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Abstract

The thesis is concerned with optimisation models and algorithms for vehicle routing
problems (VRPs). An optimisation framework called the Lagrangian ILS is developed
which aims at efficiently solving the industry problems. This optimisation framework
adaptively adjusts the weights of the coefficients in the iterated local search metaheuristic
using the Lagrangian relaxation technique.

Three VRPs are studied in this thesis. For each problem, a problem-specific opti-
misation procedure is derived under the Lagrangian ILS framework. The first problem
studied in this thesis is the Workforce Scheduling and Routing Problem where the objec-
tive is weighted on the total cost of outsourcing and the total cost of travelling. A novel
optimisation procedure referred to as the Lagrangian ILS has been tested on a standard
benchmark on this topic. The results of the computational experiments demonstrate the
superior performance of Lagrangian ILS in comparison with the state-of-the-art algorithm
for this problem. The effectiveness of utilising the Lagrangian ILS is particularly notice-
able in large instances, even when the Lagrangian ILS uses only half of the permissible
number of iterations.

The second problem considered in this thesis is a Simultaneous Pickup and Delivery
Problem suggested by an Australian transportation company. The problem has ordered
objectives. The primary objective is to maximise the number of served customers and
the secondary objective is to minimise the total travel time. The thesis formulates the
problem into a mixed integer program and solves the problem with a new optimisation
procedure called ILS2O. The performance of the ILS2O is evaluated on three sets of
benchmarks. One comprises real-world instances provided by the industry partner and
the other two are derived from a standard benchmark for VRPs. The results of the
computational experiments have demonstrated that the ILS2O produces solutions with
high quality and high consistency within the time frame imposed by the industry partner.

The last problem studied is a Simultaneous Pickup and Delivery Problem with Preload-
ing under Uncertainty (SPDPP) which is also motivated by an Australian transportation
company. In this problem, customers are revealed in two stages. The assignment of
customers in the first stage is called preloading. Since preloading is determined with-
out knowing customers in the second stage, this problem is a stochastic vehicle routing
problem. The thesis formulates the SPDPP as a 2-stage stochastic program and solves it
using the Sample Average Approximation (SAA) approach. An optimisation procedure
called ILS-SAA is proposed to accommodate the non-anticipativity constraints. The per-
formance of ILS-SAA is tested on instances derived from historical data provided by the
industry partner. Results of the computational experiments indicate that ILS-SAA yields
favourable solutions within a reasonable time frame.

Thesis supervisors: Dr Hanyu Gu, Associate Professor Dr Yakov Zinder
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1
Introduction

The thesis is concerned with optimisation models and algorithms for vehicle routing

problems. The research presented in this thesis is conducted in collaboration with a

leading Australian transportation company that provides home delivery services to clients

in the retail industry.

The aim of the research is to develop an optimisation component of an integrated

human-computer managerial system where the developed optimisation software is a tool

used by the so-called scheduler (the staff responsible for the allocation of customers

to vehicles). In such a system, a scheduler can use the optimisation software either

for producing an initial version of the allocation that the scheduler can correct if it is

necessary, for improving some already existing version of the allocation or for producing

some alternative version of the allocation. This interactive mode imposes the restriction

that the solution must be produced in seconds rather than minutes.

The vehicle routing problem (VRP) was introduced in Dantzig and Ramser (1959)

and has become one of the most active fields of operations research. Several surveys have

appeared for VRP and its variants, for example, Laporte (2009), Braekers et al. (2016b),

Konstantakopoulos et al. (2020) and several books or chapters of a book have been

devoted to VRP, for example, Golden et al. (2008), Toth and Vigo (2002b) and Toth and

Vigo (2014). A wide variety of optimisation procedures has been developed for the VRP

and its variations, including but not limited to branch-and-price algorithm Bettinelli et al.

(2014); branch-and-cut algorithm Wolfinger and Salazar-González (2021); branch-cut-

and-price algorithm Subramanian et al. (2013); iterated local search Ibaraki et al. (2008),

Xie et al. (2017), Gu et al. (2019); iterated local search with hybrid neighbourhood search

Zhou et al. (2020); variable neighbourhood search Chen et al. (2020); genetic algorithm

Algethami et al. (2019); simulated annealing Wang et al. (2015); large neighbourhood

search Wolfinger (2021); adaptive large neighbourhood search François et al. (2019); tabu
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search Cordeau et al. (1997), Cordeau et al. (2001); tree-based search algorithm with large

composite neighbourhood Schneider and Löffler (2019); memetic algorithm Nagata et al.

(2010); parallel iterated tabu search Cordeau and Maischberger (2012); hybrid adaptive

large neighbourhood search with tabu search Pan et al. (2021).

Among all these methods, the optimisation procedures that use local search permitting

infeasible solutions are particularly interesting (see, for example, Cordeau et al. (1997),

Cordeau et al. (2001), Schneider and Löffler (2019), Ibaraki et al. (2008), Xie et al. (2017),

Zhou et al. (2020), Gu et al. (2019), Nagata et al. (2010), Cordeau and Maischberger

(2012), Pan et al. (2021)). A local search method typically generates a sequence of feasible

solutions, where each subsequent solution has a better value of the objective function than

the previous one. Since VRPs have complex constraints such as time windows, vehicle

capacities, maximum shift duration, etc., such a sequence of feasible solutions that leads

to a desired solution may be difficult to find. The local search permitting infeasible

solutions attempts to overcome this difficulty by exploring a larger set of solutions that

includes both feasible solutions and infeasible solutions.

The advantages of permitting infeasible solutions are evident in Xie et al. (2017)

which proposes an iterated local search (ILS) method for the Workforce Scheduling and

Routing Problem (WSRP). By allowing the violation of time window and maximum shift

duration constraints, the evaluation of the neighbourhoods can be implemented with the

highly efficient concatenation technique Vidal et al. (2013) which significantly reduces

the solution time. Additionally, a small number of iterations are needed to find good

solutions. It is reported in Xie et al. (2017) that instances with 100 tasks can be solved

in at most 40 seconds on average. This superior performance on computational time

indicates that ILS permitting infeasible solutions can be a promising approach for the

studied industry problem in the thesis.

Most optimisation procedures permitting infeasible solutions in the local search com-

ponent construct an augmented objective function that comprises the original objective

function and penalties for the violation of the constraints. The penalty for each constraint

is computed as a measure of the violation multiplied by a certain weight, and weights for

the constraints are updated by multiplying them with some constants.

The author of the thesis implemented the ILS in Xie et al. (2017) for the industry

problem and observed that the constants used to update the weights for the penalty are
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critical for the performance of the ILS. Setting these constants with appropriate values

requires tedious and time-consuming computational experiments. Tuning the setting for

these constants is based on the average performance of the ILS over a benchmark of

instances. Since the ILS is a stochastic procedure, the average performance is used over a

certain number of independent runs. It has been noticed that the ILS can produce much

worse solutions on some runs which indicates the robustness of ILS is not satisfactory.

Accordingly, there is no guarantee that the ILS will perform well on new instances for

industry applications.

This thesis develops an optimisation framework that amalgamates the iterated local

search metaheuristic Lourenço et al. (2019) and Lagrangian relaxation technique Fisher

(1981). This framework referred to as the Lagrangian ILS framework views the weights

for the violation of constraints as Lagrange multipliers and chooses their initial values

as well as dynamically updates them correspondingly. By creating new optimisation

algorithms, this framework has been applied to three practical VRPs. The outcome of

the computational experiments has demonstrated that the algorithms implemented within

this framework produce excellent performance with respect to computational efficiency,

solution quality, and consistency. Below is an outline for each of the problems considered

in this thesis along with a brief overview of the main results presented.

Workforce Scheduling and Routing Problem

The first problem considered in this thesis is the WSRP which has applications rang-

ing from home health care to manpower allocation Castillo-Salazar et al. (2016), Fikar

and Hirsch (2017), Paraskevopoulos et al. (2017). This problem is concerned with the

allocation of tasks (requests for service, customers, patients) to the service providers

(technicians, nurses). The tasks have different locations, and the service providers need

to spend a significant amount of time travelling between these locations. The version

of the WSRP studied in this thesis considers several real-world restrictions, including,

time windows for the tasks, the maximum shift duration for the service providers, and

the compatibility between the service providers and tasks. These restrictions were also

reflected in the second problem studied in this thesis (the industry problem). In addition,

if a task cannot be allocated to a service provider, this task incurs a penalty which will

be referred to as the cost of outsourcing. The objective of the problem is to minimise the

total cost of travelling and outsourcing.
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The thesis presents a new optimisation procedure for the WSRP that amalgamates

the iterated local search and Lagrangian relaxation. This optimisation procedure referred

to as the Lagrangian ILS has been tested on a set of benchmark instances from the

literature, which is regarded as standard in the publications on this topic. The results

of the computational experiments have shown that the Lagrangian ILS outperforms the

state-of-the-art algorithm for WSRP described in Xie et al. (2017) both in terms of

solution quality and computational time. The advantage of using the Lagrangian ILS

becomes more pronounced in large instances, as it outperforms the algorithm in Xie

et al. (2017), even when the Lagrangian ILS is limited to use only half of the permissible

number of iterations.

Multi-attribute Simultaneous Pickup and Delivery Problem

The second problem considered in this thesis is a Simultaneous Pickup and Delivery

Problem that reflects many real-world restrictions and practices. This problem referred

to as the Multi-attribute Simultaneous Pickup and Delivery Problem (MASPDP) is sug-

gested by the industry partner. The MASPDP belongs to a class of problems commonly

referred to as the last-mile delivery that concerns the final stage of a supply chain – the

direct delivery from a depot to customers Lim et al. (2018), Boysen et al. (2021). It is

also the most expensive and least efficient part of the supply chain Gevaers et al. (2011).

Due to urbanisation and the growth of e-commerce, this problem has become critical in

the past decades.

In comparison with the WSRP, the MASPDP considers many additional real-world

restrictions and practices, including, open routes, vehicles with different capacities, a

roster that specifies the time when a vehicle can load at the depot, and simultaneous

pickup and delivery. The objectives for the MASPDP are ordered where the primary

objective is to maximise the number of served customers and the secondary objective

is to minimise the total travel time. These restrictions and practices make the problem

belong to a class of VRPs so-called rich VRP Lahyani et al. (2015), Kramer et al. (2019).

This thesis introduces two new mixed integer programming formulations for the

MASPDP and presents a novel optimisation procedure. This optimisation procedure

referred to as the ILS2O is a further development of the Lagrangian ILS by taking into

account the bi-objective optimisation. In addition, the ILS2O uses a neighbourhood re-

duction technique that dynamically reduces the search space and leads the search to a
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more promising solution. The performance of the ILS2O is tested on two sets of bench-

marks. One is real-world instances provided by the industry partner and the other one

is derived from a standard benchmark for VRPs. The results of the computational ex-

periments have demonstrated that the ILS2O produces robust and high-quality solutions

within the time frame imposed by the industry partner.

Simultaneous Pickup and Delivery Problem with Preloading under Uncer-

tainty

Following the advice from the industry partner, the last problem considered in this

thesis is a Simultaneous Pickup and Delivery Problem with Preloading under Uncertainty

(SPDPP). In this problem, two groups of vehicles are considered. The vehicles in the

first group must return to the depot after serving all the allocated customers, load some

demands for the next day and return to their designated end locations. Such an operation

is referred to as preloading. The preloading is done when only a subset of all customers is

known, whereas the assignment of customers to the vehicles of the second group is done

when all remaining customers are known.

The reason for preloading is to deal with the limited capacity at the depot. Following

a customer’s purchase, the depot will receive the customer’s demand and wait for a

vehicle to fulfil the delivery. If the depot runs out the space when a customer’s demand

arrives that means the depot cannot store the demand before its delivery commences,

then this customer must be outsourced which is expensive. By loading some demands

to the vehicles, preloading helps to lighten the heavy burden of the depot. As a result,

preloading could reduce the total outsourcing cost. The preloading feature makes the

problem unique in comparison with other stochastic VRPs in the literature.

In this thesis, the SPDPP is formulated as a 2-stage stochastic program and is solved

by the sample average approximation (SAA) approach. The thesis introduces a new

optimisation procedure that is referred to as the ILS-SAA for the SAA approach. To

handle the non-anticipativity constraints where the first stage solution in the SAA ap-

proach is the same for all the scenarios in the second stage, the ILS-SAA made several

new developments. These developments change how the initial feasible solutions are con-

structed, how local search is performed with a new local search operator, as well as how

the perturbation mechanism works. In addition, the ILS-SAA is also extended from the

Lagrangian ILS for WSRP. The computational experiments are conducted on a set of
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instances derived from the historical data provided by the industry partner. The results

of computational experiments have demonstrated that the ILS-SAA produces a good

solution in a reasonable time.

1.1 Thesis organisation

The remaining part of the thesis is organised as follows.

• Chapter 2 provides an overview of the literature in the related research areas.

• Chapter 3 describes the Lagrangian ILS for the WSRP which is an amalgamation

of iterated local search and Lagrangian relaxation. The idea of such amalgama-

tion was initially presented at the Analysis of Experimental Algorithms 2019 con-

ference and included in the refereed conference proceeding as “Hanyu Gu, Yefei

Zhang, and Yakov Zinder. Lagrangian relaxation in iterated local search for the

workforce scheduling and routing problem. International Symposium on Experi-

mental Algorithms (SEA), Springer, pages 527540, 2019.”. The Lagrangian ILS

described in Chapter 3 is a new implementation of this idea. The work presented

in Chapter 3 was published as “Hanyu Gu, Yefei Zhang, and Yakov Zinder. An

efficient optimisation procedure for the workforce scheduling and routing problem:

Lagrangian relaxation and iterated local search. Computers & Operations Re-

search, 144:105829, 2022. https://doi.org/10.1016/j.cor.2022.105829.” and

was awarded the “Science HDR Student Paper of the Month, April − May 2022”

in University of Technology Sydney.

• Chapter 4 describes the ILS2O for the MASPDP. The neighbourhood reduction

technique utilised in the ILS2O was successfully tested on a version of MASPDP

with a single objective, i.e., maximising the number of served customers. The

research on MASPDP with a single objective was presented at the International

Conference on Optimisation and Learning 2021 and included in the refereed confer-

ence proceeding as “Hanyu Gu, Lucy MacMillan, Yefei Zhang, and Yakov Zinder.

Iterated local search with neighbourhood reduction for the pickups and deliveries

problem arising in retail industry. In Optimization and Learning: 4th Interna-

tional Conference, OLA 2021, Catania, Italy, June 21-23, 2021, Proceedings, pages

https://doi.org/10.1016/j.cor.2022.105829


1.1 Thesis organisation 7

190202. Springer, 2021.”

• Chapter 5 describes the ILS-SAA for the SPDPP.

• Chapter 6 concludes the thesis with a summary of the contributions of the thesis.
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2
Literature review

In this chapter, a literature review is provided focusing on works related to the three prob-

lems studied in this thesis, i.e., Workforce Scheduling and Routing (WSRP) in Chapter

3, Multi-attribute Simultaneous Pickup and Delivery Problem (MASPDP) in Chapter

4, and Simultaneous Pickup and Delivery Problem with Preloading under Uncertainty

(SPDPP) in Chapter 5. Please note, that this chapter does not attempt to classify and

categorise the huge body of existing work on vehicle routing problems. Instead, this

chapter focuses on whether there exist publications that study the same problems as the

industry problems studied in this thesis and whether there are solution methods that

have the potential to solve the industry problems.

The three problems studied in the thesis are considered as the variants of the vehicle

routing problem (VRP) introduced by Dantzig and Ramser (1959). The VRP involves

finding the optimal routes for a fleet of vehicles to satisfy the demands of customers at

different locations. This problem is a generalisation of the travelling salesman problem

which is NP-hard in the strong sense Garey and Johnson (1979). Due to the broad appli-

cations of VRP in industries such as transportation, logistics, and workforce scheduling,

thousands of publications have appeared on this topic. According to data collected on

20th Dec 2022 from Google Scholar, there are 6999 publications that have cited Dantzig

and Ramser (1959) (see figure 2.1a). In the past 7 years, Dantzig and Ramser (1959) has

been cited more than 3500 times (see figure 2.1b).

2.1 Workforce scheduling and routing problem

One of the important applications of the WSRP is home health care (HHC) where nurses

and other caregivers need to visit the HHC recipients. In 2008, there were approximately

12 million people in the US requiring HHC services Chen et al. (2017). In Europe in

2012, between 1% and 5% of the total public health budget was spent on HHC services
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(a) Cumulative number of publications that cite
Dantzig and Ramser (1959) from 1960 to 2021.

(b) Number of publications that cite Dantzig and
Ramser (1959) from 1960 to 2021.

Figure 2.1: Trend on the number of vehicle routing publications.

Fikar and Hirsch (2017). The number of people requiring HHC services is growing every

year. According to nla (2007), the population of 60 years old and over, who constitute

the largest group of the recipients of HHC services, has been growing in the European

Union from 17 percent in 1980 to 22 percent in 2004 and may increase to 32 percent in

2030.

Another important application of the WSRP is technical service where technicians or

engineers should visit various locations. One of the examples is British Telecom which

needs to allocate its 30,000 field engineers to tasks such as network maintenance, repairs,

and installation of appliances Borenstein et al. (2010). The authors of Goel and Meisel

(2013) considered the problem of planning the electricity network maintenance operations

and tested their algorithm on a set of instances that were derived from data of a German

electricity provider. The list of publications in which the optimisation algorithms are

tested, using data originating from real-world situations, can be easily extended. For

example, Peng et al. (2013) is concerned with the allocation of engineers to rail inspections

and Dohn et al. (2009) is concerned with the allocation of workers to tasks in some of

Europe’s major airports.

Due to its numerous applications, the WSRP has attracted significant attention in the

literature Castillo-Salazar et al. (2016), Fikar and Hirsch (2017), Paraskevopoulos et al.

(2017). Depending on the application, the problem may contain some additional as-

sumptions and constraints, but all these variations assume that both travel time between

locations and service times are essential. The publications on the WSRP often assume

that each service provider has certain skills and can be assigned only to the tasks for
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which these skills are sufficient. Another frequently used assumption in the publications

on WSRP is the possibility of outsourcing. Furthermore, the WSRP is not concerned

with the capacity of vehicles which is important in problems with a heterogeneous fleet

of vehicles such as the problems considered in Koç et al. (2016).

As has been mentioned above, different applications may require additional assump-

tions and constraints which lead to a number of variations of the WSRP. Thus, the tasks

may have different priorities Xu and Chiu (2001); each task may have the associated

time window within which the service is to be provided Dohn et al. (2009), Peng et al.

(2013), Braekers et al. (2016a), Polnik et al. (2021); the service providers may work in

teams Kovacs et al. (2012) or some tasks may require the simultaneous involvement of

several service providers Dohn et al. (2009), Polnik et al. (2021); a task may require some

specific tools or spare parts which must be carried by the allocated service provider Pillac

et al. (2013). The majority of the publications on the WSRP and its variations require

a solution for a single time period (normally a day or a shift). In contrast, the problem

studied in Guastaroba et al. (2021), is concerned with the planning horizon which is

comprised of several such time periods. Other additional assumptions and constraints

considered in the literature include lunch breaks Liu et al. (2017) and tasks which are

comprised of several stages Pereira et al. (2020). A comprehensive discussion on the main

characteristics of the WSRP and on various additional assumptions can be found in the

surveys Castillo-Salazar et al. (2016), Fikar and Hirsch (2017), and Paraskevopoulos et al.

