
© 2023 The Authors wileyonlinelibrary.com/ETC

Environmental Toxicology and Chemistry—Volume 42, Number 12—pp. 2630–2641, 2023
Received: 28 June 2023 | Revised: 5 September 2023 | Accepted: 16 September 2023 2630

Environmental Toxicology

Development and Validation of Multiple Linear Regression
Models for Predicting Chronic Zinc Toxicity to Freshwater
Microalgae

Gwilym A. V. Price,a,b,* Jenny L. Stauber,b,c Dianne F. Jolley,d Darren J. Koppel,b,e Eric J. Van Genderen,f Adam C. Ryan,f

and Aleicia Hollandb,c

aFaculty of Science, University of Technology Sydney Broadway, Ultimo, New South Wales, Australia
bCSIRO Land and Water, Lucas Heights, New South Wales, Australia
cDepartment of Environment and Genetics, School of Agriculture, Biomedicine & Environment, Albury/Wodonga Campus, La Trobe University, Melbourne, Victoria, Australia
dEnvironment, Community and Sustainability, Wollongong Resources, New South Wales, Australia
eAustralian Institute of Marine Science, Crawley, Western Australia, Australia
fInternational Zinc Association, Durham, North Carolina, USA

Abstract: Multiple linear regression (MLR) models were developed for predicting chronic zinc toxicity to a freshwater microalga,
Chlorella sp., using three toxicity‐modifying factors (TMFs): pH, hardness, and dissolved organic carbon (DOC). The interactive
effects between pH and hardness and between pH and DOC were also included. Models were developed at three different
effect concentration (EC) levels: EC10, EC20, and EC50. Models were independently validated using six different zinc‐spiked
Australian natural waters with a range of water chemistries. Stepwise regression found hardness to be an influential TMF in
model scenarios and was retained in all final models, while pH, DOC, and interactive terms had variable influence and were only
retained in some models. Autovalidation and residual analysis of all models indicated that models generally predicted toxicity
and that there was little bias based on individual TMFs. The MLR models, at all effect levels, performed poorly when predicting
toxicity in the zinc‐spiked natural waters during independent validation, with models consistently overpredicting toxicity. This
overprediction may be from another unaccounted for TMF that may be present across all natural waters. Alternatively, this
consistent overprediction questions the underlying assumption that models developed from synthetic laboratory test waters can
be directly applied to natural water samples. Further research into the suitability of applying synthetic laboratory water–based
models to a greater range of natural waters is needed. Environ Toxicol Chem 2023;42:2630–2641. © 2023 The Authors.
Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
Zinc toxicity to aquatic organisms is dependent on its bio-

availability, which is influenced by water quality parameters,
such as pH, hardness, and dissolved organic carbon (DOC). For
example, pH determines zinc speciation, and protons (H+) and
hardness ions (Ca2+ and Mg2+) compete with zinc for biological
uptake at the biotic ligand, while DOC complexes zinc, thereby
altering its bioavailability (Adams et al., 2020).

Currently, the Australian and New Zealand water quality
guidelines for zinc only account for the influence of hardness on
bioavailability via a hardness algorithm (Australian and New
Zealand Governments, 2018). This algorithm is largely based on
acute toxicity data derived from North American fish species and
has recently been shown to not be appropriate for freshwater
microalgae (Price, Stauber, Holland et al., 2022). Increased at-
tention has focused on bioavailability‐based water quality
guidelines with the development of the biotic ligand model
(BLM), which predicts the toxicity of a metal to a species based
on water quality parameters. The model predicts the amount of
accumulation that occurs at the biotic ligand by accounting for
changes in metal speciation and the presence of competitive
effects from other ions in solution (Di Toro et al., 2001).
More recently, there has been interest in the development of
simpler empirical bioavailability models, such as multiple linear
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regression (MLR) models, because they can be easier to use. Brix
et al. (2017) suggested that there may be perceptions among
regulators that BLM approaches are too complicated and not
sufficiently transparent.

To date, several studies have developed MLR models for
predicting bioavailability‐based toxicity of metals to freshwater
organisms (Brix et al., 2017, 2021, 2023; Croteau et al., 2021;
DeForest et al., 2018, 2023; Peters et al., 2021). From the current
literature two approaches to data sourcing have been used.
Several studies have aggregated large data sets from multiple
sources and laboratories (Brix et al., 2017, 2021; Croteau et al.,
2021; DeForest et al., 2023; Peters et al., 2021). Others have
used data from a single study or laboratory, and therefore all
toxicity data for a particular species are derived from the same
culture and tested under the same conditions using synthetic
laboratory test waters (Brix et al., 2023; DeForest et al., 2018).
Both approaches have merit. Utilizing large, aggregated data
sets provides more statistical power in model development and
often does not require any additional laboratory work. However,
pooling data from different sources also reduces confidence in
the comparability of data between studies and introduces issues
of colinearity because often studies varied multiple toxicity‐
modifying factors (TMFs) simultaneously. In addition, pooling
studies can result in an imbalance in the representation of dif-
ferent TMF effects. For example, generally, fewer DOC studies
are available compared to hardness studies. Relying on data from
a single study typically means smaller data sets for model de-
velopment but often greater confidence in the consistency of
data given that they were collected under the same testing
conditions and from the one culture. However, of the two MLR
models developed using single data sets, neither has been in-
dependently validated using natural waters, and the MLR models
have only previously been developed for one microalga, Raphi-
docelis subcapitata (Brix et al., 2023; DeForest et al., 2018).

