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ABSTRACT

Multivariate time series classification is a crucial task with broad applications in
areas such as finance, medicine, and engineering. It is inherently challenging
to classify multivariate time series as it requires considering temporal patterns

and inter-relations among multiple variables simultaneously. Deep learning has recently
gained popularity in computer vision, natural language processing, and data mining
thanks to its advantages in capturing complicated, nonlinear relations from massive data.
However, existing methods can not effectively leverage the characteristic of multivariate
time series data to provide satisfactory solutions for classifying sequences with different
classes. They can not fully leverage the multi-level temporal dependencies, lack structure
adaptation on various time series sequences, ignore the inherent frequency information,
and suffer for the explainability. In this thesis, I will introduce deep learning methods
to leverage the inherent temporal information of the time series sequences for accurate
multivariate time series classification, specifically via 1) feature-map-wise attention, 2)
dynamic architecture, 3) explanation module, 4) utilization of 2D representations with
frequency information, 5) exploration on positional embedding. The proposed methods
are evaluated using the datasets from the UEA time series classification repository
and UCI data resource, which contain a large multitude of public multivariate time
series classification datasets covering a wide range of applications including, EEG
signal classification, activity recognition, disease diagnosis, etc. These datasets concern
different domains and reflect diverse data characteristics in terms of sequence lengths
and variable numbers for comprehensive evaluation. Experimental results demonstrate
that the proposed methods are superior to the traditional machine learning methods and
recently proposed deep learning methods. In summary, in this thesis, I propose five deep
learning methods for classifying multivariate time series. The detailed contents are as
follows:

1. A novel convolutional neural network architecture called Attentional Gated Res2Net
for multivariate time series classification. The proposed model uses hierarchi-
cal residual-like connections to achieve multi-scale receptive fields and capture
multi-granular temporal information. The gating mechanism enables the model
to consider the relations between the feature maps extracted by receptive fields
of multiple sizes for information fusion. Further, Two types of attention modules,
channel-wise attention and block-wise attention, are proposed to leverage the
multi-granular temporal patterns better. The experimental results on 14 bench-
mark multivariate time series datasets show that the proposed model outperforms
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several baselines and state-of-the-art methods by a large margin. Besides, the
proposed model improves the performance of existing models when used as a
plugin.

2. A novel dynamic transformer-based architecture called Dyformer to address the
limitations of traditional transformers in multivariate time series classification.
Transformer is promising for time series classification, but as a generic approach,
they have limited capability to effectively capture the distinctive characteristics
inherent in time series data and adapt to diverse architectural requirements.
Dyformer incorporates hierarchical pooling to decompose time series into subse-
quences with different frequency components. Then, it employs Dyformer modules
to achieve adaptive learning strategies for different frequency components based on
a dynamic architecture. Further, feature-map-wise attention is implemented to cap-
ture multi-granular temporal patterns and a joint loss function to facilitate model
training. Extensive experiments conducted on 30 benchmark datasets show the
proposed model outperforms a multitude of state-of-the-art methods and baselines.
Dyformer also copes well with limited training samples when pre-trained.

3. A summary of six different Transformer-based variants designed for time series-
related tasks and explore the impact of positional embedding on the vanilla Trans-
former and variants using 30 public multivariate time series classification datasets
and 4 time series forecasting datasets. The experimental results demonstrate
that the positional embedding has a positive impact on the performance of the
vanilla Transformer in both classification and forecasting, but a negative impact
on the Transformer-based variants in the classification and a look-back window
size-dependent impact on the variants in the forecasting. Additionally, the impact
of spurious sequential order information is investigated on these models by invert-
ing the time series data without positional embedding. The experimental results
demonstrate that the variants’ performance degrades more drastically than the
vanilla Transformer, suggesting the variants can automatically capture position
information, rendering positional embedding redundant. The findings highlight
the importance of carefully considering the utilization of positional embedding in
Transformer-based models and suggest that its effectiveness may vary based on
the specific architecture and task.

4. A novel method for classifying multivariate time series using both temporal and fre-
quency information. The proposed approach involves transforming the time series
into spectrograms using the Short-Time Fourier Transform (STFT), which gen-
erates a 2D representation containing frequency components and their temporal
positions. Three different window sizes are used to generate multiple spectrograms
with varying frequency and temporal resolutions for each variable. This creates a
new modality in addition to the 1D time series, allowing us to convert the multi-
variate time series classification into a multi-modality data classification task and
borrow powerful backbones from computer vision fields. A dual-stream network
is constructed based on the ResNet architecture to leverage both 1D and 2D rep-
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resentations for accurate multivariate time series classification. The experiments
conducted on 30 public datasets demonstrate that the proposed method outperforms
several competitive baseline methods, achieving state-of-the-art performance.

5. A novel explanation module pluggable into existing deep neural networks to explore
variable importance for explaining multivariate time series classification. The pro-
posed module is evaluated using popular deep neural networks on both real-world
and synthetic datasets to demonstrate its effectiveness in generating explanations
for multivariate time series classification. The experiments also show the module
improves the classification accuracy of existing models due to the comprehensive
incorporation of temporal features.
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1
INTRODUCTION

1.1 Background

Multivariate time series data is a group of chronologically recorded and synchronous

variables. Real-world applications relying on the analysis of time series include speech

recognition [14, 117, 130], gesture recognition [36, 123, 131], health care [15, 16, 138], etc.

Compared with other types of sequential data such as language or video, multivariate

time series is recorded chronologically while each time point saves some scalars. Besides

the inter-relations among multiple variables, it contains temporal variation reflecting the

inherent properties of time series, such as continuity, periodicity, trend, etc. Specifically,

the temporal information indicates the trends and the pulses across multiple time steps,

while the frequency information represents the periodical regulations. Additionally, the

temporal and frequency information demonstrates multi-range characteristics-they both

contain long-term and short-term information. Hence, it is inherently challenging to

classify multivariate time series as it requires simultaneously incorporating temporal

patterns and inter-relations among multiple variables to learn the differences of the time

series sequences with various classes for obtaining accurate results. Although current

studies propose some methods for multivariate time series classification, they either can

not effectively leverage the specific characteristics of the time series, ignore inherent

information from the frequency domain, or lack explainability and generalization.
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1.2 Existing Efforts and Limitations

Traditional methods for time series classification include distance-based models (e.g.,

k-nearest neighbors) and feature-based models (e.g., random forest [8] and support

vector machine [69]). These models highly rely on manually-defined features, which are

heuristic and task-dependent [6]. Also, it takes the expertise and considerable time of

domain experts to design such features. Furthermore, conventional machine learning

(ML) techniques have limitations in processing high-dimension data and representing

complicated functions efficiently [10].

In recent years, many deep learning methods have been proposed to address the criti-

cal challenges for multivariate time series classification. They can be categorized as con-

volutional neural net-based methods, recurrent neural net-based methods, transformer-

based methods, and ensemble methods. Convolutional neural net-based methods such as

Omni-Scale Convolutional Neural Network (OS-CNN) [109] and Inception-time [43] can

capture short-term dependencies but is challenging to harness long-term dependencies.

Recurrent neural net-based methods such as Long Short-Term Memory (LSTM) [56] and

Gated Recurrent Unit [24] can leverage long-term dependencies but is time-consuming

for training and inference. Transformer-based methods such as Time Series Trans-

former [151] and Gated Transformer [87] can leverage multi-scale temporal depen-

dencies, but its attention mechanism based on dot product can not fully leverage the

characteristics of the time series. Ensemble models such as LSTM-FCN [71] combine

different methods to take advantage of their respective strengths, but the construction

manner remains an open problem.

Furthermore, existing deep learning-based classifiers rely solely on temporal informa-

tion while disregarding clues from the frequency perspective, making them impossible to

leverage the inherent temporal variations of the time series sufficiently. Additionally,

current methods can only update their parameters instead of their architectures during

training, which limits representation learning and models’ generalization ability.

Besides the above limitations, the black-box characteristic of deep learning models

impedes humans from obtaining insights into the internal regulation and decisions

made by classifiers. Although some studies have sought explanations for classification

problems [1, 144], they mostly design separate architectures that are specific to certain

deep neural-network types or re-design a new backbone architecture leading to extra

efforts.
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1.3 Our Solutions

This thesis aims to address the challenges in multivariate time series classification. An

attentional architecture is first proposed to leverage multi-scale temporal information

sufficiently. The Short-time Fourier Transform is then implemented to extract frequency

information and construct a dual-steam architecture to harness both temporal and

frequency information. To realize adaptive learning strategies for different frequency

components, a time series decomposition method is designed to decompose the time

series into several subsequences with different frequency components. Then, a dynamic

transformer-based architecture that can adjust its structure during training and infer-

ence is introduced. Additionally, a comprehensive empirical study on the effectiveness of

positional embedding on the current transformer-based variants is conducted to explore

the necessity of positional embedding under different scenarios. Furthermore, a plug-

gable explanation module is proposed to explore the importance of the variables for the

classifiers.

1.4 Thesis Overview

We introduce the existing efforts and challenges in Chapter 2 and detail our proposed

methods in the following chapters. Chapter 3 introduces the proposed attention architec-

ture, Chapter 4 introduces the proposed method to harness the frequency information

of the time series, Chapter 5 introduces a dynamic transformer-based architecture to

enable an adaptive information flow and learning strategy, Chapter 6 introduces an

empirical study on the positional embeddings for transformer-based methods, and Chap-

ter 7 introduces a pluggable explanation module. Finally, Chapter 8 gives the conclusions.

Specifically, this thesis is organized in the following structure:

• Chapter 2: we review the existing methods to address the challenges in the

multivariate time series classification. We first introduce the traditional machine

learning methods based on statistical theory. Then, we introduce deep learning-

based methods such as convolutional neural net-based methods and recurrent

neural net-based methods. We additionally introduce the attentional mechanisms

developed for time series data and the time series decomposition to extract different

components of the time series. At last, we introduce several methods to enable the

explainability of the classifiers.
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• Chapter 3: we present a novel attnetional architecture called Attentional Gated

Res2Net for multivariate time series classification. Our model uses hierarchi-

cal residual-like connections to achieve multi-scale receptive fields and capture

multi-granular temporal information. The gating mechanism enables the model to

consider the relations between the feature maps extracted by receptive fields of

multiple sizes for information fusion. Further, we propose two types of attention

modules, channel-wise attention and block-wise attention, to better leverage the

multi-granular temporal patterns.

• Chapter 4: we propose a novel method for classifying multivariate time series

leveraging both temporal and frequency information. We first apply Short-Time

Fourier Transform (STFT) to transform time series into spectrograms, which con-

tain a 2D representation of frequency components and their temporal positions.

In particular, for each variable, we generate spectrograms with varying frequen-

cies and temporal resolutions under different window sizes. The transformation

essentially adds a new modality to 1D time series and converts the multivariate

time series classification into a multi-modality data classification task, making it

possible to bring powerful backbones from computer vision fields to solve the time

series classification problem. We then construct a dual-stream network based on

the ResNet architecture that takes in both 1D and 2D representations for accurate

multivariate time series classification.

• Chapter 5: we propose a novel dynamic transformer-based architecture called

Dyformer to realize adaptive learning strategies for different frequency compo-

nents. Dyformer incorporates hierarchical pooling to decompose time series into

subsequences with different frequency components. Then, it employs Dyformer

modules to realize a dynamic architecture and information flow facing different

frequency components. Furthermore, we introduce feature-map-wise attention

mechanisms to capture multi-scale temporal dependencies and a joint loss function

to facilitate model training.

• Chapter 6: we summarize six different Transformer-based variants designed for

time series-related tasks and explore the impact of positional embedding on the

vanilla Transformer and variants using thirty public multivariate time series

classification datasets and four time series forecasting datasets. Our experimen-

tal results demonstrate that the positional embedding has a positive impact on

the vanilla Transformer’s performance in both classification and forecasting. In
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contrast, it has a negative impact on the Transformer-based variants in the clas-

sification and an input sequence length-dependent impact on the variants in the

forecasting. Additionally, we investigate the impact of spurious sequential order

information on these models by inverting the time series data without positional

embedding. The experimental results demonstrate that the variants’ performance

degrades more drastically than the vanilla Transformer, suggesting the variants

can automatically capture position information, rendering positional embedding

redundant. Our findings reveal the varying effectiveness of positional embedding

on different model architectures and tasks, highlighting the significance of using

positional embedding cautiously in Transformer-based models.

• Chapter 7: we propose a novel explanation module pluggable into existing deep

neural networks to explore variable importance for explaining multivariate time

series classification. We evaluate our module with popular deep neural networks

on both real-world and synthetic datasets to demonstrate its effectiveness in

generating explanations for multivariate time series classification. Our proposed

module can also improve the classification accuracy of existing models due to the

comprehensive incorporation of temporal features.

• Chapter 8: we summarize this thesis along with several future directions.

1.5 Key Contributions and Impact

The main contributions of this thesis include novel architectures to leverage temporal de-

pendencies and frequency information, an empirical study on the positional embedding’s

impact on current transformer-based methods, and the explanation module. Our efforts

address the inherent challenges we introduced and realize precious and interpretable

time series classification.

• Attentional architecture. The proposed Attentional Gated Res2Net can capture

temporal dependencies over various ranges and exploit the inter-variable relations

to achieve high performance on time series of various lengths, making it feasible

for various real-world challenges.

• Dual-Stream architecture. We employ Short-Time Fourier Transform (STFT)

with varying window sizes to generate 2D representations containing frequency

components and corresponding temporal positions at multiple resolutions and then
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construct a dual-stream architecture based on ResNet to leverage both temporal

and frequency information.

• Time series decomposition method. We design a hierarchical pooling layer to

decompose time series into several subsequences with different frequency com-

ponents. Hierarchical pooling differs from previous efforts in leveraging all the

frequency components in the time series without information loss, offering the

potential to achieve more accurate multivariate time series classification.

• Dynamic architecture. We propose a dynamic transformer-based architecture

called Dyformer, which varies its learning strategies by adapting its structures

to the specific characteristics of time series sequences with various frequency

components for multivariate time series classification.

• Empirical study on positional embedding. We summarize six kinds of transformer-

based variants designed for time series-related tasks and explore the effectiveness

of the positional embedding on them as well as the vanilla transformer to explore

the scenarios in which positional embedding positively impacts the model’s perfor-

mance to facilitate researchers and practitioners in making informed decisions on

whether to incorporate positional embedding in their models.

• Explanation module. We propose an explanation module that can be plugged into

existing popular deep neural networks to infer the importance of variables in mul-

tivariate time series classification automatically. Our module enables the models

to leverage the temporal features for achieving better classification accuracy.

• Extensive experiments. We conduct extensive experiments on a large number

of public datasets to study the behavior and performance of the proposed meth-

ods. Experimental results demonstrate the superiority of the proposed methods

compared to the competitive baselines and state-of-the-art techniques.
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2
RELATED WORK

In this chapter, we summarize the current studies proposed for addressing multivariate

time series classification-related challenges.

2.1 Traditional Machine Learning Methods

Statistical and traditional machine learning methods have been extensively employed

for multivariate time series classification. Distance-based approaches, such as k-Nearest

Neighbors (KNN) [112], as well as feature-based methods, including Support Vector

Machine (SVM) [152], Time Series Combination of Heterogeneous and Integrated

Embedding Forest (TS-CHIEF) [104], Hierarchical Vote Collective of Transformation-

based Ensembles (HIVE-COTE) [85], and Random Convolutional Kernel Transform

(ROCKET) [30], have been used. Dynamic time warping (DTW) [112] is the most pop-

ular distance function to compensate for possible confounding offset by allowing some

realignment of the series that allows KNNN [41, 48] to classify various time series

sequences. Depending on the warping path for different dimensions, DTW can be divided

into independent warping (DTWI), dependent warping (DTWD), and adaptive warping

((DTWA). SVM, which is the most used feature-based method in recent years, imple-

ments kernel functions to map the raw data into the high-dimension space, making

finding a classification boundary easier. ROCKET implements a group of convolutional

kernels whose parameters are randomly initialized and not updated during training

for feature extraction, resulting in a significant efficiency compared to deep neural nets.
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ROCKET can be further accelerated by generating more kernels with smaller kernel

sizes, called miniROCKET [31]. From the signal processing perspective, the untrained

kernels can be recognized as the basis of the transform, which maps the raw time series

into other domains to facilitate the classification. However, these methods typically rely

on manually crafted features and face difficulties in capturing complex relationships

efficiently from high-dimensional data [10].

2.2 Deep Learning Methods

Deep learning methods for MTSC can be categorized into four classes: Convolutional

Neural Network-based models, Recurrent Neural Network-based models, cascade models,

and Transformer-based models. We introduce more details in the following sections.

2.2.1 Convolutional Neural Network-based models

Existing CNN-related studies either design new CNN-based architecture or directly

borrow models from other domains. InceptionTime [43, 66] borrows the idea of Inception

Network [107] used in computer vision and uses multiple convolutional kernels with

different sizes to realize multi-granular temporal information extraction. ResNet [55] is

another example that is modified to make it feasible for time series classification [122].

As such, constructing a very deep convolutional network to facilitate the model’s classifi-

cation capacity is practicable. The fully Convolutional Network (FCN) [21] is proposed in

the computer vision field, which is constructed using convolutional layers only. As the

convolutional layers have parameter sharing and locally connected characteristics, it is

much more efficient than other convolutional neural networks. In this case, FCN [70]

is considered for time series classification as an efficient and effective classifier. Multi-

channel convolutional network [156] is proposed for time series classification, which

regards multivariate as the input of multi-channels to harness the inter-relationships of

the variables and the temporal features. Temporal Convolutional Network (TCN) [115] is

first proposed for the time series forecasting task. It implements casual convolutional ker-

nels to capture long-term temporal dependencies. Due to its capacity to harness temporal

features, it is also used for multivariate time series classification [76]. Time series atten-

tional prototype network (Tapnet) [155] is a specifically designed convolutional-based

architecture for time series classification. It implements the attentional mechanism in the

convolutional neural network to harness the multi-range temporal features. Multi-scale
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convolutional neural network (MCNN) [28] is another convolutional-based model de-

signed for time series classification. It builds a multi-branch layer to harness multi-scale

temporal features. CNNs can handle temporal patterns and inter-variable relationships.

However, as it only focuses on the temporal information that lies in the receptive field, it

faces challenges in capturing long-range temporal dependencies [86].

2.2.2 Recurrent Neural Network-based models

Recurrent neural networks feed the current output information into the next input data

to harness the temporal dependencies. It is first used in natural language processing

tasks such as machine translation, emotion classification, etc. Well-known recurrent

neural networks include Gated Recurrent Unit (GRU) [24] and Long Short-Term Memory

(LSTM) [56], which employ gate mechanisms to capture long-range temporal patterns.

As the time series data contains temporal information, recurrent neural networks are

naturally feasible for classifying time series sequences. Models based on LSTM and

GRU [19, 39, 72, 78, 145] are popularly used for time series classification. Highway

network [105] is another RNN-based method that enables the information flow through

different layers. Existing highway network-based methods [64, 110] have been imple-

mented to solve time series-related challenges. Nevertheless, RNN-based methods are

time-consuming for training and inference due to their recurrent architectures. And they

are likely to forget the temporal information facing extremely long time series sequences.

2.2.3 Cascade models

To address the shortcomings of convolutional neural nets and recurrent neural nets,

existing efforts have tried to construct cascade models by combining them. A hybrid

architecture is proposed for time series classification [38] through parallelly constructing

convolutional neural nets and recurrent neural nets. Another cascade model [140] con-

structs the convolutional neural network and the recurrent neural network in a series

manner. It borrows the idea of the Inception network via stacking multiple convolutional

kernels with multiple sizes to capture multi-granular temporal features to enhance

performance. LSTM-FCN [71] constructs LSTM and FCN parallelly and implements an

attentional layer called Squeeze-and-excitation networks (SENet) [60] to improve the

models’ capacity. It demonstrates a strong baseline facing various scenarios. Thanks to

its performance, existing works have tried to use it to address real-world challenges that

are related to time series data [7, 74].
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2.2.4 Transformer-based models

Transformer [113] first emerged for natural language processing [33]. It implements

self-attention operation to harness both long-term and short-term temporal informa-

tion, hence can combine the merits of CNNs and RNNs. But until now, transformers

have rarely been applied to MTSC. Gated transformer [87] is designed in a two-tower

manner to harness the channel-wise and step-wise interrelationships, respectively. It

then implements a gate to fuse the information from two towers. AutoTransformer [97]

uses network architecture search technology to automatically construct the optimal

structure of the model facing various time series datasets to make it more generalizable.

Multi-modal fusion transformer [68] uses Gramian Angular Field (GAF) to convert time

series into 2D representations, then builds a dual-path transformer architecture to

harness both 1D representations and 2D representations. Besides, Recent works that

are designed for time series representation learning regard multivariate time series

classification as a downstream task. Representative models include Task-Aware Re-

construction for Time-Series Transformer (TARNet) [27] and Time Series Transformer

(TST) [151]. TST uses the same architecture as the vanilla transformer. It randomly

masks some time steps and then guides the model to recover the time series sequences

to learn the representations. TARNet uses the downstream task to guide the training to

make the transformer learn the important representations according to the specific task.

It achieves promising classification accuracy on several public datasets.

2.3 Time Series Decomposition

Traditional time series methods decompose time series into trend, seasonal, and bias

terms [96]. Recent deep learning methods borrow the ideas for representation learn-

ing. For example, Autoformer [136] designs a deep learning-based block to simulate

the decomposition process. The block eliminates the long-term trend-cyclical part and

highlights the seasonal parts for representation learning. COST [125] employs two types

of blocks, Trend Feature Disentangler and Seasonal Feature Disentangler, to obtain

trend and seasonal terms, respectively. It then uses contrastive learning to learn the

representations of the two terms for downstream tasks. FEDformer [158] decomposes

time series and designs a sampling strategy for the frequency domain for seasonal repre-

sentation learning. Unlike the above, Ts2Vec [147] recurrently decomposes the learned

representations for hierarchical contrastive learning. The decomposed representations

contain temporal patterns of different granularities, enabling representation learning at

10
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various scales.

2.4 Attention Mechanism

The attention mechanism was first used in the seq2seq model for machine translation [24].

A vanilla seq2seq model first feeds the input sequence to an encoder (which consists of

multiple recurrent layers) [24] to generate hidden states and outputs. It then collects

the hidden states of all the steps to represent the information of the input. An attention

mechanism forces the model to learn the weights of hidden states in the decoder part

during this process. Thus, the model can focus on a specific region of the input sequence,

leading to a significant performance improvement. Recent studies have designed different

attention modules and applied them to various domains [61, 126]. Among them, Squeeze-

and-Excitation Block Networks (SENet) [60] is widely used for various tasks thanks to

its easiness of implementation and the power to enhance the model’s performance. SENet

works in two steps. First, it uses global average pooling to obtain an information vector of

feature maps from different channels. Then, it employs fully connected layers to capture

the inter-relations between feature maps to learn the weights of feature maps and

highlight the critical information. Many deep learning methods such as LSTM-FCN [71]

and Geo-CBAM-CNN [120] for multivariate time series classification have used SENet

to enhance the performance. There exist many works for improving the performance

of the SENet, including cSENet, sSENet and csSENet [98]. Later, self-attention [113]

is proposed and demonstrates significantly better performance compared with other

attention modules. Self-attention uses point-wise attention to measure the similarities of

the data on all time steps and hence can effectively leverage the temporal information. As

point-wise attention can not leverage the rich temporal patterns contained in time series

effectively, to make the transformer better harness the temporal features, LogTrans [82]

and Block Recurrent Transformer [65] use the convolutional layer or recurrent layer

to leverage local temporal information for overcoming the limitations of point-wise

attention.

2.5 Explanation Methods

There have been several efforts exploring explanation methods for deep neural networks

in various tasks. Some efforts have been made to figure out the effect of the input on the

output [79, 149]. Gradient-based methods have been used for exploring the influence of
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the input changes [101]. However, these methods are only feasible for certain kinds of

neural networks, which limits the application scopes.

Another explanation approach is to design a separate architecture for explanation

purposes. Some studies [18, 52, 102, 135, 141, 143] select a critical subset of features to

figure out the most influential variables. While some work embeds attention mechanisms

to evaluate the effectiveness of the input data [5, 25], it may take considerable efforts

to design a new architecture, not to mention the potential adverse impact of the expla-

nation module on performance. An example is LAXCAT [59]: although it can visualize

critical variables based on fully-grouped convolutions and attention mechanisms, it lacks

the ability to exploit the inter-relationship among variables, resulting in suboptimal

performance.
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ATTENTIONAL GATED RES2NET FOR MULTIVARIATE

TIME SERIES CLASSIFICATION

3.1 Introduction

Multivariate time series contain temporal information from different sources, hence,

measuring the interaction of sources and learning the temporal representations are the

keys to realizing accurate multivariate time series classification (MTSC) [9]. Different

tasks have different requirements for the classifier, making building a generalized used

classifier a challenge. For example, EEG signal-based MTSC can be focused on many

different goals such as the recognition of emotion [3, 73], decoding cognitive skills [4],

recognition, investigation of sustained attention, detection of sleep disorder, decoding of

cognitive tasks in brain-computer-interface, etc. In EEG classification, the performance

is sensitive to many parameters such as the number of recording channels, i.e., feature

dimension, recording time length, i.e., the number of features, number of individuals in

each group, feature extraction method, and classifier’s architecture.

Recently, deep learning has gained popularity in computer vision, natural language

processing, and data mining thanks to its advantages in capturing complicated, non-

linear relations from massive data [80]. Deep neural networks usually stack multiple

neural layers for automatic feature extraction and representation learning [57]. Many

neural network architectures, such as Recurrent Neural Networks (RNN), Convolutional

Neural Networks (CNN), Transformer [113], Long Short-Term Memory (LSTM) [56],
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and Gated Recurrent Unit (GRU) [24], have been applied for time series analysis. In

particular, RNN sends the prior output to the next input layer to facilitate temporal

feature extraction; therefore, it takes a long training time and cannot support parallel

computation. CNN can extract temporal features and be parallelized during training to

fully exploit the power of Graphics Processing Units (GPUs); however, it faces challenges

in capturing long-range temporal dependencies and is, therefore, less used for time

series classification. Transformer [113] has recently emerged as a promising solution

to multivariate time series classification. While the transformer supports both parallel

computing and efficient temporal feature extraction, it requires massive parameters

for the multiple fully connected layers, making the training extremely time-consuming.

Furthermore, the transformer suffers overfitting on small datasets [137] and faces

challenges in capturing short-range temporal information [34].

Besides, existing solutions to MTSC commonly require careful adjustments of archi-

tectures and parameters to deal with time series of various lengths. This is a critical yet

little studied issue in existing time series classification research.

To summarize, among the DL methods, CNN is efficient for training and inferencing

but challenging for capturing long dependencies; RNN can effectively learn the temporal

representations of long temporal features but is computationally expensive; transformer

contains too many parameters, making it easy to prone to overfitting on small size

datasets. We aim for accurate MTSC that can adapt to time series of various lengths to

address the above deficiencies of existing studies.