(2017).

Even particular cases of the WSRP such as the travelling salesman problem and the

makespan minimisation scheduling problem for parallel identical machines are NP-hard

in the strong sense Garey and Johnson (1979). A wide variety of the optimisation proce-

dures, developed for the WSRP and its variations, includes mixed integer programming

with decomposition Laesanklang et al. (2015), Laesanklang et al. (2016); branch-and-

price algorithms Dohn et al. (2009), Liu et al. (2017); algorithms based on Lagrangian

relaxation Fathollahi-Fard et al. (2018), Gu et al. (2019); iterated local search Xie et al.

(2017), Gu et al. (2019); iterated local search with hybrid neighbourhood search Zhou

et al. (2020); genetic algorithms Shi et al. (2017), Algethami et al. (2016), Algethami

and Landa-Silva (2017), Algethami et al. (2019); large neighbourhood search Goel and

Meisel (2013), Braekers et al. (2016a); adaptive large neighbourhood search Kovacs et al.
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(2012),Guastaroba et al. (2021); greedy randomised adaptive search Xu and Chiu (2001);

ant colony optimisation Pereira et al. (2020); artificial bee colony optimisation Yurtkuran

et al. (2018); matheuristic Pillac et al. (2013); and constraint programming Polnik et al.

(2021).

The WSRP studied in Chapter 3 follows the problems studied in Kovacs et al. (2012),

Xie et al. (2017), and Zhou et al. (2020). The problem is concerned with the allocation of

tasks to the service providers. The tasks have different locations, and the service providers

need to spend significant time travelling between these locations. The constraints of

this problem include the time window for tasks, maximum duration on shift length and

compatibility between tasks and service providers. The objective is to minimise the total

cost of travelling and outsourcing.

2.2 Multi-attribute Simultaneous Pickup and Deliv-

ery Problem

Chapter 4 studies the Multi-attribute Simultaneous Pickup and Delivery Problem (MASPDP)

which is an extension of the classic vehicle routing problem with additional attributes.

The six decades of extensive research on VRP and its variants have resulted in huge

progress in the development of vehicle routing methodology. In recent years, there is

an increasing focus on solving complex VRPs that arise in real-life Caceres-Cruz et al.

(2014), Lahyani et al. (2015), which is also referred to as rich VRPs (RVRPs). According

to the definition provided in Lahyani et al. (2015), an RVRP should have at least nine

additional physical characteristics with respect to the classical VRP. A physical charac-

teristic is sometimes called an attribute or a feature in the literature (see for example,

Vidal et al. (2013), Vidal et al. (2014)). The MASPDP contains 10 features, which qual-

ifies it as an RVRP. In what follows, several features that have been added to the VRP

in the literature are discussed.

• Simultaneous pickup and delivery

The simultaneous pickup and delivery problem (SPDP) is another generalisation

of the VRP, which is first introduced by Min (1989). This problem reflects the

practical situations where a customer often requires both pickup and delivery. The
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SPDP is also a generalisation of the mixed pickup and delivery problem where a

customer can request either pickup or delivery only Kamsopa et al. (2021). For

more than 30 years, many publications have studied the SPDP and several surveys

have appeared in the literature, for example, Parragh et al. (2008a), Parragh et al.

(2008b), Berbeglia et al. (2007), Koç et al. (2020), and Bouanane et al. (2022). One

of the important applications of the SPDP is reverse logistics where the vehicles

deliver products and at the same time, collect end-of-life products (see, for example,

Agrawal et al. (2015) and Govindan et al. (2015)). In contrast to SPDP, Goetschal-

ckx and Jacobs-Blecha (1989) and Reil et al. (2018) have studied the VRP with

backhaul where the vehicles only consider pickup after the last delivery.

• Time windows

A time window designates the earliest time (left end of the time window) and

the latest time (right end of the time window) when the service corresponds to

a customer can commence. There are several publications that combine the time

window constraints with the SPDP. For example, DENG et al. (2009), Gan et al.

(2012), Wang and Chen (2012), Wang et al. (2015), Mingyong and Erbao (2010),

Liu et al. (2013), Wang et al. (2016), and Shi et al. (2020). There are also surveys

available on vehicle routing problem with time windows, for example, Bräysy and

Gendreau (2005a), Bräysy and Gendreau (2005b).

In the literature, the time window constraints have been treated in two ways. The

time windows can be treated as hard constraints. More specifically, the vehicle

arrives at a customer before the left end of the time window resulting in a wait

before service can begin. On the other hand, arriving at the customer after the

right end of the time window is not allowed. Examples can be found in Mingyong

and Erbao (2010), Wang and Chen (2012), Liu et al. (2013), Wang et al. (2015), and

Shi et al. (2020). The problems studied in this thesis also treat the time windows

as hard constraints.

Another way is to treat time windows as soft constraints. For example, in Fu et al.

(2008), DENG et al. (2009), Castro-Gutierrez et al. (2011), Gan et al. (2012), Wang

et al. (2016), a waiting time is incurred if the vehicle arrives at a customer before

the left end of the time window. If the vehicle arrives at the customer after the
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right end of the time window, a delaying time is incurred. Then, the total waiting

time and total delaying time are minimised in the objective function. This feature

is motivated by the situation when slightly violating the time window constraints is

not a critical breach of service requirements. In this case, relaxing the time windows

may result in lower cost solutions requiring fewer vehicles, shorter travel distances,

and less travel time Chiang and Russell (2004), Fu et al. (2008).

• Restriction on shift length

Another feature in the problems studied in Chapter 4 is the restriction on shift

length. This is motivated by the regulation imposed on the drivers that they cannot

work longer than a certain amount of time per shift. Several publications have

also considered this feature, for example, Seixas and Mendes (2013), Alcaraz et al.

(2019). In contrast, the restriction on shift length is relaxed in Moon et al. (2012)

with overtime labour cost. In addition, some publications are concerned with the

break time for drivers or rest areas for vehicles after working long hours during a

shift, for example, Ceselli et al. (2009), Coelho et al. (2016), Kamsopa et al. (2021).

• Open route

The VRP with open route is known as the open VRP (OVRP). This variant is

first considered by Sariklis and Powell (2000) where a vehicle does not return to

the depot after serving the last customer in the route. This variant reflects the

situation when the company outsources the service to subcontractors who have

owned vehicles by themselves Simeonova et al. (2020). As mentioned in Chapter 1,

these subcontractors also have their own depot suitable for temporary storage. This

feature commonly appears in the service industry and retail sector Russell et al.

(2008), Lahyani et al. (2015). In the literature, this feature has attracted enough

attention in the recent two decades. For example, Tarantilis and Kiranoudis (2002),

Brandão (2004), Tarantilis et al. (2005), Fu et al. (2005), Letchford et al. (2007),

Li et al. (2007), Rieck and Zimmermann (2010), Ceselli et al. (2009), and Li et al.

(2012).

• Weight and volume

In the literature, the demand of a customer is often characterised by a single type

(either weight or volume), for example, Gajpal and Abad (2010), Halvorsen-Weare
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and Savelsbergh (2016), Bouzid et al. (2017), Schneider and Löffler (2019). Only

a few publications consider both weight and volume. The publications Bortfeldt

(2012) and Reil et al. (2018) study vehicle routing problems with 3-dimensional

loading constraints where the demand of each customer is a set of rectangular items

specified by weight, width, length, and height. The publication Sabar et al. (2020)

only considers 2-dimensional loading constraints where the demand is characterised

by weight, width and length. For the problems studied in Bortfeldt (2012) Reil

et al. (2018), and Sabar et al. (2020), the goal is not only to construct routes for

the vehicles but also to determine how vehicles are loaded. In contrast to these

publications, the problem studied in Chapter 4 assumes that the drivers know how

vehicles can be loaded and the demand (both pickup and delivery) of a customer is

characterised by weight and volume computed by width, length, and height.

• Heterogeneous fleet of vehicles

The VRP with a heterogeneous fleet of vehicles reflects the real-world situation

that customers are served by a fleet of heterogeneous vehicles Koç et al. (2016).

This variant referred to as the Heterogeneous VRP (HVRP) was first introduced in

Golden et al. (1984). In the past 30 years, it becomes a very active field of research

(Yaman (2006), Baldacci et al. (2008), Li et al. (2012), Seixas and Mendes (2013),

Bettinelli et al. (2014), Yao et al. (2016), Simeonova et al. (2018), Bevilaqua et al.

(2019), and Sabar et al. (2020)). In Avci and Topaloglu (2016), Nepomuceno et al.

(2019), Kamsopa et al. (2021), Keçeci et al. (2021), the SPDS with heterogeneous

fleet of vehicles is studied. In publications Bortfeldt (2012), Reil et al. (2018),

the vehicles are characterised by their weight capacity, maximum width, maximum

length, and maximum height, whereas in Sabar et al. (2020), the vehicles are char-

acterised by their weight capacity, maximum width and maximum length. For the

problem considered in Chapter 4, the vehicles are characterised by two types of

capacity, i.e. weight and volume.

• Incompatibility

In real-life VRP, incompatibility can often appear between customers and vehicles.

Therefore, this feature has also attracted much attention. For example, in Alcaraz

et al. (2019) and Ceselli et al. (2009), customers can order different types of goods
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and not all goods can be transported by a single vehicle. In contrast, in Seixas

and Mendes (2013) and Kramer et al. (2019), due to accessibility restrictions at the

delivery location, some customers can only be served by specific vehicles. The in-

compatibility constraints considered in Chapter 4 are similar to the ones considered

in Seixas and Mendes (2013) and Kramer et al. (2019).

• Ordered objectives

The problem studied in Chapter 4 has two objectives and they are ordered. The

first-order objective is to maximise the number of served customers and the second-

order objective is to minimise the total travel time.

In the literature, the most common objectives considered in vehicle routing pub-

lications are the minimisation of the number of vehicles and the minimisation of

total travel cost (usually computed from total travel distance or total travel time).

Examples can be found in Wang et al. (2015), Sabar et al. (2020), Shi et al. (2020).

In Chapter 4, the problem also considers the minimisation of total travel time. Such

consideration is motivated by the massive expense caused by real-world transporta-

tion activities with respect to both the economy and the environment. According

to Toth and Vigo (2002a), the use of computerised procedures for the distribution

process planning produces significant savings (generally from 5% to 20%) in global

transportation costs. On the other hand, in Europe in 2010, transportation activi-

ties were responsible for approximately 20% of greenhouse gas emissions Schneider

et al. (2014).

Another area that is closely related to the problems studied in this thesis is the

VRP with profit. This setting reflects the real-world situation when there is an

insufficient number of vehicles to fulfil the demand for a set of customers Gansterer

et al. (2017). Such a situation forced the company to make a profitable selection of

customers. The selected customers will be served by the vehicles available whereas

the remaining customers are outsourced to subcontractors. This setting of the VRPs

is also been extensively studied in the literature. For example, in Archetti et al.

(2009), the profitable tour problem is studied where the objective is maximising

the difference between the total collected profit and the cost of the total distance

travelled, in Li et al. (2016), the pickup and delivery problem with time windows,
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profits, and reserved requests where the objective is to maximise the difference

between the sum of payments of served requests and the total transportation cost.

Some publications consider more than two objectives. For example, in Wang et al.

(2016), the minimisation of five objectives is considered including, the number of

vehicles; total travel distance; travel time of the longest route; total waiting time;

and total delay time. The publication Hornstra et al. (2020) maximises the profit

of revenue after deducting fuel costs, the cost of using a vehicle, driver wage cost,

penalty cost and overtime cost. Many other objectives have been considered by the

vast literature. For example, the minimisation on outsourcing cost Alcaraz et al.

(2019); the maximisation on customers’ satisfaction Fan (2011); the minimisation

on the handling costs for the pickup items at the rear of the vehicle Hornstra et al.

(2020).

• Other attributes considered in literature

Many features have not been considered in MASPDP. For example, a vehicle can

re-load at the depot and can have routes for multiple trips Rieck and Zimmermann

(2010), Cattaruzza et al. (2018); the demand of a customer can be satisfied by mul-

tiple visits Archetti and Speranza (2008), Nagy et al. (2013), Polat (2017); instead

of a single depot, the vehicles can depart from different depots Nagy and Salhi

(2005), Rahimi-Vahed et al. (2013), Salhi et al. (2014); the customers can require

delivery for a variety of products with different temperature requirements Martins

et al. (2019); a limit is applied to the number of customers that can be served by a

route Kramer et al. (2019). In Chapter 4, the problem is concerned with schedul-

ing for a single period, i.e., usually a day or a shift. In contrast, the publication

Kamsopa et al. (2021) studies the SPDP with multiple such periods. In this thesis,

some features that have appeared in VRP are discussed. The comprehensive clas-

sification and taxonomic survey can be found in Lahyani et al. (2015), Koç et al.

(2020), Simeonova et al. (2020), and Bouanane et al. (2022).

In Table 2.1, a summary of some of the recent publications is given in terms of the

considered attributes in MASPDP studied in Chapter 4. One of the important attributes

of the MASPDP in Chapter 4 is the roster that specifies the time when a vehicle can load

at the depot. This feature is motivated by the fact that the depot has limited loading
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space. To the best of the author’s knowledge, no publication has considered this attribute

(as shown in Table 2.1).

Table 2.1: VRP with multiple features

Alcaraz
et al.
(2019),

Ceselli
et al.
(2009)

Hornstra
et al.
(2020)

Kassem
and Chen
(2013),

Chen
et al.
(2020)

Avci and
Topaloglu
(2016)

Kamsopa
et al.
(2021)

Kramer
et al.
(2019),

Wang
et al.
(2016),

Seixas
and
Mendes
(2013)

Wang
et al.
(2015)

Time windows X X X X X
Open routes X X
Simultaneous weight
and volume

X

Heterogeneous vehicles X X X X
Incompatibility X X
Roster
Simultaneous pickup
and delivery

X X X

Restriction on shift
length

X X X

Minimise cost X X X X X X
Maximise profit X

2.3 Simultaneous Pickup and Delivery Problem with

Preloading under Uncertainty

In real-life applications, some parameters are usually unknown due to the presence of

uncertainty Gendreau et al. (2014). These parameters will only be revealed after the

decision phase. This significantly increases the difficulty of computing a solution for

the problem. In Chapter 5, the problem takes into account preloading with unknown

customers’ demands that is motivated by the limited storage capacity of the depot.

In the publications Gendreau et al. (1995) and Laporte et al. (2002), the VRP with

stochastic demands is studied where the demand is revealed after arriving at the loca-

tion of a customer. The publication Gendreau et al. (1995) also considered stochastic

customers where a customer may no longer require a visit after the route is constructed.

The uncertainty may arise from other sources. For example, Zhang et al. (2012) considers

stochastic travel time (service time); Sungur et al. (2010) and Lei et al. (2012) consider

pure stochastic service time; Bektaş and Laporte (2011) considers stochastic time win-

dow; Keskin et al. (2021) considers stochastic waiting time; Zhu and Sheu (2018) considers
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SPDP with stochastic demand. The comprehensive discussion on the main characteris-

tics of the stochastic vehicle routing problem can be found in the surveys Ritzinger et al.

(2016), Gendreau et al. (2016), Oyola et al. (2018). To the best of the author’s knowl-

edge, the SPDPP described in Chapter 5 is a new problem that has never been studied

in the literature.

2.4 Solution approaches

Different methods have been explored to solve the VRP and its variants. Some approaches

focus on finding the optimal solutions or obtaining good lower bounds such as branch-and-

price algorithm Bettinelli et al. (2014); branch-and-cut algorithm Wolfinger and Salazar-

González (2021); branch-cut-and-price algorithm Subramanian et al. (2013). There are

also approaches that focus on finding approximate solutions including

• heuristics, such as Sweep heuristic Clarke and Wright (1964), local search Focacci

et al. (2003);

• metaheuristics, such as iterated local search Lourenço et al. (2019), variable neigh-

bourhood search Hansen et al. (2019); tabu search Gendreau and Potvin (2019);

• and matheuristics Kramer et al. (2015), Sartori and Buriol (2020), Doerner and

Schmid (2010), Archetti and Speranza (2014).

In this section, the solution methods used to tackle the VRP and its variants are discussed.

2.4.1 Mixed integer programming formulation

Different mathematical models have been introduced for VRP and its variants. There are

models that use variables with three indexes. For example, xki,j is a binary variable that

indicates whether vehicle k travels between customer i and j. Examples can be found in

Mosheiov (1998), Dethloff (2001), Kallehauge et al. (2005), Montané and Galvao (2006),

Baldacci et al. (2008), Wang et al. (2015).

Another class of models is known as the two-index model. In this model, a binary

variable xi,j indicates whether a vehicle travels between customer i and j. Several pub-

lications have used this type of model to investigate the lower bound of the VRPs. For
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example, Yaman (2006) developed six formulations and valid inequality for the heteroge-

neous VRP; Baldacci et al. (2009) developed a two-index commodity flows formulation

and two new classes of valid inequalities; Subramanian et al. (2011), Subramanian et al.

(2013), and Rieck and Zimmermann (2013) presented the two-index vehicle flow models.

In Chapter 4, the MASPDP is formulated into two different models, one is a three-index

model and the other one is a two-index model.

2.4.2 Lagrangian relaxation

Many combinatorial optimisation problems are complicated by side constraints Fisher

(1981). Lagrangian relaxation relaxes a subset of the side constraints which leads to a

“relatively easier” problem. This “easy” problem referred to as the Lagrangian problem

contains an augmented objective function which is comprised of the objective function of

the original problem and a measure of the violation of the relaxed constraints multiplied

by a vector of coefficients known as the Lagrange multipliers. The optimal objective value

of the Lagrangian problem is a lower bound of the optimal objective value of the orig-

inal minimisation problem. The Lagrangian relaxation method has been discussed in a

number of publications, for example, Geoffrion (1974), Fisher (1981), Lemaréchal (2001),

Guignard (2003), Frangioni (2005). This thesis proposes algorithms that are an amalga-

mation of the Lagrangian relaxation technique and iterated local search metaheuristics.

The main goal of the algorithms is to find good feasible solutions that differ from the

goal of conventional Lagrangian relaxation approaches i.e., obtaining a good bound.

2.4.3 Iterated Local search permitting infeasible solutions

The iterated local search (ILS) is a metaheuristic that iteratively produces a sequence

of solutions. Each solution in this sequence is generated by an embedded optimisation

procedure, typically a local search algorithm Lourenço et al. (2019). Let s′ be a feasible

solution and s∗ records the current best feasible solution. The pseudocode below outlines

the basic ILS.
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ILS

1: s∗ ← Generate initial feasible solution
2: s′ ← s∗

3: while Stopping criterion is not satisfied do
4: s′ ← Local Search(s′)
5: s∗ ← Acceptance Criterion(s∗, s′)
6: s′ ← Randomly generate new feasible solution from s∗

7: end while
8: return s∗

The ILS has many applications on VRP and its variants, for example, Ibaraki et al.

(2008), Penna et al. (2013), Li et al. (2015), Xie et al. (2017), Gu et al. (2019) Zhou

et al. (2020), Öztaş and Tuş (2022), Gu et al. (2022b). A comprehensive discussion on

the applications for the ILS can be found in Lourenço et al. (2019).