The present study is the first to develop a zinc bioavailability
MLR model for a different freshwater microalga and the first to be
independently validated with natural waters. The objective of the
present study was to use recently published zinc toxicity data
under varying pH, hardness, and DOC conditions for the mi-
croalga Chlorella sp. (Price, Stauber, Holland et al., 2022; Price
et al., 2021, 2023) to develop empirical models that predict zinc
toxicity as a function of these parameters. Models were in-
dependently validated using six different zinc‐spiked Australian
natural waters with a range of water chemistries. Previously de-
veloped zinc MLR models for R. subcapitata were also validated
using the natural waters toxicity data to assess the suitability of
these models under Australian water chemistry conditions. These
data, together with those presented in the companion paper by
Stauber et al. (2023), will be used to develop bioavailability‐
based zinc water quality guidelines for Australia and New Zea-
land (Australian and New Zealand Governments, 2018).

METHODS
Model development
Data sources. The chronic toxicity of zinc has been tested
over a wide range of water chemistries for the freshwater

microalga Chlorella sp. These data were sourced from Price
et al. (2021, 2023) and Price, Stauber, Holland et al. (2022), with
each source providing a detailed description of the tests car-
ried out. All tests were conducted using laboratory‐prepared
synthetic freshwaters with pH levels ranging from 6.7 to 8.3,
hardness concentrations from 5 to 400mg CaCO3 L–1, and
DOC concentrations of 0–15mgC L–1. Tests were performed at
a constant alkalinity (~40mg L–1) and calcium to magnesium
ratio (~0.7) as described in Price, Stauber, Holland et al. (2022).
The toxicity data used met the acceptability criteria outlined by
Warne et al. (2018) for use in development of Australian water
quality guidelines. All zinc effect concentrations used in the
present study are expressed as dissolved zinc (measured as
<0.45 µm) and are provided in Supporting Information,
Tables S1 and S2.

MLR analysis. Multiple linear regression analysis was con-
ducted on the chronic toxicity data for Chlorella sp. Hardness,
pH, DOC, and interactions between these parameters were
previously identified as important TMFs for zinc and microalgae
(Canadian Council of Ministers of the Environment [CCME],
2018). Multiple linear regression models were developed for the
10%, 20%, and 50% effect concentrations (EC10, EC20, and
EC50 values) following the methods described by Brix et al.
(2017) and DeForest et al. (2018, 2020). All MLR analyses were
conducted using R statistical software (R Core Team, 2023). In-
itial stepwise MLR analyses included independent variables of
pH, log‐normal (ln) hardness, and ln(DOC); and ln(EC10), ln
(EC20), and ln(EC50) were the dependent variables. Models
with no interaction terms had the generalized form shown in
Equation (1):

( ) = + [ × ] + [ × ( )]

+ [ × ( )]

b b b

b

ln toxicity pH ln hard

ln DOC

0 1 2

3 (1)

In Equation (1), toxicity is an effect level (i.e., EC10, EC20, or
EC50), in micrograms of zinc per liter; b0 is the y‐intercept; and
b1, b2, and b3 are the slope parameters for pH, ln(hard), and ln
(DOC), respectively, with hardness and DOC in milligrams per
liter.

Stepwise MLR analysis was also conducted with interaction
terms included as independent variables, in addition to the
variables included in Equation (1), with these interaction
models having a generalized form as shown in Equation (2). It is
noted that only two interaction terms were included (pH × ln
[hard] and pH × ln[DOC]) because none of the data sources
assessed the influence of DOC on zinc toxicity at varying
hardness, so an ln(DOC) × ln(hard) term could not be included.

( ) = + [ × ] + [ × ( )]

+ [ × ( )] + [ × × ( )]

+ [ × × ( )]

b b b

b b
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ln toxicity pH ln hard

ln DOC pH ln hard
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Both the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC) were used in stepwise MLR analyses
to determine which terms to include in the model to create the
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most parsimonious model at each effect level. Both criteria
achieve parsimony and balance specificity and generality
through penalizing the goodness‐of‐fit of a model in relation to
the number of parameters present in the model. The BIC also
accounts for the sample size used in the analysis and is de-
scribed in further detail by DeForest et al. (2018).

Variance inflation factors (VIFs) were calculated for all in-
dependent variables to assess colinearity. The VIF is a quotient
that measures the amount of variance in an estimated re-
gression coefficient that is changed by colinearity between
parameters used in the model. A low VIF means low colinearity,
with VIFs <3 considered acceptable (Zuur et al., 2010). In
controlled experiments using laboratory‐prepared media, each
independent variable can be carefully controlled, and therefore
correlation among independent variables is unlikely. In con-
trast, studies that use field samples may see higher levels of
correlation because these independent variables cannot be as
easily controlled.

Stepwise regressions were run using the stepAIC function
from the MASS library (Venables & Ripley, 2002) and assessed
using both AIC and BIC. Variance inflation factors were de-
termined using the vif function in the usdm library (Naimi et al.,
2014). Predictive R2 values were calculated using leave‐one‐out
cross‐validation via the caret package (method= “LOOCV”;
Kuhn et al., 2021). The predicted R2 summarizes a model's
predictive capacity and will always be lower than the corre-
sponding adjusted R2. A predicted R2 value that is much
smaller than the adjusted R2 is indicative of model overfitting or
a model that is heavily reliant on individual data points.