To this end, we propose a novel CNN architecture called Attentional Gated Res2Net

(AGRes2Net) for MTSC. Our model can overcome the shortcoming of the standard CNN

architecture by enabling the extraction of both global and local temporal features. It also

has the capability to leverage multi-granular feature maps through channel-wise and

block-wise attention mechanisms. In a nutshell, we make the following contributions in

this work:

• We propose a novel AGRes2Net architecture for accurate MTSC. Our model can

capture dependencies over various ranges and exploit the inter-variable relations

to achieve high performance on time series of various lengths, making it feasible

for various tasks.

• We propose two attention mechanisms, namely channel-wise attention and block-

wise attention, to leverage multi-granular temporal information for tasks with

different data characteristics. The former has advantages on datasets with many
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variables, while the latter can effectively prevent overfitting on datasets with very

few variables.

• We conducted extensive experiments on 14 benchmark datasets to evaluate the

model. A comparison with several baselines and state-of-the-art methods shows the

superior performance of our model. Besides, plugging our model into MLSTM-FCN,

a state-of-the-art CNN-RNN parallel model, demonstrates the model’s capability

to improve existing models’ performance.

3.2 Our Approach

We propose Attentional Gated Res2Net for accurate classification of multivariate time

series of various lengths. In particular, we incorporate gating and attention mechanisms

on top of Res2Net [44], where gates control the information flow across the groups of

convolutional filters, and the attention module harnesses the feature maps at different

levels of granularity.

The overall architecture of AGRes2Net (shown in Figure 3.1) consists of two stages:

Convolution and Attention. We illustrate these two stages in the following subsections,

respectively.

3.2.1 Convolution stage

We design the convolution stage based on Res2Net [44], a CNN backbone specially

designed to achieve multi-scale receptive fields based on group convolution. Group

convolution first appeared in AlexNet [77] and significantly reduced the number of

parameters in that model. It has since been adopted in many lightweight networks [26,

58] to generate a large number of feature maps with a small number of parameters.

Unlike conventional CNNs, which use a single set of filters to work on all channels,

Res2Net includes multiple groups of filters and uses a separate group to handle each

subset of channels. These filter groups are connected in a hierarchical, residual-like

style, and they work as follows: First, a convolutional layer takes the input data and

outputs a feature map for channel expansion. Then, the feature map is split into groups

along the channel, generating groups of feature maps, i.e., input feature maps. Finally,

for each input feature map, a separate group of filters extracts features and generates

the corresponding output, i.e., an output feature map. In particular, when extracting

features from an input feature map, the filter group also takes into account the output of
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Figure 3.1: The structure of Attentional Gated Res2Net. It consists of two stages: con-
volution and attention. The convolution stage feeds the input to a convolutional layer
for channel expansion and then groups the output along the channel. Each group (ex-
cept the first) conducts convolution based on its input and its precedent group’s output
(passed through gates). The attention stage forces the model to consider the temporal
information at different levels of granularity. Finally, the network uses a convolutional
layer for channel compression and information fusion.

the filter group that comes immediately before it. The whole process repeats until all

input feature maps are processed.

Suppose X is the feature map obtained from channel expansion, and X is evenly

divided into s groups, {xi}s
i=1, where xi denotes the ith group. Each group contains an

input feature map that has the same temporal size but contains only 1/s of the channels

in X. Let Ki be the convolution operation. Then, given an input feature map xi, the
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convolution output, yi, is calculated as follows:

(3.1) yi =


xi i = 1

Ki (xi) i = 2

Ki (xi +yi−1) 2< i ⩽ s.

By feeding the concatenation of all the outputs to a convolutional layer, Res2Net

achieves multi-scale receptive fields to facilitate multivariate time series classification.

However, it has difficulty in controlling the information flow between the feature-map

groups—at each step, yi is always fully sent to the next group regardless of whether it

avails or harms the model’s performance.

Addressing this limitation is important as it enables to model to control how to

weigh the precedent output feature map against the current input feature map in an

input-dependent manner. This, in turn, mitigates the problem of vanishing gradients

without having to take long delays.

To this end, we introduce the gating mechanism [139] into Res2Net at the con-

volutional stage to enhance feature extraction. Specifically, in our model (shown in

Figure 3.1), all groups of feature maps (except the first) are sent to convolutional layers

for feature extraction, and a gating unit lies between each pair of adjacent feature-map

groups to control how much information flows from the precedent to the current group.

Given a feature-map group (or more specifically, input feature map), xi, the value of the

corresponding gate, gi, is calculated as follows:

(3.2) gi = tanh(a (concat(a(yi−1),a (xi)))) .

where a can be either fully-connected or 1-D convolutional layers, concat is the concate-

nation operation, and tanh is the activation function commonly used for gates.

Note that, we only use the precedent output feature map yi−1 and the current

input feature map xi to calculate the gate—this is different from the gating mechanism

in [139]. More specifically, we omit the undivided feature map X as it contains redundant

information and does not significantly improve the performance. Eventually, after the

convolution stage, we obtain yi as follows:

(3.3) yi =


xi i = 1

Ki (xi) i = 2

Ki (xi +gi ·yi−1) 2< i ⩽ s.
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3.2.2 Attention stage

The convolution stage only considers the information flow between adjacent feature-map

groups. As such, it limits the model’s ability to capture the dependencies between groups

that have long distances in-between. In this regard, we design an attention stage to

attend to a certain part when processing output feature maps. In particular, we propose

two types of attention modules, namely channel-wise attention module and block-wise

attention module, to harness multi-granular temporal patterns effectively.

3.2.2.1 Channel-wise attention

Channel-wise attention captures the relations between channels of the convolution

stage’s output, i.e., output feature maps, {yi}s
i=1, where s is the number of feature-map

groups in the convolution stage.

Suppose every yi contains the same number of channels, say J channels—this is

reasonable as we divide the original feature map X evenly along the channel.

Let hi, j be the feature map for the jth channel of yi. We use three fully-connected

layers to learn the query, key, and value of hi, j (denoted by qi, j, ki, j, and vi, j, respectively).

Similarly, we denote by qm,n, km,n, and vm,n the query, key, and value of hm,n, and the

feature map for the nth channel of ym. Given two different feature maps, hi, j and hm,n,

we calculate the channel-wise attention as follows:

(3.4) attention
(
qi, j,km,n

)= qi, jkT
m,np

J

Once computed, we can update the feature map of every channel according to its

relations with all the other feature maps. As feature maps contain temporal information

within various ranges, channel-wise attention can capture temporal dependencies at

multiple levels of granularity, realizing a feature-map-wise attention. Based on the

above, the updated feature map h̃i, j can be calculated as follows:

(3.5) h̃i, j =
∑
s

∑
J

Softmax
( attention

(
qi, j,km,n

)∑
s
∑

J attention
(
qi, j,km,n

))vm,n

Given s output feature maps each having J channels with k dimensions, the total

number of feature maps for channel-wise attention is s×J, resulting in the computational

complexity of O
(
(s× J)2k

)
.
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3.2.2.2 Block-wise attention

Block-wise attention regards each yi as an individual block that contains temporal

information at a certain granularity. Instead of calculating attention values along the

channel, block-wise attention directly feeds yi to the fully-connected layers to calcu-

late the corresponding query, key, and value. Block-wise attention has advantages in

mitigating overfitting as it considers sparse relations when computing the attention.

Suppose yi and ym are two output feature maps. We denote by qi, ki and vi the query,

key and value of yi; similarly, we denote by qm, km and vm the query, key and value of

ym. Then, we calculate the block-wise attention as follows:

(3.6) attention (qi,km)= qikT
mp

s

Once computed, we can update the feature maps of every block according to their

relations with all the other feature maps. And the updated feature map for each block,

ỹi, can be calculated as follows:

(3.7) ỹi =
∑
s

Softmax
( attention

(
qi,k j

)∑
s attention

(
qi,k j

))v j

Given s feature maps, each having J channels with k dimensions, the computational

complexity of block-wise attention is O
(
s2Jk

)
.

3.3 Experiments

This section reports our extensive experiments to evaluate our proposed approach,

including comparisons against baselines, ablation studies, and parameter studies on

several public time-series datasets. We demonstrate that our approach can be used as

a plugin to improve the performance of state-of-the-art methods and provide practical

advice on how to adapt our approach to a specific problem.

3.3.1 Datasets

We conducted experiments on 14 public multivariate time series datasets (summarized

in Table 3.1). These datasets cover various tasks from different application domains,

such as activity recognition, EEG classification, and weather forecasting. They contain

time series of various lengths with different numbers of variables. We have carefully

selected these datasets to reflect applications in various domains and ensure that they

19



CHAPTER 3. ATTENTIONAL GATED RES2NET FOR MULTIVARIATE TIME SERIES
CLASSIFICATION

Table 3.1: A list of our experimental datasets.

Dataset Task #Classes #Variables Length Train-test ratio SOTA
Action 3D [83] Action Recognition 20 570 100 48:52 MALSTM-FCN [71]

Ozone1 Weather Forecasting 2 72 291 50:50 MLSTM-FCN[71]
AREM1 Activity Recognition 7 7 480 50:50 MALSTM-FCN [71]

LP51 Failure Detection 5 6 15 39:61 MUSE [99]
EEG1 EEG Classification 2 13 117 50:50 MLSTM-FCN [71]

Gesture Phase1 Gesture Recognition 5 18 214 50:50 MLSTM-FCN [71]
ECG2 ECG Classification 2 2 147 50:50 MUSE [99]

FingerMovements3 [29] Movement Classification 2 28 50 76:24 InceptionTime [43]
DuckDuckGeese3 [29] Audio Classification 5 1345 270 50:50 InceptionTime [43]

HeartBeat3 [29] Audio Classification 2 61 405 49:51 Canonical Interval Forest [91]
LSST3 [29] Signal Classification 14 36 6 50:50 MUSE [99]

MotorImagery3 [29] EEG Classification 2 3000 64 74:26 Time Series Forest [32]
SelfRegulationSCP23 [29] EEG Classification 2 1152 7 53:47 DTW [92]

StandWalkJump3 [29] Activity Recognition 3 2500 4 45:55 ROCKET [30]

are diverse enough in length and variable number of time series to reflect different

difficulty levels in real-world multivariate time-series classification problems.

3.3.2 Baseline Methods

We selected several competitive baselines and state-of-the-art (SOTA) methods to com-

pare with our approach.

• Res2Net [44]: this is a CNN backbone that uses group convolution and hierarchical

residual-like connections between convolutional filter groups to achieve multi-scale

receptive fields.

• GRes2Net [139]: this work incorporates gates in Res2Net, where the gates’ values

are calculated based on a different method from ours—it additionally takes into

account the original feature map before it is divided into groups when calculating

gates’ values.

• Res2Net+SE: this work combines Res2Net with a Squeeze-and-Excitation Block

(SE) [60] to leverage the effectiveness of attention modules.

• GRes2Net+SE: this work combines GRes2Net with SE to leverage the effective-

ness of attention modules.

We briefly introduce the SOTA methods for the experimental datasets below. A full

list of SOTA methods is given in Table 3.1.

1https://archive.ics.uci.edu/ml/index.php
2http://www.cs.cmu.edu/∼bobski
3https://www.cs.ucr.edu/∼eamonn/time_series_data_2018
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• MLSTM-FCN [71]: a multivariate LSTM fully convolutional network that con-

catenates the outputs of two parallel blocks: a fully convolutional block (embedded

with SEs) and an LSTM block. It is a variant of LSTM-FCN.

• MALSTM-FCN [71]: a multivariate attention LSTM fully convolutional network,

which resembles MLSTM-FCN but replaces LSTM cells with attention LSTM cells.

• MUSE [99]: a model that extracts and filters multivariate features by encoding

context information into each feature.

• InceptionTime [43]: a CNN-based model transferred from computer vision to

time series classification, which stacks multiple parallel convolutional filters for

temporal feature extraction.

• Time Series Forest [32]: an ensemble tree-based method that employs a combi-

nation of entropy gain and a distance measure to evaluate the differences between

time-series sequences.

• Canonical Interval Forest [91]: a model that refines Time Series Forest by

upgrading the interval-based component.

• Dynamic Time Warping (DTW)[92]: a traditional distance-based machine learn-

ing method for time series analysis.

• Random Convolutional Kernel Transform (ROCKET) [30]: a CNN-based

model that uses random convolutional kernels to extract multi-granular temporal

features.

3.3.3 Model Configuration and Evaluation Metric

We followed the methods as illustrated in the SOTA methods to preprocess the datasets.

In particular, we normalized each dataset to zero mean and unit standard deviation.

We also applied zero paddings to cope with sequences with various lengths in the same

training set. The experimental results of each method were obtained under the optimal

or suggested settings as provided in the original paper.

To ensure a fair comparison, we set all the models based on Res2Net, GRes2Net,

and our approach contained the same number of feature-map groups and used identical

filters for each group.

We used our model as the backbone for feature extraction and trained our model for

500 training epochs using Adam [75] optimizer. The learning rate was set to 0.001 and
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Table 3.2: Experiment configuration settings

Dataset Number of Layers Number of Groups Dropout Rate
FingerMovements 4 4 0.2
DuckDuckGeese 4 64 0.3

HeartBeat 2 64 0.2
LSST 2 8 0.25

MotorImagery 6 64 0.2
SelfRegulationSCP2 4 8 0.5

StandWalkJump 4 64 0.2
Action 3D 4 8 0.3

Ozone 4 8 0.25
AREM 6 64 0.25

LP5 4 2 0.4
EEG 4 4 0.5

Gesture Phase 5 8 0.4
ECG 4 8 0.5

adjusted to 1/10 of itself after every 100 epochs. The dropout rate was set to 0.4 to avoid

possible overfitting. We repeated the training and test processes five times and took the

average of multiple runs as the final results; this mitigates the impact of randomized

parameter initialization. The details including the number of layers, the number of

convolutional groups, and the dropout rate settings can be found in Table 3.2.

We used accuracy, which is currently used by all the SOTA methods on the experi-

mental datasets, as the metric for evaluating the methods. Accuracy measures the ratio

of correctly predicted instances to the total instances, which can be described as:

(3.8) Accuracy= True Positives+True Negatives
Total Instances

However, accuracy is not comprehensive enough to measure the performance of the

classifier. Although the vast majority of the related work uses accuracy as the only

evaluation metric, we additionally use precision, recall, and F1-Score in our parameter

and ablation studies to gain further insights into how our model performs. Precision

measures the ratio of correctly predicted positive observations to the total predicted

positive observations, which can be described as:

(3.9) Precision= True Positives
True Positives+False Positives

Recall measures the ratio of correctly predicted positive observations to all actual posi-

tives, which can be described as:

(3.10) Recall= True Positives
True Positives+False Negatives
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Table 3.3: Accuracy of different models on 14 benchmark datasets. AGRes2Net+CA
and AGRes2Net+BA represent our Attentional Gated Res2Net model incorporated with
channel-wise attention and block-wise attention, respectively. The improvement is the
comparison between SOTA and the proposed model.

Dataset Res2Net Res2Net+SE GRes2Net GRes2Net+SE SOTA AGRes2Net+BA AGRes2Net+CA Improvement (%)
FingerMovements 0.5240 0.5280 0.5340 0.5480 0.5613 0.6240 0.5820 11.17
DuckDuckGeese 0.6360 0.6680 0.6560 0.6800 0.6347 0.6880 0.7080 11.55

HeartBeat 0.6463 0.7415 0.7512 0.7561 0.7652 0.7853 0.8663 13.21
LSST 0.5268 0.5447 0.5341 0.5799 0.6362 0.5843 0.6671 4.86

MotorImagery 0.5220 0.5340 0.5380 0.5740 0.5380 0.6240 0.6280 16.73
SelfRegulationSCP2 0.5367 0.5522 0.5444 0.5555 0.5369 0.5711 0.6210 15.66

StandWalkJump 0.3333 0.4000 0.3333 0.3333 0.4556 0.4667 0.3333 2.44
Action 3D 0.7457 0.7182 0.7301 0.8037 0.7542 0.8350 0.8617 14.25

Ozone 0.7989 0.8264 0.8034 0.8390 0.8150 0.8494 0.8620 5.77
AREM 0.7692 0.8462 0.8205 0.8717 0.8462 0.9231 0.8974 9.09

LP5 0.5642 0.5799 0.684 0.6328 0.7100 0.7396 0.7326 4.17
EEG 0.5781 0.5469 0.6094 0.6406 0.6563 0.6719 0.6719 2.38

Gesture Phase 0.5859 0.5898 0.6601 0.6641 0.5353 0.6445 0.6953 29.89
ECG 0.7200 0.8000 0.8400 0.8300 0.9300 0.8500 0.9400 1.08

The F1-Score is the harmonic mean of precision and recall, providing a balance between

the two metrics, which can be described as:

(3.11) F1 Score= 2× Precision×Recall
Precision+Recall

3.3.4 Comparison of Different Methods

Table 3.3 shows a performance comparison of all the methods on the experimental

datasets. Our proposed model, using either channel-wise or block-wise attention, consis-

tently outperformed all the other compared methods on all 14 datasets, demonstrating

our model’s superiority in solving MTSC in diverse contexts regardless of the lengths of

time-series sequences.

Channel-wise attention favors longer time-series sequences, as it beats block-wise

attention on all the top-8 datasets with the longest sequences. The results conform to

our intuition that channel-wise attention may have an edge on capturing multi-granular

temporal information.

Block-wise attention tends to excel on datasets that contain fewer variables. Among

the top-4 datasets with the least variables, it beats channel-wise attention on 3 of

them (AREM, LP5, and EEG); this is also consistent with our intuition that block-wise

attention may have advantages in preventing overfitting thanks to the sparse relations

considered in its attention calculation.

An exception occurs on the ECG dataset, which has as few as two variables; this

reason lies in that this dataset contains abundant sequences that allow for channel-wise

attention to fully exploit the training data without causing overfitting.
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Figure 3.2: Critical difference diagram of the arithmetic means of the ranks on all
datasets.

Figure 3.2 shows the result of the Wilcoxon signed-rank test on the baseline methods’

performance. It shows that, overall, our model achieves similar classification performance

when using channel-wise attention and block-wise attention. Either way, our model per-

forms significantly better than the baselines. This result demonstrates the effectiveness

of harnessing inter-dependencies between variables and multi-granular feature maps (as

our model does use gates, attention, and group convolution) in improving classification

performance on sequences of various lengths.

3.3.5 Impact of Depth and Width of Model

In this experiment, we study how the depth and width of our model impact the classifi-

cation performance. Generally, a deeper and wider model has a stronger capability to

capture complex relations from data. Our model becomes more complex as we increase

its depth (by stacking more layers), width (by expanding the number of feature-map

groups), or both.

We trained our model under different width and depth settings and applied different

types of attention in the experiment. Considering the many experimental datasets,

we only show the results on two representative datasets, Action 3D and Heartbeat.

The former has medium-length sequences and a large number of variables; in contrast,

the latter has long sequences but a medium number of variables, making them ideal

for exemplifying the experimental results. In particular, we show the results of our

model after applying channel-wise attention and block-wise attention on Heartbeat and

Action 3D datasets, respectively.

Our results (Table 3.4) show that wider models beat deeper models in both the

training and test phases. While stacking multiple layers leads to large receptive fields

that can capture dependencies in a larger range, a wider model can achieve receptive

fields with multiple sizes and fuse the feature maps from different convolution filters
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Table 3.4: Training and test results under varying widths and depths.

Dataset
Configuration Train Test
Width Depth Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

HeartBeat
8 8 0.9482 0.8933 0.9108 0.9019 0.7622 0.6848 0.6953 0.6901

16 4 0.9712 0.9221 0.9423 0.9321 0.8443 0.6859 0.6879 0.6869
32 2 0.9742 0.9298 0.9491 0.9394 0.8570 0.8602 0.8551 0.8576

Action 3D
8 8 0.8525 0.8225 0.8213 0.8219 0.7490 0.7767 0.7458 0.7609

16 4 0.9003 0.8864 0.8848 0.8856 0.8434 0.8171 0.8091 0.8130
32 2 0.9068 0.8908 0.8908 0.8908 0.8515 0.8701 0.8462 0.8579

to learn multi-granular temporal patterns. In comparison, a wider model leverages the

temporal features of time-series sequences more effectively, making it generally a better

choice. Several studies [132, 154] in the computer vision field draw similar conclusions.

3.3.6 Impact of Group Number

In this experiment, we further explore the impact of the hyperparameter s, which

determines the number of feature-map groups (as well as the number of filter groups)

in our model. Intuitively, a larger s gives a wider model that can fuse more temporal

features extracted by convolutional filters with multiple sizes of receptive fields, thus

facilitating the capturing long-range dependencies.

We kept all other settings (e.g., number of layers, epochs, learning rate, dropout rate)

unchanged while varying the value of s to explore its influence on classification results.

Similar to the precedent experiment, we show the experimental results on four datasets

that have significantly different lengths of sequences (namely LP5, AREM, Ozone, and

Action 3D) to avoid information overload. We used block-wise attention on the first two

datasets and channel-wise attention on the last two.

Our results (Table 3.5) show our model consistently achieved better performance

during training as s increased. We can easily tune our model towards capturing a broader

range of temporal information by allowing for more groups with a greater s. However,

greater values of s bring the risk of overfitting, demonstrated by decreased performance

in the test phase, e.g., in the case of the Qzone and Action 3D datasets. The results

suggest the necessity of tuning this hyperparameter s given a specific dataset to gain

the best performance.

Beyond the above results, we may consider our model as recurrent because each

group’s output feature map is sent to the subsequent group. Following this idea, we may

regard group number s as the number of steps that the model takes during its recurrent

computation. While traditional convolutional neural networks obtain larger receptive
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Table 3.5: Training and test results under different s. We set greater s values for the
AREM dataset as it has much longer sequences than the others do. We set 6 layers for
Ozone, 6 layers for AREM, 4 layers for Action 3D, and 4 layers for LP5.

Dataset s
Train Test

Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

Ozone
2 0.9425 0.9434 0.9437 0.9436 0.8436 0.8299 0.8281 0.8289
4 0.9529 0.9501 0.9428 0.9464 0.8563 0.8609 0.8598 0.8603
8 0.9635 0.9699 0.9640 0.9669 0.8570 0.8602 0.8551 0.8576

16 0.9792 0.9771 0.9774 0.9772 0.8257 0.8346 0.8243 0.8294
32 0.9844 0.9827 0.9830 0.9829 0.8257 0.8302 0.8372 0.8337

AREM
4 0.7907 0.7798 0.7534 0.7664 0.7949 0.7007 00.7171 0.7088
8 0.8139 0.8452 0.8250 0.8350 0.7435 0.6871 0.8268 0.7505

16 0.8605 0.8870 0.8397 0.8627 0.8205 0.7756 0.8648 0.8178
32 0.8837 0.9048 0.8939 0.0.8993 0.8718 0.8163 0.9056 0.8586
64 0.9767 0.9821 0.9841 0.9831 0.8692 0.9619 0.8452 0.8998

Action 3D
2 0.8138 0.7968 0.8426 0.8191 0.7088 0.7212 0.7352 0.7281
4 0.8219 0.8149 0.8595 0.8366 0.7207 0.7255 0.7391 0.7322
8 0.8232 0.8109 0.8592 0.8344 0.8617 0.8764 0.8711 0.8737

16 0.8263 0.8201 0.8638 0.8414 0.8318 0.8359 0.8131 0.8243
32 0.8350 0.8296 0.8681 0.8484 0.8252 0.8329 0.7991 0.8156

LP5
2 0.7813 0.7964 0.8125 0.8043 0.7396 0.7818 0.7214 0.7504
4 0.8125 0.8511 0.8398 0.8313 0.7309 0.7014 0.7568 0.7158
8 0.8594 0.8750 0.8593 0.8671 0.7014 0.7052 0.7665 0.7033

16 0.8906 0.9142 0.8809 0.9022 0.6771 0.7022 0.7237 0.6894
32 0.9531 0.9714 0.9418 0.9622 0.6215 0.6187 0.6454 0.6201

fields by stacking multiple layers or employing dilation convolution layers, they are not

as flexible or effective as our model in capturing multi-granular temporal information.

3.3.7 Impact of Attention Modules

The superiority of our attention modules over SE is indicated by our model outperforming

those baselines that incorporate SE [60] (see Table 3.3). Specifically, the SE module

uses global average pooling, which generates a scalar to represent the feature map of

each channel. In comparison, our attention mechanisms (channel-wise and block-wise

attention) avoid using global average pooling, thus preventing the information loss

caused by the pooling operation.

Table 3.6 further shows our model’s performance when using the two attention

modules during the training and test phases. We choose to show the results on three

datasets, which cover a large range of variable numbers (7 for AREM, 72 for Ozone,

and 570 for Action 3D). The results (Table 3.6) are consistent with our findings in

Section 3.3.4 that channel-wise attention generally beats block-wise attention except for

small datasets with very few variables.
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Table 3.6: Training and test results of our model with different attention modules.

Dataset Attention
Train Test

Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

Ozone
Block-wise 0.7088 0.7212 0.7352 0.7281 0.6793 0.6644 0.6685 0.6664
Channel-wise 0.8232 0.8109 0.8592 0.8344 0.8604 0.8669 0.8437 0.8551

AREM
Block-wise 0.8837 0.9048 0.8939 0.8993 0.8718 0.8163 0.9056 0.8586
Channel-wise 0.9767 0.9821 0.9841 0.9831 0.8205 0.7483 0.8772 0.8076

Action 3D
Block-wise 0.9091 0.8908 0.9091 0.8996 0.8181 0.8306 0.8150 0.8227
Channel-wise 0.9635 0.9699 0.9640 0.9669 0.8570 0.8602 0.8551 0.8576

Table 3.7: Ablation test for our model.

Dataset Model Accuracy Recall Precision F1-Score

EEG

Res2Net 0.5781 0.5713 0.5882 0.5796
Res2Net + Gates 0.5938 0.5943 0.5943 0.5943
Res2Net + channel-wise attention 0.6094 0.6105 0.6417 0.6257
Res2Net + Gates + channel-wise attention 0.6719 0.6750 0.6833 0.6791

AREM

Res2Net 0.7692 0.7469 0.7639 0.7530
Res2Net + Gates 0.8205 0.7551 0.8762 0.8112
Res2Net + block-wise attention 0.8718 0.8163 0.8929 0.8529
Res2Net + Gates + block-wise attention 0.9231 0.8762 0.9571 0.9149

As for this experiment, both Ozone and Action 3D datasets contain many variables

(72 and 570) and sufficient sequences during training for channel-wise attention to

perform well. In contrast, AREM contains only 43 sequences that cover as many as

seven classes. The number of sequences is extremely limited for each class, making

channel-wise attention easily lead to overfitting.

3.3.8 Ablation Study

We conducted ablation studies to explore the effectiveness of gates and our attention

modules. The model without gates and attention module is the same as vanilla Res2Net.

We separately incorporate gates, attention, and both attention and gates in Res2Net and

compare the results.