The optimisation procedure discussed in Chapter 3 is an amalgamation of the iterated

local search (ILS) Lourenço et al. (2019) and Lagrangian relaxation Fisher (1981). In

what follows, this procedure will be referred to as the Lagrangian ILS. The idea of such

amalgamation was first introduced in Gu et al. (2019) and stemmed from the observation

that the performance of local search often can be improved by permitting the violation of

some constraints and by introducing an augmented objective function which comprises

the original objective function and a penalty for the violation of the constraints. This

phenomenon was used in various algorithms (see, for example, Cordeau et al. (1997),

Cordeau et al. (2001), Schneider and Löffler (2019), Ibaraki et al. (2008), Xie et al. (2017),

Zhou et al. (2020), Gu et al. (2019), Nagata et al. (2010), Cordeau and Maischberger

(2012), Pan et al. (2021)) and can be anticipated given the nature of local search Gendreau

and Potvin (2019). Indeed, local search generates a sequence of solutions where each

subsequent solution has a better value of the objective function than the preceding one.

Since such a sequence of monotonic (in terms of the objective values) feasible solutions

that lead to a desired solution may not exist or be difficult to find, the use of the infeasible

solutions may significantly facilitate the construction of a sequence that renders a desired

solution.

To the best of the author’s knowledge, in all publications in which the constraint

violation is permitted, the penalty for each constraint is computed as a measure of the

violation multiplied by a certain coefficient (weight) and these weights either remain

unchanged during the entire optimisation (see, for example, Nagata et al. (2010)), or are
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updated by multiplying them by some constants which remain the same during the entire

optimisation (see, for example, Cordeau et al. (1997), Cordeau et al. (2001), Schneider

and Löffler (2019), Ibaraki et al. (2008), Xie et al. (2017), Zhou et al. (2020), Pan et al.

(2021), Cordeau and Maischberger (2012)). In both cases, these constants are determined

as a result of tedious computational experiments. In contrast, Gu et al. (2019) introduced

a mixed integer linear programming formulation that permits considering the weights as

Lagrange multipliers and choosing their initial values as well as dynamically updating

them correspondingly. According to Gu et al. (2019), the application of local search to

the Lagrangian relaxation of the original problem rather than to the original problem

itself is motivated by the observation that this new problem, although remaining difficult

from the computational point of view, is more amenable to local search. In other words,

the use of the Lagrangian relaxation is dictated not by the complexity consideration but

by the suitability for the optimisation method − local search. This distinguishes Gu et al.

(2019) from the conventional Lagrangian relaxation approach where the main goal is to

obtain a tight bound for the optimal value of the objective function with, if necessary,

the subsequent conversion of the obtained infeasible solution into a feasible one Fisher

(1981), Fathollahi-Fard et al. (2018).

2.4.4 Multi-objective VRPs

In some real-world applications, the problem can have multiple objectives or even con-

flicting objectives like the one considered in Chapter 4. The most common method to

tackle multi-objective optimisation is weighted sum Coello Coello (1999), for example,

Kovacs et al. (2012), Xie et al. (2017). The weighted sum combines multiple objectives

into a single function. In this function, a weight is associated with each objective which

indicates the preference. The advantage of this method is that it is relatively easy to

implement. However, determining appropriate values for the weights involves tedious

computational experiments.

Another method to tackle multi-objective optimization problems is known as the

lexicographic method Fishburn (1974). This method requires a pre-specified preference

regarding the objectives. Then, the method attempts to find a better solution with respect

to each objective one at a time. This method is suitable for problems when the preferences

on the objectives are easily established. For example, in Shi et al. (2020), a lexicographic-
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based two-stage algorithm is used to solve the SPDP with time windows. In their problem,

the primary objective is to minimise the number of vehicles and the secondary objective

is to minimise total travel distance. According to Castro-Gutierrez (2012), this method

produces good results when the number of objectives is small, typically 2 or 3 objectives.

The comprehensive surveys about the multi-objective VRPs can be found in Jozefowiez

et al. (2008), Zajac and Huber (2021).

2.4.5 Sample average approximation approach for 2-stage stochas-

tic program

In the SPDPP studied in Chapter 5, customers are revealed in two stages and some

routes are determined without knowing customers in the second stage. In Chapter 5,

to capture the stochastic customers, the studied SPDPP is formulated as a two-stage

stochastic program Birge and Louveaux (2011). The stochastic programming has been

applied to various problems such as the scheduling problem with random processing times

Gu et al. (2022a); underground mine scheduling with random duration and economic

value for each underground mining activity Nesbitt et al. (2021); spare parts inventory

management problem with random deployment situations Johannsmann et al. (2022)

Let Ω be a set of all scenarios, P be the probability of occurrence for scenario ω ∈ Ω,

and Eω∈Ω be the mathematical expectation with respect to ω. A 2-stage stochastic

program can be represented as follows.

max cTx+ Eω∈Ω[Q(x, ω)] (2.1)

subject to:

Ax = b (2.2)

x ≥ 0 (2.3)

where for a particular realization ω̃ of ω, Q(x, ω̃) is defined as

Q(x, ω̃) = max qT (ω̃)y (2.4)
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subject to:

W (ω̃)y = h(ω̃)− T (ω̃) (2.5)

y ≥ 0 (2.6)

where x is a set of first-stage decision variables; y is a set of second-stage decision variables;

cT , A, b are input data for the first stage; qT (ω̃), W (ω̃), hT (ω̃), T (ω̃) are input data for

the second stage correspond to ω̃ ∈ Ω.

Sample average approximation

SinceQ(x, ω) itself requires solving a combinatorial optimisation problem, and Eω[Q(x, ω)]

is difficult to compute, in Chapter 5, the sample average approximation (SAA) approach

is used to solve the SPDPP. This approach replaces the 2-stage stochastic program with a

deterministic mixed integer program (MIP) and approximates Eω[Q(x, ω)] with a sample

average function. More specifically, let S = {ω1, ω2, ..., ω|S|} be a sample of ω, then

Eω[Q(x, ω)] ≈ 1

|S|

s=|S|∑
s=1

Q(x, ωs). (2.7)

It has been shown in Kleywegt et al. (2002) that with the increase in the sample size,

an optimal solution to the MIP model for the SAA approach provides the exact optimal

solution of the 2-stage stochastic program.

2.5 Benchmarks for vehicle routing problems

Since the VRP was introduced by Dantzig and Ramser (1959), many publications have

derived their own benchmarks. The most well-known benchmarks are introduced by

Solomon (1987) for VRP with time window which is also known as the Solomon bench-

marks. Many publications use Solomon benchmarks as the basis of their own benchmark,

for example, Russell (1995), Li and Lim (2003), Ma et al. (2012), Kovacs et al. (2012),

Zhang et al. (2017), Yang et al. (2017). In the Solomon benchmarks, each customer (de-

pot) has X, and Y coordinates for the location, and the distance matrix is symmetric. In

contrast, some publications consider the asymmetric distance matrix where the distance
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between point A to point B can be different from the distance between point B to point

A, for example, Toth and Vigo (1999), Almoustafa et al. (2013).

The instances used in Chapter 4 are provided by an Australian transportation com-

pany, whereas the instances used in Chapter 5 are derived from historical data provided

by this company. Although the distance matrix is symmetric, it is different compared

with the distance matrix used in the literature. In the instances used in Chapters 4 and

5, customers within a suburb have a constant distance from each other, while the dis-

tance between two customers in different suburbs is calculated based on the coordinates

of the suburbs. In the Solomon benchmark, the size of the distance matrix depends on

the number of customers. As mentioned in Arnold et al. (2019), if each customer has a

distinct location, the total number of entries needed to store the distance matrix is N2,

where N is the total number of customers plus depot. In contrast, the size of the distance

matrix used in Chapter 4 and 5 depends on the number of existing suburbs. This setting

reduces the size of the distance matrix.
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3
An Efficient Optimisation Procedure for the Workforce

Scheduling and Routing Problem: Lagrangian

Relaxation and Iterated Local Search

Abstract

This chapter studies the Workforce Scheduling and Routing Problem where certain service

providers complete tasks at different locations. The presented optimisation procedure is

an amalgamation of the iterated local search and Lagrangian relaxation. This optimisa-

tion procedure has been tested on benchmark problems from the literature and showed

superior performance in comparison with a previously published implementation of the

iterated local search.

3.1 Introduction

This chapter presents a new optimisation algorithm for the Workforce Scheduling and

Routing Problem (WSRP). This problem is concerned with the allocation of tasks (re-

quests for service, customers, patients) to the service providers (technicians, nurses). The

tasks have different locations, and the service providers need to spend significant time

travelling between these locations. The service providers depart from some service centre

(depot) and return to this service centre after the completion of all allocated tasks. The

service providers may have different skills, and therefore, each task is given a subset of the

set of service providers which can be assigned to this task. If a task cannot be allocated

to a service provider, this task incurs a penalty which will be referred to as the cost of

outsourcing. The goal is to minimise the total cost of travelling and outsourcing.

Even very particular cases of the WSRP such as the travelling salesman problem

and the makespan minimisation scheduling problem for parallel identical machines are
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NP-hard in the strong sense Garey and Johnson (1979). A wide variety of the optimi-

sation procedures, developed for the WSRP and its variations, includes mixed integer

programming with decomposition Laesanklang et al. (2015), Laesanklang et al. (2016);

branch-and-price algorithms Dohn et al. (2009), Liu et al. (2017); algorithms based on

Lagrangian relaxation Fathollahi-Fard et al. (2018), Gu et al. (2019); iterated local search

Xie et al. (2017), Gu et al. (2019); iterated local search with hybrid neighbourhood search

Zhou et al. (2020); genetic algorithms Shi et al. (2017), Algethami et al. (2016), Algeth-

ami and Landa-Silva (2017), Algethami et al. (2019); large neighbourhood search Goel

and Meisel (2013), Braekers et al. (2016a); adaptive large neighbourhood search Kovacs

et al. (2012),Guastaroba et al. (2021); greedy randomised adaptive search Xu and Chiu

(2001); ant colony optimisation Pereira et al. (2020); artificial bee colony optimisation

Yurtkuran et al. (2018); matheuristic Pillac et al. (2013); and constraint programming

Polnik et al. (2021).

The optimisation procedure discussed below is an amalgamation of the iterated local

search (ILS) Lourenço et al. (2019) and Lagrangian relaxation Fisher (1981). In what

follows, this procedure will be referred to as the Lagrangian ILS. The idea of such amal-

gamation was first introduced in Gu et al. (2019) and stemmed from the observation

that the performance of local search often can be improved by permitting the violation of

some constraints and by introducing an augmented objective function which comprises

the original objective function and a penalty for the violation of the constraints. This phe-

nomenon was used in various algorithms (see, for example, Cordeau et al. (1997), Cordeau

et al. (2001), Schneider and Löffler (2019), Ibaraki et al. (2008), Xie et al. (2017), Zhou

et al. (2020), Gu et al. (2019), Nagata et al. (2010), Cordeau and Maischberger (2012),

Pan et al. (2021)) and can be anticipated given the nature of local search Gendreau and

Potvin (2019). Indeed, local search generates a sequence of solutions where each subse-

quent solution has a better value of the objective function than the preceding one. Since

such a sequence of monotonic (in terms of the objective values) feasible solutions that

lead to a desired solution may not exist or be difficult to find, the use of the infeasible

solutions may significantly facilitate the construction of a sequence that renders a desired

solution.

To the best of the author’s knowledge, in all publications in which the constraint

violation is permitted, the penalty for each constraint is computed as a measure of the
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violation multiplied by a certain coefficient (weight) and these weights either remain

unchanged during the entire optimisation (see, for example, Nagata et al. (2010)), or are

updated by multiplying them by some constants which remain the same during the entire

optimisation (see, for example, Cordeau et al. (1997), Cordeau et al. (2001), Schneider

and Löffler (2019), Ibaraki et al. (2008), Xie et al. (2017), Zhou et al. (2020), Pan et al.

(2021), Cordeau and Maischberger (2012)). In both cases, these constants are determined

as a result of tedious computational experiments. In contrast, Gu et al. (2019) introduced

a mixed integer linear programming formulation which permits to consider the weights as

Lagrange multipliers and to choose their initial values as well as to dynamically update

them correspondingly. According to Gu et al. (2019), the application of local search to the

Lagrangian relaxation of the original problem rather than to the original problem itself

is motivated by the observation that this new problem, although remaining very difficult

from the computational point of view, is more amenable to local search. In other words,

the use of the Lagrangian relaxation is dictated not by the complexity consideration but

by the suitability for the optimisation method − local search. This distinguishes Gu et al.

(2019) from the conventional Lagrangian relaxation approach where the main goal is to

obtain a tight bound for the optimal value of the objective function with, if necessary,

the subsequent conversion of the obtained infeasible solution into a feasible one Fisher

(1981), Fathollahi-Fard et al. (2018).

The results presented in Gu et al. (2019) indicate that the development of algorithms

based on the idea of the amalgamation of ILS and Lagrangian relaxation is a promising

direction of research. Having in common the same idea, these algorithms can be quite

different, depending on what local search subroutines are used, how these subroutines are

implemented and how they interact, as well as on how and when the Lagrange multipliers

(weights in the penalty component of the augmented objective function) are updated.

This chapter presents a new algorithm (Lagrangian ILS) that significantly outperforms

the original algorithm in Gu et al. (2019) both, in terms of speed as well as in terms

of solution quality. Although the Lagrangian ILS and the algorithm in Gu et al. (2019)

are based on the same idea of amalgamation of ILS and Lagrangian relaxation, the

implementation of this idea in these two algorithms is quite different. The superior

performance of the Lagrangian ILS was achieved by the following changes:

(a) The structure of the algorithm in Gu et al. (2019), which was mostly the same as
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in Xie et al. (2017), has been redesigned

– by changing the events which trigger the update of the weights in the penalty

for the violation of constraints;

– by changing the events which trigger the perturbation of the best currently

known feasible solution which is used to escape a local minimum.

(b) The use of the neighbourhoods in the local search in Gu et al. (2019), which was

the same as in Xie et al. (2017), has been changed

– by replacing the search in the neighbourhood generated by three types of

transformations of a current solution by the successive search in the three

separate neighbourhoods, each for one type of transformations;

– by implementing a new method of choosing the output for each neighbourhood.

(c) The local search procedure in Gu et al. (2019) has been significantly enhanced by

implementing the advanced method of the evaluation of the elements of a neigh-

bourhood.

The improvements, outlined in (a), have completely changed the optimisation process

which is now a different sequence of applications of local search and perturbations. Fur-

thermore, since the weights are now updated at different stages of optimisation, the

objective function at each application of local search also differs from that in Gu et al.

(2019). The improvements, outlined in (b), have completely changed the local search sub-

routine which now successively explores several neighbourhoods and uses a novel method

of choosing the output that takes into account the amalgamation of ILS and Lagrangian

relaxation. The improvement, mentioned in (c), has dramatically sped up the evaluation

of solutions in a neighbourhood.

More specifically, the algorithm in Gu et al. (2019) updates weights at each iteration

of the local search after finishing the exploration of the neighbourhood of the current

solution. This is the usual point when the weights are updated in typical implemen-

tations of the local search with constraints violation (see, for example, Cordeau et al.

(1997), Cordeau et al. (2001), Schneider and Löffler (2019), Xie et al. (2017), Zhou et al.

(2020), Cordeau and Maischberger (2012), Pan et al. (2021)). In contrast, in the spirit of

Lagrangian relaxation, the Lagrangian ILS updates the weights (viewed in this algorithm
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as Lagrange multipliers) only when it finds a local minimum which is infeasible for the

original problem.

In Gu et al. (2019), the perturbation subroutine is called when either a feasible solution

has been found (regardless of the quality of this solution), or the limit on the attempts

to find a feasible solution is reached. Observe that in Xie et al. (2017), Zhou et al.

(2020), Ibaraki et al. (2008), Cordeau and Maischberger (2012) the perturbation is called

when the local minimum has been found regardless of its feasibility. In contrast to all

these publications, in the Lagrangian ILS, the perturbation subroutine is called if either a

feasible local minimum has been found or the limit on the attempts to find such a feasible

local minimum has been reached.

The local search in the Lagrangian ILS is significantly more efficient in comparison

with that in Gu et al. (2019) partly because it uses an advanced technique for evaluating

solutions in the neighbourhood of a current solution. The utilised technique was originally

introduced in Nagata et al. (2010) and Vidal et al. (2013). In the Lagrangian ILS, the

ideas of Nagata et al. (2010) and Vidal et al. (2013) are further developed by a new

integer linear programming formulation that reflects this technique. Consequently, this

leads to changes in how the weights in the penalty component of the augmented objective

function are initialised and updated.

Another enhancement of the local search in the Lagrangian ILS in comparison with

the local search in Gu et al. (2019) is the method of choosing the output solution for a

neighbourhood. In Gu et al. (2019), similar to Xie et al. (2017), the local search uses two

types of neighbourhoods. For the first type, the output is a solution with the smallest

number of unallocated tasks among all solutions with an improved value of the augmented

objective function. For the second type, the output is a solution with the smallest value

on the augmented objective function. In contrast to Gu et al. (2019), the Lagrangian

ILS uses four types of neighbourhoods and chooses the output for each neighbourhood,

by considering both the value of the augmented objective function and the value of the

original objective function. This improves the entire optimisation procedure by taking

into account the nature of the amalgamation of ILS and Lagrangian relaxation.

The remaining part of the chapter is organised as follows. A description of the con-

sidered problem is given in Section 3.2. Section 3.3 presents the proposed optimisation

algorithm and its subroutines. Section 3.4 provides the results of computational experi-
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ments. Section 3.5 concludes the chapter.

3.2 Problem Statement

Following Kovacs et al. (2012), Xie et al. (2017), it is convenient to describe the considered

problem, using directed graph G(V,A) with the set of vertices V = {0, 1, ..., n, n+ 1} and

the set of arcs A. In set V , vertices 0 and n + 1 represent the depot, and the vertices

constituting the set C = {1, ..., n} represent the tasks. Vertex 0 is used when a departure

from the depot is considered and vertex n + 1 is used when the arrival at the depot is

considered. The route of each service provider is a set of arcs. If arc (i, j) is on the

route of a service provider, the service provider must travel directly from the location

associated with vertex i to the location associated with vertex j. Hence, the route of

each service provider is a directed path from vertex 0 to vertex n+ 1. The set of arcs A

contains the set A0 = {(0, i)|i ∈ C ∪ {n + 1}}, the set An+1 = {(i, n + 1)|i ∈ C ∪ {0}},

and the set AC = {(i, j)|i 6= j, i ∈ C, j ∈ C}. In other words, A = AC ∪ A0 ∪ An+1 and

the subgraph G(C,AC) is complete.

For each i ∈ C, let di > 0 be the duration of the service required by task i. For the

sake of convenience, it is assumed that vertex 0 has d0 = 0. Each vertex in C has an

associated time window. For i ∈ C, the associated time window [ei, li] designates the

time interval when the service required by task i can commence. In addition, a service

provider can leave the depot (vertex 0) and return to the depot (vertex n+1) only within

the given time window [e0, ln+1]. In what follows, it is assumed that e0 = 0.

Each arc (i, j) ∈ A has the associated travel time ti,j, and for any three arcs (i, j),

(i, h) and (h, j), the travel times satisfy

ti,j ≤ ti,h + th,j. (3.1)

The inclusion of an arc (i, j) in the route of a service provider incurs the cost ci,j. Since

vertices 0 and n + 1 represent the same depot, c0,n+1 = 0 and t0,n+1 = 0. Consequently,

for each i ∈ C, t0,i ≤ li. If the route of a service provider contains the arc (0, i), then the

earliest time that the service provider can commence the service at task i is max{t0,i, ei}.