Four models were developed and considered for each of
the EC10, EC20, and EC50 data sets. These four models (at
each effect level) were those developed with parameters based
on the stepwise regression analysis using either AIC or BIC test
statistics with and without interaction terms. For the EC50 data
set an additional four models were developed and considered
using a subset of data (n= 18 EC50 values) in which data from
zinc toxicity experiments using DOC sourced from Appletree
Creek and Manton Dam (Price et al., 2023) were excluded.
These data were excluded because Price et al. (2023) found
that the presence of Appletree Creek dissolved organic matter
(DOM) increased toxicity at the EC50 level, which is contrary to
principles described by the BLM. As such, it was considered
that these toxicity‐enhancing effects are unlikely to be repre-
sentative of the influence of all Australian DOM, and additional
models were developed for comparison. In total, 16 models
across the three effect levels were developed and considered
in the present study. Models developed using all data as de-
scribed above (see Data sources) are referred to as “full data
models,” and the EC50 models developed excluding the DOM
data, as described above, are referred to as “subset data
models” throughout.

Validation methods followed procedures described by
Garman et al. (2020), Besser et al. (2021), and DeForest et al.
(2023). Autovalidation assesses the fit of data used to develop
the model. Observed toxicity was plotted versus predicted
toxicity data on a 1:1 plot as a visual means to understand
how closely the model was predicting the observed data.

Performance was assessed based on the percentage of ob-
served data that fell within a factor of 2 or 3 of the predicted
toxicity values. The factor of 2 is based on intertest variability
on median lethal concentration values for Pimephales promelas
exposed to copper (Erickson et al., 1996) and Daphnia magna
exposed to cadmium, copper, nickel, or zinc (Meyer et al.,
2018; Santore & Ryan, 2015). From these studies, the factor of
2 has become a standard metric for assessing model predictive
capability. A recent study by Price, Stauber, Stone et al. (2022)
found that the factor of 2 metric may not be appropriate for low
effect levels (e.g., EC10 and EC20 values), with a factor of 3
metric being more appropriate. This is attributable to the
greater uncertainty at EC10 and EC20 values in a
concentration–response model (Peters et al., 2018; Price,
Stauber, Stone et al., 2022). Price et al. (2022) also found that
both the factor of 2 and the factor of 3 metrics were suitable for
microalgae at all effect levels. Based on this, the current study
has assessed model performance at all effect levels based on
both the factor of 2 and factor of 3 metrics.

Model residual analysis, as described by Garman et al.
(2020) and implemented by Brix et al. (2021, 2023) and Croteau
et al. (2021), was used as an additional metric of performance in
model validation. Model residuals were calculated using
Equation (3). Geometric means and regression slopes of re-
siduals of the observed versus predicted values as a function of
either observed and predicted toxicity were assessed to test for
consistent over‐ or underprediction of the model.

Scoring of model residuals followed methods detailed by
Besser et al. (2021). The residual score (RS) was weighted by
both the slope (s) parameter of each TMF and the associated
p value of the regression of the residual versus each in-
dependent variable (i), as shown in Equation (4). A total model
performance score (MPS) was then used to calculate the overall
performance of the model, with methods following those de-
scribed by DeForest et al. (2023). The MPS (Equation 5) com-
prises six components: (1) the R2 of the linear regression model
of observed versus predicted ECx, (2) the percentage of values
predicted within a factor of 2 (RFx,2.0) or a factor of 3 (RFx,3.0) of
their paired observed value, and the slope of observed versus
predicted ECx residuals versus (3) observed ECx, (4) pH, (5)
hardness, and (6) DOC. An MPS was calculated using both
RFx,2.0 and RFx,3.0. The higher the MPS, the greater the model
performance (Besser et al., 2021).

( ) = ( ) − ( )x xln residual ln EC ln ECobserved predicted (3)

=
( + )| ×( − )|RS

2
1 10i s p1i i

(4)

=
+ + + + +R

MPS
RF RS RS RS RS

6
x

2
obs pH Hardess DOC

(5)

MLR independent validation
Natural water collection and analysis. Natural surface
freshwaters were collected from six unimpacted waterways
across Australia: Woronora River (Tharawal Country) from
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New South Wales, Ovens River (Waveroo Country) from Victoria,
Teatree Creek and Limestone Creek (Darumbal Country) from
Queensland, Magela Creek (Mirrar Country) from Northern Ter-
ritory, and Blackwood River (Bibbulman Noongar Country) from
Western Australia (Supporting Information, Figure S1). Global
Positioning System coordinates of the sample locations are given
in Supporting Information, Table S3. The waterways were se-
lected to cover a range of climatic, geographical, and state ju-
risdictions. Selection was also based on water quality previously
recorded, taking into account TMFs, that is, hardness, pH, and
DOC concentrations. The hardness, pH, DOC concentration, and
conductivity of the natural waters were estimated from online
real‐time water data sources, if available, and from previously
published data (Holland et al., 2014; Stauber et al., 2021, 2023).
These sites chosen for sampling were targeted for their water
chemistries, which were generally representative of typical Aus-
tralian water chemistry ranges.

A YSI multiprobe meter (YSI DSS PRO) was used at each site
to confirm that pH and conductivity were within acceptable
limits before river water was collected. Water was stored in 5‐L
high‐density polyethylene containers which had been pre-
viously acid‐washed and rinsed in ultrapure water (18 MΩ cm;
Milli‐Q®; Millipore) and associated river water. Approximately
25 L of water was collected from each site and kept on ice until
arrival at the laboratory. The river water was then filtered
through a prerinsed 0.45‐μm in‐line flowthrough poly-
ethersulfone filter (Waterra). Filters were prerinsed with acid,
ultrapure water, and associated river water. The samples were
stored at 4 °C in the dark until they were used in the bioassays.
All bioassays were conducted within 1 month of water collec-
tion. Additional samples were taken at the time of collection for
chemical analysis, which are detailed in the the Supporting
Information. Subsamples of the stored freshwaters were col-
lected and analyzed for total hardness, cations, and organic
carbon immediately prior to and during toxicity testing
(methods provided in Supporting Information).