Again, we only present the results on EEG and AREM datasets to avoid information

overload. For each dataset, we tested the attention mechanism that led to inferior

performance to the other, i.e., channel-wise attention on the EEG dataset and block-wise

attention on the AREM dataset, to make the comparisons more evident.

Our results (Table 3.7) show that attention modules contribute slights more than

gates in improving the performance of Res2Net, but every component contributes signifi-

cantly to the improved performance.
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Table 3.8: Time consumption comparison with attention modules and without attention
modules on DuckDuckGeese, CA means channel-wise attention and BA means block-wise
attention. The data in the brackets is the standard deviation.

Without Attention With CA With BA
Training time consumption (s) 1.3991 (0.1627) 3.0911 (0.2772) 2.8689 (0.2391)

Test time consumption (s) 0.7675 (0.0977) 1.1226 (0.0737) 0.980 (0.0860)

Table 3.9: Time consumption comparison with attention modules and without attention
modules on MotorImagery, CA means channel-wise attention and BA means block-wise
attention. The data in the brackets is the standard deviation.

Without Attention With CA With BA
Training time consumption (s) 37.7661 (1.7530) 186.5941 (9.0698) 75.9330 (2.808)

Test time consumption (s) 7.1772 (0.3879) 22.1444 (3.5978) 8.0369 (0.4131)

3.3.9 Time Consumption of Attention Modules

We conducted experiments to analyze the extra time consumption of the attention

modules. We select two datasets, MotorImagery and DuckDuckGeese, because their

length and variable number are significantly large. We trained the models on i7-8700K

CPU instead of GPU because GPUs are too powerful that can alleviate the impact. We

stacked 4 layers and used 64 groups of convolutional filters at each layer. We trained

the model with channel-wise attention, with block-wise attention, and without attention

module 300 epochs separately and recorded the training time and test time per epoch.

We calculate and give the average time consumption and the standard deviation. The

results are shown in Table 3.8 and Table 3.9.

According to the results, we can see that time consumption significantly increases

when using the attention module. Among the two attention modules, channel-wise

attention is more computationally expensive. Compared with the model without any

attention module, the time consumption of channel-wise attention for training is about 2.2

times on DuckDuckGeese and is 4.9 times on MotorImagery. While the time consumption

of block-wise attention for training is 2.1 times on DuckDuckGeese and is 2 times

on MotorImagery. Although attention modules improve the performance (shown in

Section 3.3.8), they also make the model less efficient, which brings challenges for

employing the model on devices with limited computing resources.
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Table 3.10: Performance Comparison between the data with PCA and without PCA on
SelfRegulationSCP2. The data in the brackets is the standard deviation.

Training Test
Accuracy Precision Recall F1-Score Time per epoch Accuracy Precision Recall F1-Score Time per epoch (s)

Without PCA 0.9386 0.9300 0.9297 0.9298 18.3621 (1.0645) 0.6210 0.6167 0.6132 0.6149 6.0603 (0.2679)
With PCA 0.8958 0.8799 0.8788 0.8793 0.6664 (0.8050) 0.5667 0.5611 0.5556 0.5583 0.1981 (0.0235)

3.3.10 Impact of Feature Dimension Reduction

As discussed in Section 3.3.9, we find that our model is less efficient when the time

series contains too many variables. So, we conducted experiments to explore the impact

of combining feature dimension reduction algorithms with the AGRes2Net. We select

SelfRegulationSCP2 dataset as it contains 1152 variables. We used Principal Compo-

nent Analysis (PCA) to reduce the number of variables from 1152 to 28. we stacked 4

layers, and each layer has 8 groups of convoltuional filters. We use the same dropout

rate and experiment settings that are described in Section 3.3.3. We trained the model

on i7-8700K CPU. We recorded the performance, including accuracy, precision, recall,

F1-Score, and time consumption of both the training phase and test phase. The results

are given in Table 3.10.

According to the results, all the performances go poorer, but the time consumption is

significantly reduced. Specifically, the accuracy after using PCA decreases 9.59%, but

the test speed of the model is about 33 times faster. So, dimension reduction algorithms

(such as PCA) are practicable for dropping some features if we want to make the model

more efficient in facing the time series that contain too many variables.

3.3.11 Effectiveness of Our Model as a Plugin

We use MLSTM-FCN, the SOTA architecture on most datasets (as shown in Table 3.1),

to demonstrate the effectiveness of our model as a plugin. The original MLSTM-FCN

follows a CNN-LSTM parallel architecture. The input goes through multiple LSTMs

and CNNs, and the outputs are concatenated and go through a fully connected layer for

information fusion. We conducted this experiment by replacing the original convolutional

modules of MLSTM-FCN with our model while preserving the architecture and all the

other parts in MLSTM-FCN.

We show the comparison results on two datasets, AREM and Gesture Phase,

to demonstrate the impact of our model on the overall performance of MLSTM-FCN.

Specifically, we adopted block-wise attention on the AREM dataset and channel-wise

attention on the Gesture Phase dataset without particular reasons. We omit to show the
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Figure 3.3: Accuracy comparison between the vanilla MLSTM-FCN (blue bar) and the
MLSTM-FCN where our model replaces the convolutional modules (orange bar). Block-
wise attention and channel-wise attention are applied to the AREM dataset and the
Gesture Phase dataset, respectively.

results on other datasets as they draw similar conclusions.

The results (Figure 3.3) show a significant improvement in the classification accuracy

of MLSTM-FCN on both datasets after the replacement, demonstrating the positive

effect of our model on the performance of existing multivariate time series classification

models when used as a plugin.

3.3.12 Exploring the Threshold for Choosing Channel-wise
Attention and Block-wise Attention

As discussed in the previous section, channel-wise attention performs better and vice

versa. This section further explores whether a standard threshold exists for choosing the

proper attention module. We select two datasets, LSST and HeartBeat, for experiments

because they contain many variables and channel-wise attention performs better than

block-wise attention, and we can use dimension reduction methods to tune the variable

numbers to find when the block-wise attention performs better. We use PCA to gradually

control the variable numbers. The results can be seen in Table 3.11 and Table 3.12.

According to the results, we can see the thresholds of the two datasets are different

(3 for LSST and 2 for HeartBeat). Besides, when we reduce the variable number to 3

on LSST, the performance significantly decreases, making the results less convincing.

According to the results, we can see the thresholds of the two datasets are different (3
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Table 3.11: Performance comparison based on the different variable numbers on LSST

Block-wise Attention Channel-wise Attention
Variable Number Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

3 0.2173 0.1328 0.1221 0.1272 0.1473 0.1316 0.1154 0.1229
4 0.5799 0.5795 0.5722 0.5758 0.6553 0.6375 0.6358 0.6367

Table 3.12: Performance comparison based on the different variable numbers on Heart-
Beat

Block-wise Attention Channel-wise Attention
Variable Number Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

2 0.7456 0.6207 0.6321 0.6264 0.6451 0.5560 0.5496 0.5528
3 0.6369 0.5970 0.5975 0.5972 0.7130 0.6072 0.6156 0.6114

for LSST and 2 for HeartBeat). Besides, when reducing the variable number to 3 on

LSST, the performance of both attention modules is significantly decreased, making the

results less convincing. Besides, from the results given in Table 3.3.4, we can see on the

FingerMovements dataset, the block-wise attention performs better, while on the ECG

dataset, the channel-wise attention outperforms block-wise attention. However, Finger-

Movements contains 28 variables, while ECG contains only 2 variables. To summarize,

the threshold is case-by-case, and the standard threshold does not exist. Although we

can follow a rule that using channel-wise attention is preferable in facing a dataset that

has lots of variables (such as SelfRegulationSCP2, Action 3D, DuckDuckGeese, etc.), we

still need to do empirical studies on each dataset to choose the proper attention module.

3.3.13 Practical Advice

We offer several suggestions on applying our model to broader scenarios based on the

above experimental results and our analysis:

• Avoid very deep models: based on the results given in Section 3.3.5, a wider model

is generally more capable than a deeper model of addressing a general multivariate

time series classification. We should prioritize constructing wider models rather

than stacking more layers when faced with a new problem.

• Focus on tuning the hyperparameter s: setting a larger s increases the number of

convolutional-filter groups, leading to multiple receptive fields that capture tempo-

ral patterns in various ranges. The experimental results given in Section 3.3.6 sug-

gest that tuning the hyperparameter s is especially important for long time-series
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sequences to achieve the best possible performance. It is generally worthwhile to

tune s ahead of investigating the optimal settings of other parameters.

• Choose attention module based on variable number: the number of variables is, by

far, the most useful single criterion for deciding which attention module to choose

for our model based on our experiments delivered in Section 3.3.7. As discussed,

block-wise attention is preferred for sequences with a small number of variables,

and channel-wise attention is more suitable for sequences with massive variables.

More criteria include the number of sequences available for training, the number

of classes, and the length of sequences, which must be figured out case by case.

To conclude, the application and implementation settings depend on the amount

of training data and the variable numbers. Besides, the optimal hyperparameter is

scenario-dependent and should be carefully considered to realize better performance.

3.4 Conclusion

In this paper, we propose a novel deep learning architecture called Attentional Gated
Res2Net for accurate multivariate time series classification. Our model comprehensively

incorporates gates and two types of attention modules to capture multi-granular tem-

poral information. We evaluate the model on diverse datasets that contain sequences

of various lengths with a wide range of variable numbers. Our experiments show the

model outperforms several baselines and state-of-the-art methods by a large margin. We

thoroughly investigate the effect of different components and settings on the model’s per-

formance and provide hands-on advice on applying our model to a new problem. Our test

on plugging the model into a state-of-the-art architecture, MLSTM-FCN, demonstrates

the potential for using our model as a plugin to improve the performance of existing

models.
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4
FROM TIME SERIES TO MULTI-MODALITY: CLASSIFYING

MULTIVARIATE TIME SERIES VIA BOTH 1D AND 2D
REPRESENTATIONS

4.1 Introduction

A typical multivariate time series contains a sequence of data points at regular time in-

tervals, where values of multiple variables or measurements from multiple sensors exist

at the same time points. While traditional methods for multivariate time series classifi-

cation have been based on statistical or machine learning methods, deep learning-based

methods, represented by Long Short-Term Memory (LSTM) [56], Inception-time [43], and

Time Series Transformer (TST) [151] have gained prevalence recently thanks to their

outstanding capability to extract effective features and learn representation in complex

scenarios. Until now, all the existing approaches have been focusing on the temporal

information of multivariate time series data while disregarding the underlying frequency

information, which is proven invaluable in many domains like signal processing [95].

Intuitively, real-world multivariate time series data often exhibit periodicity that is

challenging to detect and model from a purely temporal perspective. This highlights the

necessity of incorporating frequency information into the classifier to model and classify

multivariate time series data accurately. All the above inspires us to develop a novel

approach that can leverage temporal and frequency information comprehensively for

more accurate multivariate time series classification.
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Existing methods that extract frequency information from time series data generally

aim for time series forecasting, represented by ETSformer [45] and COST [125]. These

methods are commonly based on Fourier Transform [12], which decomposes time series

into a set of sine functions representing different frequencies, with the amplitude of each

sine function indicating the intensities of the frequency components. Fourier Transform,

however, can only observe time series’ global frequency components without their tem-

poral positions, resulting in insufficient frequency information that limits the accuracy

of multivariate time series classification. Therefore, it calls for new approaches that

can incorporate more comprehensive frequency information to improve classification

performance.

In light of the above, we aim to classify multivariate time series sequences by lever-

aging both temporal and frequency information. Specifically, we adopt the Short-Time

Fourier Transform (STFT) [47] to address the limitations of the Fourier Transform.

STFT divides time series into overlapping segments, applies a Fourier transform to each

segment, and finally concatenates the resulting 2D frequency domain representations to

provide more comprehensive information that covers both the frequency components and

their temporal positions. In particular, we use three different window sizes to generate

spectrograms for each variable; these spectrograms carry multi-resolution frequency

information that reflects multi-scale temporal patterns of time series which is crucial

for modeling time series [23]. Through the above transformation, we create a new data

modality and transform the time series classification task into a multi-modality classifi-

cation task. This further allows us to bring computer vision backbones into time series

classification, which have shown effectiveness in exploiting 2D representations [127].

We further construct a dual-stream architecture based on ResNet [55], a widely used

computer vision method, to leverage the power of both 2D representations (with fre-

quency information) and 1D representations (with temporal information) of time series.

The combination of 2D and 1D representations enables us to classify time series effec-

tively, demonstrated by our proposed method consistently outperforming state-of-the-art

baselines on 30 public multivariate time series datasets.

4.2 Methodology

The proposed method is based on a dual-stream architecture consisting of a spectrogram

stream and a time series stream, as illustrated in Figure 4.1. We first implement the

STFT using three different window sizes to generate a set of 2D spectrograms with
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Figure 4.1: The architecture of the proposed method. We use the time series with one
variable to illustrate our method for simplicity. We employ Short-Time Fourier Transform
with three different window sizes to generate a set of 2D spectrograms with multiple
resolutions. We construct a dual-stream architecture based on ResNet to leverage both
1D representations and 2D representations. In the spectrogram stream, we use a 3D
convolutional layer to fuse the spectrogram information from the resolution perspective
and feed the output to ResNet-18. In the time series stream, we follow the architecture of
ResNet-18 while replacing the 2D convolutional kernels using 1D convolutional kernels
to adapt the shape of time series data. Finally, the output feature maps from two streams
are concatenated (C in this Figure means concatenation) and fed into a fully-connected
layer to map the output to the probability distribution of the classes.

varying temporal and frequency resolutions. Following this, a 3D convolutional layer is

utilized to fuse the resolution-wise information of the spectrograms, while the output

is fed into a ResNet-18 network to leverage 2D representations. Concurrently, the time

series data is fed into a 1D ResNet-18 network that leverages 1D representations using

1D convolutional kernels. The output feature maps of both streams are concatenated,

and a fully-connected layer with softmax function is applied to map the output to the

probability distribution of the classes. We elaborate on each component of the proposed

method in the following sections.

4.2.1 Short-Time Fourier Transform

Real-world time series data are typically sampled from continuous data streams at

specific sampling rates. In signal processing, the Discrete Fourier Transform (DFT) is

commonly used to extract frequency components from time series data, which can be
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(a) Time Domain (b) Spectrogram generated by
Fourier Transform

(c) Spectrogram generated by
STFT

Figure 4.2: The time domain of a time series sampled from the Handwriting dataset and
the spectrograms generated by the Fourier Transform and Short-Time Fourier Transform
(STFT). The spectrogram generated by the STFT provides more comprehensive frequency
information, including both the frequency components and their temporal positions, in
contrast to the spectrogram generated by the Fourier Transform

described as follows:

(4.1) X (k)=
T−1∑
t=0

x(t)e−i2πkt/T

where xt is the time series sequence, and t ∈ (0,T −1), T is the length of the time series.

X (k) is the frequency component obtained after DFT, while k is the index. However,

the DFT lacks temporal position information of the frequency components, resulting in

insufficient frequency information. To address this limitation, the Short-Time Fourier

Transform (STFT) is performed, which involves using a sliding window to divide a time

series sequence into short time intervals and performing the Fourier Transform on each

interval to obtain the frequency components and their temporal positions. The STFT can

be described as:

(4.2) X ( j,ω)=
L−1∑
t=0

x(t)w( j− t)e−iωt

where x(t) represents the input time series in the time domain, w( j − t) represents

truncating the time series x(t) with a window function in time to obtain the short time

interval x(t)w( j− t), L is the length of the window, j represents the center position of

the current window, and ω represents the frequency of interest. In this case, STFT

provides more sufficient frequency information including the frequency components

and their temporal positions compared with the Fourier Transform. We applied the

Fourier Transform and STFT to a sequence sampled from the Handwriting dataset

to illustrate the differences between the spectrograms obtained through the Fourier

Transform and STFT, and the results are shown in Figure 4.2. The STFT requires a

balance between frequency and temporal resolutions, which presents a challenge in

36



4.2. METHODOLOGY

selecting an optimal window size. A larger window size provides more precise frequency

information but results in poorer temporal resolution, while a smaller window size

provides better temporal resolution but less precise frequency information. We follow a

traditional signal processing approach [54] to address this issue, where the window size

is chosen based on the time series’s bandwidth. To select an appropriate window size, we

calculate the maximum bandwidth among all variables, which can be described as:

(4.3)
Bandwidth n = ⌈ f n

max − f n
min⌉

Bandwidth =max( Bandwidth 0, Bandwidth 1, . . . , Bandwidth N)

where f n
max and f n

min are the maximum frequency and the minimum frequency present

in the time series’s nth variable, respectively, and N is the variable number. We then use

three window sizes: the two, three, and four times the time series’s frequency bandwidth,

respectively, with an overlap of 50%, to generate three spectrograms with multi-level

resolutions. For a time series sequence x ∈ RN×T , where N is the variable number

and T is the sequence length, the corresponding spectrogram generated by STFT is

s ∈RN×3×H×W where 3 means three different window sizes that we use, and H and W are

the spectrogram’s height and width. In this way, we extract the frequency components

and their temporal positions from the time series and create a new data modality by

converting the 1D time series sequence into a set of 2D representations, enabling us

to borrow the powerful backbones from the computer vision field for leveraging 2D

representation.

4.2.2 ResNet-18

We propose a dual-stream architecture based on ResNet [55] to leverage both the 2D

representations in the spectrogram stream and the 1D representations in the time

series stream for representation learning. ResNet is a popular deep neural network

architecture that addresses the issue of vanishing gradients, which arises when the

gradients become too small to effectively update the weights during backpropagation,

particularly in very deep networks. This property has made it a competitive backbone

for various computer vision tasks, motivating us to adopt it in our approach. In the

spectrogram stream, the sets of 2D representations generated by the STFT are first fed

into a 3D convolutional layer for resolution-wise information fusion. This layer down-

samples the input spectrograms from the resolution perspective and generates a single

2D representation for each variable. The calculation process can be described as:

(4.4) y=W ∗ x+b
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Figure 4.3: The architecture of ResNet-18.

where x ∈ RN×3×H×W and y ∈ RN×H×W , and W and b are the convolutional kernel and

bias term, respectively.

The resulting 2D representation and the original 1D time series are then fed into

two separate neural networks, namely ResNet-18 and 1D ResNet-18, respectively. The

architecture of ResNet-18, illustrated in Figure 4.3, comprises six residual blocks, each

consisting of two convolutional layers with a kernel size 3×3. The output feature maps

are fed into an average pooling layer for down-sampling from the spatial perspective,

generating the latent vector of the input feature maps. In the 1D ResNet-18, we follow

the same architecture as ResNet-18 but replace the 2D convolutional kernels with

1D convolutional kernels to accommodate the shape of the 1D representations. This

enables us to process the time series data while retaining the advantages of ResNet-18’s

architecture. We then concatenate the output of the two streams and feed them into the

fully-connected layer with a softmax function to map them to the probability distribution

of the classes.

4.3 Experiments

4.3.1 Datasets

We evaluated our method using the UEA Time Series Classification Repository [29],

which contains 30 public multivariate time series datasets. These datasets concern

different domains and reflect diverse data characteristics in terms of sequence lengths

and variable numbers, etc. All datasets had been preprocessed and split into training

and test sets.

We further normalized them to zero mean and unit standard deviation and applied

zero paddings to ensure that each dataset contains sequences of the same lengths.

Table 4.1 shows the details of the datasets.
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Table 4.1: Statistics of the 30 UEA datasets used in experimentation.

Dataset Train Cases Test Cases Dimensions Length Classes
ArticularyWordRecognition 275 300 9 144 25

AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 6 100 4

CharacterTrajectories 1,422 1,436 3 182 20
Cricket 108 72 6 1,197 12

DuckDuckGeese 60 40 1,345 270 5
EigenWorms 128 131 6 17,984 5

Epilepsy 137 138 3 206 4
EthanolConcentration 261 263 3 1,751 4

ERing 30 30 4 65 6
FaceDetection 5,890 3,524 144 62 2

FingerMovements 316 100 28 50 2
HandMovementDirection 320 147 10 400 4

Handwriting 150 850 3 152 26
Heartbeat 204 205 61 405 2

JapaneseVowels 270 370 12 29 9
Libras 180 180 2 45 15
LSST 2,459 2,466 6 36 14

InsectWingbeat 30,000 20,000 200 78 10
MotorImagery 278 100 64 3,000 2

NATOPS 180 180 24 51 6
PenDigits 7,494 3,498 2 8 10
PEMS-SF 267 173 963 144 7
Phoneme 3,315 3,353 11 217 39

RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1,152 2
SpokenArabicDigits 6,599 2,199 13 93 10

StandWalkJump 12 15 4 2,500 3
UWaveGestureLibrary 120 320 3 315 8

4.3.2 Baselines

We consider several popular machine learning methods and recently proposed deep

learning models as baselines. The selected competitive methods include ROCKET [30],

Time Series Transformer (TST) [151], ShapeNet [81], Dynamic Time Warping (DTW),

TS2Vec [147], MLSTM-FCN [71], OS-CNN [109], TapNet [155], Temporal Neighborhood

Coding (TNC) [111], and WEASEL+ MUSE [99].

4.3.3 Model Configuration and Evaluation Metric

We trained our model for 500 training epochs using Adam [75] optimizer. The learning

rate is initialized to 0.001; it scales down with a coefficient of 0.1 every 50 epochs after

the first 100 epochs. We repeated the training and test processes five times and took

the average of multiple runs as the final results to mitigate the impact of randomized

parameter initialization. We used dropout to avoid possible overfitting. Training and
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Table 4.2: Accuracy of different models on 30 benchmark datasets. The best performance
values are bolded, and the second-best performance values are underlined.

Dataset Ours WEASEL+MUSE TST ROCKET DTW TS2Vec MLSTM-FCN OS-CNN TapNet TNC ShapeNet
ArticularyWordRecognition 0.996 0.990 0.977 0.996 0.987 0.987 0.973 0.988 0.987 0.973 0.987

AtrialFibrillation 0.524 0.333 0.067 0.249 0.200 0.200 0.267 0.233 0.333 0.133 0.400
BasicMotions 1.000 1.000 0.975 0.990 0.975 0.975 0.950 1.000 1.000 0.975 1.000

CharacterTrajectories 0.997 0.990 0.975 0.967 0.989 0.995 0.985 0.998 0.997 0.967 0.980
Cricket 1.000 1.000 1.000 1.000 1.000 0.972 0.917 0.993 0.958 0.958 0.986

DuckDuckGeese 0.767 0.575 0.562 0.461 0.492 0.680 0.675 0.540 0.575 0.460 0.725
EigenWorms 0.897 0.890 0.748 0.863 0.618 0.847 0.504 0.414 0.489 0.840 0.878

Epilepsy 1.000 1.000 0.949 0.991 0.964 0.964 0.761 0.980 0.971 0.957 0.987
Ering 0.875 0.133 0.964 0.447 0.133 0.874 0.133 0.881 0.133 0.852 0.133

EthanolConcentration 0.476 0.430 0.326 0.452 0.323 0.308 0.373 0.240 0.323 0.297 0.312
FaceDetection 0.683 0.545 0.681 0.647 0.529 0.501 0.545 0.575 0.556 0.536 0.602

FingerMovements 0.601 0.490 0.560 0.553 0.530 0.480 0.580 0.568 0.530 0.470 0.580
HandMovementDirection 0.443 0.365 0.243 0.446 0.231 0.338 0.365 0.443 0.378 0.324 0.338

HandWriting 0.672 0.605 0.359 0.567 0.286 0.515 0.286 0.668 0.357 0.249 0.451
HeartBeat 0.863 0.727 0.776 0.717 0.717 0.515 0.663 0.489 0.751 0.746 0.756

JapaneseVowels 0.967 0.984 0.994 0.962 0.949 0.984 0.976 0.991 0.965 0.978 0.984
Libras 0.981 0.973 0.656 0.906 0.870 0.867 0.856 0.950 0.850 0.817 0.856
LSST 0.782 0.878 0.408 0.632 0.551 0.537 0.373 0.413 0.568 0.595 0.590

MotorImagery 0.632 0.590 0.500 0.531 0.500 0.510 0.510 0.535 0.590 0.500 0.610
NATOPS 0.941 0.500 0.850 0.885 0.883 0.928 0.889 0.968 0.939 0.911 0.883
PEMS-SF 0.932 0.870 0.919 0.751 0.711 0.682 0.699 0.760 0.751 0.699 0.751
PenDigits 0.991 0.968 0.560 0.996 0.977 0.989 0.978 0.985 0.980 0.979 0.977
Phoneme 0.287 0.190 0.085 0.284 0.151 0.233 0.110 0.299 0.175 0.207 0.298

RacketSports 0.934 0.190 0.809 0.928 0.803 0.855 0.803 0.877 0.868 0.776 0.882
SelfRegulationSCP1 0.961 0.934 0.925 0.908 0.775 0.812 0.874 0.835 0.652 0.799 0.782
SelfRegulationSCP2 0.738 0.710 0.589 0.533 0.539 0.578 0.472 0.532 0.550 0.550 0.578
SpokenArabicDigits 0.994 0.460 0.993 0.712 0.963 0.988 0.990 0.997 0.983 0.934 0.975

StandWalkJump 0.659 0.333 0.267 0.456 0.200 0.467 0.067 0.383 0.400 0.400 0.533
UWaveGestureLibrary 0.951 0.916 0.903 0.944 0.903 0.906 0.891 0.927 0.894 0.759 0.906

InsectWingBeat 0.697 0.163 0.105 0.168 0.105 0.466 0.167 0.667 0.208 0.469 0.250
Average Accuracy 0.808 0.658 0.658 0.698 0.628 0.698 0.621 0.704 0.657 0.670 0.699

Average Rank 1.57 4.93 6.63 4.93 7.83 6.17 7.77 4.77 6.07 8.00 4.83

testing are done on a single Nvidia GTX 3080 Ti.

We use accuracy, which is currently used by all baseline methods, as the metric for

comparison. We additionally use macro precision, recall, and F1-Score in our parameter

and ablation studies to gain further insights into our model’s performance.

4.3.4 Comparison Results

The performance comparison results (shown in Table 4.2) reveal that our model has

demonstrated superior performance to all the baseline methods across a wide range of

experimental datasets. Specifically, our model achieved the best results on 21 datasets,

the second-best performance on six datasets, and the third-best on two datasets out of 30

experimental datasets. It demonstrated superior performance compared to all baselines,

achieving a 14.7% increase in average classification accuracy compared to the second-best

method, OS-CNN, and a 15.6% increase compared to the third-best method, ShapeNet.

Furthermore, our model achieved an average rank of 1.57, outperforming the second-best

method, OS-CNN, which had an average rank of 4.77. Figure 4.4 shows the result of

the Wilcoxon signed-rank test (with a confidence level of 95%) on the baseline methods’
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Figure 4.4: Critical Difference (CD) diagram of the selected baselines and our method
with a confidence level of 95%.

performance, consistently showing that our method achieved the highest classification

performance among all the compared methods.

Traditional machine learning methods, including WEASEL+MUSE, DTW, and ROCKET,

are limited in handling such large datasets, reflected in their inferior performance on

datasets including InsectWingBeat and FaceDetection, which contain 50,000 and 9,114

samples, respectively. Furthermore, existing deep learning models often ignore the in-

herent frequency information in time series data, which can be crucial for accurately

classifying time series with significant differences in the frequency domain rather than

the time domain.