If, for i ∈ C and j ∈ C, the route of a service provider contains the arc (i, j) and the

service provider completes the service at task i at time t, then the earliest time that the
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service can start at task j is max{t + ti,j, ej}. In other words, even if a service provider

can arrive at task i prior to the point in time ei, the service commences only at ei.

Furthermore, there exists an upper bound D on the length of the time interval between

the departure of a service provider from the depot and the return of this service provider

to the depot.

Each task needs only one service provider, but not all service providers may be qual-

ified for certain tasks. Let K be the set of service providers. For k ∈ K, i ∈ C, the

parameter qki is 1 if service provider k is qualified for task i, whereas this assignment is

not allowed if qki = 0. If task i is not allocated to any service provider, this task must be

outsourced at cost oi.

The goal is to find the routes for service providers which minimises the total cost,

including the traveling and outsourcing costs.

Let

bk0 = the time when service provider k leaves the depot

bkn+1 = the time when service provider k returns to the depot

bki = the time when service provider k starts task i

yi =

 1 if task i is outsourced;

0 otherwise

xki,j =


1 if i and j are two consecutive tasks in the route

of service provider k, i.e., this route contains (i, j);

0 otherwise

zki =

 1 if task i is served by service provider k;

0 otherwise

The considered problem can be formulated as follows:

min
∑
k∈K

∑
(i,j)∈A

ci,jx
k
i,j +

∑
i∈C

oiyi (3.2)
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subject to:

∑
k∈K

zki + yi = 1, ∀i ∈ C (3.3)

zki ≤ qki , ∀k ∈ K, ∀i ∈ C (3.4)∑
j∈V \{0}

xk0,j = 1, ∀k ∈ K (3.5)

∑
i∈V \{n+1}

xki,n+1 = 1, ∀k ∈ K (3.6)

zkh =
∑

i∈V \{n+1}

xki,h, ∀k ∈ K, ∀h ∈ C (3.7)

zki =
∑

j∈V \{0}

xki,j, ∀i ∈ C, ∀k ∈ K (3.8)

bki + (di + ti,j)x
k
i,j ≤ bkj + li(1− xki,j), ∀k ∈ K, ∀(i, j) ∈ A (3.9)

ei ≤ bki , ∀k ∈ K, ∀i ∈ C ∪ {0} (3.10)

bki ≤ li, ∀k ∈ K, ∀i ∈ C ∪ {n+ 1} (3.11)

bkn+1 − bk0 ≤ D, ∀k ∈ K (3.12)

xki,j ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ A (3.13)

zki ∈ {0, 1}, ∀k ∈ K, ∀i ∈ C (3.14)

yi ∈ {0, 1}, ∀i ∈ C (3.15)

The objective function (3.2) minimises the sum of the total travel cost and the total

cost for outsourcing. Constraints (3.3) stipulate that a task is either outsourced or served

by exactly one service provider. Constraints (3.4) ensure that a service provider can be

assigned to a task only if this service provider is qualified for this task. Constraints (3.5)

guarantee that a service provider can leave the depot at most once, whereas according to

(3.6), a service provider can return to the depot at most once. Observe that, xk0,n+1 = 1

means that service provider k does not leave the depot at all. Constraints (3.7) and (3.8)

enforce that a service provider is assigned to a task if and only if this task is on the route

of this service provider. Constraints (3.9) state that if (i, j) is on the route of service

provider k, the service at task j can start only after the completion of the service at task

i plus the travel time between task i and task j. Constraints (3.10) and (3.11) require

that the service of a task should commence within the time window associated with this
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task. According to the constraints (3.12), the duration of the shift of a service provider

cannot exceed the allowed maximum duration. Observe that (3.9) − (3.11) can eliminate

subtours. In what follows, the problem defined by (3.2) − (3.15) will be referred to as

the original problem.

3.3 Lagrangian ILS Framework

In any local search procedure, the evaluation of the solutions constituting neighbourhoods,

which involves the exchange of arcs and the reallocation of visits, is time-consuming. In

particular, in the presence of time windows, it is crucial to have an efficient technique for

measuring the violation of the right-end points of the time windows (in the Lagrangian

ILS as well as in all publications known to the authors, only the right-end points of the

time window can be violated). This issue was addressed in Nagata et al. (2010) and

then in Vidal et al. (2013) by the technique based on the idea of time warps. Since its

introduction, this technique has been successfully used in a number of vehicle routing

algorithms, for example, Schneider et al. (2013), Kramer et al. (2015), Hiermann et al.

(2016), Xie et al. (2017), François et al. (2019), Pan et al. (2021).

This technique is also the core of the search component of the Lagrangian ILS. The

time warps can be introduced as follows. Consider a route

(0, i1), (i1, i2), ..., (ir, n+ 1), (3.16)

where i1, ..., ir are tasks allocated to the corresponding service provider and listed in

the order in which this service provider visits their locations. It is convenient to denote

i0 = 0 and ir+1 = n+ 1. Let bi0 be the time when the service provider leaves the depot in

(3.16). The time warps for this route are the values ui1 , ..., uir+1 that can be computed

recursively (together with the auxiliary values Bi1 , ..., Bir+1) using (3.17) − (3.20) below.

Bi1 = max{ei1 , bi0 + ti0,i1}, (3.17)

uij = max{0, Bij − lij}, 1 ≤ j ≤ r + 1, (3.18)

Bij+1
= max{eij+1

, Bij − uij + dij + tij ,ij+1
}, 1 ≤ j ≤ r − 1, (3.19)
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Bir+1 = Bir − uir + dir + tir,ir+1 . (3.20)

It is easy to see, that by virtue of (3.17), Bi1 is the earliest possible time when the

service of task i1 can commence. Furthermore, if all time warps are zero, (3.17) and

(3.19) indicate that Bi1 , ..., Bir are the earliest time when tasks in (3.16) can commence

and Bir+1 is the earliest possible arrival time at the depot. On the other hand, since all

time warps are zero, (3.18) implies that Bi1 , ..., Bir+1 do not violate their respective time

windows. Therefore, if all time warps are zero, then the corresponding route is feasible

with respect to the time windows. Since Bi1 is the earliest possible time when the service

of task i1 can commence, by (3.18), ui1 > 0 implies that the route (3.16) violates the

time window for i1. Suppose that, for some 1 < j ≤ r + 1, uij > 0 and uig = 0 for all

1 ≤ g < j. Then, according to (3.18), Bij violates the time window for the task ij, and

according to (3.17) and (3.19), Bi1 , ..., Bij are the earliest possible times when the service

of the tasks i1, ...,ij can commence. Hence, the route (3.16) violates the time window for

task ij. Summarising the above discussion, in order to check whether or not the route

(3.16) violates at least one time window, it suffices to check whether or not
∑r+1

j=1 uij is

zero. Observe that, for any value uij > 0, the value of uij+1
is the same. This property

significantly facilitates the recalculation of
∑r+1

j=1 uij in the course of local search.

The key idea of the Lagrangian ILS is the amalgamation of the iterated local search

metaheuristic and the Lagrangian relaxation method. This approach requires an alterna-

tive mixed integer linear programming formulation of the WSRP that includes variables

that reflect the violation of the time windows and the limit D. Since the zero time warps

indicate that the time windows are not violated, the time warps are an ideal building

block for such formulation. The formulation (3.21) − (3.39) below is equivalent to (3.2) −

(3.15), but in contrast to (3.2) − (3.15), involves the new variables uki , for all i ∈ V \ {0}

and k ∈ K, and vk, for all k ∈ K. If task i is allocated to service provider k, then uki is

the time warp associated with this task in the route of this service provider. According

to the formulation below, each vk is not less than the violation by the service provider k

of the permissible shift duration.

min
∑
k∈K

∑
(i,j)∈A

ci,jx
k
i,j +

∑
i∈C

oiyi (3.21)
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subject to:

∑
k∈K

zki + yi = 1, ∀i ∈ C (3.22)

zki ≤ qki , ∀k ∈ K, ∀i ∈ C (3.23)∑
j∈V \{0}

xk0,j = 1, ∀k ∈ K (3.24)

∑
i∈V \{n+1}

xki,n+1 = 1, ∀k ∈ K (3.25)

zkh =
∑

i∈V \{n+1}

xki,h, ∀k ∈ K, ∀h ∈ C (3.26)

zki =
∑

j∈V \{0}

xki,j, ∀i ∈ C, ∀k ∈ K (3.27)

bk0 + (d0 + t0,j)x
k
0,j ≤ bkj + ln+1(1− xk0,j), ∀k ∈ K, ∀j ∈ C ∪ {n+ 1} (3.28)

bki − uki + (di + ti,j)x
k
i,j ≤ bkj + li(1− xki,j), ∀k ∈ K, ∀(i, j) ∈ AC ∪ An+1 (3.29)

ei ≤ bki , ∀k ∈ K, ∀i ∈ C ∪ {0} (3.30)

bki − li ≤ uki , ∀k ∈ K, ∀i ∈ C ∪ {n+ 1} (3.31)

bkn+1 − bk0 +
∑

i∈V \{0}

uki ≤ D + vk, ∀k ∈ K (3.32)

∑
k∈K

∑
i∈V \{0}

uki ≤ 0 (3.33)

∑
k∈K

vk ≤ 0 (3.34)

xki,j ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ A (3.35)

zki ∈ {0, 1}, ∀k ∈ K, i ∈ C (3.36)

yi ∈ {0, 1}, ∀i ∈ C (3.37)

uki ≥ 0, ∀k ∈ K, i ∈ V \ {0} (3.38)

vk ≥ 0, ∀k ∈ K (3.39)

The objective function (3.21) and the constraints (3.22) − (3.27), (3.30), (3.35) −

(3.37) are the same as in the formulation (3.2) − (3.15). Constraints (3.29) correspond

to (3.17), (3.19) and (3.20) in the definition of time warps, whereas constraints (3.31)

correspond to (3.18). Constraints (3.33) and (3.38) ensure that time warps uki are zero,

whereas the constraints (3.34) and (3.39) enforce that vk are zero. Consequently, con-
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straints (3.29), (3.31), and (3.32) become constraints (3.9), (3.11), and (3.12) in the

formulation (3.2) − (3.15), respectively.

The dualisation of (3.33) and (3.34), using Lagrange multipliers α ≥ 0 and β ≥ 0,

gives the following Lagrangian relaxation of the mixed integer linear program (3.21) −

(3.39)

min
∑
k∈K

∑
(i,j)∈A

ci,jx
k
i,j +

∑
i∈C

oiyi + α
∑
k∈K

∑
i∈V \{0}

uki + β
∑
k∈K

vk (3.40)

subject to:

(3.22)− (3.32), (3.35)− (3.39)

In what follows, this Lagrangian relaxation will be referred to as LR problem.

The presented optimisation procedure is comprised of the following main components:

• subroutine INITIAL that constructs a feasible solution for the given instance of the

problem (3.2) − (3.15) which is the best currently known feasible solution at the

start of the optimisation procedure;

• subroutine START(s) that perturbs the solution s which is the output of the sub-

routine INITIAL;

• subroutine SEARCH(s) which is a local search procedure for the LR problem that

starts by exploring the neighbourhood of s;

• subroutine ADJUST(α, β, s) that updates α and β, when the current local minimum

s is infeasible for the original problem;

• subroutine PERTURB(s, h) that perturbs the best currently known feasible solution

s, taking into account the number of runs h which has failed to improve s;

• subroutine WEIGHTS(s′) that computes the initial values of α and β, using either

s′ = START(s∗) or s′ = PERTURB(s∗, h) where s∗ is the best currently known

feasible solution.

Let f(s) be the objective function value for a solution s of the mixed integer linear

program (3.2) − (3.15). The pseudocode below outlines the Lagrangian ILS.
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Lagrangian ILS

1: s∗ ← INITIAL
2: s′ ← START(s∗)
3: h← 1
4: while h ≤M do
5: if s′ is feasible and f(s′) < f(s∗) then
6: s∗ ← s′

7: end if
8: {α, β} ← WEIGHTS(s′)
9: s′ ← SEARCH(s′)
10: e← 1
11: while e ≤ E and s′ is infeasible do
12: {α, β} ← ADJUST(α, β, s′)
13: s′ ← SEARCH(s′)
14: e← e+ 1
15: end while
16: if s′ is feasible and f(s′) < f(s∗) then
17: s∗ ← s′

18: h← 0
19: end if
20: s′ ← PERTURB(s∗, h)
21: h← h+ 1
22: end while
23: return s∗

The Lagrangian ILS starts with the subroutine INITIAL (line 1) which generates a

feasible solution for the original problem, that is the problem (3.2) − (3.15). Until a better

solution for the original problem has been found, the solution generated by INITIAL is

considered as the best currently known solution. In the pseudocode above, at all stages of

the Lagrangian ILS, the best currently known solution for the original problem is denoted

by s∗.

The parameter M (line 4) determines the maximal permissible number of consecutive

attempts (WHILE loop lines 4 − 22) to find a feasible solution for the original problem

with a better value of the objective function (3.2). Each such attempt starts with a

solution which is a perturbation of the best currently known solution s∗ for the original

problem. For the first attempt (the first iteration of the WHILE loop lines 4 − 22),

the perturbed solution is produced by the subroutine START (line 2), whereas, for all

subsequent attempts, the perturbed solutions are generated by the subroutine PERTURB

(line 20).

Each attempt to find a better solution for the original problem is a sequence of ap-



40
An Efficient Optimisation Procedure for the Workforce Scheduling and

Routing Problem

plications of local search. Each such application (a call of the subroutine SEARCH)

finds a local minimum for the LR problem. The first call of SEARCH (line 9) is pre-

ceded by the call of the subroutine WEIGHTS (line 8) that computes the initial values

of Lagrange multipliers (the initial weights specifying the penalty for the violation of

constraints (3.33), (3.34)). Each of the subsequent calls of SEARCH during an iteration

of the WHILE loop lines 4 − 22 is preceded by the adjustment of the Lagrange mul-

tipliers (subroutine ADJUST in line 12). The repetition of applications of local search

(WHILE loop lines 11 − 15) terminates when either the number of applications of local

search exceeds the given permissible number E, or the current local minimum for the

LR problem is feasible for the original problem. The starting solution of the local search

performed by the subroutine SEARCH, called in the WHILE loop lines 11 − 15, is the

local minimum found as a result of the previous call of the subroutine SEARCH.

3.3.1 Subroutine INITIAL

The subroutine INITIAL is an iterative algorithm that constructs a feasible solution for

the original problem, using a list of tasks and a list of service providers. The service

providers are listed in non-increasing order of
∑

i∈C q
k
i , k ∈ K, which is the number

of tasks that service provider k is qualified to serve. The tasks are ordered in a non-

decreasing order of the angle in their polar coordinates where the pole is the depot and

the polar axis is specified by the direction to the location of a randomly chosen task.

The idea to use polar coordinates in constructing a feasible solution can be traced back

at least to Gillett and Miller (1974). At the beginning of the first iteration, the current

list of tasks contains all tasks; the current routes of service providers are empty; and the

current value of the objective function is zero. At each iteration, the algorithm scans the

list of service providers and attempts to insert the first task from the current list of tasks

into the route of each service provider in such a way that this insertion does not violate

the route feasibility. If there exist multiple feasible positions, then this task is inserted

into a route and a feasible position in this route which gives the smallest increase in the

current value of the objective function. If there is no feasible position available, this task

is outsourced (since outsourcing is permissible, this does not lead to an infeasible solution)

and the current value of the objective function is increased by the cost of outsourcing.

In both cases, the current list of tasks is updated by eliminating the first task in this
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list and the next iteration of the subroutine INITIAL begins. This procedure terminates

when the current list of tasks becomes empty, i.e., each task is either allocated to some

service provider or outsourced. The rationale behind the choice of this particular method

is two-fold: it generates a reasonably good solution and it is similar to the method in Xie

et al. (2017) which eliminates the impact of the starting solution in the comparison of

the Lagrangian ILS and the algorithm in Xie et al. (2017).

3.3.2 Subroutine START

The input for the subroutine START is the solution constructed by the subroutine INI-

TIAL. If this solution does not have outsourced tasks, then the output of START is the

same solution. In the case when the input has outsourced tasks, the output of START

is produced by randomly choosing one of the outsourced tasks, and then inserting it into

the route of one of the qualified service providers in such a way that this insertion results

in the smallest increase of (3.40) with α = β = 1.

3.3.3 Subroutine WEIGHTS

The input of the subroutine WEIGHTS is an output of either the subroutine START or

the subroutine PERTURB. The output of the subroutine WEIGHTS is α and β in (3.40),

which are the weights used to calculate the penalty for the violation of constraints. For

input solution s, the violation of time windows uki (s), and the violation of permissible

shift duration vk(s) are calculated based on the time warp technique in Vidal et al.

(2013). The subroutine WEIGHTS computes the weights in the penalty for the violation

of constraints (the values of Lagrange multipliers) as follows:

α =
∑
k∈K

∑
i∈V \{0}

uki (s) and β =
∑
k∈K

vk(s)

So, each call of the subroutine WEIGHTS results in Lagrange multipliers (weights) that

reflect the violation of constraints by the input solution.
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3.3.4 Subroutine SEARCH

The subroutine SEARCH(s) attempts to solve the Lagrangian relaxation problem for

fixed values of the Lagrange multipliers (for fixed weights in the augmented objective

function), using four local search optimisation procedures, each with one of the four

operators N0, N1, N2, N3. The operators implemented in this subroutine are commonly

used in the field of vehicle routing and can be found in many algorithms reported in

the literature (see for example, Laporte et al. (2000), Bräysy and Gendreau (2005a),

Bräysy and Gendreau (2005b), and Kindervater and Savelsbergh (2018)). Each operator

Ni transforms an input solution s, by applying transformations (moves) from the set of

transformations associated with this operator, and returns as the result some solution s′

(denoted s′ = Ni(s)) where s′ is either the input solution s, or one of the transformations

of s.

The set of transformations, associated with N0, is comprised of all transformations

that

• for two routes, interchange a sequence of up to two consecutive visits in one route

with a sequence of up to two consecutive visits in another route, including the

transformations that only use a sequence from one route and an insertion position

in another;

• interchange a sequence of up to two consecutive visits in a route (the tasks in

this sequence become outsourced) with at most one outsourced task, including

the transformations which either do not use an outsourced task or instead of the

sequence of visits use only an insertion position in the route.

The set of transformations associated with operator N1 is comprised of all transfor-

mations that extract one visit from a route and insert it into a different position of the

same route. Operator N2 is similar to N1, but, instead of one visit, each transformation

performed by N2 extracts a sequence of two consecutive visits and inserts this sequence

into a different position of the same route. Each transformation performed by N3 reverses

the order of a sequence of consecutive visits in a route.