Toxicity testing. Toxicity testing using collected natural wa-
ters was conducted to develop an additional data set for in-
dependent validation of MLR models developed in the present
study and those available in the literature. The 72‐h growth
inhibition bioassays were conducted following the same
methods used to generate the development data set (Price
et al., 2021), except that natural freshwaters were used
instead of a synthetic laboratory water. A buffered test (0.5 g
3‐morpholinopropanesulfonic acid [MOPS] L–1) and an un-
buffered test were conducted in each natural water, except
Teatree Creek water, where only an unbuffered test was con-
ducted because the natural pH of the water was below the
range of MOPS. An additional test was conducted on an Ovens
River water sample where the pH was increased (named
“Ovens River—Adjusted”) to create potentially high‐
bioavailability conditions. Each test consisted of a zinc con-
centration series between 0 and 10,000 µg L–1, with five control
replicates and 22 individual zinc treatments with a single rep-
licate per treatment. A zinc reference toxicant test in synthetic
water was run concurrently with each natural water test.

Reference toxicant test water had no additional DOC added.
The test was considered acceptable if algal growth rates in
reference toxicant tests were 1.7± 0.4 doublings per day
(mean± SD), control growth rates had a coefficient of variation
<20%, and the zinc reference EC50 was within internal data-
base limits of 85± 40 µg Zn L–1.

RESULTS AND DISCUSSION
MLR models

The VIFs for pH, ln(hardness), and ln(DOC) across all models
ranged from 1.0 to 1.1, indicating very low correlation between
independent variables. This was expected given that all data
used came from controlled experiments, where an individual
parameter was varied while the others were held constant. This
is consistent with models developed from other controlled
experiment studies (Brix et al., 2023; DeForest et al., 2018,
2020), where VIFs are generally lower than for models devel-
oped from larger databases derived from a range of sources
(Brix et al., 2017, 2021).

All models retained hardness as a term, whereas only seven
of the 16 retained DOC and only four retained pH. Only two
models retained the interactive term of ln(DOC) × pH (Table 1).
This contrasts with the zinc models of DeForest et al. (2023)
developed for R. subcapitata, in which only pH and DOC were
retained (not hardness) as a significant parameter. On three
occasions AIC and BIC methods retained the same model
terms and coefficients (shown in Table 1 on a single line). On
two occasions (EC50 with data subset) there were no differ-
ences between models with and without interactive terms, but
AIC‐selected and BIC‐selected models retained different terms
and coefficients (Table 1).

In general, model adjusted R2 values were low, ranging from
0.3 to 0.5 for models using the full data set. Adjusted R2 values
improved in the EC50 models using the subset data, ranging
from 0.7 to 0.8. Predicted R2 values ranged from 0.3 to 0.7,
with EC10 models having the lowest (0.3) and EC50 models
having the highest (0.7) values. All predicted R2 values were
only slightly lower than their respective adjusted R2 values,
indicating the models were not overfitted. The inclusion of in-
teraction terms either did not improve or only marginally im-
proved model adjusted R2 and predicted R2 values for all EC
levels. Therefore, both types of models, with and without in-
teraction terms, were retained for autovalidation.

Autovalidation. Autovalidation was used to validate and as-
sess the fit of data used in the model development data set.
Data were considered acceptable if agreement between ob-
served and predicted EC20 and EC50 values was within a factor
of 2. For all values, including EC10 values, agreement within a
factor of 3 was also considered (Peters et al., 2018; Price,
Stauber, Stone et al., 2022).

Observed toxicity versus predicted toxicity plots are shown
for all models in Figures 1 and 2. For the EC10 and EC20
models, both models with and without interaction terms gen-
erally provided good fit of the data. The inclusion of interaction
terms in EC10 models improved the factor of 2 and factor of
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3 percentages from 57% and 77% to 80% and 93%, re-
spectively (Figure 1, left‐hand panel; Supporting Information,
Table S4). Inclusion of interaction terms in EC20 models did not
improve the percentage of predictions within a factor of 2, with
77% for both models, but did improve predictions within a
factor of 3 marginally from 93% to 97%. The EC50 models did
not predict data as well as the EC10 and EC20 models. The full
data set (n= 30) model had 53% and 93% of predictions within
a factor of 2 and 3, respectively.

To assess the EC50 subset data models, factor of 2 and 3
performances were firstly assessed using only the observed
data used to develop the model (n= 18). The AIC‐selected
model had factor of 2 and factor of 3 percentages of 72%
and 100%, respectively, while the BIC‐selected model had 61%
and 94%. Secondly, the subset data models were assessed
using the full development data set (n= 30). As expected,
performance was reduced, with the AIC‐selected model having
factor of 2 and factor of 3 percentages of 57% and 73%, re-
spectively. The BIC‐selected model had a slightly lower factor
of 2 percentage of 50% but a slightly higher factor of 3 per-
centage of 87% relative to the AIC‐selected model (Supporting
Information, Table S4).