We attribute this improvement to two key factors. First, our method’s dual-stream

architecture effectively captures both temporal and frequency information, enhancing

its ability to discriminate time series sequences between different classes. Second, by

utilizing the Short-Time Fourier Transform (STFT), our method leverages the frequency

components and their temporal locations of the time series to provide more comprehen-

sive frequency information compared to the Fourier Transform. Our results from the

Wilcoxon signed-rank test, conducted with a confidence level of 95%, further confirm that

our method achieved the best classification performance among all compared methods.

4.3.5 Convolutional Backbone Selection Sensitivity

We replaced the ResNet with other popular computer vision backbones including ResNeXt [133],

Res2Net [44], ResNeSt [153], and Inception [108] to explore the impact of the backbone

selection on the performance. We conducted experiments on three datasets, including

DuckDuckGeese, HeartBeat, and HandWriting. The results can be found in Ta-

ble 4.3. The tested backbones have more complex architectures and parameters compared

to ResNet, leading to better performance during the training phase but overfitting on

the test sets. We believe that with the increase of the dataset scale, implementing more
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Table 4.3: The Training and test results of different backbones from the computer vision
field. The best performance values are bolded.

Training Test
Dataset Models Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

DuckDuckGeese

ResNet 0.862 0.813 0.764 0.788 0.767 0.741 0.736 0.738
ResNeXt 0.866 0.809 0.866 0.837 0.673 0.645 0.639 0.642
Res2Net 0.894 0.815 0.827 0.821 0.639 0.613 0.632 0.622
ResNeSt 0.907 0.915 0.855 0.884 0.692 0.704 0.761 0.731
Inception 0.859 0.897 0.811 0.852 0.734 0.729 0.736 0.732

HeartBeat

ResNet 0.906 0.891 0.882 0.886 0.863 0.772 0.795 0.783
ResNeXt 0.916 0.902 0.914 0.908 0.741 0.726 0.719 0.722
Res2Net 0.931 0.919 0.922 0.920 0.714 0.678 0.669 0.673
ResNeSt 0.928 0.917 0.927 0.922 0.665 0.640 0.608 0.624
Inception 0.909 0.874 0.907 0.890 0.782 0.738 0.806 0.771

HandWriting

ResNet 0.735 0.702 0.744 0.722 0.672 0.654 0.661 0.657
ResNeXt 0.849 0.865 0.872 0.868 0.533 0.542 0.591 0.565
Res2Net 0.856 0.802 0.874 0.836 0.592 0.607 0.586 0.596
ResNeSt 0.857 0.886 0.883 0.884 0.557 0.573 0.605 0.589
Inception 0.764 0.753 0.773 0.763 0.597 0.612 0.596 0.604

complicated backbones may enhance the classifier’s classification capacity. As most of

the datasets we use contain limited samples in the training set (fewer than 1000), we

selected ResNet as the optimal solution based on our evaluation of the performance

metrics.

4.3.6 Impact of Our Spectrogram Stream as a Plugin

We incorporate the spectrogram stream as a plugin into the existing architectures

including TST [151] and MLSTM-FCN [71] to evaluate the effectiveness of the 2D

representations with frequency information in improving the performance of the existing

methods. We conducted experiments on two datasets: EigenWorms and RacketSports.

The outcomes of our investigation, as presented in Table 4.4, indicate a significant

improvement in the average classification accuracy and the F1-Score of both methods

during both the training and testing phases. Specifically, we observed an increase of

8.6% and 7.3% in the average classification accuracy and F1-Score, respectively, during

the training phase, and an increase of 9.6% and 10.4% in the average classification

accuracy and F1-Score, respectively, during the test phase. These findings suggest

that the utilization of 2D representations with frequency information can enhance the

performance of existing methods.
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Table 4.4: The experimental results when using our frequency stream with 2D represen-
tations as a plugin. W/o means that the method does not contain the spectrogram stream
and vice versa. The best performance values are bolded.

Train Test
Dataset Method Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

EigenWorms

MLSTM-FCN (w/o) 0.587 0.574 0.624 0.598 0.504 0.519 0.479 0.498
MLSTM-FCN (w) 0.721 0.714 0.677 0.695 0.629 0.624 0.595 0.609
TST (w/o) 0.839 0.832 0.816 0.824 0.748 0.791 0.778 0.784
TST (w) 0.882 0.893 0.885 0.889 0.826 0.828 0.819 0.823

RacketSports

MLSTM-FCN (w/o) 0.828 0.779 0.833 0.805 0.803 0.709 0.702 0.705
MLSTM-FCN (w) 0.843 0.811 0.805 0.808 0.814 0.727 0.751 0.739
TST (w/o) 0.854 0.819 0.822 0.820 0.809 0.712 0.705 0.708
TST (w) 0.894 0.833 0.882 0.857 0.824 0.762 0.793 0.777

Table 4.5: Ablation test for our method. Fourier Transform means we use Fourier Trans-
form instead of STFT to extract frequency information. Single window size means we
only use one window size (three times the bandwidth) to generate the spectrogram. Time
Series and Spectrogram Stream only mean using information from one stream separately
instead of both to classify time series. The best performance values are bolded.

Dataset Model Accuracy Precision Recall F1-Score

DuckDuckGeese

Fourier Transform 0.675 0.669 0.688 0.678
Single Window Size 0.689 0.707 0.725 0.716
Time Series Stream Only 0.632 0.619 0.661 0.639
Spectrogram Stream Only 0.718 0.711 0.724 0.717
Ours 0.767 0.741 0.736 0.738

FaceDetection

Fourier Transform 0.575 0.602 0.552 0.576
Single Window Size 0.627 0.585 0.673 0.626
Time Series Stream Only 0.630 0.615 0.622 0.618
Spectrogram Stream Only 0.647 0.651 0.642 0.646
Ours 0.681 0.622 0.716 0.666

PEMS-SF

Fourier Transform 0.751 0.643 0.637 0.640
Single Window Size 0.794 0.718 0.698 0.708
Time Series Stream Only 0.819 0.822 0.803 0.812
Spectrogram Stream Only 0.874 0.856 0.877 0.866
Ours 0.932 0.957 0.889 0.922

4.3.7 Ablation Study

We conducted ablation studies on three datasets, including DuckDuckGeese, FaceDe-
tection, and PEMS-SF, to investigate the effectiveness of individual components of our

proposed method. We compared the performance of the method with the use of Fourier

Transform instead of STFT to extract frequency information. Besides, for STFT, we use

a single window size (three times the bandwidth) for spectrogram generation instead

of three window sizes. Additionally, we tried to use information from one single stream
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(either the time series or spectrogram stream) individually to classify time series instead

of both. The experimental results are summarized in Table 4.5.

Our analysis reveals that each component improves the classifier’s performance.

Notably, STFT demonstrates a more significant impact on the classification accuracy

of the model on two of the datasets. This finding implies that the utilization of 2D

representations with frequency information provided by STFT is crucial for enhancing

the classification capacity of the model.

4.4 Conclusion

This study proposes a novel dual-stream architecture for accurately classifying multivari-

ate time series sequences. The method leverages the inherent frequency information in

the time series data by implementing STFT to obtain the frequency components and their

temporal positions. We construct a dual-stream architecture based on ResNet, which can

leverage both 1D and 2D representations effectively to classify multivariate time series

sequences. We evaluate the proposed model on diverse datasets containing sequences of

various lengths and variable numbers. The experimental results show that our method

outperforms several baseline and state-of-the-art methods by a significant margin. We

also conduct a thorough investigation of the effect of different components and settings on

the model’s performance. Through the proposed method, we can effectively leverage the

inherent frequency information of the time series to realize more accurate classification.
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5
DYFORMER: A DYNAMIC TRANSFORMER-BASED

ARCHITECTURE FOR MULTIVARIATE TIME SERIES

CLASSIFICATION

5.1 Introduction

Multivariate time series classification is inherently challenging as it requires incor-

porating temporal patterns and inter-relations among multiple variables simultane-

ously to obtain accurate results. Transformer-based models are increasingly applied

to multivariate time series classification, given their success in computer vision and

natural language processing in recent years [2, 113]. Examples of such models include

Time Series Transformer (TST) [151], and Task-Aware Reconstruction for Time-Series

Transformer (TARNet) [27]. The former adapts the vanilla transformer architecture for

multivariate time series classification, while the latter uses multivariate time series

classification as the downstream task to guide the pre-training.

Recent studies [114, 119, 134, 159] show that dynamic architectures are crucial for

enhancing representation learning and models’ generalization ability. These methods

can adjust their parameters and architectures during training, resulting in improved

representation power [53]. Besides, the dynamic architecture of a model allows itself

to better capture the patterns and features of the data it is trained on, making it more

generalizable to diverse types of data. However, existing transformer-based models for

multivariate time series classification have limited ability to adapt to specific datasets.
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While the models’ parameters are optimized through training, their structures remain

unchanged during the training process. This hinders their representation learning

capacity.

We aim to design a dynamic architecture to achieve better adaptivity of transformer

models for multivariate time series classification. Consequently, we propose Dyformer, a

dynamic transformer-based architecture that incorporates adaptive learning strategies

for different frequency components of time series to accommodate characteristics of

specific datasets. In particular, we design a hierarchical pooling layer to decompose

time series sequences into subsequences that contain different frequency components

(or frequency patterns), laying the foundation for adapting the learning strategies for

different frequency components. We devise a novel Dyformer module consisting of a gate

and a Dyformer block to enable the adaptation of the model structure for each frequency

component, where the Dyformer block leverages the architecture introduced in Chapter 3

to realize feature-map-wise attention for capturing multi-scale temporal dependencies

and the gate enables the bypassing of Dyformer blocks. As such, a Dyformer module

can adjust its structure dynamically for each subsequence, generating an output (the

extracted features) specific to the respective subsequence. We also design a joint loss

function, which adds a gate penalization term to the task loss to train the proposed

model.

5.2 Methodology

The architecture of Dyformer (Figure 5.1) consists of three main components: hierarchical

pooling, Dyformer modules, and information fusion layer. Dyformer works as follows: 1)

Hierarchical pooling decomposes the input time series into subsequences representing

different frequency patterns; 2) Each subsequence is processed by a stack of Dyformer

modules, with each Dyformer module containing a gate and a Dyformer block. The

gate determines whether to feed the Dyformer module’s input to the Dyformer Block,

while the Dyformer block achieves feature-map-wise attention to leverage multi-level

temporal dependencies; 3) The information fusion layer takes the concatenated outputs

of Dyformer modules to obtain the final output; 4) A fully-connected layer with Softmax
maps the output to label probability distributions.
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Figure 5.1: Left: The overall structure of Dyformer. First, the hierarchical pooling
layer decomposes the input time series sequences into N+1 subsequences. Then, each
subsequence is processed by a stack of multiple Dyformer modules (there are four in
this illustrative example) for feature extraction. Finally, an information fusion layer
takes the concatenation of all the output feature maps, and a fully-connected layer with
Sof tmax obtains the classification results in terms of label probability distributions.
Middle: The structure of the Dyformer module. A Dyformer module contains a hard
gate (in yellow) and a Dyformer block. The output feature maps of all previous Dyformer
modules determine the gate’s status. If the gate is open, the Dyformer block takes the
prior Dyformer module’s output for feature extraction; otherwise, it directly outputs
its immediate input. Right: The structure of the Dyformer block. A Dyformer block
uses hierarchically connected group convolution to achieve feature-map-wise multi-head
attention for leveraging multi-level temporal dependencies and soft gates (in gray) to
control the information flow and series-wise feedforward, enabling it to focus on series-
wise temporal patterns.
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5.2.1 Hierarchical Pooling

Traditionally, a time series decomposition method [17] decomposes time series into three

distinct components, namely the trend, seasonal, and bias terms. To the best of our

knowledge, there is no deep learning-based method that incorporates decomposition

methods for multivariate time series classification yet. Although some time series fore-

casting methods [45, 118, 125] have incorporated decomposition techniques, they utilize

separate modules to handle trend and seasonal terms while considering the bias term as

high-frequency noise and ignoring it.

However, it is crucial for a time series decomposition method to consider all the

frequency components instead of certain particular components. While a time series

forecasting problem focuses on temporal variation, multivariate time series classification

involves multiple time series that belong to different classes. Thus, multivariate time

series classification requires capturing the distinct characteristics among various classes

manifested in all frequency bands.

We use examples from two real-world datasets to illustrate the significance of consider-

ing different frequency components in multivariate time series classification. Specifically,

we sample time series sequences from two public real-world datasets AtrialFibrilla-
tion1 and BasicMotions2. Then, we explore the differences of sequences from the time

and frequency domains, respectively. Figure 5.2 and Figure 5.3 show samples of time

series data from the AtrialFibrillation dataset and the BasicMotions dataset, respec-

tively. Each figure shows two random samples from the same dataset yet belonging to

different classes and depicts these samples in the time domain and the frequency domain,

respectively. We also show the difference between the two samples in each domain. The

two figures exemplify how different frequency components may play different roles in

different classification problems. Specifically, Figure 5.2 (f) shows the two samples mainly

differ in the high-frequency and low-frequency parts, while in the case of Figure 5.3

(f), the difference between the two samples spans across the full frequency spectrum,

making it unjustifiable to consider any frequency band as noises for multivariate time

series classification. Beyond the above example, a recent study on computer vision [116]

has shown that high-frequency components can contribute to the generalization ability

of image classification models. This finding further motivates us to preserve all the

frequency components for multivariate time series classification.

1http://www.timeseriesclassification.com/description.php?Dataset=
AtrialFibrillation

2http://www.timeseriesclassification.com/description.php?Dataset=BasicMotions
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: (a) A sample of class 1 (non-termination atrial fibrillation); (b) A sample of
class 2 (atrial fibrillation that self-terminates at least one minute after the recording
process); (c) The difference between the two samples in the time domain; (d) The spectro-
gram of the first sample (from class 1); (e) The spectrogram of the second sample (from
class 2); (f) The difference between the spectrograms of the two samples.

Given that time series decomposition is an effective approach for time series analysis,

we propose a novel hierarchical pooling layer that decomposes time series to improve

the performance of multivariate time series classification. We are not limited to the

three terms (namely trend, seasonal, and bias) but develop a more general approach

to decompose time series. More specifically, we obtain a series of subsequences that

represent different frequency components without information loss3.

Let Input1 be the original input. The hierarchical pooling layer outputs a series of

subsequences:

(5.1) Output = [
Output1, . . . ,OutputN , InputN+1

]
,

where N is a tunable hyperparameter that controls the number of subsequences. We

apply average pooling N times to generate N+1 subsequences as follows:

Outputn = AvgPooling
(
Inputn

)
Inputn+1 = Inputn −Outputn,

(5.2)

3A proof for the no-information-loss property can be found in section ??
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: (a) A sample of class 3 (running); (b) A sample of class 4 (badminton); (c) The
difference between the two samples in the time domain; (d) The spectrogram of the first
sample (from class 3); (e) The spectrogram of the second sample (from class 4); (f) The
difference between the spectrograms of the two samples.

where n ∈ {1, ..., N}. The hierarchical pooling layer offers two advantages: 1) it can

effectively decompose a time series into multiple subsequences with various frequency

components; 2) it can be easily implemented using the widely-used average pooling

layer, ensuring its seamless integration into any deep learning architecture to support

end-to-end training.

5.2.2 Dyformer Module

The Dyformer module is the essential component to achieve dynamic structure and

adaptive learning strategies for different frequency components in our approach. A

Dyformer module contains a gate and a Dyformer block: the former determines whether

the input can be fed into the latter for feature extraction via feature-map-wise attention;

if not, the Dyformer block of the module will be skipped and the Dyformer module’s

output will be the same as the input. As such, our Dyformer can realize a dynamic

architecture for time series sequences with different frequency components to realize

adaptive learning strategies. We give more details about each component of the Dyformer

module in the following subsections.
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5.2.2.1 Gate

We implement a gate before every Dyformer block to provide flexibility in activating

Dyformer blocks. The gate takes in previous Dyformer modules’ output feature maps

to determine the accessibility of the next Dyformer block. By deciding the gate status,

the model can dynamically adjust the network structure, varying learning strategies for

different frequency patterns.

Specifically, the gate (denoted by GateM) for the Mth Dyformer block considers all

the previous output feature maps [F1,F2, ...,FM-1], where F ∈RC×L stands for the output

feature map that decides the gate’s status, C is the number of channels, and L is the

length of the feature map. We propose Distance Decay to represent the importance of

each feature map based on its distance to the current Dyformer module. The above gate

design poses two advantages: 1) it considers the information more comprehensively; 2)

the next Dyformer module will not take in the same feature maps for gate calculation if

the previous Dyformer block is skipped. In contrast, if only the previous output feature

maps are considered, skipping a Dyformer block will result in the subsequent gates

taking in the same feature map, leading to their status being the same.

Distance Decay is described below:

(5.3) F ′
m = Fm × ekm(m−M+1),

where ekm(m-M+1) is the decay term, and km is a learnable parameter initialized to 1.

The decay term for the closest output feature map FM-1 is always 1 (which means no

decay), while values of all the other output feature maps are exponentially reduced. A

convolutional layer takes the sum of all the decayed feature maps to generate a decision

value VM for the GateM :

(5.4) VM = tanh
(
Mean

(
Conv(

M−1∑
1

Fm × ekm∗(m−M+1))
))

,

and we use it to calculate the GateM :

(5.5) GateM =
1, VM ≥ 0

0, VM < 0.

We feed the FM-1 to the current Dyformer block for feature extraction when GateM

is 1; otherwise, we skip the Mth Dyformer block and feed the prior feature map FM-1

directly to the next Dyformer module. Since Eq. (5.5) is non-differentiable, we use

reparameterization [67] to update the gate status during training.
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5.2.2.2 Dyformer Block

The Dyformer block adopts the architecture introduced in Chapter 3 (Figure 5.1) which

constructs groups of convolutional filters in a hierarchy and feeds the outputs to a

multi-head attention layer to implement feature-map-wise attention. As the point-wise

attention used in TST [151] can not capture the rich temporal variations of the time

series sequences, existing works are prone to use convolutional layers [82] or recurrent

layers [65] to harness the locality temporal information for attention calculation. How-

ever, the feature maps obtained after feeding time series into neural networks contain

multi-level temporal information, i.e., long- and short-term dependencies, which convolu-

tional or recurrent layers can not fully leverage. Hence, we propose feature-map-wise

attention to capture multi-level temporal dependencies.

Specifically, given the input feature map, it is first fed to a 1D convolutional layer,

expanding the channels to n. We then split the feature map into groups along the channel

to obtain s groups of feature maps. Specifically, we construct s groups of convolutional

filters (kernel size 3, stride 1, padding 1) with w channels (to avoid information loss, we

set n = s×w). A separate group of filters harnesses the temporal information for each

input feature map and generates the corresponding output. Each filter group considers

the output of the filter group that comes immediately before it when extracting features

from an input feature map. The above process repeats until all input feature maps are

processed. We use s-1 soft gates for controlling the information flow between adjacent

groups of filters—the first group of convolutional filters does not have a gate.

The above computational process can be formulated below:

(5.6) yi =
{

Conv(xi) i = 1

Conv(xi + g i · yi−1) 1< i ⩽ s

where xi is the input feature map, yi is the output feature map, g i is the corresponding

soft gate, i ∈ {1,2, · · · , s}.

Given an input feature-map group, xi, the value of the corresponding gate, g i, is

calculated by:

(5.7) g i = tanh(Conv(concat(Conv(yi−1),Conv(xi)))) ,

where yi−1 is the prior output group of feature maps.

All the output feature maps {yi} are sent to a standard multi-head attention layer to

achieve feature-map-wise attention, where the Dyformer block calculates query, key,

and value of feature maps (rather than a single time step) to capture both long-term and
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short-term temporal dependencies. A series-wise feedforward layer follows by processing

the multi-head attention layer’s output based on a convolutional layer, which focuses

on a region—which is in contrast to a point-wise feedforward layer—and is thus more

suitable for handling time series data. The series-wise feedforward can be described as:

(5.8) y=W ∗ x+b

where ∗ means convolution, x and y are the input and output, respectively, and W
and b are learnable parameters. Finally, normalization and ReLU activation functions

generate the final output for the entire Dyformer block. As such, a Dyformer Block’s

output contains a combination of receptive fields of various sizes to fuse multi-granular

feature maps. As we construct more groups, the input of each group of convolutional

filters contains its own input and the outputs of all the previous groups. In this way,

the Dyformer Block progressively fuses temporal dependencies at various levels of

granularity and achieves effective temporal feature extraction.

5.2.3 Information Fusion Layer

The information fusion layer takes the concatenation of the output feature maps of all

paths and sends the output to a fully-connected layer and Sof tmax to obtain the label

probability distribution. We propose a two-stage information fusion strategy. Accordingly,

the information fusion layer stacks one 2D convolutional layer and one 1D convolutional

layer to fuse the feature maps progressively: 1) the 2D convolutional layer fuses the

temporal information from the path’s perspective; 2) the 1D convolutional layer fuses

the information in the channel dimension.

5.2.4 Loss Function

We train Dyformer in a supervised manner using a joint loss function that consists of

two terms: task loss term and gate penalization term. The cross-entropy loss is used for

the classification task, and we design a new term to penalize the open probabilities of

hard gates (i.e., the gates before Dyformer blocks). The overall loss is as follows:

Loss =− 1
#samples

#samples∑
i=1

C∑
c=1

yic log(pic)+

γ
1

M∗ (N +1)

N+1∑
1

M∑
1

Vmn,

(5.9)
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where #samples is the number of training samples, C is the number of classes, and

c denotes the class index. i denotes the ith sample, m and n are the indices of the

Dyformer module and subsequence, respectively. yic indicates whether the ith sample in

the cth class, while pic denotes the corresponding probability. γ is the hyperparameter

controlling the influence of the penalty term. M is the number of Dyformer blocks in

each path, and m denotes the mth Dyformer block. N+1 is the number of subsequences,

and n denotes the nth subsequence.

5.2.5 Unsupervised Pre-training

Alternatively, we can train Dyformer in an unsupervised pre-training manner. To this

end, we randomly mask every time step in the time series at a probability of 0.5, which is

a commonly used probability for unsupervised time series representation learning [148],

and replace Sof tmax following the information fusion layer with a fully-connected

layer, forcing the model to reconstruct the input time series sequence. Inspired by

Reinforcement Learning, We first set all gates open to learn the temporal representation

for the stable "environment" and regard time series reconstruction as a regression task

with Mean Square Error (MSE) loss.

(5.10) Loss = 1
#samples

#sample∑
i=1

( y̆i − yi)2 ,

where y̆i is the output, and yi is the ground truth label. Once pre-trained, we fine-tune

our model using the loss function as specified in Eq. (5.9).

5.3 Experiments

5.3.1 Datasets

We evaluated Dyformer using the UEA Time Series Classification Repository [29]4, which

contains 30 public multivariate time series datasets. The datasets under consideration

pertain to a range of domains and exhibit various data characteristics with respect to

the length of sequences and the number of variables. All datasets had been preprocessed

and split into training and test sets. In addition, we performed normalization of the

datasets to establish a zero mean and unit standard deviation. We applied zero paddings

to ensure that the datasets contained sequences of equal lengths.
4http://www.timeseriesclassification.com/dataset.php
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5.3.2 Baseline Methods

We carefully select several recent and competitive machine learning and deep learn-

ing models as the baselines to evaluate our approach. The selected methods include

ROCKET [30], Time Series Transformer (TST) [151], Task-Aware Reconstruction for

Time-Series Transformer (TARNet) [27], ShapeNet [81], Dynamic Time Warping (DTW),

TS2Vec [147], MLSTM-FCN [71], OS-CNN [109], TapNet [155], Temporal Neighbor-

hood Coding (TNC) [111], Temporal and Contextual Contrasting (TS-TCC) [37], and

WEASEL+ MUSE [99]

To avoid suboptimal performance outcomes due to potential disparities in implemen-

tation details, we meticulously gathered and relied upon the experimental results of these

baseline methods as reported in other reputable publications instead of undertaking

reimplementation efforts. We meticulously gathered and relied upon the experimental

results of these baseline methods as reported in other reputable publications. Specifically,

we leveraged resources pertaining to the experimental results of all baseline methods

from two primary sources: OS-CNN and TARNet. This approach ensured the credibility

and consistency of our comparative analyses.

5.3.3 Model Configuration and Evaluation Metric

We used Adam [75] optimizer to train our model for 600 epochs. The initial learning

rate is 0.001; it scales down with a coefficient of 0.1 every 50 epochs after the first 100

epochs. We trained and tested the model for five times and calculated the average of

multiple runs as the final results for mitigating the influence of randomized parameter

initialization. We used dropout to avoid possible overfitting. Training and testing are

done on a single Nvidia GTX 3080 Ti.

For the hierarchical pooling layer, we set kernel size=5, padding=2, and stride=1

to keep the lengths of the decomposed subsequences unchanged. For pre-training, we

first select the hyperparameters to minimize the MSE loss, and then we use the same

configuration of supervised training for fine-tuning. Configuration details are given in

Table 5.1.

We use accuracy, which is currently used by all baseline methods, as the metric for

comparison. We additionally use macro precision, recall, and F1-Score in our parameter

and ablation studies to gain further insights into our model’s performance.
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Table 5.1: Model configuration

Dataset #subsequences Dropout rate #Dyformer Modules #convolutional filter groups #attention heads γ

ArticularyWordRecognition 4 0.3 4 32 8 0.2
AtrialFibrillation 4 0.5 5 64 4 0.2

BasicMotions 3 0.5 4 16 4 0.2
CharacterTrajectories 5 0.2 4 32 4 0.3

Cricket 5 0.4 6 64 4 0.3
DuckDuckGeese 4 0.5 4 32 16 0.2

EigenWorms 5 0.3 8 64 4 0.2
Epilepsy 4 0.3 5 32 4 0.3

EthanolConcentration 5 0.5 5 64 4 0.3
ERing 3 0.5 4 16 4 0.2

FaceDetection 4 0.4 4 16 8 0.2
FingerMovements 3 0.3 4 16 8 0.3

HandMovementDirection 4 0.3 6 64 4 0.2
Handwriting 4 0.3 4 32 4 0.3

Heartbeat 3 0.3 6 64 8 0.1
JapaneseVowels 3 0.4 4 8 4 0.2

Libras 3 0.2 4 8 4 0.2
LSST 3 0.3 4 16 4 0.2

MotorImagery 5 0.4 8 64 8 0.1
NATOPS 3 0.3 4 16 8 0.3
PenDigits 3 0.4 4 4 4 0.1
PEMS-SF 5 0.4 4 32 16 0.2
Phoneme 4 0.2 4 32 4 0.2

RacketSports 3 0.4 4 8 4 0.1
SelfRegulationSCP1 5 0.5 4 64 4 0.2
SelfRegulationSCP2 5 0.4 6 64 4 0.2
SpokenArabicDigits 3 0.2 6 16 4 0.2

StandWalkJump 5 0.5 6 64 4 0.3
UWaveGestureLibrary 4 0.3 4 32 4 0.3

InsectWingbeat 5 0.2 4 8 16 0.3

5.3.4 Comparison Results

The performance comparison of all the methods (Table 5.2) shows that our model out-

performed all the baselines, achieving the best results on 21 datasets, second-best on

three datasets, and third-best on five datasets (out of 30 experimental datasets). Also, it

achieved an average rank of 1.5, followed by the second-best of 4.9 achieved by TARNet.