Although the transformations associated with operators N0, N1, N2, andN3 are among

the most commonly used in the vehicle routing algorithms, the rule of choosing Ni(s)

differs from the rules reported in the literature. This rule is the same for all four operators
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N0, N1, N2, N3 and reflects the nature of the Lagrangian ILS: it aims at improving

the value of the augmented objective function fLR(·) but at the same time takes into

account the minimisation of the original objective function f(·). For a current solution

s, according to this rule, if there is no solution in the neighbourhood of s with the value

of the augmented objective function smaller than fLR(s), then s = Ni(s), i.e., the output

is the current solution s. If there are solutions in the neighbourhood of s that have the

value of the augmented objective function smaller than fLR(s), then the output is one

of them, say s′, that has the smallest value of
⌊
f(s′)
ψ

⌋
where ψ is a fixed positive integer

which is the same for all four operators N0, N1, N2, N3. If there are several such solutions,

the output is one of them with the smallest value of fLR(s′). Observe that if ψ = 1, the

output is the solution with the smallest value of the original objective function among all

solutions with the value of the augmented objective function less than fLR(s), whereas if

ψ is very large, then the output is a solution with the smallest value of the augmented

objective function.

The subroutine SEARCH(s) requires an input solution s and can be outlined as

follows:

SEARCH(s)

1: repeat
2: s̄← s
3: for i← 0; i ≤ 3; i← i+ 1 do
4: repeat
5: s′ ← s
6: s← Ni(s)
7: until fLR(s′) = fLR(s)
8: end for
9: until fLR(s̄) = fLR(s)

10: return s

The subroutine SEARCH(s) with an input solution s is an iterative optimisation

procedure (REPEAT loop lines 1 − 9) where each iteration is comprised of the application

of four local search algorithms (FOR loop lines 3 − 8). The first local search algorithm

uses the operator N0, the second uses the operator N1, the third uses the operator N2,

and the fourth uses the operator N3. At the first iteration, the local search with the

operator N0 is applied to the input solution s. When the local search with the operator Ni

(REPEAT loop lines 4 − 7) finds a local minimum with respect to Ni, this local minimum

is used as an input to the local search with operator N(i+1)mod4. The subroutine SEARCH
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terminates when all four local search algorithms fail to further improve the value of the

augmented objective function.

3.3.5 Adjustment of multipliers

As has been discussed above, the weights α and β of the penalty for the violation of

constraints (3.33), (3.34) are computed prior to each call of the subroutine SEARCH and

remain unchanged till the next call of this subroutine, i.e., remain unchanged during each

run of SEARCH. Prior to a call of the subroutine SEARCH, α and β are computed either

by the subroutine WEIGHTS or by the subroutine ADJUST. If an optimal solution ŝ

of the Lagrangian relaxation (3.40), (3.22) − (3.32), (3.35) − (3.39) can be found, then

according to a commonly used version of the Lagrangian relaxation method Fisher (1981),

Guignard (2003), the weights α and β are updated to

α + τ
∑
k∈K

∑
i∈V \{0}

uki (ŝ) and β + τ
∑
k∈K

vk(ŝ) (3.41)

where uki (ŝ), i ∈ V \{0}, k ∈ K, and vk(ŝ), k ∈ K are the violations of constraints (3.33),

(3.34) caused by ŝ, and

τ =
η (f(s∗)− fLR(ŝ))(∑

k∈K
∑

i∈V \{0} u
k
i (ŝ)

)2

+
(∑

k∈K vk(ŝ)
)2

(3.42)

where η is a positive parameter, f(·) is the original objective function, fLR(·) is the

augmented objective function (the objective function for the LR problem), and s∗ is the

best currently known solution for the original problem. Since the subroutine SEARCH

cannot guarantee the optimal solution ŝ, instead of (3.41), the Lagrangian ILS uses

α + τ
∑
k∈K

∑
i∈V \{0}

uki (s) and β + τ
∑
k∈K

vk(s) (3.43)

where uki (s), i ∈ V \{0}, k ∈ K, and vk(s), k ∈ K are the violations of constraints (3.33),

(3.34) by the output s of the subroutine SEARCH, and

τ =
γ f(s∗)(∑

k∈K
∑

i∈V \{0} u
k
i (s)

)2

+
(∑

k∈K vk(s)
)2

(3.44)
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where γ is a positive parameter. The choice of γ and an analysis of the sensitivity of

the optimisation procedure to the different values of γ will be discussed in Section 3.4.2.

Observe that f(s∗) − fLR(ŝ) in (3.42) cannot be replaced by f(s∗) − fLR(s), since this

may results in a negative τ .

3.3.6 Perturbation

The perturbation mechanism, used in the Lagrangian ILS is the same as in Xie et al.

(2017). If there exists at least one outsourced task, the subroutine PERTURB randomly

chooses an outsourced task; evaluates all possible insertions of this task into the existing

routes; and inserts it in the position that gives the smallest value of (3.40) when α =

β = 1. If there is no outsourced task, this stage of the perturbation is skipped. Then the

subroutine PERTURB repetitively applies the exchange operation that, randomly chooses

two routes; randomly chooses a sequence of consecutive visits in each of the chosen routes;

and interchanges these sequences. The number of applications of the exchange operation

depends on the number of consecutive calls of the subroutine SEARCH that result in no

improvement of the value of the objective function (3.2) of the original problem, which

is the counter h in the pseudocode of the Lagrangian ILS. Starting with one exchange of

two sequences, the number of exchanges (iterations) increases by one each time when h

increases by a chosen increment.

3.4 Computational experiments

This section presents the results of computational experiments aimed at evaluating the

performance of the Lagrangian ILS by comparing it with the performance of CPLEX

12.10, the state-of-the-art iterated local search algorithm Xie et al. (2017), and a modifi-

cation of the algorithm in Xie et al. (2017) presented in Zhou et al. (2020). The iterated

local search in Xie et al. (2017) will be referred to as ILS and its modification presented

in Zhou et al. (2020) will be referred to as the iterated local search with hybrid neigh-

bourhood search (ILS-HNS). The algorithm in Zhou et al. (2020) uses two local search

subroutines, one of which is the local search procedure described in Xie et al. (2017).

Another local search subroutine in Zhou et al. (2020), at each iteration, outsources sev-

eral already scheduled tasks and then, using the entire set of outsourced tasks, tries to
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insert some of them into the existing routes. At each cycle of optimisation, one of these

two subroutines is chosen randomly and is applied until the limit on the number of failed

attempts to improve the value of the objective function is reached. After that, the per-

turbation is applied and a new cycle starts by randomly choosing one of the two local

search subroutines.

All computational experiments were conducted on a computer with Intel Xeon CPU

E5-2697 v3 2.60GHz and 4GB RAM. To eliminate the differences that may be caused by

different hardware and a different implementation of the algorithm in Xie et al. (2017),

the author produced an implementation of the ILS which will be referred to as the Imple-

mented ILS. The Implemented ILS and the Lagrangian ILS were programmed in C++

and compiled with g++, using the optimisation level O3, which is aimed at reducing the

running time of the executable file. Moreover, both implementations use the same com-

puter code for the evaluation of each neighbourhood thereby eliminating the differences

that may be caused by different programming techniques or compilers.

As far as the comparison with the ILS is concerned, i.e., the comparison with the al-

gorithm in Xie et al. (2017), the computational experiments use the benchmark instances

comprised of 25, 50, and 100 tasks. These instances are the same as in Xie et al. (2017)

(please also see Kovacs et al. (2012)). The instances with 100 tasks can be downloaded

from https://prolog.univie.ac.at/research/STRSP/ and are based on the Solomon

data sets R101, R103, R201, R203, C101, C103, C201, C203, RC101, RC103, RC201,

RC203 in Solomon (1987) with additional compatibility restrictions in Cordeau et al.

(2010). The instances belong to two categories, “NoTeam Reduced” and “NoTeam Com-

plete”. For instances within the category “NoTeam Complete”, the number of service

providers is sufficiently large such that all tasks can be assigned to a service provider. In

contrast to “NoTeam Complete”, the number of service providers used in the instances

within the category “NoTeam Reduced” is reduced such that it is not possible to assign all

tasks Kovacs et al. (2012). The instances with 25 and 50 tasks were generated according

to Kovacs et al. (2012) by taking the first 25 and 50 tasks in the instances with 100 tasks

and by taking a few service providers in the instances from “NoTeam Complete”. The

number of service providers in each instance with 25 or 50 tasks is reported in Table A.1

in A.1. CPLEX was able to obtain an optimal solution for instances with 25 and 50 tasks.

Its performance on these instances is reported in Table A.1 in A.1 and is summarised

https://prolog.univie.ac.at/research/STRSP/
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in Table 3.1. As far as the instances with 100 tasks are concerned, CPLEX obtained

an optimal solution only for a few of them and most of them could not find an optimal

solution or even a feasible solution within a time limit of 4 hours and with a memory

limit of 4GB. The corresponding results are reported in Tables A.3 and A.5 in A.1.

The ILS in Xie et al. (2017) solves each instance using a multi-start mechanism that

runs the iterated local search five times, each time with a new starting solution. The

output of one application of this multi-start algorithm is the best solution obtained in

these 5 runs. Furthermore, in Xie et al. (2017), the ILS is applied to each instance

5 times. Therefore, the Lagrangian ILS was applied to each instance 25 times, each

time with a different starting solution, which was generated by one application of the

subroutine INITIAL. These 25 applications were split into 5 groups, each comprised of 5

applications. The output obtained by a group is defined as the best solution obtained by

the attempts constituting the group. So, each group is a counterpart of one application

of the ILS. Therefore, the total time required by all five attempts constituting a group

is a counterpart of the time required by one application of the ILS. For the comparison

with the results presented in Xie et al. (2017), only the result of each group and the time

required by each group were recorded.

The modification of the ILS, presented in Zhou et al. (2020), is compared in Zhou

et al. (2020) with the ILS, using the computational experiments methodology in Xie et al.

(2017) and a subset of instances used in Xie et al. (2017). Therefore, the Lagrangian ILS

is compared below with the ILS-HNS, using the computational experiments methodology

described above. This comparison uses the information provided in Zhou et al. (2020)

which reports only the results for instances in Xie et al. (2017) with 100 tasks and does

not provide any information on the computational time required by the ILS-HNS on these

instances.

Parameter settings are identical for the Implemented ILS and ILS as in Xie et al.

(2017). For Lagrangian ILS, the maximum number of exchange operations in the subrou-

tine PERTURB is five, which is the same as ILS; the parameter E is 100; the parameter

M is computed according to ω(|C| + λ|K|), where C is the set of all tasks; K is the set

of all service providers; ω is a parameter to control M ; λ = 10. The Lagrangian ILS

increases the number of exchange operations in perturbation after each M/5 sequential

iterations that fails to improve the value of the objective function.
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The solution quality of the studied algorithms is measured by the percentage relative

difference
Reference−Obj

Reference
× 100 (3.45)

where Obj is the objective value obtained by the corresponding algorithm and Reference

is the objective value either presented in Xie et al. (2017) (Table 3.2 and 3.3), or produced

by CPLEX ( Table 3.1), or obtained by Lagrangian ILS (Table 3.6).

For readers’ convenience, the computational results for performance comparisons are

shown in overview tables, while the detailed results for each instance are provided in A.1

and A.2. In the overview tables, the instances are grouped according to the geographic

distribution (C, R or RC), compatibility restriction (5x4, 6x6, 7x4), and the number of

tasks (25, 50, 100). For example, small (25 tasks) instances “C101 5x4”, “C201 5x4”, and

“C203 5x4” form the group named “C 5x4”. In the overview tables, each row displays

the average results on instances of the same group. The values in the last row of each

overview table are the average values over all instances, i.e., they are the same as in

Tables in A.1 and A.2. Observe that, since the groups in Table 3.1 may contain different

numbers of instances, a value in the last row in this table may not be the average over

the values in the corresponding column.

In what follows, Section 3.4.1 compares the performance of the Lagrangian ILS with

the performance of CPLEX, the performance of the Implemented ILS, the performance

of the ILS reported in Xie et al. (2017), and the performance of the ILS-HNS reported

in Zhou et al. (2020). Section 3.4.2 analyses how the performance of the Lagrangian ILS

changes with the variation of several parameters.

3.4.1 Comparison of the performance

This subsection reports the results obtained by the Lagrangian ILS, ILS, Implemented

ILS, and ILS-HNS for ω = 1. In addition, ψ = 50 and γ = 2 are used for the Lagrangian

ILS. The results for the small (25 tasks) and medium (50 tasks) instances are reported in

Table 3.1. Tables 3.2 and 3.3 present results for the two categories, “NoTeam Reduced”

and “NoTeam Complete” comprising large (100 tasks) instances. To compare the per-

formance of Lagrangian ILS, ILS, Implemented ILS, and ILS-HNS, the comprehensive

Wilcoxon tests with Bonferroni correction are conducted and p-values are displayed in
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Tables 3.4 and 3.5.

The performance of the Lagrangian ILS, ILS in Xie et al. (2017), Implemented ILS,

and CPLEX on the small (25 tasks) and medium (50 tasks) instances is given in Table

3.1. The ILS-HNS is not included in this table since Zhou et al. (2020) does not report the

performance on these instances. The first three columns in this table, as well as in Table

3.2 and Table 3.3, are the instance group’s name, the number of tasks, and the average

number of service providers. For CPLEX, the optimal objective value and computational

time are given in the columns Opt∗ and sec∗, respectively. Each column %∗ gives the

percentage difference (3.45) of the objective value with respect to the objective value

obtained by CPLEX. Each column seca gives the average computation time required by

the respective optimisation procedure. As has been discussed above, the Lagrangian ILS

is applied to each instance 25 times and these 25 attempts constitute 5 groups. The

column |Opt| shows the number of groups that obtained an optimal solution. For the

Lagrangian ILS, the column seca is complemented by columns secw and secb which give

the worst and best time required by the Lagrangian ILS. To facilitate the reading, the

best values obtained by various algorithms are in bold.

Table 3.1: Comparison between the performance of CPLEX, ILS in Xie et al. (2017), Imple-
mented ILS and Lagrangian ILS on small and medium instances

Implemented
CPLEX ILS ILS Lagrangian ILS

Instances |C| |K| Opt∗ sec∗ %∗ seca %∗ seca %∗ |Opt| seca secw secb
C5x4 25 2.67 656.87 7.84 -0.15 0.12 -0.03 0.20 0.00 5.00 0.20 0.67 0.00
R5x4 25 3.00 1643.06 0.08 0.00 0.13 -0.08 0.50 0.00 5.00 0.30 0.50 0.00
RC5x4 25 3.50 663.73 1.87 -0.01 0.22 0.00 0.70 -0.23 3.00 0.30 1.00 0.00
C6x6 25 2.67 1025.02 1.07 0.00 0.04 -0.56 0.27 0.00 5.00 0.20 1.00 0.00
R6x6 25 3.00 2117.24 0.07 -1.84 0.18 -0.77 0.60 0.00 5.00 0.30 1.00 0.00
RC6x6 25 3.50 1295.35 3.52 0.00 0.19 0.00 0.50 0.00 5.00 0.30 1.00 0.00
C7x4 25 3.00 720.87 59.55 0.00 0.06 -0.83 0.25 0.00 5.00 0.15 0.75 0.00
R7x4 25 2.67 1418.91 38.44 0.00 0.07 -0.53 0.20 0.00 5.00 0.20 0.67 0.00
RC7x4 25 3.50 1318.62 0.27 0.00 0.09 -0.10 0.40 0.00 5.00 0.20 1.00 0.00
C5x4 50 5.00 844.77 0.38 0.00 0.94 0.00 4.30 0.00 5.00 1.80 2.50 1.50
R5x4 50 5.00 2807.69 8.19 -0.26 4.49 -0.99 7.20 0.00 5.00 3.60 5.00 3.00
C6x6 50 5.00 1179.39 28.74 0.00 1.31 0.00 5.10 0.00 5.00 2.50 3.00 2.00
R6x6 50 5.00 3419.01 52.61 -0.07 2.31 -0.10 6.40 0.00 5.00 3.90 5.00 3.00
C7x4 50 5.00 1334.38 0.44 -0.42 0.82 0.00 2.60 0.00 5.00 2.40 3.00 2.00
R7x4 50 5.00 3008.52 23.31 -0.06 1.47 -0.06 4.60 0.00 5.00 2.40 3.00 1.50
Average 1469.98 17.69 -0.16 0.72 -0.31 1.97 -0.01 4.89 1.10 1.77 0.74

CPLEX can find optimal solutions for all the instance groups within 60 seconds. It is

worth pointing out that introducing zkh and constraint (3.7) in the MIP model, which is

not common in the workforce scheduling and routing literature, can dramatically reduce

the solution time for CPLEX. For groups “R 5x4” and “R 6x6” with 25 tasks, and for

groups “C 5x4” and “C 7x4” with 50 tasks, CPLEX surprisingly requires less time than
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the other algorithms on average. In Table 3.1, a zero relative difference indicates that the

algorithm can constantly obtain optimal objective value in all 5 runs for the corresponding

instance group. It can be seen that the Lagrangian ILS obtains the optimal objective

value constantly for 14 out of 15 groups. In contrast, the ILS in Xie et al. (2017) obtains

optimal objective value constantly for 8 out of 15 groups, and the Implemented ILS

achieves 5 out of 15 groups. The Lagrangian ILS also produces a better average objective

value (displayed in the last row of Table 3.1) than the Implemented ILS and ILS.

The Lagrangian ILS described in this chapter is a new version of the algorithm de-

scribed in Gu et al. (2019). As mentioned in the introduction of this chapter, although

both versions use the idea of amalgamation of the ILS and the Lagrangian relaxation, the

implementation on the new version is quite different compared with the original version.

The original version of the Lagrangian ILS was only tested on instances with 25 and

50 tasks. In many of these instances, the original version of the Lagrangian ILS fails

to constantly produce the optimal solutions. In contrast, the new version described in

this chapter constantly finds optimal solutions in almost every instance with 25 and 50

tasks. Therefore, the Lagrangian ILS significantly outperforms the original version of this

algorithm in terms of solution quality. Furthermore, the computational time required by

the new version of the Lagrangian ILS is also less than the time required by the original

version of the algorithm.

Tables 3.2 and 3.3 compare the performance of Lagrangian ILS, ILS, Implemented

ILS, and ILS-HNS on large (100 tasks) instances from “NoTeam Reduced” and “NoTeam

Complete”, respectively. In these two tables, the columns Average, Worst, and Best show

the average, worst, and best objective values reported in Xie et al. (2017). The columns

%a, %w, and %b give the percentage difference of the average, worst, and best objective

values. According to (3.45), a positive (negative) percentage difference indicates that the

corresponding algorithm produces better (worse) objective values relative to the value

produced by the ILS. The objective values obtained by the Lagrangian ILS are in bold

if they are better than the values obtained by ILS, Implemented ILS, and ILS-HNS. The

computational times required by the Lagrangian ILS are in bold if they are smaller than

the time required by ILS and Implemented ILS. Since the Implemented ILS is just a

re-implementation of the ILS in Xie et al. (2017), for the Implemented ILS, Tables 3.2

and 3.3 contain only the average objective values and the average computational times.
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The worst and best objective values on each instance obtained by the Implemented ILS

can be found in Tables A.3 and A.5 in A.1.