Model residuals (Equation 3) were used as an additional
metric of performance. Residuals were not homogenous across
the entire range of observed and predicted toxicity (Supporting
Information, Figures S2–S6), with residual slope directionality
(i.e., positive, negative) for residuals versus observed ECx
tending to be positive at all effect levels. This suggests that
there may be a bias in the MLRs leading to underprediction of
EC values at higher EC values, which in turn results in over-
prediction of toxicity. This trend was not observed for residuals
versus TMFs (Supporting Information, Figures S2–S6), in-
dicating that the models were accurately capturing the effects
of each TMF. Interestingly, the same trend in residuals versus
observed ECx was reported by DeForest et al. (2023).

Patterns in model residuals versus TMFs were generally
consistent between models with and without interaction terms,
except for the EC10 models (Supporting Information,
Figure S2). Differences were particularly strong for EC10 DOC
residuals, where the model with interaction terms had a slope
of 0.0, while the model without interaction terms had a slope of
–0.36. This indicates that at increased concentrations of DOC
there was a bias to underpredict toxicity, attributing too great a
protective effect to the DOC.

Final MLR models. For EC10 and EC20 model comparisons,
where models with and without interaction terms were consid-
ered, MPS values were consistently higher when interactive terms
were included. The MPS values for models with interaction terms
were higher than those for models without interactive terms for
MPS using a factor of 2 or a factor of 3 percentage score (Sup-
porting Information, Table S4). Based on the higher MPS value,
both the EC10 and EC20 models with interaction terms were
selected for further independent validation.

The AIC‐selected EC50 model (with or without interaction
terms because they were the same; Table 1), using the subset
data, had the highest MPS and was selected for furtherTA
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independent validation. All full data set EC50 models provided
the same terms and coefficients and therefore the same MPS
value; as such, this model was carried through for independent
validation.

The models selected are shown below (Equations 6–9), with
ECx values expressed in micrograms per liter and DOC and
hardness expressed in milligrams per liter.

EC10:

( ) = + × ( ) − × ( )

− × + × ( ) ×

ln EC10 0.16 0.288 ln hardness 2.137 ln DOC

0.055 pH 0.302 In DOC pH (6)

EC20:

( ) = + × ( )

− × ( ) − ×

+ × ( ) ×

ln EC20 0.189 0.432 ln hardness

2.114 ln DOC 0.009 pH

0.289 In DOC pH (7)

EC50 (full data set):

( ) = + × ( )ln EC50 1.173 0.628 ln hardness (8)

EC50 (subset data):

( ) = + × ( ) +

× ( ) − ×

ln EC50 3.973 0.673 ln hardness 0.351
ln DOC 0.359 pH (9)

Independent validation using natural waters
Test acceptability. Test acceptability criteria for ecotox-
icology tests with zinc‐spiked natural waters were achieved
(data provided in Supporting Information). Several unbuffered
water tests had slightly higher pH variability compared to
buffered tests and were above the desired ±0.1 unit pH
change, with Limestone Creek (unbuffered) and Magela Creek
(unbuffered) having a ±0.2 pH variation and Teatree Creek
having ±0.3 variation in pH over the test duration. This is still
considered very low for chronic algal studies, and the data were
included in the validation analysis. Further test acceptability
data are provided in the Supporting Information.

Measured toxicity. Zinc was toxic to Chlorella sp. in all zinc‐
spiked natural waters tested (Figure 3), with EC10 values
ranging from 6.3 to 193 µg L–1 and EC50 values ranging from

FIGURE 1: Observed versus predicted effect concentration values (ECx) for the multiple linear regression models that were selected in the stepwise
regression for the full data models. At the EC10 and EC20 levels both models where interactions terms were included (orange triangles) and
excluded (green circles) in stepwise regression are shown. At the EC50 level only the model where interaction terms are shown (orange triangles)
because all EC50 models with and without interactive terms were the same. The solid line is the line of perfect agreement between observed and
predicted ECx values. Dashed lines indicate a factor of ±2, and dotted lines indicate a factor of ±3.

FIGURE 2: Observed versus predicted effect concentration values for the multiple linear regression models that were selected in the stepwise
regression for the median effect concentration (EC50) subset data models. Akaike information criterion–selected (red circles) and Bayesian in-
formation criterion–selected (blue triangles) models are shown. The left panel shows autovalidation using only the development subset (n= 18)
data; the right panel shows autovalidation using the full development data set (n= 30). The solid line is the line of perfect agreement between
observed and predicted EC50 values. Dashed lines indicate a factor of ±2, and dotted lines indicate a factor of ±3.

Predicting chronic zinc toxicity to freshwater microalgae—Environmental Toxicology and Chemistry, 2023;42:2630–2641 2635
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42 to 603 µg L–1 (Table 2). Control growth rates were consistent
across buffered and unbuffered tests, with differences being
small between EC10 values and larger for EC50 values. Where
larger differences in toxicity between buffered and unbuffered
tests were observed (i.e., Blackwood River and Woronora
River), the unbuffered tests were consistently more toxic. This
was likely attributable to the increase in pH in the unbuffered
tests in the 24‐h preequilibration period, which is consistent
with findings by Price et al. (2021), who showed that the toxicity
of zinc to this Chlorella sp. strain increased with increasing pH.
Similar conclusions around the influence of organic buffers on
zinc toxicity were found by DeForest et al. (2023) when

preparing data sources for MLR development. Based on this,
buffered and unbuffered tests were pooled for independent
validation. All toxicity data from the natural water testing is
provided in Supporting Information, Table S5.