Figure 5.4 shows the result of the Wilcoxon signed-rank test (with a confidence level of

95%) on the baseline methods’ performance. Overall, it shows that Dyformer trained in a

supervised manner achieves the best classification performance. The results demonstrate

the effectiveness of implementing adaptive learning strategies in multivariate time se-

ries classification, given that our model is the only one among the compared methods

to achieve a dynamic architecture with time series decomposition for multivariate time

series classification.

Traditional machine learning methods (e.g., DTW, ROCKET, and WEASEL+MUSE)

did not perform well on large datasets, such as InsectWingBeat and FaceDetection,

which contain 50,000 and 9,114 samples, respectively. CNN- and RNN-based models (e.g.,

MLSTM-FCN, OS-CNN, and TapNet) faced challenges dealing with long-ranged depen-

dencies, reflected by poor classification accuracy on datasets containing long sequences
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Table 5.2: Accuracy of different models on 30 benchmark datasets. The best performance
values are bolded and the second-best performance values are underlined. sup and pre
indicate supervised training and pre-training, respectively. The best performance of
Dyformer and TST is used for rank calculation.

Dataset
Dyformer

(sup)
Dyformer

(pre)
TST
(sup)

TST
(pre) ROCKET DTW TS2Vec

MLSTM
-FCN OS-CNN TapNet TNC TS-TCC

WEASEL
+MUSE TARNet ShapeNet

ArticularyWordRecognition 0.997 0.983 0.977 0.973 0.996 0.987 0.987 0.973 0.988 0.987 0.973 0.953 0.990 0.977 0.987
AtrialFibrillation 0.267 0.333 0.067 0.133 0.249 0.200 0.200 0.267 0.233 0.333 0.133 0.267 0.333 1.000 0.400

BasicMotions 1.000 1.000 0.975 0.925 0.990 0.975 0.975 0.950 1.000 1.000 0.975 1.000 1.000 1.000 1.000
CharacterTrajectories 0.999 0.996 0.975 0.972 0.967 0.989 0.995 0.985 0.998 0.997 0.967 0.985 0.990 0.994 0.980

Cricket 1.000 0.972 1.000 0.987 1.000 1.000 0.972 0.917 0.993 0.958 0.958 0.917 1.000 1.000 0.986
DuckDuckGeese 0.788 0.818 0.562 0.539 0.461 0.492 0.680 0.675 0.540 0.575 0.460 0.380 0.575 0.750 0.725

EigenWorms 0.901 0.870 0.748 0.756 0.863 0.618 0.847 0.504 0.414 0.489 0.840 0.779 0.890 0.420 0.878
Epilepsy 1.000 0.993 0.949 0.935 0.991 0.964 0.964 0.761 0.980 0.971 0.957 0.957 1.000 1.000 0.987

Ering 0.970 0.963 0.964 0.941 0.447 0.133 0.874 0.133 0.881 0.133 0.852 0.904 0.133 0.919 0.133
EthanolConcentration 0.397 0.432 0.326 0.337 0.452 0.323 0.308 0.373 0.240 0.323 0.297 0.285 0.430 0.323 0.312

FaceDetection 0.732 0.727 0.681 0.689 0.647 0.529 0.501 0.545 0.575 0.556 0.536 0.544 0.545 0.641 0.602
FingerMovements 0.650 0.570 0.560 0.530 0.553 0.530 0.480 0.580 0.568 0.530 0.470 0.460 0.490 0.620 0.580

HandMovementDirection 0.459 0.473 0.243 0.270 0.446 0.231 0.338 0.365 0.443 0.378 0.324 0.243 0.365 0.392 0.338
HandWriting 0.593 0.567 0.359 0.305 0.567 0.286 0.515 0.286 0.668 0.357 0.249 0.498 0.605 0.281 0.451

HeartBeat 0.816 0.785 0.776 0.776 0.717 0.717 0.515 0.663 0.489 0.751 0.746 0.751 0.727 0.780 0.756
JapaneseVowels 0.989 0.998 0.994 0.997 0.962 0.949 0.984 0.976 0.991 0.965 0.978 0.930 0.984 0.992 0.984

Libras 0.944 0.928 0.656 0.672 0.906 0.870 0.867 0.856 0.950 0.850 0.817 0.822 0.973 1.000 0.856
LSST 0.758 0.729 0.408 0.482 0.632 0.551 0.537 0.373 0.413 0.568 0.595 0.474 0.878 0.976 0.590

MotorImagery 0.640 0.610 0.500 0.510 0.531 0.500 0.510 0.510 0.535 0.590 0.500 0.610 0.590 0.630 0.610
NATOPS 0.933 0.911 0.850 0.806 0.885 0.883 0.928 0.889 0.968 0.939 0.911 0.822 0.500 0.911 0.883
PEMS-SF 0.952 0.935 0.919 0.896 0.751 0.711 0.682 0.699 0.760 0.751 0.699 0.734 0.870 0.936 0.751
PenDigits 0.997 0.995 0.560 0.512 0.996 0.977 0.989 0.978 0.985 0.980 0.979 0.974 0.968 0.976 0.977
Phoneme 0.309 0.288 0.085 0.149 0.284 0.151 0.233 0.110 0.299 0.175 0.207 0.252 0.190 0.165 0.298

RacketSports 0.954 0.933 0.809 0.849 0.928 0.803 0.855 0.803 0.877 0.868 0.776 0.816 0.190 0.987 0.882
SelfRegulationSCP1 0.944 0.930 0.925 0.922 0.908 0.775 0.812 0.874 0.835 0.652 0.799 0.823 0.934 0.816 0.782
SelfRegulationSCP2 0.628 0.619 0.589 0.604 0.533 0.539 0.578 0.472 0.532 0.550 0.550 0.533 0.710 0.622 0.578
SpokenArabicDigits 0.996 0.993 0.993 0.998 0.712 0.963 0.988 0.990 0.997 0.983 0.934 0.970 0.460 0.985 0.975

StandWalkJump 0.433 0.567 0.267 0.267 0.456 0.200 0.467 0.067 0.383 0.400 0.400 0.333 0.333 0.333 0.533
UWaveGestureLibrary 0.962 0.949 0.903 0.913 0.944 0.903 0.906 0.891 0.927 0.894 0.759 0.753 0.916 0.878 0.906

InsectWingBeat 0.711 0.701 0.105 0.158 0.168 0.105 0.466 0.167 0.667 0.208 0.469 0.264 0.163 0.137 0.250
Average Accuracy 0.791 0.786 0.658 0.660 0.698 0.628 0.698 0.621 0.704 0.657 0.670 0.668 0.683 0.748 0.699

Average Rank 1.5 7.4 5.8 9.2 7.2 9.0 5.7 7.0 9.4 9.0 5.5 4.9 5.7

Figure 5.4: Critical Difference (CD) diagram of the selected baselines and Dyformer with
a confidence level of 95%.

(e.g., EigenWorms and StandWalkJump). Since contrastive learning-based methods (TNC

and TS-TCC) impose strong inductive bias, such as transformation-invariance, they may

not fit various scenarios, resulting in low average ranks of 9.4 and 9.0, respectively.

Dyformer outperformed the other transformer-based models including TST and

TARNet. Compared with TST, the proposed Dyformer achieves 11.8% and 11.4% improve-

ment with the supervised training and unsupervised pre-training modes, respectively,

in classification accuracy. While compared with TARNet, the improvement is 5.7% and

5.1%. We attribute the improvement to two-fold: 1) The capability of Dyformer’s feature-
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map-wise attention for capturing multi-granular relationships—this is opposed to the

content-based, dot-product attention, which falls less effective in detecting temporal

dependencies [45]; 2) Incorporating time series decomposition and dynamic architecture

enables adaptive learning strategies for different frequency components, realizing more

effective feature extraction and harnessing than static models.

Our results of the Wilcoxon signed-rank test with a confidence level of 95% further

confirm that Dyformer—either the supervised training version or the unsupervised

pre-trained version achieved the best classification performance.

The training method (supervised or unsupervised) does not significantly affect Dy-

former’s performance.

5.3.5 Proof of Effectiveness of Hierarchical Pooling

We use Discrete Fourier Transform (DFT) [106], a commonly used method to explore the

frequency components of the time series. The process can be described as follows:

(5.11) X (k)=
T−1∑
t=0

x(t)e−i2πkt/T

where x(t) is the time series sequence, and t ∈ (0,T −1), T is the length of the time series.

X (k) is the frequency component obtained via DFT, and k is the index. Suppose y(t) is

the time series obtained after average pooling layer, L is the kernel size of the pooling

layer, F is DFT, then y(t) can be described as:

(5.12) y(t)= 1
L

L−1∑
l=0

x(t− l)

Then:

(5.13)

Y (k)=F y(t)= 1
L

L−1∑
l=0

F x(t− l)

= 1
L

L−1∑
l=0

X (k)e−i2πkl/T

= X (k)
1
L

L−1∑
l=0

e−i2πkl/T

= X (k)

(
1− e−

i2πkL
T

)
L

(
1− e−

i2πk
T

)
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(a) L=3 (b) L=5 (c) L=7 (d) L=9

Figure 5.5: The curves of impact term (Eq. (5.14)) under kernel size of the pooling layer
L=3, 5, 7, and 9. k is the frequency index, and y is the value of the impact term.

According to Eq. (5.13), from the frequency perspective, the influence of the average

pooling layer is an impact term described as:

(5.14) y= f (k,L)=
(
1− e−

i2πkL
T

)
L

(
1− e−

i2πk
T

)
To explore the effectiveness of the impact term (Eq. (5.14)), we set the kernel size of

the pooling layer L 3, 5, 7, 9, separately and the corresponding curves are shown in

Figure 5.5. The analysis shows that the impact factor tends to enhance the low-frequency

component and reduce the high-frequency component. Additionally, the average pooling

method more significantly penalizes high-frequency components with the increasing

kernel size of the pooling layer.

5.3.6 An illustration of Hierarchical Pooling

We sample two sequences from DuckDuckGeese and FaceDetection to gain further

insights regarding the effectiveness of the hierarchical pooling layer. The sampled

sequences and their spectrograms are shown in Figure 5.6. We feed Input1 into the

hierarchical pooling layer and obtain Output1, Output2, Input3, and Input4. We use

DFT to explore their frequency components. The illustrations of their time domain and

frequency domain are shown in Figure 5.7 and Figure 5.8. Additionally, we provide the

details of the top-5 frequency components of the original input and the decomposed

subsequences in Table 5.3 and Table 5.4. Based on the results, we find that Output1

contains the frequency components with high amplitudes, while the other outputs (i.e.,

Output2 and Output3 for both datasets) contain the frequency components that are

different from Output1. Because, after the first iteration, we subtract the Output1

from the original time series Input1, then the remaining Input2 contains the different

frequency components compared with Output1. In this way, we can decompose the time
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(a) DDGTime (b) DDGSpe (c) FDTime (d) FDSpe

Figure 5.6: Time domain and the spectrogram of the samples. DDGTime means the
time domain of the sample from the DuckDuckGeese dataset, and DDGSpe means its
spectrogram. And so on for the sample from the FaceDetection dataset.

Table 5.3: Top-5 Frequency Components of the original time series and the subsequences
obtained after hierarchical pooling from the DuckDuckGeese dataset.

Input1 Output1 Output2 Output3 Input4
Frequency Amplitude Frequency Amplitude Frequency Amplitude Frequency Amplitude Frequency Amplitude

0 0.35 0 0.35 142 0.012 142 0.009 102 0.055
8 0.047 8 0.045 128 0.012 128 0.009 168 0.054

262 0.047 262 0.045 134 0.007 208 0.007 135 0.046
268 0.037 268 0.036 136 0.007 62 0.007 124 0.039
2 0.036 2 0.036 111 0.007 159 0.006 146 0.039

Table 5.4: Top-5 Frequency Components of the original time series and the subsequences
obtained after hierarchical pooling from the FaceDetection dataset.

Input1 Output1 Output2 Output3 Input4
Frequency Amplitude Frequency Amplitude Frequency Amplitude Frequency Amplitude Frequency Amplitude

0 7.83 0 7.68 57 1.79 5 0.81 12 6.56
57 7.49 57 1.13 5 1.79 57 0.81 50 6.56
5 7.49 5 4.13 6 0.75 10 0.48 29 5.03

59 4.14 59 3.30 56 0.75 52 0.48 33 5.03
3 4.14 3 3.30 59 0.53 56 0.46 46 3.81

series sequence into a set of subsequences with different frequency components through

the hierarchical pooling layer.

5.3.7 Proof of non-Information Loss of Hierarchical Pooling

According to the Eq. (5.2), we can find that:

(5.15) Input 1 =
N∑

n=1
Output n + Input N+1

where Input1 is the original time series sequence, and Outputn (n ∈ (1, N)) and InputN+1

are the decomposed subsequences. Hence, from the time domain perspective, the hierar-

chical pooling layer does not lead to any information loss. From the frequency domain

perspective, according to the Eq. (5.11), the DFT of the original time series sequence can
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(a) Output1 (b) Output2 (c) Output3 (d) Input4

(e) Output2 (f) Output3 (g) Output3 (h) Input4

Figure 5.7: The generated subsequences (Output1, Output2, Output3, and Input4) of the
hierarchical pooling layer from DuckDuckGeese dataset. The two axes refer to the time
domain and frequency domain, respectively.

(a) Output1 (b) Output2 (c) Output3 (d) Input4

(e) Output2 (f) Output3 (g) Output3 (h) Input4

Figure 5.8: The generated subsequences (Output1, Output2, Output3, and Input4) of the
hierarchical pooling layer from FaceDetection dataset. The two axes refer to the time
domain and frequency domain, respectively.

be described as:

(5.16) Input 1(k)=
T−1∑
t=0

Input 1e−
i2πkt

T
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While the DFT of the decomposed time series sequences can be described as:

(5.17)

T−1∑
t=0

(
N∑

n=1
Output ne−

i2πkt
T + InputN+1 e−

i2πkt
T

)

=
T−1∑
t=0

e−
i2πkt

T

(
N∑

n=1
Output n + Input N+1

)

=
T−1∑
t=0

Input 1e−
i2πkt

T

Hence, from the frequency domain perspective, the hierarchical pooling layer does not

lead to any information loss.

5.3.8 Effectiveness of feature-map-wise Attention

To explore the effectiveness of the feature-map-wise attention, we use recurrent layers

and convolutional layers to replace the feature-map-wise attention and explore the

impact on the performance. Specifically, the process of using the convolutional layer to

calculate the query, key, and value can be described as follows:

(5.18)

Q =WQ ∗Ut +bQ

K =WK ∗Ut +bK

V =WV ∗Ut +bV

where ∗ means convolution, and WQ , WK , WV , bQ , bK , and bV are learnable parameters.

When using a commonly used recurrent layer, the Gate Recurrent Unit (GRU) [24],

as the calculation process of the query, key, and value matrices is similar, for simplicity,

we only describe the calculation process of query matrix Q in the projection layer as:

(5.19)

r t =σ
(
WQ

irUt +bQ
ir +WQ

hrU(t−1) +bQ
hr

)
zt =σ

(
WQ

izUt +bQ
iz +WQ

hzh(t−1) +bQ
hz

)
nt = tanh

(
WQ

inUt +bQ
in + r t ◦

(
WQ

hnh(t−1) +bQ
hn

))
ht = (1− zt)◦nt + zt ◦h(t−1)

Q = Concat(h1,h2, ...,hT)

where WQ
ir , WQ

iz , WQ
in, WQ

hr, WQ
hz, WQ

hn, bQ
ir, bQ

hr, bQ
iz, bQ

hz, bQ
in, and bQ

hn are learnable para-

meters. We select ArticularyWordRecognition and MotorImagery for experiments

as they are diverse enough in variable number (ArticularyWordRecognition 9, MotorIm-

agery 64) and length (ArticularyWordRecognition 144, MotorImagery 3, 000). For the
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Table 5.5: Training and test results under varying attention manner. Convolution and
recurrent means using the convolutional and recurrent layers to calculate the query, key,
and value matrices, respectively.

Dataset Attention Manner
Train Test

Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

ArticularyWordRecognition
Convolution 0.5654 0.7055 0.6166 0.6581 0.5413 0.6167 0.5512 0.5821
Recurrent 0.8492 0.9055 0.8726 0.8887 0.7548 0.7900 0.7638 0.7767

Feature-map-wise 1.0000 1.0000 1.0000 1.0000 0.9970 0.9960 0.9980 0.9970

MotorImagery
Convolution 0.7206 0.7194 0.7191 0.7192 0.5420 0.5400 0.5387 0.5393
Recurrent 0.7099 0.7086 0.7084 0.7085 0.5384 0.5100 0.3988 0.4476

Feature-map-wise 0.7306 0.7294 0.7291 0.7292 0.6400 0.6100 0.6300 0.6198

Table 5.6: Training and test results under varying group numbers.

Dataset #Groups
Train Test

Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

DuckDuckGeese

4 0.762 0.722 0.686 0.704 0.654 0.627 0.592 0.609
8 0.803 0.790 0.766 0.778 0.722 0.665 0.621 0.642

16 0.868 0.825 0.813 0.819 0.761 0.717 0.694 0.705
32 0.907 0.893 0.855 0.873 0.818 0.801 0.806 0.804
64 0.942 0.929 0.904 0.916 0.743 0.719 0.766 0.742

HeartBeat

4 0.862 0.871 0.856 0.864 0.699 0.669 0.654 0.661
8 0.927 0.888 0.879 0.884 0.717 0.661 0.658 0.659

16 0.951 0.929 0.912 0.920 0.734 0.678 0.669 0.674
32 0.965 0.936 0.914 0.925 0.765 0.697 0.706 0.702
64 0.971 0.942 0.921 0.932 0.786 0.704 0.714 0.709

convolutional layer, we stack two layers with kernel size 3, and we use padding to ensure

that the length of the input and output remains consistent; for GRU, we stack two

bi-directional GRU layers. We follow the same configurations in Table 5.1 for all the

other settings. According to the experimental results in Table 5.5, feature-map-wise at-

tention realizes the best performance on both datasets. The convolutional and recurrent

layers can only capture short-term dependencies, ignoring long-term dependencies. Our

feature-map-wise attention can effectively leverage long- and short-term dependencies

through progressively enlarged receptive fields to realize multi-scale attention, resulting

in better performance.

5.3.9 Impact of Group Number

As mentioned, Dyformer uses feature-map-wise attention by hierarchical-connected

group convolution to leverage the inter-relationships of various granular feature maps. In

this experiment, we explore the impact of the group number (s in Eq. (5.6)) while keeping

all the other settings unchanged on two datasets: DuckDuckGeese and HeartBeat.

These datasets contain long time series sequences (over 200 time steps) that allow us to

explore the impact of group numbers in a larger range.
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Table 5.7: Training and test results under varying γ values.

Dataset γ
Train Test

Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

LSST

0 0.897 0.877 0.892 0.884 0.617 0.623 0.605 0.614
0.1 0.882 0.868 0.863 0.865 0.634 0.635 0.632 0.633
0.2 0.853 0.843 0.828 0.835 0.758 0.721 0.749 0.735
0.3 0.824 0.814 0.823 0.818 0.667 0.655 0.630 0.642
0.4 0.765 0.740 0.759 0.749 0.637 0.629 0.631 0.630

FingerMovements

0 0.927 0.934 0.924 0.929 0.540 0.550 0.530 0.540
0.1 0.908 0.911 0.905 0.908 0.580 0.570 0.590 0.580
0.2 0.896 0.889 0.902 0.895 0.650 0.620 0.650 0.635
0.3 0.864 0.858 0.861 0.859 0.590 0.580 0.570 0.575
0.4 0.797 0.791 0.801 0.796 0.530 0.540 0.520 0.530

Intuitively, more groups of feature maps result in convolutional filters with more

sizes of receptive fields. However, constructing more groups brings the risk of overfitting.

Our results (Table 5.6) show that Dyformer became overfitted when the group number

increased to 64, indicated by a performance drop from s=32 to s=64. Since HeartBeat

has longer sequences than DuckDuckGeese, no overfitting occurred when s went as large

as 64.

5.3.10 Impact of Penalty Weight

We selected two datasets, LSST and FingerMovements, as examples to explore the

impact of the hyperparameter γ, which impacts how likely the gates before the Dyformer

blocks will open.

Results (Table 5.7) show that our model tends to underfit as γ increases. Intuitively,

γ can be regarded as the block-wise dropout, i.e., a large γ means the Dyformer block

is more likely to be skipped. Hence, we can follow the same fine-tuning rule as the

dropout rate. To summarize, we tend to use small γ on large datasets to improve the

training performance and vice versa. Nevertheless, overfitting should be considered

when increasing γ. In particular, when γ is 0, the gate penalization term is omitted from

the loss function.

5.3.11 Impact of Training Method

Table 5.2 shows the comparison between the Dyformer trained in a supervised manner

and that trained in the (unsupervised) pre-training manner. Dyformer with supervised

training outperforms the pre-trained version, as demonstrated by the higher average

accuracy.
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Table 5.8: Training and test results using different feedforward layers.

Dataset Feedforward Layer
Train Test

Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

StandWalkJump
Point-wise feedforward 0.599 0.586 0.601 0.593 0.397 0.388 0.382 0.385
Series-wise feedforward 0.612 0.637 0.629 0.633 0.433 0.428 0.439 0.433

HandWriting
Point-wise feedforward 0.677 0.682 0.669 0.675 0.547 0.552 0.541 0.546
Series-wise feedforward 0.698 0.719 0.681 0.699 0.593 0.582 0.601 0.591

DuckDuckGeese
Point-wise feedforward 0.854 0.837 0.844 0.840 0.769 0.765 0.774 0.769
Series-wise feedforward 0.887 0.893 0.865 0.879 0.788 0.767 0.806 0.786

Unsupervised training is generally better on datasets containing limited samples,

such as AtrialFibrillation, BasicMotions, and StandWalkJump. That indicates the

unsupervised training method may better cope with limited samples, thus enhancing

the classification performance.

5.3.12 Impact of the Series-wise Feedforward.

Dyformer introduces a novel approach by replacing the conventional point-wise feedfor-

ward layer, commonly employed in transformer-based architectures, with the series-wise

feedforward layer. This innovation is particularly well-suited for handling time series

data due to its inherent temporal dependencies. In this experiment, we investigate the

impact of adopting the series-wise feedforward layer while keeping all other settings

unchanged. We evaluate its performance on three diverse datasets: DuckDuckGeese,

HandWriting, and StandWalkJump. These datasets vary in terms of sequence length

and the number of variables, providing a comprehensive result. The experimental results

presented in Table 5.8 consistently demonstrate that the series-wise feedforward layer

outperforms the point-wise attention in both the training and test phases, demonstrating

its effectiveness in enhancing model performance.

5.3.13 Layer Activation Frequency Study

We further explored the activation status of the Dyformer blocks in different paths. We

selected EigenWorms and MotorImagery as they have the longest and second-longest

time series sequences (17,984 and 3,000, respectively) among all the datasets. Hence,

we decomposed the time series, obtained the maximum number of subsequences, and

constructed the most Dyformer modules among all the datasets. We believe exploring

the most complicated architecture demonstrates more comprehensive results than other

datasets. Following the configuration in Table 5.1, we tested all the datasets’ samples and

recorded the number of activation times of all the Dyformer blocks. Then, we calculated
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(a) EigenWorms (b) MotorImagery

Figure 5.9: Heatmap for Activation Frequency of all Dyformer Blocks on EigenWorms and
MotorImagery. 1, 2, 3, 4, and 5 mean the paths for the first through fifth subsequences.

Table 5.9: Ablation test for Dyformer. GC means group convolution, and HP means
hierarchical pooling.

Dataset Model Accuracy Precision Recall F1-Score

DuckDuckGeese

Dyformer (w/o GC, HP) 0.585 0.569 0.588 0.578
Dyformer (w/o GC) 0.643 0.629 0.637 0.632
Dyformer (w/o HP) 0.701 0.665 0.696 0.680
Dyformer 0.818 0.775 0.791 0.783

FaceDetection

Dyformer (w/o GC, HP) 0.494 0.521 0.481 0.500
Dyformer (w/o GC) 0.561 0.574 0.546 0.560
Dyformer (w/o HP) 0.612 0.607 0.615 0.611
Dyformer 0.737 0.709 0.715 0.712

PEMS-SF

Dyformer (w/o GC, HP) 0.644 0.621 0.613 0.617
Dyformer (w/o GC) 0.673 0.647 0.639 0.643
Dyformer (w/o HP) 0.775 0.763 0.754 0.758
Dyformer 0.935 0.893 0.929 0.911

the average number of activation times as the activation frequency of all the Dyformer

blocks.

Our results (Figure 5.9) show that Dyformer tends to activate the first and last

Dyformer blocks more than the middle ones, and amplitude positively impacts the

Dyformer block’s activation frequency.

Examples are subsequence1 and subsequence5—their frequency components have

larger amplitudes; meanwhile, more Dyformer blocks are activated in the paths for them.
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5.3.14 Ablation Study

We conducted ablation studies on three datasets including DuckDuckGeese, FaceDe-
tection, and PEMS-SF, to explore the effectiveness of group convolution and hierar-

chical pooling. We separately incorporate group convolution and hierarchical pooling,

and both in Dyformer. Specifically, without group convolution, we feed the input time

series sequences to standard convolutional layers to obtain series-wise queries, keys,

and values and calculate standard multi-head attention. Without hierarchical pooling,

we feed the original time series to the model instead of pre-decomposition. We trained

Dyformer in a supervised manner.

The results (Table 5.9) suggest that each component improves the performance, while

group convolution impacts more significantly on all three datasets’ performance than

hierarchical pooling. Hence, feature-map-wise attention is likely to play a more critical

role in enhancing the classification ability of the model.

5.4 Conclusion and Future Work

This work proposes a novel dynamic transformer-based architecture called Dyformer for

accurate multivariate time series classification. We first design a hierarchical pooling

layer for time series decomposition. We further propose a Dyformer Module to achieve

adaptive learning strategies for different frequency patterns and incorporate feature-

map-wise attention for capturing multi-scale temporal dependencies. We conduct a

comprehensive evaluation of our model on a wide range of datasets comprising sequences

of varying lengths and variable numbers. Our experimental results show Dyformer

outperforms multiple baselines and state-of-the-art methods by a large margin. We

thoroughly investigate the influence of various components and configurations on the

model’s performance. We also demonstrate that through unsupervised pre-training,

Dyformer gains an improvement over fully supervised learning on datasets with fewer

samples.