Table 3.2: Comparison between ILS in Xie et al. (2017), Implemented ILS, ILS-HNS in Zhou
et al. (2020), Lagrangian ILS on large instances from category “NoTeam Reduced”

Implemented
ILS ILS ILS-HNS Lagrangian ILS

Inst |K| Average Worst Best seca %a seca %a %w %b %a %w %b seca
C5x4 6.00 3424.33 3477.38 3344.75 24.75 0.26 68.55 -3.37 -2.77 -4.61 2.14 2.68 0.53 28.30
R5x4 8.00 3138.24 3195.59 3098.84 38.32 -0.48 115.45 -6.17 -5.09 -6.87 0.30 1.61 -0.19 31.55
RC5x4 8.00 3256.57 3315.27 3201.97 28.58 0.39 103.95 -6.15 -8.31 -4.88 2.03 3.21 0.97 26.90
C6x6 6.00 4638.83 4698.82 4599.93 27.98 -0.33 67.15 -3.13 -2.95 -2.94 1.41 1.79 1.19 40.10
R6x6 8.50 3583.12 3651.18 3532.18 43.27 -0.52 142.25 -11.02 -13.26 -8.52 0.11 0.60 0.59 45.30
RC6x6 8.00 3631.39 3701.79 3562.49 35.09 -0.36 113.65 -18.75 -19.80 -18.12 2.40 2.45 0.94 42.70
C7x4 6.50 3112.48 3180.04 3074.77 15.67 0.11 45.70 -2.38 -1.87 -2.56 1.38 2.27 0.46 22.25
R7x4 9.50 3090.79 3138.41 3035.33 21.64 0.12 85.80 -3.25 -2.67 -3.78 0.86 1.15 0.61 20.80
RC7x4 8.50 3324.75 3368.44 3295.20 18.33 -0.51 81.60 -6.35 -7.91 -3.82 0.49 1.02 0.35 20.10
Average 3466.72 3525.21 3416.16 28.18 -0.15 91.57 -6.73 -7.18 -6.23 1.23 1.86 0.60 30.89

In Table 2, the Lagrangian ILS produces a better average objective value than that

produced by ILS in Xie et al. (2017), Implemented ILS and ILS-HNS in Zhou et al.

(2020) for all instance groups within “NoTeam Reduced”. For worst and best objective

values, the Lagrangian ILS outperforms ILS, Implemented ILS, and ILS-HNS for 8 out of

9 instance groups. Moreover, the Lagrangian ILS requires a noticeably shorter computa-

tional time compared with the Implemented ILS. However, a minor difference is observed

regarding the computation time between the Lagrangian ILS and ILS. The Implemented

ILS is comparable to the ILS in respect of the solution quality but consumes significantly

longer computational time.

In Table 3, the Lagrangian ILS obtains the best results for 8 out of 9 instance groups

with regard to the average and worst objective values among all the algorithms. For the

best objective values, the Lagrangian ILS outperforms all the algorithms in 7 out of 9

Table 3.3: Comparison between ILS in Xie et al. (2017), Implemented ILS, ILS-HNS in Zhou
et al. (2020), Lagrangian ILS on large instances from category “NoTeam Complete”

Implemented
ILS ILS ILS-HNS Lagrangian ILS

Inst |K| Average Worst Best seca %a seca %a %w %b %a %w %b seca
C5x4 12.50 1087.88 1097.41 1080.58 25.68 -0.13 90.15 0.71 1.24 0.19 0.50 0.70 0.08 19.40
R5x4 16.00 1362.17 1370.76 1355.67 38.46 -0.34 318.70 0.13 -0.03 0.10 0.60 0.94 0.24 37.40
RC5x4 15.50 1455.74 1470.94 1436.95 40.59 0.41 270.80 0.55 0.51 0.20 1.58 2.17 0.61 35.05
C6x6 11.50 854.99 866.82 846.22 46.46 0.42 163.95 0.49 0.98 0.18 0.81 1.77 0.14 36.80
R6x6 16.50 1272.40 1280.55 1267.48 63.25 0.10 399.30 -0.54 -1.27 -0.08 0.63 1.09 0.45 60.15
RC6x6 16.00 1344.67 1358.40 1333.02 62.48 0.31 329.00 -0.26 -0.53 0.47 1.48 1.86 1.10 52.80
C7x4 12.50 1253.19 1269.70 1242.65 19.68 -1.28 83.85 0.44 1.02 0.19 0.66 1.20 0.31 14.85
R7x4 19.00 1427.00 1438.08 1420.31 30.16 -1.15 245.60 -0.23 -0.71 0.08 0.31 0.58 0.21 26.15
RC7x4 16.00 1550.13 1563.53 1540.31 26.74 0.00 185.20 -0.07 -0.33 0.51 1.17 0.91 1.13 20.40
Average 1289.79 1301.80 1280.35 39.28 -0.18 231.84 0.13 0.10 0.20 0.86 1.25 0.48 33.67
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instance groups. Moreover, the Lagrangian ILS is also faster than the Implemented ILS

and ILS. Same as in Table 3.2, the Implemented ILS is on par with ILS in terms of solution

quality but is much slower. This difference may be caused by different hardware and/or

different computer code. It should be noted that in Xie et al. (2017), the experiments

were conducted on a computer with Intel Core i5-3570 3.40GHz which is faster than

the computer used for experiments in this chapter. Given that the Lagrangian ILS

and Implemented ILS run on the same hardware and share the computer code for the

evaluation of each neighbourhood, the superior performance of the Lagrangian ILS on

both solution quality and computation time is mainly attributed to the novel design of

the subroutine SEARCH resulting in a highly efficient global search capability.

To statistically compare the performance of the Lagrangian ILS, ILS in Xie et al.

(2017), Implemented ILS, and ILS-HNS in Zhou et al. (2020), the Wilcoxon test Conover

(1999) with Bonferroni correction Demšar (2006) at 95% confidence interval is applied

based on the results for each instance (see Tables A.1, A.2, A.3, A.4, A.5 in A.1). In

addition to the results obtained by the Lagrangian ILS with ω = 1 (see Tables in A.1),

the Wilcoxon test with Bonferroni correction also uses the results obtained by the La-

grangian ILS with ω = 0.5 for large (100 tasks) instances (see Tables A.6 and A.7 in A.2).

Please note that ω = 0.5 reduces the number of permissible iterations by half relative

to ω = 1. For the two-tailed Wilcoxon test, the null hypothesis is “the solution quality

(computational time) of algorithm A is similar to algorithm B”, while for the one-tailed

Wilcoxon test, the hypothesis is “the solution quality (computational time) of Lagrangian

ILS is similar to or worse than algorithm B”. The comprehensive Wilcoxon test analysis

was conducted using R-studio Kloke and McKean (2015), and the corresponding p-values

are reported in Tables 3.4 and 3.5.

In the matter of solution quality, for large instances from both categories “NoTeam

Reduced” and “NoTeam Complete”, the p-values at 95% confidence interval for both two-

tailed and one-tailed Wilcoxon tests on Lagrangian ILS versus ILS in Xie et al. (2017),

Lagrangian ILS versus Implemented ILS, and Lagrangian ILS versus ILS-HNS in Zhou

et al. (2020) are much smaller than 0.05. These are strong evidence that the Lagrangian

ILS produces significantly better solutions than ILS, Implemented ILS, and ILS-HNS. For

small and medium instances, the p-value for the two-tailed Wilcoxon test on Lagrangian

ILS versus ILS is 0.0550 which indicates that the two algorithms have similar performance.
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Table 3.4: Wilcoxon tests at 95% confidence interval between the performance of the La-
grangian ILS, ILS in Xie et al. (2017), Implemented ILS, and ILS-HNS in Zhou et al. (2020)

p-value

Algorithm A Versus Algorithm B Average Worst Best seca
Small and Medium instances
Lagrangian ILS (ω = 1) Versus ILS (two-tailed) 0.0550 N/A N/A 0.0000
Lagrangian ILS (ω = 1) Versus ILS (one-tailed) 0.0277 N/A N/A 1.0000
Lagrangian ILS (ω = 1) Versus Implemented ILS (two-tailed) 0.0160 N/A N/A 0.0001
Lagrangian ILS (ω = 1) Versus Implemented ILS (one-tailed) 0.0078 N/A N/A 0.0000
Implemented ILS Versus ILS (two-tailed) 0.6550 N/A N/A 0.0000
Large instances from category “NoTeam Reduced”
Lagrangian ILS (ω = 1) Versus ILS (two-tailed) 0.0000 0.0000 0.0000 0.6900
Lagrangian ILS (ω = 1) Versus ILS (one-tailed) 0.0000 0.0000 0.0000 1.0000
Lagrangian ILS (ω = 1) Versus Implemented ILS (two-tailed) 0.0057 0.0053 0.0003 0.0000
Lagrangian ILS (ω = 1) Versus Implemented ILS (one-tailed) 0.0028 0.0027 0.0002 0.0000
Lagrangian ILS (ω = 1) Versus ILS-HNS (two-tailed) 0.0000 0.0000 0.0000 N/A
Lagrangian ILS (ω = 1) Versus ILS-HNS (one-tailed) 0.0000 0.0000 0.0000 N/A
Implemented ILS Versus ILS (two-tailed) 1.0000 1.0000 0.9384 0.0000
Large instances from category “NoTeam Complete”
Lagrangian ILS (ω = 1) Versus ILS (two-tailed) 0.0000 0.0000 0.0003 0.0016
Lagrangian ILS (ω = 1) Versus ILS (one-tailed) 0.0000 0.0000 0.0002 0.0008
Lagrangian ILS (ω = 1) Versus Implemented ILS (two-tailed) 0.0000 0.0000 0.0000 0.0000
Lagrangian ILS (ω = 1) Versus Implemented ILS (one-tailed) 0.0000 0.0000 0.0000 0.0000
Lagrangian ILS (ω = 1) Versus ILS-HNS (two-tailed) 0.0000 0.0004 0.0102 N/A
Lagrangian ILS (ω = 1) Versus ILS-HNS (one-tailed) 0.0000 0.0002 0.0051 N/A
Implemented ILS Versus ILS (two-tailed) 1.0000 1.0000 1.0000 0.0000

In contrast, the p-values at 95% confidence interval for both two-tailed and one-tailed

Wilcoxon tests on Lagrangian ILS versus Implemented ILS are much smaller than 0.05.

This evidence strongly supports that the Lagrangian ILS has better performance than

Implemented ILS in terms of solution quality. Besides, for the two-tailed Wilcoxon tests

on Implemented ILS versus ILS, the p-values are greater than 0.05, which indicate that

the Implemented ILS obtains a similar solution quality as ILS.

In terms of the computational time, for small (25 tasks) and medium (50 tasks)

instances, the p-value at 95% confidence interval for the two-tailed Wilcoxon test on

Lagrangian ILS versus ILS in Xie et al. (2017) is much smaller than 0.05, which are

strong evidence that the two algorithms have different performance. On the other hand,

the p-value for the one-tailed Wilcoxon test on Lagrangian ILS versus ILS is greater

than 0.05. These two p-values indicate that the Lagrangian ILS is slower than the ILS

on small (25 tasks) and medium (50 tasks) instances. For large instances (100 tasks)

from the category “NoTeam Reduced”, the p-values at 95% confidence interval for both,

two-tailed and one-tailed Wilcoxon tests on Lagrangian ILS versus ILS are greater than

0.05, which indicate that the time required for both algorithms are about the same. For

large instances (100 tasks) from the category “NoTeam Complete”, the p-values at 95%

confidence interval for both two-tailed and one-tailed Wilcoxon tests on Lagrangian ILS
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versus ILS are smaller than 0.05, which are strong evidence that the Lagrangian ILS is

faster than ILS. The p-values at 95% confidence interval for both two-tailed and one-

tailed Wilcoxon tests on the Lagrangian ILS versus Implemented ILS are much smaller

than 0.05 in all cases, which are strong evidence that the Lagrangian ILS is faster than

the Implemented ILS.

For Lagrangian ILS with ω = 0.5, the Wilcoxon tests show that for large instances

from both categories, “NoTeam Reduced” and “NoTeam Complete”, the Lagrangian

ILS outperforms both ILS and ILS-HNS for average and worst objective values. For

the best objective values, the Lagrangian ILS with ω = 0.5 is able to obtain similar

results compared with ILS but better results compared with ILS-HNS for instances from

category “NoTeam Reduced”, whereas for instances from category “NoTeam Complete”,

the Lagrangian ILS outperforms ILS but produces similar results compared with ILS-

HNS. For Lagrangian ILS and Implemented ILS, with regards to the solution quality,

the two algorithms have similar performance on instances from the category “NoTeam

Reduced”, whereas for instances from the category “NoTeam Complete”, the Lagrangian

ILS outperforms the Implemented ILS. In terms of computational time, the Lagrangian

ILS is faster than ILS and Implemented ILS in both categories. The p-values obtained

from the Wilcoxon tests are provided in Table 3.5, and the results obtained from the

Lagrangian ILS with ω = 0.5 on each instance are provided in A.2 (see Tables A.6 and

A.7).

Table 3.5: Wilcoxon tests at 95% confidence interval between the performance of ILS in Xie
et al. (2017), Implemented ILS, ILS-HNS in Zhou et al. (2020), and Lagrangian ILS with
ω = 0.5.

p-value

Algorithm A Versus Algorithm B Average Worst Best seca
Large instances from category “NoTeam Reduced”
Lagrangian ILS (ω = 0.5) Versus ILS (two-tailed) 0.0237 0.0008 0.1468 0.0000
Lagrangian ILS (ω = 0.5) Versus ILS (one-tailed) 0.0118 0.0004 0.0734 0.0000
Lagrangian ILS (ω = 0.5) Versus Implemented ILS (two-tailed) 1.0000 1.0000 0.1712 0.0000
Lagrangian ILS (ω = 0.5) Versus Implemented ILS (one-tailed) 0.9095 0.8317 0.0856 0.0000
Lagrangian ILS (ω = 0.5) Versus ILS-HNS (two-tailed) 0.0000 0.0000 0.0000 N/A
Lagrangian ILS (ω = 0.5) Versus ILS-HNS (one-tailed) 0.0000 0.0000 0.0000 N/A
Large instances from category “NoTeam Complete”
Lagrangian ILS (ω = 0.5) Versus ILS (two-tailed) 0.0000 0.0004 0.0014 0.0000
Lagrangian ILS (ω = 0.5) Versus ILS (one-tailed) 0.0000 0.0002 0.0007 0.0000
Lagrangian ILS (ω = 0.5) Versus Implemented ILS (two-tailed) 0.0000 0.0001 0.0006 0.0000
Lagrangian ILS (ω = 0.5) Versus Implemented ILS (one-tailed) 0.0000 0.0000 0.0003 0.0000
Lagrangian ILS (ω = 0.5) Versus ILS-HNS (two-tailed) 0.0008 0.0010 0.2681 N/A
Lagrangian ILS (ω = 0.5) Versus ILS-HNS (one-tailed) 0.0004 0.0005 0.1341 N/A



3.4 Computational experiments 55

3.4.2 Sensitivity analysis

Our empirical experience indicates that “NoTeam Reduced” is harder to solve than

“NoTeam Complete”, and the performance is more sensitive to the parameter settings.

The reason could be that the weight on unallocated tasks is relatively high in the studied

problem, and the objective value will dramatically deteriorate even if only one more task

is not allocated. In this section, using the large instances from the category “NoTeam

Reduced”, the performance of the Lagrangian ILS is analysed with the variation of several

parameters, including ω, ψ, and γ.

Table 3.6 presents the analysis on the performance of the Lagrangian ILS with ω ∈

{0.5, 7, 15} when ψ = 50 and γ = 2. In this table, all the percentage differences are

referenced to the corresponding values obtained by the Lagrangian ILS with ω = 0.5. It

can be observed that the solution quality improves at the cost of the computational time

when ω increases. This is expected since increasing ω can effectively increase the number

of permissible iterations for the Lagrangian ILS. Indeed, the Lagrangian ILS with ω = 15

consistently obtains a better solution than the Lagrangian ILS with ω = 0.5 on each

instance. Such behaviour is a desired property for choosing the value of ω in practice. In

A.2, the detailed results on each instance are provided (see Table A.6). In A.2, we also

report the results on the large instances from “NoTeam Complete”, which exhibits the

same behaviour (see Table A.7).

Table 3.6: Sensitivity analysis on the performance of the Lagrangian ILS with ω when ψ =
50 and γ = 2 for large instances from category NoTeam Reduce

w = 0.5 w = 7 w = 15

Instances Average Worst Best seca %a %w %b seca %a %w %b seca
C 5x4 3382.76 3426.39 3342.80 16.30 0.72 0.70 0.35 157.65 1.46 2.19 0.57 356.30
R 5x4 3162.48 3191.25 3123.60 18.00 1.63 1.95 1.57 177.10 1.71 0.90 1.97 323.85
RC 5x4 3220.88 3302.87 3187.24 14.85 2.22 3.72 2.07 140.05 2.18 3.43 2.28 292.85
C 6x6 4582.42 4603.21 4552.87 22.10 0.54 0.56 0.12 221.90 0.62 0.80 0.15 470.65
R 6x6 3607.36 3657.14 3543.74 24.90 2.13 2.56 0.93 243.95 2.09 3.04 0.87 570.30
RC 6x6 3588.10 3653.21 3531.01 23.10 0.92 2.04 0.28 252.40 1.75 2.28 0.65 605.35
C 7x4 3086.91 3120.58 3064.55 12.15 0.99 2.08 0.29 131.30 0.99 2.07 0.28 265.10
R 7x4 3081.14 3112.90 3032.64 11.50 0.79 1.01 0.62 110.35 1.29 0.85 0.56 212.70
RC 7x4 3345.14 3383.03 3318.30 10.45 1.22 1.85 0.73 110.90 1.57 2.53 0.78 231.30
Average 3450.80 3494.51 3410.75 17.04 1.24 1.83 0.77 171.73 1.52 2.01 0.90 369.82

Table 3.7 presents the results obtained from the Lagrangian ILS using a combination

of ψ ∈ {5, 50, 150, 400} and γ ∈ {0.5, 2, 10, 100} when ω = 1. In this table, the columns

Average, Best, and seca show the average, best objective value, and average computa-

tional time over all instances, respectively. In addition, the best value in each group is in
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Table 3.7: Sensitivity analysis on the performance of the Lagrangian ILS with ψ and γ when
ω = 1 for large instances from category “NoTeam Reduced”

Average Best seca

γ
ψ

5 50 150 400 5 50 150 400 5 50 150 400

0.5 3449.12 3439.29 3438.41 3449.08 3418.84 3411.08 3404.46 3410.67 61.56 38.59 38.48 32.18
2 3446.21 3426.64 3441.74 3449.20 3404.02 3395.25 3412.22 3406.17 45.64 30.89 25.87 21.21
10 3452.68 3449.72 3441.43 3459.68 3419.23 3412.92 3407.24 3421.11 51.41 29.29 26.76 22.55
100 3460.67 3450.93 3450.49 3472.80 3425.65 3412.96 3416.30 3424.22 53.59 28.02 24.98 22.01

bold, which indicates that the Lagrangian ILS performs the best when ψ = 50 and γ = 2

in terms of average and best objective values. In the subroutine SEARCH (Section 3.3.4),

if ψ is large, the neighbourhood operators will favour more on the augmented objective

function. In contrast, if ψ is small, then the neighbourhood operators will favour more on

the original objective function. Based on the results in Table 3.7, increasing or decreasing

ψ relative to ψ = 50 can slightly reduce the solution quality, indicating that finding a

good balance between the original objective function and the augmented objective func-

tion can improve the overall solution quality. On the other hand, it has been observed

that increasing ψ can notably reduce computational time. Indeed, the difference between

the best and worst times in each row can be as large as 31.58 seconds when γ = 100.