Ovens River tests showed the lowest ECx values at all effect
levels, and this was expected given that there was no meas-
urable DOC, low hardness (11mg CaCO3 L–1), and high pH
(7.47; relative to other waters tested). However, the increased
pH in the adjusted Ovens River test did not increase toxicity
at any effect level as expected based on pH terms and the
coefficient in the MLR models. Magela Creek tests had the
second lowest ECx values at all effect levels, despite having

FIGURE 3: The 72‐h growth rate inhibition of Chlorella sp. exposed to zinc concentrations in six different natural freshwaters. Tests were conducted
with (blue triangles) and without (yellow squares) chemical buffering (0.5 g 3‐morpholinopropanesulfonic acid [MOPS] L–1). An additional
pH‐adjusted test (pink circles) was conducted for the Ovens River sample to theoretically create high zinc bioavailability conditions. Shaded ribbons
represent the 95% confidence intervals. Each data point represents one individual replicate response and a corresponding measured zinc con-
centration. Model parameters are provided in Supporting Information, Table S6. Note that Teatree Creek did not have a buffered test because the
natural pH of the water fell outside the buffering capacity of MOPS.

2636 Environmental Toxicology and Chemistry, 2023;42:2630–2641—Price et al.
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a low pH (6.4–6.7) and moderate DOC concentration
(6.0mg L–1); however, this water did have very low hardness
(3mg CaCO3 L–1 at the time of testing). These results suggest
that low hardness may lead to increased zinc toxicity, and this is
in general agreement with the inclusion of a hardness term in
each MLR model.

In agreement with this were the relatively high ECx values in
Blackwood River, which had a high hardness of 355mg CaCO3

L–1, moderate DOC concentration (4.2mgC L–1), and high pH
(8.0–8.2). While Teatree Creek had a relatively low hardness of
13mg CaCO3 L–1, the relatively high ECx values are likely ex-
plained by its high DOC concentration of 25mg L–1.

Woronora River results were contrary to the expected results
based on this hardness dependency. With a low hardness of
18mg CaCO3 L

–1, moderate DOC concentration of 5.3mg L–1,
and a moderate pH of 7.1 to 7.4, toxicity was expected to be
relatively high. However, the Woronora River buffered test had
the highest EC10 and EC20 values (193 and 271 µg L–1, re-
spectively) and the second highest EC50 value (467 µg L–1). In
addition to these contrasting results based on water chemistry,
the relative magnitude of ECx values at all effect levels differed
between the natural water results and the synthetic water re-
sults from the data sources for MLR development. Zinc EC10
values ranged from 6 to 193 µg L–1 in the natural waters, higher
than EC10 values of 0.8 to 5 µg L–1 in synthetic water; EC20

values ranged from 14 to 271 µg L–1 in the natural waters
compared to 2 to 19 µg L–1 in synthetic water, and EC50 values
ranged from 42 to 603 µg L–1 in the natural waters compared to
18 to 185 µg L–1 in synthetic water.

Predicted toxicity. In addition to the MLR models devel-
oped for Chlorella sp. in the present study, other models have
previously been developed for R. subcapitata, a different
species of green microalga. These models (Table 3) were as-
sessed for their suitability for predicting Chlorella sp. toxicity in
natural Australian freshwaters and to assess the suitability of
cross‐species models for microalgae.

Chlorella sp. MLRs. The developed Chlorella sp. MLRs
(Table 3) performed poorly at predicting toxicity in the natural
waters. The EC10 and EC20 models consistently overpredicted
zinc toxicity, predicting 0% of the data within a factor of 2 or 3
(Figure 4). Both EC50 models also predicted natural water
toxicity poorly, where the full data set (n= 30) model predicted
0% and 17% of data within a factor of 2 and 3, respectively. The
subset data (n= 18) EC50 model predicted 25% and 33% of
data within a factor of 2 and 3, respectively.

Given that all models consistently overpredicted toxicity,
sensitivity coefficients (y‐intercept) were recalibrated using the
natural waters’ zinc toxicity data according to methods outlined

TABLE 2: Zinc toxicity tests with Chlorella sp. in Australian natural freshwaters

Water pH DOC (mg L–1) Hardness (mg L–1) EC10 (µg L–1) EC20 (µg L–1) EC50 (µg L–1)

Blackwood River buffered 8.05 (±0.04) 4.2 355 145 (111–179) 256 (216–295) 603 (553–652)
Blackwood River unbuffered 8.2 (±0.1) 4.2 355 42 (34–50) 89 (78–101) 280 (260–299)
Limestone Creek buffered 7.42 (±0.02) 20 89 35 (27–43) 81 (68–94) 337 (299–374)
Limestone Creek unbuffered 8.0 (±0.2) 20 89 51 (42–60) 96 (85–108) 254 (238–269)
Magela Creek buffered 6.38 (±0.03) 6.0 3 27 (24–30) 41 (38–44) 84 (79–89)
Magela Creek unbuffered 6.7 (±0.2) 6.0 3 14 (12–16) 26 (24–28) 66 (63–69)
Ovens River buffered 7.47 (±0.02) <1 11 6.6 (5.3–7.9) 16 (14–19) 66 (61–71)
Ovens River unbuffered 7.7 (±0.1) <1 11 7.4 (6.1–8.7) 14 (12–16) 42 (39–45)
Ovens River (pH‐adjusted) buffered 8.01 (±0.02) <1 11 6.3 (5.5–7.0) 14 (13–15) 50 (48–52)
Teatree Creek Unbuffered 6.1 (±0.3) 25 13 109 (93–124) 194 (176–213) 467 (445–489)
Woronora River buffered 7.11 (±0.02) 5.3 18 193 (172–213) 271 (251–290) 452 (433–470)
Woronora River unbuffered 7.4 (±0.1) 5.3 18 92 (75–109) 139 (121–156) 257 (238–276)

Summary of water chemistry and toxicity of zinc; pH is test average± standard deviation; 95% confidence intervals are shown in parentheses.
DOC = dissolved organic carbon; EC10/20/50 = 10%, 20%, and 50% effective concentrations, respectively.