We have identified several weaknesses in the proposed Dyformer framework. Firstly,

the architecture’s reliance on parallel construction of multi-paths results in a time

consumption profile that is heavily contingent upon the training speed of the path that

activates the maximum number of Dyformer blocks. Consequently, the activation of fewer

Dyformer blocks along certain paths may not yield a significant acceleration in the overall

training speed. This trade-off between training speed and performance enhancement

is a notable limitation of Dyformer, as it prioritizes the latter at the expense of the
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former. In the face of real-world challenges, it becomes imperative to carefully consider

the trade-off between accuracy and efficiency when selecting appropriate methodologies.

Additionally, a noteworthy deficiency in the proposed Dyformer framework lies in its

lack of interpretability. This absence of interpretability can restrict the applicability

of the method in specific scenarios, particularly in fields such as medical care, where

transparency and interpretability are of paramount importance. In the future, we aim

to address these identified shortcomings to enhance the applicability and utility of the

proposed Dyformer framework.
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6
AN EMPIRICAL STUDY ON POSITIONAL EMBEDDING FOR

TRANSFORMER

6.1 Introduction

In recent years, Transformer-based methods have made remarkable breakthroughs in

time series-related tasks such as classification [22, 62, 87, 146] and forecasting [40, 82,

142, 157]. Since Transformer is position-insensitive, positional embedding [113] was in-

troduced to allow the model to learn the relative position of tokens. Positional embedding

generally injects position information into sequence data. It takes the form of sinusoidal

functions of different frequencies, with each embedding dimension corresponding to a

sinusoid whose wavelengths form a geometric progression. To date, positional embedding

has been a routine for Transformer-based models [84, 87, 129] that deal with time series

sequences.

Despite the widespread use, there have been some debates [45, 150] around the

necessity of positional embedding, and a comprehensive investigation of positional

embedding’s effectiveness on various Transformer-based models is still to be developed.

Firstly, Transformer-based models [84, 157] that contain position-sensitive modules

(e.g., convolutional and recurrent layers) can automatically learn the potential position

information, making positional embedding redundant to some extent. This point is

supported by studies [94, 128] in other fields, suggesting positional embedding may be

unnecessary and replaced with position-sensitive layers. Secondly, positional embedding
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has inherent limitations that may potentially impair the model’s performance. Since

positional embedding is hand-crafted, it may bring inductive bias that may adversely

impact the model’s performance in some cases. Such as for classification, positional

embedding injects the same position tokens into the time series of different classes,

which poses additional challenges to the classifier in figuring out the differences between

sequences with different class labels.

In this work, we review the existing Transformer-based variants containing position-

sensitive layers and summarize six kinds of Transformer-based variants. We then conduct

comprehensive experiments on thirty time series classification datasets and four time

series forecasting datasets under three different input sequence lengths to explore

the impact of positional embedding on the variants and the vanilla Transformer. Our

results show that positional embedding positively impacts the vanilla Transformer in

both classification and forecasting, but it negatively influences the performance of the

variants in classification and shows different impacts on the variants’ performance under

different input sequence lengths in forecasting.

To gain further insight into the effectiveness of positional embedding, we reverse the

sequential order of the time series and investigate the impact of spurious position infor-

mation caused by it. We find that the spurious position information drastically degrades

the performance of the variants and significantly impacts the attention distribution, but

it has an insignificant effect on the vanilla Transformer.

Through this work, we hope to explore the scenarios in which positional embedding

positively impacts the model’s performance to facilitate researchers and practitioners

in making informed decisions on whether to incorporate positional embedding in their

models for time series analysis.

6.2 Background

In this section, we review the positional embedding techniques and various Transformer-

based variants.

6.2.1 Positional Embedding

Positional embedding was first proposed for Transformer in [113], which uses fixed sine

and cosine functions of different frequencies to represent the position information, as
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Figure 6.1: A summary of six types of Transformer-based variants for modeling sequential
data.

described below:

(6.1)
PE(pos,2i) = sin

(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

)
where pos and i are the position and the dimension indices, respectively, and dmodel is

the dimensionality of the input time series. That is, each dimension of the positional

embedding corresponds to a sinusoid. Since for any fixed offset k, PEpos+k can be repre-

sented as a linear function of PEpos, allowing the model to learn the relative positions

easily. The positional embedding is then added to the input time series as the input of

the Transformer.

Considering hand-crafted positional embedding is generally less expressive and adap-

tive [124], Time Series Transformer (TST) [151] enhances the vanilla Transformer [113]

by implementing learnable positional embedding. Specifically, TST shares the same ar-

chitecture as the vanilla Transformer, which stacks several basic blocks, each consisting

of scaled dot-product multi-head attention and a feed-forward network (FFN) to leverage
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temporal data. But it differs in initializing the positional embedding using fixed values

and then updating the embedding jointly with other model parameters through the

training procedure.

Informer [157] introduces a variant of positional embedding known as time stamp

embedding, which encodes both hierarchical time stamps (such as week, month, and year)

and agnostic time stamps (such as holidays and events) to generate global information.

This approach has been shown to mitigate performance degradation when dealing with

long time series sequences. Time stamp embedding is commonly used in time series

forecasting, but is less frequently used in classification tasks because the time series

sequences from different classification datasets are sampled based on various sampling

rates, bringing challenges to present a uniform time stamp embedding.

6.2.2 Transformer-based Variants

Current studies often incorporate convolutional or recurrent layers in the vanilla Trans-

former architecture in dealing with sequence-related tasks, including time series analysis.

Figure 6.1 summarizes these Transformer-based variants into six categories of represen-

tative methods, as detailed below.

• Convolutional Embedding: Methods in this category, namely Informer [157],

Tightly-Coupled Convolutional Transformer (TCCT) [103], and ETSformer [45],

implement a convolutional layer to obtain convolutional embeddings, which map

the raw input sequences to a latent space before feeding them to the transformer

block.

• Convolutional Attention: Instead of calculating the point-wise attention, Log-

Trans [82] and Long-short Transformer [160] use the convolutional layer to cal-

culate the attention matrix (including queries, keys, and values) of segments to

leverage the local temporal information.

• Convolutional Feed-forward: Uni-TTS [89] and Conformer [49] implement a

convolutional layer after the multi-head attention as the feed-forward layer (or

part of the feed-forward layer) to capture local temporal correlations.

• Recurrent Embedding: Temporal Fusion Transformer (TFT) [84] and the work

in [20] use a recurrent layer to encode content-based order dependencies into the

input sequence.
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Table 6.1: Structure of the basic model and six variants (ConvEmbedding means Convo-
lutional Embedding Variant, RecEmbedding means Recurrent Embedding Variant, and
so on).

Model Input Embedding Projection Feed-forward
Basic Model Linear Linear Linear

ConvEmbedding Convolutional Layer Linear Linear
ConvAttention Linear Convolutional Layer Linear

ConvFFD Linear Linear Convolutional Layer
RecEmbedding Gated Recurrent Unit Linear Linear
RecAttention Linear Gated Recurrent Unit Linear

RecFFD Linear Linear Gated Recurrent Unit

• Recurrent Attention: Recurrent Memory Transformer [13], Block Recurrent

Transformer [65], and R-Transformer [121] use a recurrent neural net to calculate

the attention matrix, which harnesses the temporal information more effectively

when compared with the point-wise attention.

• Recurrent Feed-forward: Instead of point-wise feed-forward, TRANS-BLSTM [63]

uses a recurrent layer after multi-head attention to harness the non-linear tempo-

ral dependencies.

6.3 Methodology

We adopt the architecture of TST [151] as the basic model. Following the idea of the

existing methods, we design six Transformer-based variants: Convolutional Embedding,

Convolutional Attention, Convolutional Feed-forward, Recurrent Embedding, Recurrent

Attention, and Recurrent Feed-forward. The modifiable components of the Transformer

architecture (shown in Figure 6.2) include the input embedding layer, which projects

the input time series into the latent space, the projection layer, which calculates the

attention matrix, and the feed-forward layer, which leverages non-linear relationships.

For each variant, we use different layers in each component, while details are given in

Table 6.1. We provide more details in the following sections.

6.3.1 Basic Model

The basic model adopts linear layers in all three components. In this case, for each

sample xt ∈RM : X ∈RM×T = [x1,x2, . . . ,xT], where T is the sequence length and M is the
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Figure 6.2: Architecture of the transformer-based variants for modeling sequential data

variable number. The input embedding can be described as:

(6.2) Ut =W xxt +bx

where t = 0,1, ...,T is the time stamp index, W x ∈ RM×dk and bx ∈ Rdk are learnable

parameters. The projection layer can be described as:

(6.3)

Q =WQUt +bQ

K =WKUt +bK

V =WVUt +bV

where WQ ∈Rdk×dk , WK ∈Rdk×dk , WV ∈Rdk×dk , bQ ∈Rdk , bK ∈Rdk , and bV ∈Rdk are are

learnable parameters. We use standard scaled Dot-Product attention proposed in the

vanilla Transformer [113] for self-attention calculation:

(6.4) Attention(Q,K ,V )= softmax

(
QKT√

dk

)
V .

74



6.3. METHODOLOGY

The feed-forward layer can be described as:

(6.5) FFN(x)=ReLU(W1x+b1)W2 +b2

where leanable parameters are: W1 ∈Rdk×dk , W2 ∈Rdk×dk , b1 ∈Rdk , and b2 ∈Rdk .

6.3.2 Convolutional-based Variants

We refer to the architectures that employ convolutional layers in any of the three compo-

nents (input embedding layer, projection layer, or feed-forward layer) as convolutional-

based variants. Here, we utilize a one-dimensional convolutional layer with a kernel

size of 3. We also set the padding to 1 to preserve the lengths of representations. In the

following, we illustrate our convolutional-based variants one by one.

Convolutional Embedding Variant replaces the linear layer with the convolution

layer in the input embedding layer, which is formulated below:

(6.6) Ut =W x ∗ xt +bx

where ∗ is the convolutional operation, W x ∈RM×dk×P and bx ∈RM are learnable para-

meters, and P is the kernel size.

Convolutional Attention Variant replaces the linear layer with the convolution

layer in the projection layer, which is formulated below:

(6.7)

Q =WQ ∗Ut +bQ

K =WK ∗Ut +bK

V =WV ∗Ut +bV

where WQ ∈ Rdk×dk×P , WK ∈ Rdk×dk×P , WV ∈ Rdk×dk×P , bQ ∈ Rdk , bK ∈ Rdk , and bV ∈ Rdk

are learnable parameters.

Convolutional Feed-forward Variant formulated the linear layer with the convo-

lution layer in the feed-forward layer, which is described below:

(6.8) FFN(x)=ReLU(W1 ∗ x+b1)∗W2 +b2

where leanable parameters are: W1 ∈Rdk×dk×P , W2 ∈Rdk×dk×P , b1 ∈Rdk , and b2 ∈Rdk .
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6.3.3 Recurrent-based Variants

We name the architectures that use recurrent layers in any of the three components (in-

put embedding layer, projection layer, or feed-forward layer) as recurrent-based variants.

Here, we use Gate Recurrent Unit (GRU) [24] as the recurrent layer. In the following, we

illustrate our recurrent-based Variants one by one.

Recurrent Embedding Variant replaces the linear layer with the GRU in the

input embedding layer, which is formulated below:

(6.9)

r t =σ
(
W x

irxt +bx
ir +W x

hrU(t−1) +bx
hr

)
zt =σ

(
W x

izxt +bx
iz +W x

hzh(t−1) +bx
hz

)
nt = tanh

(
W x

inxt +bx
in + r t ◦

(
W x

hnh(t−1) +bx
hn

))
ht = (1− zt)◦nt + zt ◦h(t−1)

Ut = Concat(h1,h2, ...,hT)

where W x
ir ∈RM×dk , W x

iz ∈RM×dk , W x
in ∈RM×dk , W x

hr ∈Rdk×dk , W x
hz ∈Rdk×dk , W x

hn ∈Rdk×dk ,

bx
ir ∈ Rdk , bx

hr ∈ Rdk , bx
iz ∈ Rdk , bx

hz ∈ Rdk , bx
in ∈ Rdk , and bx

hn ∈ Rdk are learnable parame-

ters, ◦ is the Hadamard product.

Recurrent Attention Variant replaces the linear layer with the GRU in the projec-

tion layer. Since the calculation processes of all the matrices are similar, for simplicity,

we only present the calculation process of the query matrix Q in the projection layer

below:

(6.10)

r t =σ
(
WQ

irUt +bQ
ir +WQ

hrU(t−1) +bQ
hr

)
zt =σ

(
WQ

izUt +bQ
iz +WQ

hzh(t−1) +bQ
hz

)
nt = tanh

(
WQ

inUt +bQ
in + r t ◦

(
WQ

hnh(t−1) +bQ
hn

))
ht = (1− zt)◦nt + zt ◦h(t−1)

Q = Concat(h1,h2, ...,hT)

where WQ
ir ∈Rdk×dk , WQ

iz ∈Rdk×dk , WQ
in ∈Rdk×dk , WQ

hr ∈Rdk×dk , WQ
hz ∈Rdk×dk , WQ

hn ∈Rdk×dk ,

bQ
ir ∈ Rdk , bQ

hr ∈ Rdk , bQ
iz ∈ Rdk , bQ

hz ∈ Rdk , bQ
in ∈ Rdk , and bQ

hn ∈ Rdk are learnable parame-

ters.

Recurrent Feed-forward Variant replaces the linear layer with the GRU in the
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feed-forward layer, which is formulated below:

(6.11)

r t =σ
(
WirUt +bir +WhrU(t−1) +bhr

)
zt =σ

(
WizUt +biz +Whzh(t−1) +bhz

)
nt = tanh

(
WinUt +bin + r t ◦

(
Whnh(t−1) +bhn

))
ht = (1− zt)◦nt + zt ◦h(t−1)

O = Concat(h1,h2, ...,hT)

where Wir ∈Rdk×dk , Wiz ∈Rdk×dk , Win ∈Rdk×dk , Whr ∈Rdk×dk , Whz ∈Rdk×dk , Whn ∈Rdk×dk ,

bir ∈ Rdk , bhr ∈ Rdk , biz ∈ Rdk , bhz ∈ Rdk , bin ∈ Rdk , and bhn ∈ Rdk are learnable parame-

ters, and O is the final output of the feed-forward layer.

6.4 Experiments

We investigate the impact of positional embedding on all methods for both time se-

ries classification and forecasting. We choose the following datasets for comprehensive

experimental results.

6.4.1 Datasets

We empirically evaluate the impact of positional embedding on the performance of the

basic model and transformer-based variants (illustrated in Section 6.3) for time series

classification and forecasting. We report our experimental configurations and discuss the

results in the following subsections.

• Classification: We selected 30 public multivariate time series datasets from the

UEA Time Series Classification Repository [29]. All datasets were pre-split into

training and test sets1 . We normalized all datasets to zero mean and unit standard

deviation and applied zero padding to ensure all the sequences in each dataset

bear the same length.

• Forecasting: We choose the Electricity Transformer Temperature (ETT) dataset [157]

and create separate datasets as {ETTh1, ETTh2} for 1-hour level and {ETTm1,

ETTm2} for 15-minutes-level to explore the impact of positional embedding at

different granularities. Each data point consists of the target value "temperature"

and six power load features. The train/val/test is 12/4/4 months. The input of each
1details can be found at http://www.timeseriesclassification.com/dataset.php
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Table 6.2: Model configuration.

Dataset Learning Rate #layer Batch Size Dropout #attention head
ArticularyWordRecognition 0.01 3 32 0.01 2

AtrialFibrillation 0.01 2 16 0.01 2
BasicMotions 0.00001 2 16 0.01 2

CharacterTrajectories 0.01 2 16 0.01 2
Cricket 0.01 2 16 0.01 2

DuckDuckGeese 0.001 4 8 0.3 5
EigenWorms 0.01 1 1 0.01 2

Epilepsy 0.00001 4 16 0.01 2
EthanolConcentration 0.001 2 16 0.01 4

ERing 0.00001 2 16 0.01 2
FaceDetection 0.00001 2 16 0.01 2

FingerMovements 0.001 2 16 0.01 2
HandMovementDirection 0.01 2 16 0.1 2

Handwriting 0.01 5 16 0.01 2
Heartbeat 0.00001 2 16 0.01 2

JapaneseVowels 0.01 3 16 0.3 2
Libras 0.01 5 16 0.01 2
LSST 0.01 2 16 0.01 2

MotorImagery 0.00001 2 16 0.01 2
NATOPS 0.00001 3 16 0.01 2
PenDigits 0.001 2 16 0.01 2
PEMS-SF 0.00001 2 16 0.01 2
Phoneme 0.00001 3 16 0.01 2

RacketSports 0.00001 2 16 0.1 4
SelfRegulationSCP1 0.00001 3 16 0.1 2
SelfRegulationSCP2 0.00001 2 16 0.01 2
SpokenArabicDigits 0.00001 3 16 0.1 2

StandWalkJump 0.01 3 16 0.01 2
UWaveGestureLibrary 0.01 2 16 0.01 2

ETTh1 0.01 2 4 0.05 2
ETTh2 0.01 2 4 0.05 2
ETTm1 0.01 2 4 0.05 2
ETTm2 0.01 2 4 0.05 2

dataset is zero-mean normalized. We set three different input sequence lengths:

96 (4 days for ETTh and 24 hours for ETTm), 192, and 336, and set the prediction

window size to 48 (2 days for ETTh and 12 hours for ETTm).

6.4.2 Model Configuration and Evaluation Metric

We trained the basic model and six variants for 500 epochs using the Adam optimizer [75]

on all the datasets with and without the learnable positional embedding. For classifica-

tion, we selected the learnable positional embedding. Additionally, we incorporated the
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time stamp embedding for forecasting.

Besides, we applied an adaptive learning rate, which was reduced by a factor of

10 after every 100 epochs, and employed dropout regularization to prevent overfitting.

Table 6.2 summarizes our model configurations for each dataset.

For classification, we evaluate the models using two metrics: accuracy and macro

F1-Score, while for forecasting, we use mean square error (MSE) and mean absolute
error (MAE). All metrics are commonly used for evaluating the model’s performance. To

mitigate the effect of randomized parameter initialization, we repeated the training and

test procedures five times and took the average as the final results.

6.5 Results and Analysis

6.5.1 Classification

Table 6.3 and Table 6.4 show the evaluation results of all methods on 30 datasets. The

results indicate positional embedding positively impacts the basic model—with positional

embedding, the basic model’s performance improves by 17.5% and 14.3% in accuracy

and macro F1-Score, respectively. This reveals the significance of enabling the basic

model to leverage the position information (e.g., via positional embedding) in solving the

multivariate time series classification problem.

In contrast, positional embedding negatively impacts the performance of the Transformer-

based variants. Without positional embedding, convolutional embedding (i.e., ConvEm-

bedding in Table 6.1) and recurrent embedding (i.e., RecEmbedding in Table 6.1) models

outperformed all other variants, achieving the best accuracy of 56.21% and 56.17%,

respectively, and the best macro F1-Scores of 0.528 and 0.5375, respectively. These two

models differ from all other models in that their input embedding layers encode the

position information when projecting the raw data to a latent space, making the posi-

tion information accessible by subsequent layers for feature extraction and resulting in

superior performance.

Incorporating positional embedding decreased the average accuracy of the variants by

12.7% (convolutional embedding), 9.1% (convolutional attention), 18.6% (convolutional

feed-forward), 22.1% (recurrent embedding), 21.5% (recurrent attention), and 15.7% (re-

current feed-forward), respectively. Results for the macro F1-Score show similar trends.

Since the convolutional and recurrent layers can inherently capture the position informa-

tion from sequential data, it is natural to consider positional embedding redundant for
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Table 6.3: Accuracy of different models on 30 benchmark datasets.
Model ArticularyWordRecognition AtrialFibrillation BasicMotions CharacterTrajectories Cricket DuckDuckGeese

BasicModel (w/ PE) 0.4788 0.4524 1.0000 0.5140 0.9643 0.7667
BasicModel (w/o PE) 0.1280 0.2949 1.0000 0.4684 0.9395 0.5847

ConvEmbedding (w/ PE) 0.5125 0.4333 1.0000 0.4560 0.7468 0.6922
ConvEmbedding (w/o PE) 0.6774 0.7037 1.0000 0.6207 0.8016 0.7145

ConvAttention (w/ PE) 0.5413 0.5238 1.0000 0.2120 0.6515 0.6257
ConvAttention (w/o PE) 0.5091 0.4000 1.0000 0.1975 0.7433 0.3902

ConvFFD (w/ PE) 0.5232 0.4524 1.0000 0.2834 0.8775 0.5858
ConvFFD (w/o PE) 0.6483 0.5238 1.0000 0.3000 0.9623 0.6472

RecEmbedding (w/ PE) 0.5580 0.4524 1.0000 0.4227 0.8442 0.4800
RecEmbedding (w/o PE) 0.7321 0.6111 1.0000 0.5478 0.9339 0.6608

RecAttention (w/ PE) 0.7312 0.6444 1.0000 0.3842 0.6938 0.3120
RecAttention (w/o PE) 0.7548 0.6768 1.0000 0.7450 0.8371 0.6444

RecFFD (w/ PE) 0.6052 0.4167 1.0000 0.3405 0.6660 0.6065
RecFFD (w/o PE) 0.6890 0.5500 1.0000 0.5001 0.7978 0.6419

Model EigenWorms Epilepsy JapaneseVowels Libras LSST MotorImagery
BasicModel (w/ PE) 0.4447 0.8153 0.9616 0.0113 0.1716 0.5801
BasicModel (w/o PE) 0.4186 0.7753 0.9346 0.1527 0.1770 0.4332

ConvEmbedding (w/ PE) 0.3556 0.8156 0.9526 0.0317 0.1719 0.4264
ConvEmbedding (w/o PE) 0.4843 0.8725 0.9633 0.0760 0.1086 0.7525

ConvAttention (w/ PE) 0.3792 0.7377 0.7418 0.0878 0.1365 0.5000
ConvAttention (w/o PE) 0.3844 0.5564 0.7491 0.1352 0.1845 0.6420

ConvFFD (w/ PE) 0.4716 0.8041 0.9688 0.0298 0.0987 0.4391
ConvFFD (w/o PE) 0.4872 0.8954 0.9721 0.0490 0.1269 0.4585

RecEmbedding (w/ PE) 0.6724 0.8037 0.9566 0.0691 0.0461 0.5525
RecEmbedding (w/o PE) 0.7053 0.8538 0.9669 0.1070 0.0943 0.6326

RecAttention (w/ PE) 0.4171 0.6734 0.9668 0.1023 0.1006 0.6302
RecAttention (w/o PE) 0.6420 0.8163 0.9608 0.1897 0.0904 0.7551

RecFFD (w/ PE) 0.4199 0.7711 0.9702 0.1014 0.1370 0.4688
RecFFD (w/o PE) 0.6545 0.8353 0.9709 0.1159 0.1664 0.4719

Model NATOPS PenDigits PEMS-SF Phoneme EthanolConcentration ERing
BasicModel (w/ PE) 0.2834 0.1639 0.6204 0.0164 0.3880 0.6659
BasicModel (w/o PE) 0.1198 0.1203 0.8091 0.0110 0.0627 0.6065

ConvEmbedding (w/ PE) 0.2249 0.6416 0.8076 0.0126 0.1086 0.6982
ConvEmbedding (w/o PE) 0.3074 0.6452 0.8770 0.0291 0.1979 0.7695

ConvAttention (w/ PE) 0.2111 0.0784 0.8717 0.0170 0.0632 0.6660
ConvAttention (w/o PE) 0.2699 0.5021 0.8953 0.0211 0.1254 0.6913

ConvFFD (w/ PE) 0.2339 0.2036 0.8155 0.0142 0.0627 0.4966
ConvFFD (w/o PE) 0.2796 0.3388 0.8816 0.0142 0.1340 0.7357

RecEmbedding (w/ PE) 0.2951 0.3561 0.6314 0.0059 0.0618 0.4318
RecEmbedding (w/o PE) 0.4215 0.4066 0.8277 0.0106 0.4755 0.8008

RecAttention (w/ PE) 0.2638 0.1491 0.5946 0.0111 0.0985 0.6291
RecAttention (w/o PE) 0.4958 0.1711 0.8348 0.0243 0.1236 0.6488

RecFFD (w/ PE) 0.2797 0.1003 0.5953 0.0074 0.0618 0.7222
RecFFD (w/o PE) 0.4231 0.2755 0.8333 0.0123 0.1254 0.7735

Model FaceDetection FingerMovements HandMovementDirection Handwriting Heartbeat RacketSports
BasicModel (w/ PE) 0.6285 0.6075 0.2691 0.0239 0.7528 0.0879
BasicModel (w/o PE) 0.5487 0.3925 0.1830 0.0460 0.8627 0.0546

ConvEmbedding (w/ PE) 0.6461 0.5405 0.3032 0.0266 0.8663 0.4439
ConvEmbedding (w/o PE) 0.5589 0.5861 0.3224 0.0307 0.7506 0.4530

ConvAttention (w/ PE) 0.6762 0.7082 0.2908 0.0154 0.7238 0.2111
ConvAttention (w/o PE) 0.6816 0.7552 0.3442 0.0664 0.8663 0.5574

ConvFFD (w/ PE) 0.6457 0.6725 0.2858 0.0364 0.7258 0.1691
ConvFFD (w/o PE) 0.6347 0.7242 0.2950 0.4540 0.7272 0.3109

RecEmbedding (w/ PE) 0.6793 0.5187 0.4222 0.0400 0.3610 0.1716
RecEmbedding (w/o PE) 0.5500 0.5233 0.3779 0.0570 0.7096 0.2121

RecAttention (w/ PE) 0.6797 0.5028 0.2083 0.0318 0.3610 0.1970
RecAttention (w/o PE) 0.5425 0.6731 0.2559 0.0513 0.7528 0.3110

RecFFD (w/ PE) 0.6648 0.2550 0.4335 0.0189 0.7238 0.1253
RecFFD (w/o PE) 0.5527 0.4167 0.4454 0.0352 0.7435 0.2003

Model SelfRegulationSCP1 SelfRegulationSCP2 SpokenArabicDigits StandWalkJump UWaveGestureLibrary Average
BasicModel (w/ PE) 0.8494 0.5259 0.1111 0.5694 0.5284 0.4915
BasicModel (w/o PE) 0.8176 0.5125 0.1111 0.2778 0.2865 0.4183

ConvEmbedding (w/ PE) 0.8720 0.5847 0.4433 0.2778 0.3656 0.4986
ConvEmbedding (w/o PE) 0.8846 0.5694 0.5988 0.5500 0.3938 0.5621

ConvAttention (w/ PE) 0.8188 0.5207 0.4681 0.4524 0.4763 0.4623
ConvAttention (w/o PE) 0.8592 0.5000 0.6620 0.5500 0.3818 0.5042

ConvFFD (w/ PE) 0.8375 0.5250 0.5591 0.1944 0.3472 0.4607
ConvFFD (w/o PE) 0.8979 0.6080 0.6418 0.5500 0.5496 0.5465

