seeking to determine CO2 solubility in aqueous solutions 
containing commonly used blended amines. This eliminates the need for 
expensive experimental work, and researchers can confidently rely on 
this data due to its validation through prior experimental studies. 
Moreover, these models can assist researchers in the design and man-
agement of CO2 capture plant systems. The latter factor is particularly of 
great significance when dealing with big data. Another advantage of this 
approach is the ability to handle a relatively large amount of input data. 
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Klemeš, J.J., 2022. Estimating flashpoints of fuels and chemical compounds using 
hybrid machine-learning techniques. Fuel 323, 124292. 

Amirkhani, F., Harami, H.R., Asghari, M., 2020a. CO2/CH4 mixed gas separation using 
poly (ether-b-amide)-ZnO nanocomposite membranes: experimental and molecular 
dynamics study. Polym. Test. 86, 106464. 

Amirkhani, F., Mosadegh, M., Asghari, M., Parnian, M.J., 2020b. The beneficial impacts 
of functional groups of CNT on structure and gas separation properties of PEBA 
mixed matrix membranes. Polym. Test. 82, 106285. 

Barati-Harooni, A., Najafi-Marghmaleki, A., Tatar, A., Mohammadi, A.H., 2016. 
Experimental and modeling studies on adsorption of a nonionic surfactant on 
sandstone minerals in enhanced oil recovery process with surfactant flooding. 
J. Mol. Liq. 220, 1022–1032. 

Baylar, A., Hanbay, D., Batan, M., 2009. Application of least square support vector 
machines in the prediction of aeration performance of plunging overfall jets from 
weirs. Expert Syst. Appl. 36 (4), 8368–8374. 

Ben-Mansour, R., Habib, M., Bamidele, O., Basha, M., Qasem, N., Peedikakkal, A., 
Laoui, T., Ali, M., 2016. Carbon capture by physical adsorption: materials, 
experimental investigations and numerical modeling and simulations–a review. 
Appl. Energy 161, 225–255. 

Chamkalani, A., Zendehboudi, S., Bahadori, A., Kharrat, R., Chamkalani, R., James, L., 
Chatzis, I., 2014. Integration of LSSVM technique with PSO to determine asphaltene 
deposition. J. Petrol. Sci. Eng. 124, 243–253. 

Chen, G., Chen, G., Peruzzini, M., Zhang, R., Barzagli, F., 2022. Understanding the 
potential benefits of blended ternary amine systems for CO2 capture processes 
through 13C NMR speciation study and energy cost analysis. Separ. Purif. Technol. 
291, 120939. 

Chen, S., Cowan, C., Grant, P., 1991. Orthogonal least squares learning algorithm for 
radial. IEEE Trans. Neural Network. 2 (2), 303. 

Cheng, M.-D., Caparanga, A.R., Soriano, A.N., Li, M.-H., 2010. Solubility of CO2 in the 
solvent system (water+ monoethanolamine+ triethanolamine). J. Chem. Therm. 42 
(3), 342–347. 

Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines and 
Other Kernel-Based Learning Methods. Cambridge University Press. 

Darabi, M., Pahlavanzadeh, H., 2020. Mathematical modeling of CO2 membrane 
absorption system using ionic liquid solutions. Chemical Engineering and 
Processing-Process Intensification 147, 107743. 

Dash, S.K., Wadibhasme, L.H., 2017. Retrofitting a CO2 capture unit with a coal based 
power plant, process simulation and parametric study. Journal of Clean Energy 
Technologies 5 (3). 

Dashti, A., Amirkhani, F., Hamedi, A.-S., Mohammadi, A.H., 2021a. Evaluation of CO2 
absorption by amino acid salt aqueous solution using hybrid soft computing 
methods. ACS Omega 6 (19), 12459–12469. 

Dashti, A., Bahrololoomi, A., Amirkhani, F., Mohammadi, A.H., 2020. Estimation of CO2 
adsorption in high capacity metal− organic frameworks: applications to greenhouse 
gas control. J. CO2 Util. 41, 101256. 

Dashti, A., Mazaheri, O., Amirkhani, F., Mohammadi, A.H., 2021b. Molecular 
descriptors-based models for estimating net heat of combustion of chemical 
compounds. Energy 217, 119292. 

Ghanbari-Kalajahi, H., Haghtalab, A., 2023. Vapor-liquid equilibrium of carbon dioxide 
solubility in a deep eutectic solvent (choline chloride: MDEA) and a mixture of DES 
with piperazine-experimental study and modeling. J. Mol. Liq. 375, 121310. 

Ghiasi, M.M., Arabloo, M., Mohammadi, A.H., Barghi, T., 2016. Application of ANFIS soft 
computing technique in modeling the CO2 capture with MEA, DEA, and TEA aqueous 
solutions. Int. J. Greenh. Gas Control 49, 47–54. 

Halali, M.A., Azari, V., Arabloo, M., Mohammadi, A.H., Bahadori, A., 2016. Application 
of a radial basis function neural network to estimate pressure gradient in water–oil 
pipelines. J. Taiwan Inst. Chem. Eng. 58, 189–202. 

Hassan, R., Cohanim, B., De Weck, O., Venter, G., 2005. A Comparison of Particle Swarm 
Optimization and the Genetic Algorithm. In: AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics and Materials Conference, 46th, 1897.  

He, X., He, H., Barzagli, F., Amer, M.W., Li, C.e., Zhang, R., 2023. Analysis of the energy 
consumption in solvent regeneration processes using binary amine blends for CO2 
capture. Energy 270, 126903. 

Hezave, A.Z., Raeissi, S., Lashkarbolooki, M., 2012. Estimation of thermal conductivity of 
ionic liquids using a perceptron neural network. I&EC Res.51 (29),, 9886–9893. 