TABLE 3: Multiple linear regression model coefficients used in validation analysis

Slope

Species Model reference Effect level Intercept pH ln(Hard) ln(DOC) ln(DOC) × pH

Chlorella sp. Current study EC10 0.16 −0.055 0.288 −2.137 0.302
EC20 0.189 −0.009 0.432 −2.114 0.289
EC50 1.17 – 0.628 – –
EC50a 3.97 −0.359 0.673 0.351 –

Raphidocelis
subcapitata

Canadian Council of Ministers
of the Environment (2018)

EC50 11.8 −1.122 – n/e n/e

Stauber et al. (2023) EC50 8.28 −0.75 0.296 0.468 –
DeForest et al. (2023) EC10 10.307 −0.992 – 0.378 –
DeForest et al. (2023) EC20 11.950 −1.172 – 0.342 –
DeForest et al. (2023) EC50 10.925 −0.865 – 0.209 –

aSubset model.
DOC = dissolved organic carbon; EC10/20/50 = 10%, 20%, and 50% effective concentrations, respectively; Hard = hardness; n/e = not evaluated because of insufficient
data; – = term not retained in stepwise regression analysis.
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by Peters et al. (2021). Observed versus predicted plots
with original and updated sensitivity coefficients are shown in
Figures 4 and 5, respectively; and revised coefficient values are
provided in Supporting Information, Table S7.

The recalibrated models provided an improved fit to the
data, with both the revised EC10 and EC20 models predicting
25% and 75% of data within a factor of 2 and 3, respectively.
Both EC50 models were also improved, with the full data
set model predicting 58% and 75% of data within a factor of
2 and 3, respectively. The subset data model predicted 50%
and 92% of data within a factor of 2 and 3, respectively. Model
residual plots with original and updated sensitivity coefficients
are provided in Supporting Information, Figures S7–S14.

While recalibrated sensitivity coefficients did improve the
models, it is important to note that this recalibration procedure
is typically used for cross‐species validation methods (Peters
et al., 2021) or when it is believed that the sensitivity of cultures
has significantly shifted with time (Van Regenmortel et al.,
2017). Based on the consistency of reference toxicant tests

used during the current study, shifts in culture sensitivity are
unlikely to explain this consistent overprediction in toxicity to
Chlorella sp. in the Australian natural waters.

An unaccounted for TMF(s) may be present across all natural
waters, causing this consistent overprediction in toxicity. Cal-
cium and magnesium ratios, which are known to be different
from those in the Northern Hemisphere (Peters et al., 2021), as
a contributor to the overprediction were considered, as were
concentrations of sodium, aluminum, iron, and manganese, all
of which are known to modify metal speciation. Ratios and
concentrations are provided in Supporting Information,
Table S8. However, there were no consistent trends in the
calcium and magnesium ratios among the natural waters, nor
were there any consistently elevated concentrations of the four
metals listed above.

Elevated control growth rates in natural water testing rela-
tive to the concurrently run reference toxicant tests in synthetic
media suggested that nutrient levels may be influencing tox-
icity. Control growth rates in natural waters ranged from 2.1 to

FIGURE 4: Observed toxicity versus predicted toxicity for six Australian natural freshwaters using the Chlorella sp. multiple linear regression models
with their original sensitivity coefficients. Solid line is the line of perfect agreement (1:1) between observed and predicted ECx values. Dashed lines
indicate a factor of ±2, and dotted lines indicate a factor of ±3 deviation from the 1:1 line. ECx = x% effective concentration.

FIGURE 5: Observed toxicity versus predicted toxicity for six Australian natural freshwaters using the Chlorella sp. multiple linear regression models
with revised sensitivity coefficients. Solid line is the line of perfect agreement (1:1) between observed and predicted ECx values. Dashed lines
indicate a factor of ±2, and dotted lines indicate a factor of ±3 deviation from the 1:1 line. ECx = x% effective concentration.
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2.5 doublings per day compared to 1.7 doublings per day in
the reference tests. A broad suite of nutrients (i.e., NH3, NO2,
NO3, phosphorus, etc.) were analyzed for each natural water
prior to testing, to ensure that levels were consistently low. All
analytes were consistently below the limit of detection or near
the limit of detection (Supporting Information, Table S8) except
Limestone Creek water, which had slightly elevated ammonia
(0.16mg L–1) and total nitrogen (1mg L–1). The highest total
phosphorus concentration was 0.04mg L–1 in Teatree Creek.
However, it is important to note that all tests including those in
natural waters and those used to develop the MLR models
were supplemented with nitrogen and phosphorus at the start
of each toxicity test, as part of standard toxicity testing pro-
tocols (Organisation for Economic Co‐operation and Devel-
opment, 2011). Final concentrations of supplemental NO3

– and
PO4

3− were 1.5 and 0.15mg L–1, respectively. Therefore, nu-
trient exposure concentrations for the microalgae were gen-
erally consistent across all tests, both natural water and
synthetic, and do not explain the relative change in toxicity
observed, nor do they likely explain the elevated control
growth rates. Iron is also a microalgal micronutrient and, as
mentioned above, can modify metal speciation. While dis-
solved concentrations of iron varied (7–500 µg L–1; Supporting
Information, Table S8) in the natural waters, there were no
consistent trends that could explain the change in observed
toxicity.