RecEmbedding (w/ PE) 0.7935 0.2500 0.5833 0.4778 0.4031 0.4600
RecEmbedding (w/o PE) 0.8472 0.2500 0.7232 0.8182 0.4338 0.5617

RecAttention (w/ PE) 0.8494 0.5000 0.5112 0.5500 0.4113 0.4553
RecAttention (w/o PE) 0.8746 0.5710 0.5420 0.7167 0.3374 0.5531

RecFFD (w/ PE) 0.8658 0.4486 0.4491 0.4667 0.3620 0.4512
RecFFD (w/o PE) 0.8843 0.5752 0.4555 0.4615 0.5370 0.5222
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Table 6.4: Macro F1-Score of different models on 30 benchmark datasets.
Model ArticularyWordRecognition AtrialFibrillation BasicMotions CharacterTrajectories Cricket DuckDuckGeese

BasicModel (w/ PE) 0.5395 0.3523 1.0000 0.5783 0.9581 0.7177
BasicModel (w/o PE) 0.0988 0.3297 1.0000 0.5687 0.9156 0.4478

ConvEmbedding (w/ PE) 0.6170 0.4139 1.0000 0.5554 0.7208 0.5365
ConvEmbedding (w/o PE) 0.7226 0.6035 1.0000 0.6734 0.8285 0.6379

ConvAttention (w/ PE) 0.5094 0.4000 1.0000 0.1879 0.6382 0.3959
ConvAttention (w/o PE) 0.5821 0.5157 1.0000 0.3141 0.7758 0.4760

ConvFFD (w/ PE) 0.5921 0.3529 1.0000 0.3892 0.8719 0.5365
ConvFFD (w/o PE) 0.7152 0.3333 1.0000 0.4318 0.9582 0.6360

RecEmbedding (w/ PE) 0.6272 0.3591 1.0000 0.4510 0.8194 0.4748
RecEmbedding (w/o PE) 0.7605 0.4577 1.0000 0.6335 0.9025 0.5304

RecAttention (w/ PE) 0.7599 0.4603 1.0000 0.4473 0.7108 0.3354
RecAttention (w/o PE) 0.7767 0.4553 1.0000 0.7868 0.8600 0.5338

RecFFD (w/ PE) 0.6615 0.4142 1.0000 0.4351 0.7121 0.5338
RecFFD (w/o PE) 0.7314 0.5161 1.0000 0.5712 0.8176 0.6114

Model EigenWorms Epilepsy JapaneseVowels Libras LSST MotorImagery
BasicModel (w/ PE) 0.4020 0.8169 0.9670 0.0321 0.2009 0.4325
BasicModel (w/o PE) 0.3912 0.7667 0.9439 0.1307 0.1297 0.5799

ConvEmbedding (w/ PE) 0.2471 0.7568 0.9514 0.0148 0.1504 0.4265
ConvEmbedding (w/o PE) 0.2849 0.8345 0.9600 0.0403 0.1220 0.4500

ConvAttention (w/ PE) 0.2460 0.5912 0.7222 0.0581 0.0555 0.4120
ConvAttention (w/o PE) 0.3592 0.7100 0.6509 0.0158 0.1317 0.6393

ConvFFD (w/ PE) 0.3695 0.7667 0.9656 0.0568 0.0585 0.4390
ConvFFD (w/o PE) 0.4923 0.8941 0.9744 0.0744 0.0829 0.4623

RecEmbedding (w/ PE) 0.5984 0.7479 0.9566 0.1339 0.0752 0.5498
RecEmbedding (w/o PE) 0.6606 0.8557 0.9679 0.1508 0.0681 0.6291

RecAttention (w/ PE) 0.3231 0.5496 0.9686 0.0690 0.0950 0.4630
RecAttention (w/o PE) 0.5197 0.8072 0.9673 0.2292 0.0830 0.5526

RecFFD (w/ PE) 0.3738 0.7462 0.9721 0.1448 0.1312 0.4533
RecFFD (w/o PE) 0.6519 0.8410 0.9741 0.1512 0.0724 0.4547

Model NATOPS PenDigits PEMS-SF Phoneme EthanolConcentration ERing
BasicModel (w/ PE) 0.3127 0.0869 0.7693 0.0236 0.2152 0.6486
BasicModel (w/o PE) 0.2291 0.0747 0.6615 0.0191 0.1432 0.5273

ConvEmbedding (w/ PE) 0.3257 0.6173 0.7872 0.0234 0.1739 0.6498
ConvEmbedding (w/o PE) 0.3974 0.6262 0.8655 0.0247 0.2096 0.7679

ConvAttention (w/ PE) 0.2333 0.1291 0.8543 0.0099 0.0777 0.5992
ConvAttention (w/o PE) 0.3031 0.4512 0.8900 0.0259 0.2224 0.6600

ConvFFD (w/ PE) 0.2121 0.2591 0.7932 0.0249 0.1432 0.5523
ConvFFD (w/o PE) 0.3564 0.3129 0.8763 0.0207 0.1581 0.7092

RecEmbedding (w/ PE) 0.3635 0.4070 0.6814 0.0142 0.1419 0.4622
RecEmbedding (w/o PE) 0.3715 0.4176 0.7929 0.0149 0.2600 0.7814

RecAttention (w/ PE) 0.1894 0.2101 0.6375 0.0205 0.1483 0.5415
RecAttention (w/o PE) 0.3423 0.2118 0.8277 0.0234 0.2217 0.6511

RecFFD (w/ PE) 0.2344 0.1380 0.6328 0.0165 0.1419 0.6853
RecFFD (w/o PE) 0.4271 0.3123 0.7916 0.0238 0.2224 0.7615

Model FaceDetection FingerMovements HandMovementDirection Handwriting Heartbeat RacketSports
BasicModel (w/ PE) 0.6270 0.5580 0.2603 0.0441 0.6119 0.1502
BasicModel (w/o PE) 0.5483 0.4029 0.1593 0.0680 0.6167 0.1304

ConvEmbedding (w/ PE) 0.6454 0.4931 0.2703 0.0549 0.6167 0.2044
ConvEmbedding (w/o PE) 0.5563 0.5310 0.2960 0.0598 0.6119 0.3170

ConvAttention (w/ PE) 0.6814 0.5710 0.3052 0.0369 0.7351 0.2400
ConvAttention (w/o PE) 0.6762 0.5181 0.1970 0.0622 0.5950 0.2582

ConvFFD (w/ PE) 0.6396 0.5612 0.3102 0.0454 0.6144 0.2732
ConvFFD (w/o PE) 0.5544 0.5923 0.2349 0.0631 0.6093 0.2814

RecEmbedding (w/ PE) 0.6793 0.5154 0.2097 0.0713 0.4561 0.1677
RecEmbedding (w/o PE) 0.5499 0.5211 0.3298 0.0795 0.5702 0.2394

RecAttention (w/ PE) 0.6793 0.4997 0.1763 0.0594 0.4561 0.2551
RecAttention (w/o PE) 0.5419 0.5457 0.2305 0.0653 0.6091 0.2499

RecFFD (w/ PE) 0.6642 0.4031 0.3617 0.0465 0.5950 0.1940
RecFFD (w/o PE) 0.5523 0.4174 0.3231 0.0609 0.5986 0.3186

Model SelfRegulationSCP1 SelfRegulationSCP2 SpokenArabicDigits StandWalkJump UWaveGestureLibrary Average
BasicModel (w/ PE) 0.8167 0.4669 0.2222 0.4260 0.5309 0.4748
BasicModel (w/o PE) 0.8120 0.5040 0.2222 0.2947 0.3282 0.4153

ConvEmbedding (w/ PE) 0.8632 0.5131 0.5001 0.2871 0.3785 0.4757
ConvEmbedding (w/o PE) 0.8839 0.5448 0.6328 0.4611 0.3677 0.5280

ConvAttention (w/ PE) 0.2548 0.4346 0.3021 0.2353 0.3867 0.3898
ConvAttention (w/o PE) 0.8119 0.4434 0.4141 0.2559 0.4812 0.4633

ConvFFD (w/ PE) 0.8249 0.5217 0.6121 0.2508 0.3023 0.4600
ConvFFD (w/o PE) 0.8976 0.5740 0.6497 0.4496 0.5897 0.5167

RecEmbedding (w/ PE) 0.7074 0.4000 0.5586 0.4680 0.4077 0.4657
RecEmbedding (w/o PE) 0.8132 0.4000 0.6771 0.7370 0.4143 0.5375

RecAttention (w/ PE) 0.8167 0.4511 0.4883 0.4128 0.3663 0.4341
RecAttention (w/o PE) 0.8736 0.5425 0.5469 0.5220 0.3617 0.5151

RecFFD (w/ PE) 0.8524 0.4133 0.5315 0.2353 0.3765 0.4517
RecFFD (w/o PE) 0.8839 0.5533 0.5451 0.4163 0.5811 0.5235
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Table 6.5: The mean absolute error of different models on selected datasets under input
sequence length size 96.

Model ETTh1 ETTh2 ETTm1 ETTm2 Average
BasicModel (w/ PE) 1.3801 0.8784 1.0757 0.8758 1.0525
BasicModel (w/o PE) 1.3885 1.1257 1.3596 1.2475 1.2803

ConvEmbedding (w/ PE) 0.4807 0.7875 0.7366 0.8524 0.7143
ConvEmbedding (w/o PE) 0.4805 0.7584 0.6611 0.6645 0.6411

ConvAttention (w/ PE) 0.4804 0.7687 0.8027 0.9308 0.7457
ConvAttention (w/o PE) 0.4806 0.7844 0.7462 0.9210 0.7331

ConvFFD (w/ PE) 0.4815 0.7116 0.7042 0.9825 0.7200
ConvFFD (w/o PE) 0.4727 0.7132 0.6966 0.8596 0.6855

RecEmbedding (w/ PE) 0.4803 0.6917 0.8004 0.8825 0.7137
RecEmbedding (w/o PE) 0.4794 0.7089 0.6445 0.7038 0.6342

RecAttention (w/ PE) 0.4808 0.7106 0.7788 0.6473 0.6544
RecAttention (w/o PE) 0.4806 0.6975 0.7289 0.6821 0.6473

RecFFD (w/ PE) 0.4816 0.7464 0.7844 0.9309 0.7358
RecFFD (w/o PE) 0.4803 0.7437 0.7905 0.8641 0.7197

Transformer-based variants. Besides, positional embedding risks introducing inductive

bias and contaminating the original data. Specifically, positional embedding injects the

same information into sequences of different classes, bringing new challenges to the

classifiers; this may also contribute to performance degradation.

Further reflecting on the results, we suggest that positional embedding may not

be necessary for Transformer-based variants that already contain position-sensitive

modules. In particular, for time series classification tasks, while the classifier focuses

on the differences between time series sequences across different classes, positional

embedding is content-irrelevant, adding the same position information to all sequences

regardless of their class labels. As position-sensitive modules generally consider con-

tent information when encoding the position information, redundant content-irrelevant

positional embedding may lead the model toward capturing spurious correlations that

potentially hinder the classifier’s performance.

6.5.2 Forecasting

Table 6.5, Table 6.6, Table 6.7, Table 6.8, Table 6.9, and Table 6.10 present the evalu-

ation results of all methods on the selected datasets different input sequence lengths.

We observe that positional embedding improves the basic model’s performance signif-
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Table 6.6: The mean square error of different models on selected datasets under input
sequence length 96.

Model ETTh1 ETTh2 ETTm1 ETTm2 Average
BasicModel (w/ PE) 2.0213 1.1170 1.3299 1.1110 1.3948
BasicModel (w/o PE) 2.1449 1.5866 1.9667 1.8203 1.8796

ConvEmbedding (w/ PE) 0.3382 1.1074 1.0889 0.7914 0.8315
ConvEmbedding (w/o PE) 0.3380 1.1048 0.6735 0.6945 0.7027

ConvAttention (w/ PE) 0.3378 1.1061 1.0896 1.1309 0.9161
ConvAttention (w/o PE) 0.3381 1.1072 1.0993 1.1028 0.9119

ConvFFD (w/ PE) 0.3481 1.0137 1.0925 1.1416 0.8990
ConvFFD (w/o PE) 0.3315 1.0144 0.7983 1.0292 0.7934

RecEmbedding (w/ PE) 0.3377 0.9779 1.1280 1.0369 0.8701
RecEmbedding (w/o PE) 0.3359 1.0116 0.6481 0.9908 0.7466

RecAttention (w/ PE) 0.3383 1.0124 0.9726 0.5389 0.7156
RecAttention (w/o PE) 0.3379 0.9882 0.8847 0.5976 0.7021

RecFFD (w/ PE) 0.3482 1.0848 1.1227 1.2708 0.9566
RecFFD (w/o PE) 0.3378 1.0779 1.1596 1.0102 0.8964

icantly while demonstrating input length-dependent impact on variants. Specifically,

without the positional embedding, the basic model experiences an average decrease of

25.8% in MSE and 17.8% in MAE, respectively, under input sequence length 96, an

average decrease of 38.5% in MSE and 24.4% in MAE, respectively, under input sequence

length 192, an average decrease of 25.7% in MSE and 17.7% in MAE, respectively un-

der input sequence length 336. In contrast, for all variants, when the input sequence

length equals to 96, the average MSE and MAE of the variants increase by 18.3% and

21.6% (convolutional embedding), 0.5% and 0.2% (convolutional attention), 13.3% and

6% (convolutional feed-forward), 16.5% and 12.5% (recurrent embedding), 1.9% and

1.1% (recurrent attention), and 6.7% and 2.3% (recurrent feed-forward) after removing

the positional embedding. When the input sequence length equals to 192, the average

MSE and MAE of all variants show insignificant differences (MSE and MAE decrease

by 6% and 1%, respectively) after removing the positional embedding. When the input

sequence length equals to 336, the average MSE and MAE of all variants decrease by

8.2% and 13.1% (convolutional embedding), 14.9% and 16.5% (convolutional attention),

10.6% and 6.8% (convolutional feed-forward), 15.6% and 9.1% (recurrent embedding),

16.9% and 18.6% (recurrent attention), and 15.1% and 20.9% (recurrent feed-forward)

after removing the positional embedding. Similar to classification, the convolutional em-
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Table 6.7: The mean absolute error of different models on selected datasets under input
sequence length 192.

Model ETTh1 ETTh2 ETTm1 ETTm2 Average
BasicModel (w/ PE) 1.1132 0.7851 1.2331 0.8086 1.0733
BasicModel (w/o PE) 1.9907 2.0043 1.9369 1.8127 1.4203

ConvEmbedding (w/ PE) 0.3789 0.5231 0.5219 0.3868 0.4527
ConvEmbedding (w/o PE) 0.3497 0.4298 0.4426 0.3641 0.3966

ConvAttention (w/ PE) 0.3482 0.4556 0.5623 0.3619 0.4321
ConvAttention (w/o PE) 0.3628 0.4479 0.5167 0.3523 0.4199

ConvFFD (w/ PE) 0.4176 0.5739 0.4956 0.3496 0.4592
ConvFFD (w/o PE) 0.4649 0.5895 0.5059 0.3721 0.4831

RecEmbedding (w/ PE) 0.4493 0.5084 0.5498 0.3669 0.4686
RecEmbedding (w/o PE) 0.4081 0.4445 0.4941 0.3586 0.4263

RecAttention (w/ PE) 0.4362 0.4261 0.4753 0.3936 0.4328
RecAttention (w/o PE) 0.3934 0.4471 0.5152 0.3862 0.4355

RecFFD (w/ PE) 0.4168 0.4367 0.4573 0.3941 0.4262
RecFFD (w/o PE) 0.4086 0.4289 0.4654 0.3843 0.4218

bedding and recurrent embedding models without the positional embedding achieve the

best performance in terms of average MAE and MSE. Our results suggest that encoding

position information before multi-head attention and feed-forward layers significantly

improves the models’ performance in both forecasting and classification.

6.5.3 Analysis

The positional embedding enhances the basic model’s performance for both classification

and forecasting tasks, while its impact on the variants is task-wise. For all variants,

the decreases in average accuracy and average macro F1-Score caused by positional

embedding are 16.6% and 15.4%, respectively, in classification. For forecasting, the

performance degradation varies under different input sequence lengths. The MAE and

MSE have an average decrease of 5.2% and 8.3%, respectively, when the input sequence

length is 96. While the positional embedding slightly improves the variants’ performances

with an average increase of 6% and 1% in MSE and MAE, respectively with the input

sequence length 192. When the input sequence length is 336, the positional embedding

positively impacts the variants’ performance, increasing the average MSE and MAE by

14.1% and 12.6%, respectively. With the increase of the input sequence length, all the

methods realize better performances, but the positional embedding shows a different

84



6.5. RESULTS AND ANALYSIS

Table 6.8: The mean square error of different models on selected datasets under input
sequence length 192.

Model ETTh1 ETTh2 ETTm1 ETTm2 Average
BasicModel (w/ PE) 2.9371 1.2642 2.9371 1.6074 2.1865
BasicModel (w/o PE) 3.6902 3.4508 3.5946 3.4794 3.5538

ConvEmbedding (w/ PE) 0.2986 0.4283 0.5803 0.4026 0.4275
ConvEmbedding (w/o PE) 0.2965 0.3371 0.5467 0.3492 0.3824

ConvAttention (w/ PE) 0.3532 0.3648 0.4699 0.3494 0.3843
ConvAttention (w/o PE) 0.4145 0.3279 0.4482 0.3379 0.3821

ConvFFD (w/ PE) 0.2901 0.5072 0.4866 0.3351 0.4048
ConvFFD (w/o PE) 0.3296 0.5698 0.5741 0.3755 0.4623

RecEmbedding (w/ PE) 0.3472 0.5386 0.5108 0.4243 0.4552
RecEmbedding (w/o PE) 0.3336 0.4269 0.5069 0.3769 0.4111

RecAttention (w/ PE) 0.3939 0.4331 0.4817 0.4248 0.4334
RecAttention (w/o PE) 0.3682 0.4774 0.5442 0.3985 0.4471

RecFFD (w/ PE) 0.3941 0.4156 0.4818 0.4149 0.4266
RecFFD (w/o PE) 0.3518 0.4069 0.4907 0.3915 0.4102

Table 6.9: The mean absolute error of different models on selected datasets under input
sequence length 336.

Model ETTh1 ETTh2 ETTm1 ETTm2 Average
BasicModel (w/ PE) 1.3801 0.8784 1.0757 0.8758 1.0525
BasicModel (w/o PE) 1.3885 1.1257 1.3596 1.2475 1.2803

ConvEmbedding (w/ PE) 0.3049 0.3475 0.3051 0.2901 0.3119
ConvEmbedding (w/o PE) 0.3237 0.3805 0.3182 0.3362 0.3397

ConvAttention (w/ PE) 0.3123 0.3145 0.3273 0.2943 0.3121
ConvAttention (w/o PE) 0.3491 0.3819 0.3924 0.3449 0.3671

ConvFFD (w/ PE) 0.3089 0.3571 0.3486 0.3355 0.3375
ConvFFD (w/o PE) 0.3812 0.3785 0.3936 0.3567 0.3775

RecEmbedding (w/ PE) 0.3131 0.3145 0.3437 0.3275 0.3247
RecEmbedding (w/o PE) 0.3842 0.3916 0.3748 0.3887 0.3848

RecAttention (w/ PE) 0.3062 0.3071 0.3269 0.2919 0.3080
RecAttention (w/o PE) 0.3783 0.3645 0.3910 0.3494 0.3708

RecFFD (w/ PE) 0.3141 0.3124 0.3291 0.2981 0.3134
RecFFD (w/o PE) 0.3804 0.3721 0.4162 0.3082 0.3692
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Table 6.10: The mean square error of different models on selected datasets under input
sequence length 336.

Model ETTh1 ETTh2 ETTm1 ETTm2 Average
BasicModel (w/ PE) 2.0213 1.1170 1.3299 1.1110 1.3948
BasicModel (w/o PE) 2.1449 1.5866 1.9667 1.8203 1.8796

ConvEmbedding (w/ PE) 0.3087 0.3198 0.3149 0.2968 0.3101
ConvEmbedding (w/o PE) 0.3679 0.4031 0.3276 0.3279 0.3566

ConvAttention (w/ PE) 0.3165 0.2906 0.2954 0.2998 0.3006
ConvAttention (w/o PE) 0.3557 0.3715 0.3957 0.3174 0.3601

ConvFFD (w/ PE) 0.2955 0.3369 0.3349 0.2901 0.3144
ConvFFD (w/o PE) 0.3254 0.3402 0.3731 0.3113 0.3375

RecEmbedding (w/ PE) 0.2957 0.3289 0.3257 0.2854 0.3089
RecEmbedding (w/o PE) 0.3467 0.3294 0.3559 0.3261 0.3395

RecAttention (w/ PE) 0.3044 0.3188 0.3187 0.2798 0.3054
RecAttention (w/o PE) 0.3978 0.3921 0.3891 0.3211 0.3750

RecFFD (w/ PE) 0.2964 0.3184 0.3186 0.2935 0.3067
RecFFD (w/o PE) 0.4076 0.3942 0.4177 0.3304 0.3875

Table 6.11: The classification experimental results comparison between the models on
the original data and the inverted data (degradation is the comparison between the
model under original data and inverted data).

Model Accuracy Precision Recall macro F1-Score
Degradation
(Accuracy)

Degradation
(macro F1-Score)

BasicModel (inverse) 0.6031 0.5519 0.5338 0.5427
0.56% -2.92%

BasicModel 0.6065 0.5593 0.4988 0.5273
ConvEmbedding (inverse) 0.6172 0.5870 0.5794 0.5832

19.79% 24.05%
ConvEmbedding 0.7695 0.7685 0.7674 0.7679

ConvAttention (inverse) 0.5766 0.5574 0.4704 0.5102
16.59% 22.70%

ConvAttention 0.6913 0.6741 0.6464 0.6600
ConvFFD (inverse) 0.5255 0.5093 0.4987 0.5039

28.57% 28.95%
ConvFFD 0.7357 0.7148 0.7036 0.7092

RecEmbedding (inverse) 0.4749 0.4667 0.4263 0.4456
40.70% 42.97%

RecEmbedding 0.8008 0.7852 0.7776 0.7814
RecAttention (inverse) 0.5505 0.5778 0.5367 0.5565

15.15% 14.53%
RecAttention 0.6488 0.6556 0.6466 0.6511

RecFFD (inverse) 0.6590 0.6741 0.6504 0.6620
14.80% 13.07%

RecFFD 0.7735 0.7630 0.7600 0.7615

impact on the variants. We believe that long-time series sequences lead to challenges for

the convolutional layer and the recurrent layer to encode long-term position information

as they lack the capacity to capture long-term dependencies [11, 88], making the variants

relying on the sequential order information provided by the positional embedding.

Noted, on some classification datasets such as Cricket (the sequence’s length is 1197),
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Figure 6.3: The pipeline of the time series inverse study. We first train all methods
using the samples from the training set without positional embedding. We then use the
samples and the inverted samples in the test set to evaluate the trained models and
explore the performance differences.

EigenWorms (the sequence’s length is 17984), and MotorImagery (the sequence’s length

is 3000), although the length of time series sequences from these datasets is much longer

than 336, the variants realize better performances without the positional embedding. We

think that is because the classification task does not require strict position information

compared with forecasting. Hence, the convolutional layer or recurrent layer has enough

capacity to encode the position information to model time series sequences.

Besides, we find that the convolutional embedding and the recurrent embedding

achieve the best performance among the convolutional-based and recurrent-based vari-

ants and they both significantly outperform the basic model with the positional embed-

ding, indicating the importance of encoding the position information before attention

calculation and feed-forward layer.

We believe that the impact of the positional embedding on model performance varies

across classification and forecasting tasks due to differences in the temporal information

that the model focuses on. Specifically, for classification tasks, the model concentrates

on the differences between time series data across different classes, whereas positional

embedding is content-irrelevant, i.e., adding the same position information to data with
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Table 6.12: The forecasting experimental results comparison between the models on the
original data and the inverted data (degradation is the comparison between the model
under original data and inverted data).

Model MSE MAE Degradation (MSE) Degradation (MAE)
BasicModel (inverse) 2.1659 1.4596

0.98% 5.12%
BasicModel 2.1449 1.3885

ConvEmbedding (inverse) 1.5588 1.3756
361.23% 186.30%

ConvEmbedding 0.3380 0.4805
ConvAttention (inverse) 0.9672 0.9910

186.07% 106.20%
ConvAttention 0.3381 0.4806

ConvFFD (inverse) 1.5957 1.1928
381.36% 152.34%

ConvFFD 0.3315 0.4727
RecEmbedding (inverse) 1.4649 1.2381

336.11% 158.26%
RecEmbedding 0.3359 0.4794

RecAttention (inverse) 1.3485 1.2235
299.08% 154.58%

RecAttention 0.3379 0.4806
RecFFD (inverse) 0.7811 0.8320

131.23% 73.23%
RecFFD 0.3378 0.4803

various labels. Because the convolutional layer and the recurrent layer consider con-

tent information when encoding the position information, redundant content-irrelevant

positional embedding may lead to capturing spurious correlations that could harm the

performance. On the other hand, time series forecasting requires the model to focus

on the temporal patterns of the data itself rather than the differences between classes

and to harness the strict sequential order information to infer future time series data.

Consequently, utilizing positional embedding does not significantly harm the model’s

forecasting performance when the length of the input time series is relatively short,

while it improves variants’ performance facing long input time series sequences.

6.6 Time Series Inverse Study

We further examined the ability to capture position information of the basic model and its

variants through the order inverse study illustrated in Figure 6.3. Specifically, we trained

all models without positional embedding and subsequently tested them after inverting

the sequential order of the input data in the test set. We recorded the performance of

each model and the attention distribution heat maps of the last self-attention layer. By

comparing the results obtained from the original and inverted test data, we aimed to

investigate the impact of sequential order information on all methods. Further details

88



6.6. TIME SERIES INVERSE STUDY

are presented in the following sections.

6.6.1 Classification

We chose ERing for our experiments for two main reasons: Firstly, its time series has

a length of 65, allowing for more intuitive and interpretable attention heat maps than

longer sequences. Secondly, all the tested models demonstrated satisfactory performance

(with an average accuracy of 0.7180). This suggests that the models focused on the

most critical slots of the time series, ensuring the attention heat maps produced are

convincing. We additionally use precision and recall to gain further insights into how

the models perform. The results of the basic model, convolutional-based variants and

recurrent-based variants can be found in Table 6.11.

The evaluation results demonstrate that inverting the order of the time series data

has nearly no impact on the basic model, but it causes a drastic degradation in the

variants’ performance. Specifically, the average accuracy and macro F1-Score of the

variants decrease by 22.6% and 24.4%, respectively.

To investigate the variants’ sensitivity to the changes in the sequential order informa-

tion, we explore the attention distributions of all models under the original and inverted

time series data and the difference between them. The attention distribution heat maps

are shown in Figure 6.4, Figure 6.5, and Figure 6.6. We find that the variants are indeed

sensitive to changes in data order, as the attention distribution varies significantly after

inverting the sequential order of the test data. We believe that the variants, which

contain recurrent or convolutional layers, can capture the potential position information

of the data. Therefore, the inverted sequential order negatively impacts the model’s

performance by misleading it into focusing on unreasonable time slots. In contrast, the

results of the basic model are different. Figure 6.4 (c) shows that the basic model’s atten-

tion distribution varies slightly after inverting the test data compared with the variants,

indicating that the vanilla Transformer is insensitive to the position information of the

data.