This suggests that favouring the augmented objective function in SEARCH can speed up

the algorithm. The parameter γ controls how fast the penalty weights can increase. It

can be seen that a very small γ (γ = 0.5) leads to good solution quality but increases

the solution time. When γ is very large (γ = 100), solution quality deteriorates while

solution time improves. The reason is that the penalty weights increase so fast that only

feasible solutions can be accepted in the neighbourhood search. In A.2, we provided the

detailed results for the analysis on ψ when γ = 2 (see Table A.8) and the detailed results

for the analysis on γ when ψ = 50 (see Table A.9).

3.5 Conclusion

This chapter presents a new optimisation procedure for the Workforce Scheduling and

Routing Problem. This procedure, referred to as the Lagrangian ILS, is based on the

idea of an amalgamation of the iterated local search and Lagrangian relaxation, which

was originally introduced in Gu et al. (2019). The computational experiments demon-

strated better performance of the Lagrangian ILS in comparison with CPLEX and the



3.5 Conclusion 57

state-of-the-art algorithm in Xie et al. (2017) both, in terms of the solution quality and

the computational time. The Lagrangian ILS also significantly outperforms the original

implementation of the idea of such amalgamation presented in Gu et al. (2019). The

computational experiments were conducted on a set of benchmark instances from the

literature, which are regarded as standard in the publications on this topic. The superior

performance of the Lagrangian ILS is particularly evident on large instances where the

Lagrangian ILS outperforms the algorithm in Xie et al. (2017) even when the Lagrangian

ILS was allowed to use only a half of the permissible number of iterations.

It is well-known that permission to violate certain constraints can significantly im-

prove the performance of the local search. Given this observation and the outstanding

performance of the Lagrangian ILS, the development of algorithms for vehicle routing

problems based on an amalgamation of a local search metaheuristic and Lagrangian re-

laxation can be viewed as a promising direction for future research.
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4
Iterated Local Search for the Pickups and Deliveries

Problem Arising in Retail Industry with Ordered

Objectives

Abstract

This chapter studies a Simultaneous Pickup and Delivery Problem that reflects many

real-world restrictions and practices. The objectives of the problem are ordered where

the primary objective is to maximise the number of served customers, and the secondary

objective is to minimise the total travel time. The problem is formulated as a mixed

integer program which is based on three index variables. A novel iterated local search

is tested on three sets of instances, one set is provided by the industry partner and the

other two sets are derived from benchmark instances in the literature. With a time limit

of 1 minute, the results of computational experiments have shown that the proposed

algorithm has good performance in terms of solution quality and stability.

4.1 Introduction

This chapter studies a Simultaneous Pickup and Delivery Problem that reflects many

real-world restrictions and practices. This problem referred to as the Multi-attribute

Simultaneous Pickup and Delivery Problem (MASPDP) considers the following features.

• Time window is associated with each customer which specifies the time interval

when the service can commence.

• Open routes refers to the situation when drivers finish the service of their last

customer on the routes and do not return to the depot. This feature is motivated

by the use of subcontractors who have their own vehicles and depots suitable for

temporary storage.
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• Weight and Volume are used to characterise the demand corresponding to the

customers.

• Heterogeneous fleet of vehicles is used. Each vehicle is characterised by its

capacity for weight and volume.

• Incompatibility is applied between customers and vehicles. Two types of vehicles

are considered, i.e., the one-man vehicle and the two-men vehicle. The customers

are also classified as either one-man customers or two-men customers. The one-man

customer can be served by all vehicles, while two-men customers can only be served

by two-men vehicles.

• Roster specifies when a vehicle can load at the depot. This feature is motivated

by the fact that the depot has limited loading space.

• Simultaneous pickup and delivery is considered where customers can request

service for both delivery and pickup.

• Restriction on shift length is applied to all drivers. For example, drivers can

not work longer than 10 hours.

• Ordered objectives are considered. The primary objective is to maximise the

number of served customers and the secondary objective is to minimise the total

travel time.

In spite of the practical importance of these features, as discussed in Chapter 2, to the best

of the author’s knowledge, no publication studies this problem in its entire complexity.

The restriction on computational time is one minute. This restriction is imposed by

the industry partner because the developed optimisation software is a tool interactively

used by a scheduler for allocating customers to vehicles. This means that the scheduler

can use this software to produce an initial version of the allocation which may require

manual adjustments; improve an existing version of the allocation; or produce some

alternative version of the allocation. For example, the allocation may contain excessively

long routes compared with other routes which is not fair to all drivers. The scheduler

may adjust the allocation to make it fair to all drivers or choose an allocation among all
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the alternative allocations that is fair to all drivers. Therefore, the developed software

must respond in seconds rather than in minutes.

The Simultaneous Pickup and Delivery Problem is a generalisation of the vehicle rout-

ing problem. Thus, it is NP-hard in the strong sense Garey and Johnson (1979). The

majority of the publications on this topic present various heuristics and metaheuristics

Parragh et al. (2008a), Parragh et al. (2008b), Koç et al. (2020). Although many publi-

cations present heuristics and metaheuristics that are efficient, for example, Vidal et al.

(2013), Nagata et al. (2010), Xie et al. (2017), a strict time limit is rarely considered.

In this chapter, a new iterated local search optimisation procedure is presented. This

iterated local search referred to as the ILS2O achieves a satisfactory performance with

the following developments:

• The ILS2O uses the framework that amalgamates the iterated local search and

Lagrangian relaxation.

• The ILS2O introduces a method that alternates between the primary objective and

the secondary objective during the application of local search.

• The ILS2O uses the neighbourhood reduction technique that dynamically reduces

the size of the search space.

The remaining part of this chapter is organised as follows. Section 4.2 presents the

mixed integer programming formulations. The ILS2O is described in Section 4.3. Sec-

tion 4.4 reports the results of computational experiments and Section 4.5 concludes this

chapter.

4.2 Problem statement

The considered MASPDP can be stated as follows. Let G(L,A) be a directed graph,

where the set of vertices L = {0} ∪ C and C = {1, 2, ..., l}, the set of arcs A = AD ∪ AC
and AD = {(0, i)|i ∈ C}, AC = {(i, j)|i 6= j, ∀i, j ∈ C}. Vertex 0 represents the depot

and the remaining vertices represent the customers. Each arc (i, j) ∈ A has an associated

travel time ti,j.

The delivery to customer i ∈ C is characterised by its weight wdi and volume vdi .

The pickup from customer i ∈ C is characterised by its weight wpi and volume vpi . For
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customer i ∈ C, the associated time window [ai, bi] indicates the earliest and latest time

when the corresponding services can start, and let pi > 0 be the service time required to

complete the service.

Let T be the set of all vehicles. Each vehicle i ∈ T is differed by its weight capacity

Wi and volume capacity Vi. All vehicles i ∈ T depart from the same depot and are not

required to return to the depot after serving all allocated customers. Due to the loading

capacity of the depot, each vehicle i ∈ T arrives at the depot at the specified starting

time ri with loading time δi. Furthermore, there exists an upper bound Si on the shift

time of the drivers in vehicle i ∈ T , which is the length of the time interval between the

time when a driver starts loading at the depot and the time when the driver finishes the

service of the last allocated customers.

Each customer i ∈ C can be served only once, but not all vehicles are capable to serve

certain customers. In this chapter, two types of vehicles are considered, i.e., the one-man

vehicle T ′ ⊂ T and the two-men vehicle T ′′ ⊂ T . The customers are also classified as

either one-man customer C ′ ⊂ C, or two-men customer C ′′ ⊂ C. The one-man customer

can be served by all vehicles, while two-men customer can only be served by two-men

vehicles.

While respecting all the constraints on drivers, vehicles, customers and the depot, the

primary objective is to maximise the total number of served customers and the secondary

objective is to minimise the total travel time.

4.2.1 Three-index model

Two three-index mixed integer programming (MIP) formulations are presented in this

section to solve the MASPDP with ordered objectives. These formulations are based

on the three-index MIP formulation presented in Gu et al. (2021). The first formulation

maximises the number of served customers which is the same as the formulation presented

in Gu et al. (2021). The second formulation minimises the total travel time which is

modified from the formulation presented in Gu et al. (2021) by changing the objective

function and adding a new constraint.

Let xijk be a binary variable indicating if customer j is the immediate predecessor of

customer k in the route of vehicle i; ηij be a binary variable indicating if customer j is

allocated to vehicle i; γij be a binary variable indicating if customer j is the first customer



4.2 Problem statement 63

to visit after vehicle i departing from the depot; θij be a binary variable indicating if

customer j is the last customer in the route of vehicle i. Denote the time when the

driver in vehicle i starts serving customer k by sik; the weight of the vehicle when leaving

customer j by yj; the volume of the vehicle when leaving customer j by zj. The considered

problem is formulated as follows to maximise the number of served customers:

Job = max
∑
i∈T

∑
j∈C

ηij (4.1)

subject to∑
i∈T

ηij ≤ 1, ∀j ∈ C (4.2)

∑
j∈C

γij ≤ 1, ∀i ∈ T (4.3)

γij +
∑
k∈C

xik,j = ηij, ∀i ∈ T, ∀j ∈ C (4.4)

θij +
∑
k∈C

xij,k = ηij, ∀i ∈ T, ∀j ∈ C (4.5)

aj ≤ sij, ∀j ∈ C, ∀i ∈ T (4.6)

sij ≤ bj, ∀j ∈ C, ∀i ∈ T (4.7)

(ri + δi + t0,k)γ
i
k ≤ sik, ∀i ∈ T, ∀k ∈ C (4.8)

sij + (pj + tj,k)x
i
j,k + (ak − bj)(1− xij,k) ≤ sik, ∀i ∈ T, ∀(j, k) ∈ AC (4.9)

pj + sij − ri − (pj + bj − ri)(1− θij) ≤ Si, ∀j ∈ C, ∀i ∈ T (4.10)∑
k∈C

wdkη
i
k ≤ Wi, ∀i ∈ T (4.11)

yk ≤ Wi + (max
e∈T

We −Wi)(1− ηik), ∀i ∈ T, ∀k ∈ C (4.12)∑
j∈C

wdj η
i
j − wdk + wpk − (max

e∈T
We − wdk + wpk)(1− γ

i
k) ≤ yk,

∀i ∈ T, ∀k ∈ C
(4.13)

yj − wdk + wpk − (max
e∈T

We − wdk + wpk)(1− x
i
j,k) ≤ yk,

∀i ∈ T, ∀(j, k) ∈ AC
(4.14)
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∑
k∈C

vdkη
i
k ≤ Vi, ∀i ∈ T (4.15)

zk ≤ Vi + (max
e∈T

Ve − Vi)(1− ηik), ∀i ∈ T, ∀k ∈ C (4.16)∑
j∈C

vdj η
i
j − vdk + vpk − (max

e∈T
Ve − vdk + vpk)(1− γ

i
k) ≤ zk, ∀i ∈ T, k ∈ C (4.17)

zj − vdk + vpk − (max
e∈T

Ve − vdk + vpk)(1− x
i
j,k) ≤ zk, ∀i ∈ T, ∀(j, k) ∈ AC (4.18)∑

i∈T ′

∑
k∈C′′

ηik = 0 (4.19)

xij,k ∈ {0, 1}, ∀{j, k} ∈ AC , ∀i ∈ T (4.20)

ηij ∈ {0, 1}, ∀i ∈ T, ∀j ∈ C (4.21)

γij ∈ {0, 1}, ∀i ∈ T, ∀j ∈ C (4.22)

θij ∈ {0, 1}, ∀i ∈ T, ∀j ∈ C (4.23)

The objective function (4.1) maximises the number of served customers. Constraints

(4.3) and (4.8) guarantee that a vehicle either stays at the depot or visits exactly one

customer. Constraints (4.4) and (4.5) make sure that a vehicle leaves the customer’s

location except for the last customer. Then, constraints (4.4) and (4.5) together with

constraints (4.2) ensure that a customer is visited by at most one vehicle. The arrival

times, loading times at the depot, travelling times between vertices, and the time windows

are taken into account by (4.8), (4.9) and (4.6)-(4.9) respectively. The shift length,

weight capacity, and volume capacity are enforced by (4.10), (4.11)-(4.14), and (4.15)-

(4.18) respectively. In addition, (4.6), (4.7), and (4.9) eliminate the subtours by virtue

of pi > 0. At last, constraints (4.19) establish the compatibility between customers and

vehicles.

Let N be the number of served customers in the solution obtained from solving the

model (4.1)− (4.23). Then, the following mixed integer program is considered to minimise

the total travel time.

Time = min
∑
k∈T

∑
(i,j)∈AC

ti,jx
k
i,j +

∑
i∈T

∑
j∈C

t0,jγ
i
j (4.24)
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subject to:

(4.2)− (4.23)

∑
i∈T

∑
j∈C

ηij ≥ N (4.25)

The objective function (4.24) minimises the total travel time while the number of the

served customers must not below N (constraint (4.25)). In what follows, the problems

(4.1)−(4.23) and (4.24)−(4.25) will be referred to as the three-index model.

4.3 ILS for ordered objectives

The ILS2O is another implementation of the amalgamation of the iterated local search

and Lagrangian relaxation. Thus, this optimisation procedure also requires an alternative

mixed integer linear programming formulation. Since the objectives for the MASPDP

are ordered, certain modifications to the mathematical model are required in order to

make it compatible with the idea of the amalgamation of the iterated local search and

Lagrangian relaxation.

Using the three-index model as an example, the problems (4.1)−(4.23) and (4.24)−(4.25)

are modified as the formulation (4.26)−(4.55) below using weighted sum where λ1 is a

non-negative weight for the objective function (4.1) and λ2 is a non-negative weight for

the objective function (4.24). It should be noted that the choice of mathematical models

is not important because the performance of the ILS2O does not depend on the number

of variables or the number of constraints.

The above modifications are dictated not by the complexity consideration but by

the suitability for the optimisation method − local search. Furthermore, to reflect the

objectives considered for the MASPDP, the ILS2O uses a method to determine if a

solution to the problem (4.26)−(4.55) is better than the current best-known feasible

solution. More specifically, a feasible solution is an improving solution if

• this solution serves more customers compared with the current best-known feasible

solution or,

• this solution serves the same number of customers as the current best-known feasible
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solution with less total travel time.

As in (3.16) − (3.20), let µij be the time warps for all i ∈ T and j ∈ C. ψi be

the violation of working duration for all i ∈ T , ωi be the maximum violation on weight

capacity for all i ∈ T , νi be the maximum violation on volume capacity for all i ∈ T .

The considered problem is modified as follows.

f = max λ1

∑
i∈T

∑
j∈C

ηij − λ2

∑
k∈T

∑
(i,j)∈AC

ti,jx
k
i,j +

∑
i∈T

∑
j∈C

t0,jγ
i
j

 (4.26)

subject to∑
i∈T

ηij ≤ 1, ∀j ∈ C (4.27)

∑
j∈C

γij ≤ 1, ∀i ∈ T (4.28)

γij +
∑
k∈C

xik,j = ηij, ∀i ∈ T, j ∈ C (4.29)

θij +
∑
k∈C

xij,k = ηij, ∀i ∈ T, j ∈ C (4.30)

aj ≤ sij, ∀j ∈ C, i ∈ T (4.31)

sij − bj ≤ µij, ∀j ∈ C, i ∈ T (4.32)

(ri + δi + t0,k)γ
i
k ≤ sik, ∀i ∈ T, k ∈ C (4.33)

sij − µij + (pj + tj,k)x
i
j,k + (ak − bj)(1− xij,k) ≤ sik, ∀i ∈ T, ∀(j, k) ∈ AC (4.34)

pj + sij − ri − (pj + bj − ri)(1− θij) +
∑
k∈C

µik ≤ Si + ψi, ∀j ∈ C, i ∈ T (4.35)

∑
i∈T

∑
j∈C

µij ≤ 0 (4.36)

∑
i∈T

ψi ≤ 0 (4.37)

∑
k∈C

wdkη
i
k ≤ Wi + ωi, ∀i ∈ T (4.38)
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yk ≤ Wi + ωi + (max
e∈T

We −Wi)(1− ηik), ∀i ∈ T, k ∈ C (4.39)∑
j∈C

wdj η
i
j − wdk + wpk − (max

e∈T
We − wdk + wpk)(1− γ

i
k) ≤ yk,

∀i ∈ T, k ∈ C
(4.40)

yj − wdk + wpk − (max
e∈T

We − wdk + wpk)(1− x
i
j,k) ≤yk,

∀i ∈ T, ∀(j, k) ∈ AC
(4.41)

∑
i∈T

ωi ≤ 0 (4.42)

∑
k∈C

vdkη
i
k ≤ Vi + νi, ∀i ∈ T (4.43)

zk ≤ Vi + νi + (max
e∈T

Ve − Vi)(1− ηik), ∀i ∈ T, k ∈ C (4.44)∑
j∈C

vdj η
i
j − vdk + vpk − (max

e∈T
Ve − vdk + vpk)(1− γ

i
k) ≤ zk, ∀i ∈ T, k ∈ C (4.45)

zj − vdk + vpk − (max
e∈T

Ve − vdk + vpk)(1− x
i
j,k) ≤ zk, ∀i ∈ T, ∀(j, k) ∈ AC (4.46)∑

i∈T

νi ≤ 0 (4.47)

∑
i∈T ′

∑
k∈C′′

ηik = 0 (4.48)

xij,k ∈ {0, 1}, ∀{j, k} ∈ AC , i ∈ T (4.49)

ηij ∈ {0, 1}, ∀i ∈ T, j ∈ C (4.50)

θij ∈ {0, 1}, i ∈ T, j ∈ C (4.51)

µij ≥ 0, ∀i ∈ T, ∀j ∈ C (4.52)

ψi ≥ 0, ∀i ∈ T (4.53)

ωi ≥ 0, ∀j ∈ C (4.54)

νi ≥ 0, ∀j ∈ C (4.55)

The objective function (4.26) combines the objective functions (4.1) and (4.24) using

weights λ1 and λ2. The constraints (4.27) − (4.31), (4.33), (4.40), (4.41), (4.45) − (4.51)

are the same as the constraints (4.2) − (4.6), (4.8), (4.13), (4.14), (4.17) − (4.23) in the

three-index model. The constraints (4.33) and (4.34) correspond to (3.17), (3.19) and

(3.20) which define the time warps, whereas the constraints (4.32) correspond to (3.18).

The constraints (4.36), (4.37), (4.42), (4.47) guarantee that µij, ψi, ωi, νi are zero.
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By dualising constraints (4.36), (4.37), (4.42), and (4.47), using Lagrange multiplier

α > 0, β > 0, σ > 0, κ > 0, gives the following Lagrangian relaxation of the mixed

integer linear program (4.26) − (4.55)

fLR = max λ1

∑
i∈T

∑
j∈C

ηij − λ2

∑
k∈T

∑
(i,j)∈AC

ti,jx
k
i,j +

∑
i∈T

∑
j∈C

t0,jγ
i
j


− α

∑
i∈T

∑
j∈C

µij − β
∑
i∈T

ψi − σ
∑
i∈T

ωi − κ
∑
i∈T

νi

(4.56)

subject to:

(4.27)− (4.35), (4.38)− (4.41), (4.43)− (4.46), (4.48)− (4.55)

In what follows, this Lagrangian relaxation will be referred to as the LR problem.

4.3.1 Neighbourhood reduction technique

One of the critical components of ILS2O is the design of proper neighbourhood structures.

It has been demonstrated by many publications that permitting infeasible solutions in lo-

cal search together with the use of an augmented objective function can significantly

boost the performance of the meta-heuristics in the field of vehicle routing problem

Cordeau et al. (1997), Cordeau et al. (2001), Nagata et al. (2010), Xie et al. (2017).