Hussin, F., Aroua, M.K., 2019. Recent trends in the development of adsorption 
technologies for carbon dioxide capture: a brief literature and patent reviews (2014- 
2018). J. Clean. Prod., 119707 

Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization (PSO), Proc. IEEE 
International Conference on Neural Networks, Perth, Australia, pp. 1942–1948. 

F. Amirkhani et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.jclepro.2023.139435
https://doi.org/10.1016/j.jclepro.2023.139435
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref1
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref1
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref2
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref2
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref2
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref3
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref3
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref3
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref4
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref4
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref4
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref5
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref5
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref5
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref6
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref6
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref6
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref6
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref7
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref7
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref7
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref8
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref8
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref8
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref8
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref9
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref9
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref9
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref10
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref10
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref10
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref10
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref11
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref11
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref12
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref12
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref12
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref13
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref13
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref14
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref14
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref14
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref15
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref15
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref15
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref16
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref16
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref16
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref17
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref17
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref17
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref18
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref18
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref18
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref19
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref19
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref19
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref20
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref20
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref20
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref21
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref21
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref21
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref22
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref22
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref22
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref23
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref23
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref23
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref24
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref24
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref25
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref25
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref25
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref26
http://refhub.elsevier.com/S0959-6526(23)03593-X/sref26


Journal of Cleaner Production 430 (2023) 139435

10

Kundu, M., Bandyopadhyay, S.S., 2006. Solubility of CO2 in Water+ Diethanolamine+ 2- 
Amino-2-methyl-1-propanol. J. Chem. Eng. Data 51 (2), 398–405. 

Lee, J., Kim, J., Kim, H., Lee, K.S., Won, W., 2019. A new modeling approach for a CO2 
capture process based on a blended amine solvent. J. Nat. Gas Sci. Eng. 61, 206–214. 

Li, H.J., 2023. CO2 capture by various nanoparticles: recent development and 
prospective. J. Clean. Prod., 137679 

Li, T., Yang, C., Tantikhajorngosol, P., Sema, T., Shi, H., Tontiwachwuthikul, P., 2022. 
Experimental investigations and the modeling approach for CO2 solubility in 
aqueous blended amine systems of monoethanolamine, 2-amino-2-methyl-1-propa-
nol, and 2-(butylamino) ethanol. Environ. Sci. Pollut. Control Ser. 29 (46), 
69402–69423. 

Li, T., Yu, Q., Barzagli, F., Li, C.e., Che, M., Zhang, Z., Zhang, R., 2023. Energy Efficient 
Catalytic CO2 Desorption: Mechanism, Technological Progress and Perspective. 
Carbon Capture Science & Technology, 100099. 

Liu, Z., Li, H., Liu, K., Yu, H., Cheng, K., 2017. Design of high-performance water-in-glass 
evacuated tube solar water heaters by a high-throughput screening based on 
machine learning: a combined modeling and experimental study. Sol. Energy 142, 
61–67. 

Mohammadi, A.H., Richon, D., 2008. Estimating sulfur content of hydrogen sulfide at 
elevated temperatures and pressures using an artificial neural network algorithm. 
I&EC Res. 47 (21), 8499–8504. 

Mosadegh, M., Amirkhani, F., Harami, H.R., Asghari, M., Parnian, M.J., 2020. Effect of 
Nafion and APTEOS functionalization on mixed gas separation of PEBA-FAU 
membranes: experimental study and MD and GCMC simulations. Separ. Purif. 
Technol. 247, 116981. 

Murrieta-Guevara, F., Rebolledo-Libreros, M.E., Romero-Martinez, A., Trejo, A., 1998a. 
Solubility of CO2 in aqueous mixtures of diethanolamine with methyldiethanolamine 
and 2-amino-2-methyl-1-propanol. Fluid Phase Equil. 150, 721–729. 

Murrieta-Guevara, F., Rebolledo-Libreros, M.E., Romero-Martinez, A., Trejo, A., 1998b. 
Solubility of CO2 in aqueous mixtures of diethanolamine with methyldiethanolamine 
and 2-amino-2-methyl-1-propanol. Fluid Phase Equil. 150, 721–729. 

Nassef, A.M., 2023. Improving CO2 absorption using artificial intelligence and modern 
optimization for a sustainable environment. Sustainability 15 (12), 9512. 

Olajire, A.A., 2018. Recent progress on the nanoparticles-assisted greenhouse carbon 
dioxide conversion processes. J. CO2 Util. 24, 522–547. 

Park, J., Sandberg, I.W., 1991. Universal approximation using radial-basis-function 
networks. Neural Comput. 3 (2), 246–257. 

Rebolledo-Libreros, M.a.E., Trejo, A., 2004. Gas solubility of CO2 in aqueous solutions of 
N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol. 
Fluid Phase Equil. 218 (2), 261–267. 

Safdarnejad, S.M., Hedengren, J.D., Baxter, L.L., 2015. Plant-level dynamic optimization 
of Cryogenic Carbon Capture with conventional and renewable power sources. Appl. 
Energy 149, 354–366. 

Seo, D.-J., Hong, W.-H., 1996. Solubilities of carbon dioxide in aqueous mixtures of 
diethanolamine and 2-amino-2-methyl-1-propanol. J. Chem. Eng. Data 41 (2), 
258–260. 

Shahsavand, A., Fard, F.D., Sotoudeh, F., 2011. Application of artificial neural networks 
for simulation of experimental CO2 absorption data in a packed column. J. Nat. Gas 
Sci. Eng. 3 (3), 518–529. 
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