From either classification results and attention distribution heat maps, we find that

spurious position information caused by inverting the data’s sequential order impacts

the basic model and the variants differently. The variants’ performance deteriorates

significantly, while the basic model’s performance is slightly affected. We believe the

variants’ ability to capture potential position information makes it possible to be deceived

by spurious position information. While inverting the order cannot significantly affect the
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(a) BasicModel (b) BasicModel (inverse) (c) BasicModel (diff)

Figure 6.4: Attention distribution heat maps of the basic model under original and
inverted test data in classification. Diff means difference, resulting from the subtraction
between the attention weights under the original and inverted data.

basic model as it is insensitive to position information and can not observe the changes

in the sequential order.

6.6.2 Forecasting

Our experiments on the ETTh1 dataset under the input sequence length 96 used

the same pipeline as the classification task, and the results in Table 6.12, Figure 6.7,

Figure 6.8, and Figure 6.9 support our previous conclusions. However, we observe that

the performance degradation of all variants is more significant in the forecasting than

in classification. Specifically, the average degradation of mean square error and mean

absolute error are 282.51% and 138.48%, respectively, while the average degradation of

accuracy and macro F1-Score are 22.60% and 24.38%, respectively. We believe that the

strict and precise sequential order required for inferring future time series data in the

forecasting task may account for this difference, whereas the classification task focuses

more on differences between the time series sequences with different classes rather than

their sequential order.

6.7 Conclusion

Current Transformer-based architectures containing position-sensitive layers routinely

use positional embedding without comprehensively considering its effectiveness. In this

work, we investigate the impact of positional embedding on the vanilla Transformer

architecture and six types of Transformer-based variants in time series classification

and forecasting. Our experimental results on 30 public classification datasets and 4 fore-

casting datasets revealed that the positional embedding positively influences the vanilla
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(a) CE (b) CE (inverse) (c) CE (diff)

(d) CA (e) CA (inverse) (f) CA (diff)

(g) CF (h) CF (inverse) (i) CF (diff)

Figure 6.5: Attention distribution heat maps of convolutional-based variants under
original and inverted test data in classification. CE, CA, and CF mean convolutional
embedding, convolutional attention, and convolutional feed-forward, respectively. Diff
means difference, resulting from the subtraction between the attention weights under
the original and inverted data.

Transformer architecture in both tasks, while its influence on the variants is negative

and input sequence length-dependent for classification and forecasting, respectively. Our

analysis of the model’s performance and attention distributions under inverted time

series data shows that the ability of the variants to capture potential position information

resulted in focusing on the spurious sequential order information caused by the inverted

sequential order, leading to a more drastic degradation in their performance compared to

the basic model. Our findings suggest that position-sensitive layers in Transformer-based

architectures can encode the potential position information, likely making positional

embedding unnecessary in classification but its utilization may depend on the length

91



CHAPTER 6. AN EMPIRICAL STUDY ON POSITIONAL EMBEDDING FOR
TRANSFORMER

(a) RE (b) RE (inverse) (c) RE (diff)

(d) RA (e) RA (inverse) (f) RA (diff)

(g) RF (h) RF (inverse) (i) RF (diff)

Figure 6.6: Attention distribution heat maps of recurrent-based variants under original
and inverted test data in classification. RE, RA, and RF mean recurrent embedding,
recurrent attention, and recurrent feed-forward, respectively. Diff means difference,
resulting from the subtraction between the attention weights under the original and
inverted data.

(a) BasicModel (b) BasicModel (inverse) (c) BasicModel (diff)

Figure 6.7: Attention distribution heat maps of the basic model under original and
inverted test data in forecasting. Diff means difference, resulting from the subtraction
between the attention weights under the original and inverted data.
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(a) CE (b) CE (inverse) (c) CE (diff)

(d) CA (e) CA (inverse) (f) CA (diff)

(g) CF (h) CF (inverse) (i) CF (diff)

Figure 6.8: Attention distribution heat maps of convolutional-based variants under
original and inverted test data in forecasting. CE, CA, and CF mean convolutional
embedding, convolutional attention, and convolutional feed-forward, respectively. Diff
means difference, resulting from the subtraction between the attention weights under
the original and inverted data.

of the input time series in forecasting. Additionally, the convolutional embedding and

the recurrent embedding outperform other variants, making them preferable when

considering position-sensitive layers in the Transformer-based architecture. As most

existing transformer-based architectures use positional embedding routinely without

consideration of its effectiveness, through this study, we hope to bring some insights

regarding how to implement positional embedding facing specific scenarios.
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(a) RE (b) RE (inverse) (c) RE (diff)

(d) RA (e) RA (inverse) (f) RA (diff)

(g) RF (h) RF (inverse) (i) RF (diff)

Figure 6.9: Attention distribution heat maps of recurrent-based variants under original
and inverted test data in forecasting. RE, RA, and RF mean recurrent embedding,
recurrent attention, and recurrent feed-forward, respectively. Diff means difference,
resulting from the subtraction between the attention weights under the original and
inverted data.
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7
AN EXPLANATION MODULE FOR DEEP NEURAL

NETWORKS FOR MULTIVARIATE TIME SERIES

CLASSIFICATION

7.1 Introduction

Currently, deep neural networks have been widely adopted for multivariate time series

classification [42] and achieved state-of-the-art performance in various tasks, thanks to

the ability to capture complicated, non-linear relations between inputs and outputs [80].

Generally, deep neural networks stack multiple neural layers to automate feature extrac-

tion and representation learning, and their internal mechanisms remain unrevealed to

the end user. Nevertheless, many real-world applications find the significance of gaining

insights into the critical variables that impact the decisions of classifiers [100] to ap-

proach a better understanding of specific domains. For example, in aquaculture, multiple

environmental conditions (e.g., light) jointly affect the creature’s growth. However, al-

though researchers can monitor environmental variables and growth of creatures [50, 51]

and predict the growth trend by solving a multivariate time series classification problem,

it is more desirable to derive human-understandable interpretations of which factors

play the major role in determining the classification outcomes. Various applications

in other domains, e.g., healthcare and medical diagnosis [46, 90] call for explainable

multivariate time series classification as well.

A deep neural network for multivariate time series classification usually consists of
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two components: backbone and head. The backbone is responsible for extracting temporal

features and harnessing the inter-relationship of the variables to learn the represen-

tations of the input data, called feature maps. The head can map the feature maps to

the possibility distribution of the output labels, i.e., the classes. The backbone conducts

feature extraction by fusing the temporal features from different variables. While it

is beneficial for the model to harness the temporal features of the input time series

effectively, it leads to challenges in finding the important information from variables. For

example, in convolutional neural networks, the filter in the first layer will harness all the

channels’ information simultaneously—the channels are fully connected for information

fusion across all the channels. Hence, as the networks go deep, it is nearly impossible

for the typical convolutional neural network to track the variables’ importance during

inference.

Although many studies have sought explanations for classification problems [1, 144],

they mostly design separate architectures that are specific to certain deep neural network

types. They need to re-design the backbone architecture (following the ad-hoc approach)

or propose post-hoc techniques, which lack the flexibility to be applied to different

deep neural networks. Besides, the whole architecture has to be re-evaluated when

the task or circumstance changes, leading to extra efforts for model adaptation. All

the above deficiencies call for a generic module that is pluggable into various deep

neural networks for multivariate time series classification. In this regard, we propose

an explanation module that can be seamlessly integrated into deep neural networks to

gain the importance of variables in multivariate time series classification. We propose

an explanation module that can be plugged into existing popular deep neural networks,

such as convolutional neural networks and recurrent neural networks, to infer the

importance of variables in multivariate time series classification automatically. We

conducted experiments on four benchmark multivariate time series datasets using four

variants of convolutional neural network and recurrent neural network to evaluate our

proposed module. Our experiments on input variables with added noises validate the

effectiveness of the module. Besides adding explainability, the experimental results show

that our module enables the multivariate time series classification models to better

leverage the temporal feature and achieve better accuracy. We provide implementation

details of the proposed module and related experiments to ensure our module can be

re-implemented conveniently.
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Figure 7.1: The proposed module is pluggable into any existing deep learning model (i.e.,
backbone network) in a backbone-head fashion. Yellow blocks represent our proposed
module, and Blue ones stand for the original neural network model. The module obtains
the importance of variables by calculating attention on top of the feature maps extracted
by the backbone (FMbackbone) and by the grouped convolution layers (FMinput), respec-
tively. The module updates FMbackbone twice according to the outputs of Attention and
SENet to enhance the backbone network’s performance.

7.2 Methodology

In a typical multivariate time series classification process (represented by blue blocks

in Figure 7.1), the input firstly goes through the backbone (e.g., convolutional neural

network or recurrent neural network) to generate feature maps (denoted by FMbackbone

∈RN×L). Then, the head (usually a fully connected layer or 1D convolutional layer) maps

feature maps to a probability distribution of classes.

Our proposed module (represented in yellow blocks in Figure 7.1) aims to explore

the importance of variables for pluggable explanation in multivariate time series clas-

sification. Our module works in the following steps. Given input fed to a total grouped

convolution layer, the convolution filters conduct separate calculations on each variable.
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Normal convolution is fully connected in the channel perspective, causing the information

flow among the channels. Total grouped convolution splits the channel of the input data

and does convolutions on each channel. In this manner, the number of filters is equal to

the number of variables. Hence, during this process, the module does not consider any

inter-relationship of the variables. The feature map of each channel is the representation

of each variable. The output feature-map is indicated by FMinput ∈ RM×L, where M is

the number of variables, and L is the length of the feature-map. Noted, the length of

the FMinput should be the same as FMbackbone for the attention calculation. Generally,

the backbone downsamples the input that leads to the small length of FMbackbone than

the input time series sequence. If necessary, the module will adjust the kernel size of

the total grouped convolution according to the two feature maps to ensure their lengths

are equal. Typically, using a large stride for downsampling helps ensure the feature

maps’ lengths meet the module’s requirements. Since no information flows across vari-

ables, each channel of FMinput can be considered as the vectorized representation of the

corresponding variable.

After this, the attention between the FMbackbone and FMinput is calculated. In this

step, we have the importance of the variables according to the channels of FMbackbone,

indicated by Attnnm ∈RN×M , it also can be seen as the weights of the variables. Besides,

FMbackbone is updated based on the results. In the next step, FMbackbone is sent to

the SENet to obtain the importance of the channels or the weights of the channels. As

the importance is learned according to the inter-relationship of the channels and the

importance of different channels regarding the output, we indicate it using SelfAttnn ∈
RN , while the FMbackbone is updated the second time. Then, we have the importance of

the variables regarding the channels of the FMbackbone Attnnm as well as the importance

of the channels of the FMbackbone SelfAttnn. In the last step, the module does the

weighted sum to obtain the importance of the variables as Eq. (7.1):

(7.1) Importance m =
N∑
1

Attn nm × Self Attn n

where Importancem ∈RM . In this way, the importance of the M variables on the decision-

making process of the classifier is obtained.

As the feature maps FMbackbone are updated twice based on the results of two atten-

tion calculation steps, the model can utilize the temporal information more effectively

to achieve better performance. Specifically, the FMinput contains different granular

feature-maps compared with FMbackbone. Hence, the module can harness more feature

maps to achieve better classification accuracy. Besides, our module can be integrated into
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the classifier following a backbone-head style. It has nearly no difficulty or limitation for

combining the proposed module with the existing models to figure out the importance of

multivariate time series classification variables.

7.3 Experiments

7.3.1 Datasets

We conducted experiments on four carefully selected public multivariate time series

datasets (Table 7.1), which are representative of different sizes and domains. Table 7.1

includes the number of classes, the number of variables for each input sequence, the

length of the sequence, and the train-test split ratio. More details are as follows:

• AREM [35]: The AREM dataset contains time series sequences recorded by sensors

placed in different positions of the body to recognize the activities. The dataset

consists of six activity types: cycling, lying, sitting, standing, walking, bending1,

and bending2.

• LP5 [35]: The LP5 dataset is for robot failures detection in motion. It contains five

classes, including normal, bottom collision, bottom obstruction, collision in part,

and collision in tool.

• ArabicDigits [35]: The ArabicDigits is used to detect which Arabic digits the

writer is writing. So, it is very intuitive that the dataset contains 10 classes,

including the digits ranging from 0 to 9.

• Wafer [93]: The Wafer database comprises a collection of time-series data sets

where each file contains the sequence of measurements recorded by one vacuum-

chamber sensor during the etch process applied to one silicon wafer during the

manufacture of semiconductor microelectronics. It contains two classes: normal

and abnormal.

For each dataset, we normalized it to zero mean and unit standard deviation; we also

applied zero paddings to cope with sequences with different lengths.

Please add the following required packages to your document preamble:
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Table 7.1: Experimental datasets

Dataset Classes Number of variables Sequence length Train-test ratio

AREM [35] 7 7 480 50:50
LP5 [35] 5 6 15 39:61

ArabicDigits [35] 10 13 93 75:25
Wafer [93] 5 18 214 25:75

7.3.2 Baseline Methods

We select two representative variants of the convolutional neural network and two

representative variants of the recurrent neural network to demonstrate the feasibility of

plugging our proposed module into existing models. These models also serve as baseline

methods for comparative experiments.

• ResNet [55] and Res2Net [44]: Popular Convolutional Neural Network-based

models. We train ResNet on the AREM dataset and train Res2Net on the LP5

dataset. ResNet and Res2Net contain 4 convolutional layers. Each convolutional

layer is 1D convolution to ensure the model is adaptable for time series data.

• LSTM [56] and GRU [24]: Popular Recurrent Neural Network-based models. We

train LSTM on the ArabicDigits dataset and train GRU on the Wafer dataset. As

LSTM and GRU contain 2 recurrent neural network layers, we use the last hidden

state as the information vector. The vector is sent to a fully connected layer to map

the information vector to the probability distribution of the classes.

7.3.3 Evaluation Procedure

For each model, we followed the given train-test split regulation and first trained it on

the training set. We train our model on a single GTX 3090 GPU with 24 GB memory. We

apply oversampling to classes with fewer samples to mitigate the impact of imbalanced

class distribution. Then, considering the importance of variables varies across classes,

for each dataset, we select a particular class from the test set to evaluate the importance

of variables produced by our module. Specifically, we select the sixth class (i.e., bending2),

the third class (i.e., bottom obstruction), the first class (i.e., digit 0), and the first class

(normal) from the four datasets (AREM, LP5, ArabicDigits, and Wafer), respectively, to

evaluate our experimental results.

We also generate synthetic datasets by adding random noises to the original datasets

to further validate the soundness of the importance of variables produced by our module.
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Specifically, we first trained and evaluated all the methods on the selected datasets

and recorded the performances. After that, we sample the noise data from the normal

distribution, add it to the variables separately, and test the model with the contaminated

data. Intuitively, if the variable is important when adding the noise to it, it should dra-

matically influence the decision-making of the classifier. In other words, if the influence

of the variable is significant, then the accuracy will fall significantly when the variable

is affected by the noise and vice versa.

We use accuracy as the evaluation metric, which is commonly used as the sole

performance indicator in multivariate time series classification. We tested the model five

times on the datasets and calculated the average accuracy and the standard deviation.

Since we concentrate on the effectiveness of the proposed module, accuracy suffices to

suggest the quality of different methods’ results.

7.3.4 Results

7.3.4.1 Performance on real datasets

Table 7.2, Table 7.3, Table 7.4, and Table 7.5 show our experimental results on the four

datasets. Our module can be implemented to be combined with various models without

much extra effort. Through the utilization of our module, we can obtain the importance

of the variables quantitatively. To make the results more convenient to understand, we

execute softmax on the results. Thus, all the weights are in [0,1], and the sum is 1. We

select a specific class for constructing the synthetic dataset and test the importance given

by the module, i.e., we add noise manually to the variables separately; then, we explore

the accuracy changes thanks to the noise. We present the accuracy of the specific dataset

before and after adding noise to the variable separately. Intuitively, a more critical

variable bears a great change in classification accuracy. Our results on the Wafer dataset

(shown in Table 7.2) show that the classification accuracy is 99.87% on the selected class.

The results produced by the module indicate that the 5th and 6th variables are the most

important and least important, respectively. As we repeat the experiments five times, we

also give the standard deviations of the average accuracy with and without the noise.

7.3.4.2 Validating explanation ability

We tested adding noises to the variables manually, which resulted in drastic changes

in the accuracy on the 5th variable while little change on the 6th variable. The results

indicate that noises can influence the crucial variables, and the regulation has well-
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Table 7.2: Experimental results on Wafer dataset

Accuracy (sd) (w/o noise) 99.87% (0.68%)
Variable id 1 2 3 4 5 6

Importance of variables 0.101 0.129 0.158 0.261 0.276 0.075
Accuracy (%) (w/ noise) 99.01 96.38 96.38 96.38 94.38 99.75

Standard Deviation (w/noise) 0.05 0.39 0.38 0.42 0.76 0.04
Accuracy change (∆%) 0.86 3.49 3.49 3.49 4.9 0.12

Table 7.3: Experimental results on LP5 dataset

Accuracy (sd) (w/o noise) 96.15% (2.58%)
Variable id 1 2 3 4 5 6

Importance of variables 0.225 0.157 0.186 0.082 0.148 0.202
Accuracy (%) (w/ noise) 46.15 88.46 76.92 92.30 92.30 73.07

Standard Deviation (%) (w/noise) 2.81 2.59 2.57 2.96 2.28 2.70
Accuracy change (∆%) 50.00 7.69 19.23 3.85 3.85 23.08

Table 7.4: Experimental results on AREM dataset

Accuracy (sd) (w/o noise) 100% (0)
Variable id 1 2 3 4 5 6 7

Importance of variables 0.215 0.150 0.060 0.115 0.174 0.229 0.057
Accuracy (%) (w/ noise) 0.00 0.00 71.43 71.43 14.28 0.00 71.43

Standard Deviation (%) (w/noise) 6.32 4.90 6.46 7.07 4.99 6.91 6.18
Accuracy change (∆%) 100.00 100.00 28.57 28.57 85.71 100.00 28.57

matched the hypothesis. On the other datasets, the results are similar. Hence, we can

say that the importance that the module obtains is convincing.

It is worth noting that the accuracy of all the datasets is quite high. That is because

we select the specific class to evaluate our results. We have found that a satisfying

performance is crucial to obtain reasonable results. Because when the classification

accuracy is high, that means the model focuses on the right variables.

7.3.4.3 Impact on performance

Besides explanation ability, our module can improve the performance of the baseline

models on the respective datasets. Specifically, Figure 7.2 suggests that all the selected

classifiers achieve better classification accuracy on each dataset, indicating the proposed

module’s superiority. The model better harnesses the temporal features as it updates

the feature maps (extracted by the backbone) twice according to the self-attention of the

feature maps and the attention between feature maps and input.
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Table 7.5: Experimental results on ArabicDigits dataset

Accuracy (sd) (w/o noise) 100% (0)
Variable id 1 2 3 4 5 6 7

Importance of variables 0.071 0.001 0.074 0.042 0.076 0.386 0.024
Accuracy (%) (w/ noise) 98.83 99.10 98.83 99.10 97.54 29.24 98.83

Standard Deviation (%) (w/noise) 0.35 0.21 0.25 0.24 0.34 0.33 0.36
Accuracy change (∆%) 0.27 0.00 0.27 0.00 1.56 69.86 0.27

Variable id 8 9 10 11 12 13
Importance of variables 0.100 0.030 0.110 0.031 0.052 0.002
Accuracy (%) (w/ noise) 85.10 98.04 61.72 98.43 98.83 98.83

Standard Deviation (%) (w/noise) 0.38 0.33 0.49 0.46 0.91 0.45
Accuracy change (∆%) 14.00 1.06 37.38 0.67 0.27 0.27

Table 7.6: Training time consumption comparison between the model with the proposed
module and without the proposed module on the Wafer dataset

Average Training Time (s) Standard Deviation (s)
Without the module 32.95 3.9

With the module 36.02 2.76

The module helps the original model fuse various feature maps with different levels

and improve the classifier’s performance. The accuracy given in Figure 7.2 is the average

accuracy of all the classes instead of a specific class. Hence, the accuracy differs from the

results of the tables shown in the previous contents.

Besides, the proposed module does not significantly cause extra time consumption. To

indicate that, we record the training time consumption shown in Table 7.6 on the Wafer

dataset. The corresponding method we use on the Wafer dataset is the LSTM with three

layers. We train the model on Intel Core i7-8550 with 16GB RAM instead of GTX 3090

GPU because the GPU is too powerful to demonstrate the time consumption difference.

In Table 6, we can see the average training time increased by 9%, thus, we can say the

proposed module is efficient.

7.4 Conclusion

We propose an explanation module to explore the importance of the variables for mul-

tivariate time series classification. Our module can be easily plugged into the existing

models and quantitatively figure out the importance of the variables for classification.

Our extensive experiments demonstrate its effectiveness. Besides, the module can im-

prove the model’s performance further, as it is beneficial for leveraging the temporal
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Figure 7.2: Accuracy comparison between the original model and the model combined
with our proposed module

information of the input. We also provide some tricks for implementing our module.
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CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this thesis, we introduce how to fully leverage the inherent information of the time

series sequences for multivariate time series classification. We propose five methods to

address the challenges, including leveraging multi-scale temporal dependencies, adaptive

learning strategies for different frequency components, the effectiveness of positional

embedding, leveraging both temporal and frequency information, and ensuring the

model’s explainability. Specifically, the proposed attentional architecture can harness

multi-scale temporal dependencies through a hierarchically connected convolutional

structure; the proposed dynamic structure can realize adaptive learning strategies

through flexible information flow; the dual-stream architecture can generate a new

modality containing frequency information from time series to harness both frequency

and temporal information for classification; the empirical study on transformer-based

models can provide practical suggestions on how to implement positional embedding

effectively; and the pluggable explanation module can improve the interoperability of the

existing methods. We selected multiple public benchmark datasets for the assessment to

demonstrate the superiority of the proposed methods. Specifically, we make the following

contributions:

• Attentional Gated Res2Net: we propose the Attentional Gated Res2Net using

hierarchical residual-like connections to achieve multi-scale receptive fields and
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capture multi-granular temporal information. We evaluate the model on diverse

datasets that contain sequences of various lengths with a wide range of variable

numbers. The experimental results show the model outperforms several baselines

and state-of-the-art methods by a large margin. We thoroughly investigate the

effect of different components and settings on the model’s performance and provide

hands-on advice on applying our model to a new problem. Our test on plugging the

model into the state-of-the-art architecture demonstrates the potential for using

our model as a plugin to improve the performance of existing models.

• Leveraging temporal and frequency information: we propose a novel dual-

stream architecture for accurately classifying multivariate time series sequences.

The method leverages the inherent frequency information of the time series data by

implementing Short-Time Fourier Transform to obtain the frequency components

and their temporal positions. We construct a dual-stream architecture based on

ResNet, which can leverage both 1D and 2D representations effectively to classify

multivariate time series sequences. We evaluate the proposed model on diverse

datasets containing sequences of various lengths and variable numbers. The exper-

imental results show that our method significant outperforms several baseline and

state-of-the-art methods. We also comprehensively investigate the effectiveness of

the model’s components and settings on the performance.

• Dyformer: we propose a novel dynamic transformer-based architecture called Dy-

former. We first design the hierarchical pooling layer for time series decomposition.

We further propose the Dyformer module to achieve adaptive learning strategies

for different frequency patterns. We also incorporate the proposed Attentional

gated Res2Net to realize the feature-map-wise attention for capturing multi-scale

temporal dependencies. We conduct comprehensive evaluations on a wide range

of datasets comprising sequences of varying lengths and variable numbers. Our

experimental results show that Dyformer achieves better performance compared

to multiple baselines and state-of-the-art methods. Furthermore, We explore the

influence of various components and configurations on the model’s performance.

We also demonstrate that through unsupervised pre-training, Dyformer gains an

improvement over fully supervised learning on datasets with fewer samples.

• An empirical study on positional embedding: we investigate the impact of

positional embedding on the vanilla Transformer architecture and six types of

Transformer-based variants designed for time series-related tasks. Our experimen-
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tal results on 30 public classification datasets and 4 forecasting datasets revealed

that the positional embedding positively influences the vanilla Transformer ar-

chitecture in both tasks, while its influence on the variants is negative and input

sequence length-dependent for classification and forecasting, respectively. Our

analysis of the model’s performance and attention distributions under inverted

time series data shows that the ability of the variants to capture potential position

information resulted in focusing on the spurious sequential order information

caused by the inverted sequential order, leading to a more drastic degradation

in their performance compared to the vanilla transformer. Our findings suggest

that position-sensitive layers in Transformer-based architectures can encode the

potential position information, likely making positional embedding unnecessary

in classification, while its utilization may depend on the length of the input time

series in forecasting. Additionally, the convolutional embedding and the recurrent

embedding outperform other variants, making them preferable when considering

position-sensitive layers in the Transformer-based architecture.

• Explanation module: we propose an explanation module to explore the impor-

tance of the variables for multivariate time series classification. Our module can

be easily plugged into the existing models and quantitatively figure out the impor-

tance of the variables for classification. Our extensive experiments demonstrate its

effectiveness to enhance the existing deep learning-based classifiers’ interpretabil-

ity. Besides, the module can improve the model’s performance as it benefits the

models by facilitating leveraging the temporal information of the input.

8.2 Future Work

We consider future research from the following perspectives:

• We plan to explore the interpretability of our proposed method for leveraging

both temporal and frequency information through visualization technologies for

convolutional neural networks from the computer vision field. As such, the proposed

method can figure out the importance of the time series slots for obtaining more

convincing results. Additionally, we plan to extend our work to more time series-

related tasks, such as time series imputation, forecasting, and abnormal detection.

As these tasks also require capturing multi-range temporal information, we believe

the proposed method can realize good performances.
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• We plan to refine the explanation module to make it feasible to figure out the

importance of both temporal aspects and variable aspects. As some tasks require

importance from both temporal and variable perspectives, this can enlarge the

application scope of the proposed methods.

• We plan to propose an unsupervised time series representation method to avoid the

manually designed positive-pair selection strategy, which may bring inductive bias

that may negatively impact the generalization. We will evaluate it using various

downstream tasks, including classification, forecasting, etc.

• We aim to improve the efficiency of the proposed Dyformer. Dyformer’s reliance on

parallel construction of multi-paths results in a time consumption profile that is

heavily contingent upon the training speed of the path that activates the maximum

number of Dyformer blocks. Consequently, the activation of fewer Dyformer blocks

along certain paths may not yield a significant acceleration in the overall training

speed. This trade-off between training speed and performance enhancement is a

notable limitation of Dyformer, as it prioritizes the latter at the expense of the

former. This will make Dyformer applicable for computational resource-limited

devices.
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