Alternatively, rather than the presence of an unidentified
TMF or zinc complexing agent, there may be something
present in the natural waters that alters the physiology of the
microalgae which indirectly affects zinc toxicity, such as by a
change in mechanism of toxicity. Such physiological changes
may be changes in cell membrane permeability (Wood et al.,
2011). Further experimental work is required to test this hy-
pothesis.

Another possible explanation for the overprediction is the
underlying assumption that models using zinc toxicity‐modifying

relationships derived from synthetic laboratory test waters can
be directly applied to natural water samples. Natural waters
typically contain a more complex matrix than synthetic laboratory
waters, and therefore, the presence of unknown TMFs may be
ameliorating zinc toxicity (as seen by the overprediction of tox-
icity by the models). The current study is the third study to de-
velop a microalgal MLR solely from synthetic laboratory water
toxicity data (Brix et al., 2023; DeForest et al., 2018) and the first
to independently validate the developed MLRs with natural wa-
ters. Further research into the suitability of applying synthetic
laboratory water–based models to a greater range of natural
waters, which potentially include a range of biotic TMFs, is clearly
needed.

Comparison to preexisting MLR models
The MLR models developed for R. subcapitata were up-

dated to include Chlorella sp.–specific sensitivity coefficients
(Peters et al., 2021). The R. subcapitata models generally pro-
vided a better fit than the Chlorella sp. model (with original
sensitivity coefficients) for all effect levels and were comparable
to the Chlorella sp. model with updated sensitivity coefficients
(Figure 6). The DeForest et al. (2023) EC10 model predicted
42% and 67% of data within a factor of 2 and 3, respectively;
and the EC20 model predicted 50% and 75% of data with a
factor of 2 and 3, respectively. Of the three EC50 models, the
CCME (2018) MLR performed the poorest for both factor of 2
and factor of 3 predictions, with 33% and 58%, respectively.
The Stauber et al. (2023) and DeForest et al. (2023) EC50
models performed similarly, with 50% and 83% and with
67% and 75% of data predicted within a factor of 2 and 3,
respectively.

Residual analysis of all R. subcapitata models found general
biases across all models. The EC10 and EC20 models by De-
Forest et al. (2023) had low residual bias when plotted against
DOC, with slopes of −0.031 and −0.043, respectively. The

FIGURE 6: Observed toxicity versus predicted toxicity for six Australian natural freshwaters using multiple linear regression models for Raphidocelis
subcapitata developed by the Canadian Council of Ministers of the Environment (2018) (red circles), DeForest et al. (2023) (blue triangles), and
Stauber et al. (2023) (green squares). Solid line is the line of perfect agreement (1:1) between observed and predicted ECx values. Dashed lines
indicate a factor of ±2, and dotted lines indicate a factor of ±3 deviation from the 1:1 line. CCME = Canadian Council of Ministers of the
Environment; ECx = x% effective concentration.
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DeForest et al. (2023) EC50 model had a slightly larger model
bias when plotted against DOC, with a slope of −0.28. The
CCME (2018) EC50 model had biased slopes for all three TMFs
(DOC= 0.21, hardness= 0.72, pH= 1.1), while the Stauber
et al. (2023) EC50 model had low residual bias for DOC, with a
slope of 0.045 (Supporting Information, Figures S15–S17).

Peters et al. (2021) recommended acceptability criteria re-
quiring 50% of data to lie within a factor of 2 and 90% of data
within a factor 3. Based on these criteria, none of the tested
models would be deemed acceptable; however, both the
Stauber et al. (2023) model and the EC20 and EC50 models by
DeForest et al. (2023) would pass the 50% within a factor of
2 criterion.

This generally poor performance of the Chlorella sp. and
R. subcapitata models during independent and cross‐species
validation using natural waters suggests that relative changes in
zinc toxicity as a function of pH, hardness, and DOC may not
be consistent across microalgal species and that these three
TMFs might not be the only significant modifiers of toxicity in
Australian natural waters.

Examples of cross‐species validation of MLR models for
microalgae are limited given that the majority of microalgal
toxicity data use a single species (R. subcapitata), whereas
cross‐species comparisons are more common for invertebrates
and fish because large toxicity data sets often exist for multiple
species (Croteau et al., 2021; Peters et al., 2021). Peters et al.
(2021) reported good cross‐species validation using Chlorella
sp. (different strain from present study) for R. sub-
capitata–derived nickel MLRs; however, the validation data set
was small (n= 5), and the range of hardness values used
was low.

CONCLUSION
Our study presents the first Chlorella sp. zinc toxicity MLR

models and the first metal toxicity MLR models for microalgae
using a development species other than R. subcapitata. It was
highlighted that while developed models can perform well
during autovalidation procedures, assessment of independent
data sets using natural waters is critical for assessing the pre-
dictive power of MLRs.

The findings of the present study showed that zinc toxicity
to algae is difficult to predict, even when using species‐
specific MLRs. Neither the Chlorella sp. MLRs nor the existing
R. subcapitata model accurately predicted zinc toxicity to
Chlorella sp. in Australian natural waters. Poor independent
validation of the Chlorella sp. models also suggests that
models derived from laboratory waters may not be suitable
for predicting toxicity in far more complex matrices like nat-
ural waters, and further investigation is needed to elucidate
this, such as expanding the natural water toxicity testing
data set.

The present study is part of a larger investigation examining
the applicability of a range of bioavailability models in Aus-
tralian and New Zealand waters and is discussed in the com-
panion paper (Stauber et al., 2023).
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