The neighbourhood structures considered in this chapter are defined by the commonly

used edge exchange operators. These operators allow the violation of the time window,

shift length, weight and volume capacity constraints. In addition, the algorithm pre-

sented in this chapter reduces the size of the neighbourhood by only allowing moves that

lead to more allocations than the current best-known feasible solution. To be specific,

let s be a solution that can be infeasible; H(s,N) be the neighbourhood of s induced by

an edge exchange operator N permitting infeasible solutions. The corresponding reduced

neighbourhood is defined as

Ĥ1(s,N) = {s′ ∈ H(s,N)|Job(s′) > Job(s∗)}

Ĥ2(s,N) = {s′ ∈ H(s,N)|Job(s′) = Job(s∗), T ime(s′) < Time(s∗)}
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where s∗ is the best-known feasible solution, Ĥ1(s,N) is the neighbourhood for maximis-

ing the number of served customers, and Ĥ2(s,N) is the neighbourhood for minimising

the total travel time. The reason is that when the proposed ILS2O focuses completely on

maximising the number of served customers, searching in a neighbourhood that includes

solutions with the same number of served customers as the number of served customers

in the current best-known feasible solution does not produce a solution with a higher

number of served customers than the current one. Therefore, the neighbourhood reduc-

tion technique ignores all solutions with the same or lower number of served customers.

This leads to solutions with a higher number of served customers as well as reduces the

number of solutions to be considered in the evaluation process.

Please note, in the studied problem, it is permitted to have customers not served.

Therefore, feasible solutions can be efficiently generated using simple heuristics (see Sec-

tion 4.3.3 for more details). It should be noted that the reduced neighbourhood is dynamic

since s∗ can be updated in the iterative process of ILS2O. Since ILS2O can quickly find

good solutions, the size of the reduced neighbourhood becomes significantly smaller after

just a few iterations, which leads to faster convergence of the algorithm. Also, the solution

process can be more stable because only solutions with more allocations are considered

in the local search process.

4.3.2 ILS scheme

Let s∗ be the currently best-known feasible solution which is updated through the entire

optimisation procedure. The ILS2O is comprised of the following main components.

• The INITIAL procedure constructs a feasible solution of the problem (4.26)−(4.55)

which is the current best-known feasible solution at the beginning of the optimisa-

tion procedure.

• The VARIABLE OBJECTIVE SEARCH(s′, s∗) procedure attempts to improve s∗

with respect to two different objective functions each at a time by adjusting the

weights λ1 and λ2.

• The ASSIGN WEIGHTS(s′) procedure computes the initial values of α, β, σ, κ tak-

ing into account the constraints violation of the input solution s′.



70
Iterated Local Search for the Simultaneous Pickups and Deliveries Problem

Arising in Retail Industry with Ordered Objectives

• The ADJUST WEIGHTS(α, β, σ, κ, s′) procedure updates α, β, σ, κ according to

the constraints violation of the input solution s′.

• The SEARCH(s′, s∗) procedure constructs a sequence of solutions for the LR prob-

lem using different values of α, β, σ, κ computed from either the Assign weights(s′)

procedure or the Adjust weights(α, β, σ, κ, s′).

• The STRATEGY(s′, s∗, ξ) procedure is a local search procedure that attempts to

find a solution that is better than the current best-known solution s∗ using a strategy

specified by parameter ξ.

• The PERTURB(h, s∗) procedure perturbs the current best-known feasible solution

s∗, taking into account the number of runs h which has failed to improve s∗.

Let M be the parameter that specifies the maximal permissible number of consecutive

attempts to find an improving solution; Job(·) be a function that computes the number

of served customers; Time(·) be a function that computes the total travel time. The

ILS2O can be outlined by the pseudocode below.

ILS2O

1: s′ ← INITIAL and s∗ ← s′

2: h← 0
3: while h ≤M do
4: s← s∗

5: s∗ ← VARIABLE OBJECTIVE SEARCH(s′, s∗)
6: if Job(s∗) > Job(s) then
7: h← 0
8: else if Job(s∗) = Job(s) and Time(s∗) < Time(s) then
9: h← 0

10: end if
11: s′ ← PERTURB(h, s∗)
12: h+ +
13: end while

The ILS2O starts with a solution to the problem (4.26)−(4.55) which is generated

using the INITIAL procedure described in Section 4.3.3. Until a better solution has been

found, this solution is the current best-known feasible solution (line 1). The WHILE loop

(lines 3−13) repeatedly attempts to find a feasible solution to the problem (4.26)−(4.55).

Each such attempt starts with a different solution. For the first attempt (the first iteration

of the WHILE loop lines 3 − 13), the starting solution is produced by the INITIAL
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procedure (line 4.3.3), whereas for all subsequent attempts, the starting solutions are

generated by the PERTURB procedure (line 11). The PERTURB procedure is described

in Section 4.3.7. It perturbs the best currently known feasible solution s∗, taking into

account the number of runs h which has failed to obtain an improving solution.

4.3.3 INITIAL procedure

The INITIAL procedure is a sweep heuristic Gillett and Miller (1974) that constructs a

solution for the problem (4.26)−(4.55). First, a list of customers is constructed based on

the geographic coordinates of the customers. Then the customers are inserted into a route

one by one until no customer can be inserted, in which case a new route is constructed.

Since one-man vehicles can only serve one-man customers, whereas two-men vehicles can

serve all types of customers, the procedure constructs the routes for one-man vehicles

first, then followed by the routes for two-men vehicles. When inserting a customer into

the route, the procedure chooses the insertion position that respects all the constraints

and gives the smallest increase in travel time. The procedure terminates until either no

customers can be inserted into the vehicle’s route, or all customers have been allocated.

4.3.4 Local search with variable objectives

Let s′ and s∗ be the input solutions. The VARIABLE OBJECTIVE SEARCH procedure

is outlined in the pseudocode below.

VARIABLE OBJECTIVE SEARCH
1: repeat
2: λ1 ← 1, λ2 ← 0
3: {s′, s∗} ←SEARCH(s′, s∗)
4: s← s′

5: λ1 ← longest travel time of a route among the routes in s∗, λ2 ← 1
6: {s′, s∗} ←SEARCH(s′, s∗)
7: until fLR(s′) = fLR(s)
8: return s∗

The VARIABLE OBJECTIVE SEARCH applies the SEARCH procedure described

in Section 4.3.5 to two different objective functions by alternating the value for the

parameters λ1 and λ2. As mentioned above, λ1 is the weight for maximising the number

of served customers (for example, the objective function (4.1)) whereas λ2 is the weight



72
Iterated Local Search for the Simultaneous Pickups and Deliveries Problem

Arising in Retail Industry with Ordered Objectives

for minimising the total travel time (for example, the objective function (4.24)). The

procedure first attempts to find a solution with a higher number of served customers by

assigning λ1 to 1 and λ2 to 0 (line 2). Then, the procedure attempts to find a solution

with a lower total travel time while the objective of maximising the number of served

customers remains at a higher priority. This is done by assigning λ1 to the longest travel

time of a route among the routes in s∗ and λ2 to 1 (line 5). This procedure terminates

if the SEARCH procedure in line 6 fails to further improve the solution returned by the

SEARCH procedures in line 3 with respect to the augmented objective function (4.56).

Such an alternation on parameters λ1 and λ2 is motivated by the observation that when

minimising the travel time, the output solutions may allow more customers to be inserted.

4.3.5 Search strategies

This section describes the SEARCH procedure for the ILS2O. Five different search strate-

gies are described that can be used in the SEARCH procedure. Let ξ ∈ {0, 1, 2, 3, 4} be

the parameter that specifies which search strategy is used, the SEARCH procedure is

outlined in the pseudocode below.

SEARCH

1: {α, β, σ, κ} ← ASSIGN WEIGHTS(s′)
2: s← s′

3: {s′, s∗} ← STRATEGY(s′, s∗, ξ)
4: e← 1
5: while fLR(s) 6= fLR(s′) and s′ is infeasible and e ≤ E do
6: s← s′

7: {α, β, σ, κ} ←ADJUST WEIGHTS(α, β, σ, κ, s′)
8: {s′, s∗} ← STRATEGY(s′, s∗, ξ)
9: e← e+ 1

10: end while
11: return {s′, s∗}

Let s′ and s∗ be the input solutions which are also the output solutions. The SEARCH

procedure repeatedly applies the STRATEGY procedure to find a solution with a bet-

ter value than s′ on the augmented objective function (4.56). Each application of the

STRATEGY procedure uses a different value for the weights α, β, σ, and κ. For the first

application, these weights are assigned by the ASSIGN WEIGHTS procedure taking into

account the constraints violation on s′ (line 1). For the subsequent applications, these
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weights are adjusted using the ADJUST WEIGHTS procedure (line 7). The SEARCH

procedure terminates when either a feasible solution has been found, a local optimal has

been found, or the counter e exceeds limit E.

Six neighbourhood operators N0, N1, N2, N3, N{0−3}, andN{1−3} are considered for the

search strategies. These operators are commonly used in the field of vehicle routing and

can be found in many algorithms reported in the literature (see for example, Laporte et al.

(2000), Bräysy and Gendreau (2005a), Bräysy and Gendreau (2005b), and Kindervater

and Savelsbergh (2018)). Each operator Ni transforms an input solution s, by applying

transformations (moves) from the set of transformations associated with this operator,

and returns as the result some solution s′ (denoted s′ = Ni(s)) where s′ is either the

input solution s, or one of the transformations of s.

• The Operator N0

– interchanges a sequence of up to two consecutive visits in one route with a

sequence of up to two consecutive visits in another route, including the trans-

formations that only use a sequence from one route and an insertion position

in another;

– interchanges a sequence of up to two consecutive visits in a route (the cus-

tomers in this sequence become unserved) with at most one unserved customer,

including the transformations which either do not use an unserved customer

or instead of the sequence of visits use only an insertion position in the route.

• The Operator N1 extracts one visit from the route and inserts it into a different

position of the same route.

• The Operator N2 extracts a sequence of two consecutive visits and inserts this

sequence into a different position of the same route.

• The Operator N3 reverses the order of some sequence of consecutive visits in a

route.

• The Operator N{0−3} comprises all transformations associated with the N0, N1, N2,

and N3.

• The Operator N{1−3} comprises all transformations associated with the N1, N2, and

N3.
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For each of the neighbourhood operators N0 and N{0−3}, the output is a solution with

the largest number of served customers among all solutions with a better value than the

input solution on the augmented objective function (4.56). For each of the neighbourhood

operators N1, N2, N3, and N{1−3}, the output is a solution with the largest value on the

augmented objective function (4.56).

In all strategies, if a feasible solution is found that is better than the currently best-

known solution s∗, then s∗ is updated immediately.

• The first strategy i.e., STRATEGY(s′, s∗, 1), picks the best transformation among

the transformations associated with N0.

• The second strategy i.e., STRATEGY(s′, s∗, 2), picks the best transformation among

all transformations associated with N{0−3}.

• The third strategy i.e., STRATEGY(s′, s∗, 3), uses four local search optimisation

procedures, each with one of the four operators N0, N1, N2, N3. This strategy

terminates when a local optimal is found for all four operators.

• The fourth strategy i.e., STRATEGY(s′, s∗, 4), applies a local search optimisation

procedure with the operator N0. Then, using the local optimal obtained for the

operator N0, this strategy picks the best transformation among all transformations

associated with N{1−3}.

• The fifth strategy i.e., STRATEGY(s′, s∗, 5), iteratively applies the fourth strategy

until it fails to obtain a solution with better value on the augmented objective

function (4.56) than the current one. This strategy is adapted from the most

classical variable neighbourhood search (VNS) described in Hansen et al. (2017),

Hansen et al. (2019). The output solution of this strategy is the local optimal for

both neighbourhood operators N0 and N{1−3}.
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STRATEGY(s′, s∗, 1)

1: s′ ← N0(s′)
2: if s′ is feasible then
3: if Job(s∗) < Job(s′) then
4: s∗ ← s′

5: else if Job(s∗) = Job(s′) and Time(s∗) > Time(s′) then
6: s∗ ← s′

7: end if
8: end if
9: return {s′, s∗}

STRATEGY(s′, s∗, 2)

1: s′ ← N{0−3}(s
′)

2: if s′ is feasible then
3: if Job(s∗) < Job(s′) then
4: s∗ ← s′

5: else if Job(s∗) = Job(s′) and Time(s∗) > Time(s′) then
6: s∗ ← s′

7: end if
8: end if
9: return {s′, s∗}

STRATEGY(s′, s∗, 3)

1: repeat
2: s̄← s′

3: for i← 0; i < 4; i← i+ 1 do
4: repeat
5: s← s′

6: s′ ← Ni(s
′)

7: if s′ is feasible then
8: if Job(s∗) < Job(s′) then
9: s∗ ← s′

10: else if Job(s∗) = Job(s′) and Time(s∗) > Time(s′) then
11: s∗ ← s′

12: end if
13: end if
14: until fLR(s) = fLR(s′)
15: end for
16: until fLR(s̄) = fLR(s′)
17: return {s′, s∗}
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STRATEGY(s′, s∗, 4)

1: repeat
2: s← s′

3: s′ ← N0(s′)
4: if s′ is feasible then
5: if Job(s∗) < Job(s′) then
6: s∗ ← s′

7: else if Job(s∗) = Job(s′) and Time(s∗) > Time(s′) then
8: s∗ ← s′

9: end if
10: end if
11: until fLR(s) = fLR(s′)
12: s′ ← N{1−3}(s

′)
13: if s′ is feasible then
14: if Job(s∗) < Job(s′) then
15: s∗ ← s′

16: else if Job(s∗) = Job(s′) and Time(s∗) > Time(s′) then
17: s∗ ← s′

18: end if
19: end if
20: return {s′, s∗}

STRATEGY(s′, s∗, 5)

1: repeat
2: s← s′

3: {s′, s∗} ← STRATEGY(s′, s∗, 4)
4: until fLR(s) = fLR(s′)
5: return {s′, s∗}

4.3.6 Initial value of Lagrange multipliers and their adjustment

The ASSIGN WEIGHTS procedure assigns initial value for α, β, σ, κ using an input

solution s where α =
∑

i∈T
∑

j∈C µ
i
j(s); β =

∑
i∈T ψi(s); σ =

∑
i∈T ωi(s); and κ =∑

i∈T νi(s). The ADJUST WEIGHTS procedure updates the value of these weights as

follows when an infeasible solution is returned from the STRATEGY procedure.

αi+1 = αi + τ
∑
i∈T

∑
j∈C

µij(s) , βi+1 = βi + τ
∑
i∈T

ψi(s), (4.57)

σi+1 = σi + τ
∑
i∈T

ωi(s), and κi+1 = κi + τ
∑
i∈T

νi(s) (4.58)
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where

τ =
γ f(s)

(
∑

i∈T
∑

j∈C µ
i
j(s))

2 + (
∑

i∈T ψi(s))
2 + (

∑
i∈T ωi(s))

2 + (
∑

i∈T νi(s))
2

(4.59)

where γ is a positive parameter.

4.3.7 PERTURB procedure

The PERTURB procedure expands the search space by randomly perturbing the current

best solution s∗. An unallocated customer is randomly chosen and then inserted into a

position among the routes which gives the largest value of (4.56) when α = β = σ = ψ =

1. Then, two randomly selected sequences of consecutive customers are swapped between

two randomly selected routes. This random swap will be performed multiple times which

depends on the counter h in the pseudocode for the ILS2O. To be specific, the number of

swaps starts from one and increases by one each time when counter h in the pseudocode

for the ILS2O increases. The current best solution s∗ may also be updated in this process.

4.4 Computational experiments

This section presents the results of computational experiments. To evaluate the per-

formance of the proposed ILS2O, its performance is compared with the performance of

an iterated local search with neighbourhood reduction (ILS-NR) described in Gu et al.

(2021). The problem studied in Gu et al. (2021) contains the same constraints as the

problem studied in this chapter. However, the objective of the problem studied in Gu

et al. (2021) only maximises the number of served customers. In addition, the perfor-

mance of the ILS2O is compared with the performance of CPLEX, an iterated local search

(ILS) adapted from Xie et al. (2017), and a two-stage algorithm. The ILS considers the

weighted sum objective function (4.26) where the value for λ1 is the longest travel time of

a route in a solution generated by 4.3.3 and the value for λ2 is 1. The two-stage algorithm

considers the two objectives one at a time. In the first stage, the ILS is used to find a

solution to the problem (4.1)−(4.23). The solution produced by the first stage is used as

the starting solution of the second stage. In the second stage, the ILS is used again to

find a solution to the problem (4.24)−(4.25). In what follows, this algorithm is referred
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to as 2Phase.

To evaluate the performance of CPLEX with the three-index model, a time limit of 6

hours and a memory limit of 8GB are given for CPLEX. In addition, the objective func-

tions used in CPLEX for the three-index model are weighted sum because this approach

is easy to implement. To be clear, the three-index model with weighted sum is referred to

as the weighted three-index model and is presented in B.1. As the ILS, the weighted sum

objective function uses the same λ1 and λ2. For each instance from the RW benchmark,

Solomon benchmark, and Solomon benchmark Ver2, the value of λ1 is presented in the

column titled λ1 in Tables 4.2 and 4.3 and λ2 is one for all instances.

The ILS2O, ILS, ILS-NR, and 2Phase were applied 30 times, each time with a differ-

ent starting solution which is generated by the procedure described in Section 4.3.3. To

eliminate the impact of the starting solution, each individual application of these algo-

rithms uses the same starting solution. The parameters settings for the ILS and 2Phase

are identical as in Xie et al. (2017) and the parameters settings for ILS-NR are the same

as suggested in Gu et al. (2021). For ILS2O, the maximum number of exchange opera-

tions in the subroutine PERTURB is five; the parameter E is 100; the parameter M is

computed according to ω(|C| + Λ|T |), where C is the set of all customers; T is the set

of all vehicles; ω is a parameter to control M ; similar to Xie et al. (2017) and Penna

et al. (2013) Λ is 10. Similar to the Lagrangian ILS, the ILS2O increases the number

of exchange operations in perturbation after each M/5 sequential iterations that fail to

obtain an improving solution. The positive parameter γ in (4.59) is 2.

All methods were programmed in C++ and compiled with g++, using the optimisa-

tion level O3 and all computational experiments were conducted on a computer with Intel

Xeon CPU E5-2697 v3 2.60GHz and 8GB RAM. In addition, the version for CPLEX is

12.10. In what follows, Section 4.4.1 discusses the benchmark instances used in the com-

putational experiments. Section 4.4.2 analyses the performance of ILS2O with different

search strategies. Section 4.4.3 compares the performance of ILS2O with the performance

of CPLEX, ILS, and 2Phase.

4.4.1 Test instances

The computational experiments are conducted on three sets of instances. One set is pro-

vided by the industry partner. Since the considered problem has never appeared in the
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literature, this motivated the author to introduce the second and third sets of instances

which can be downloaded from https://www.dropbox.com/scl/fo/k97c6i8vyry4y51lfxhwc/

h?rlkey=9x6f582apvgx5c136knl9r24r&dl=0.

The first benchmark is a set of 60 instances with up to 100 customers. The second

benchmark is a set of 56 instances that combines the Solomon data sets Solomon (1987)

and data provided by the industry partner with a roster specifying the vehicles’ starting

time; and loading time for drivers at the depot. Furthermore, each delivery or pickup has

the associated weight and volume and each vehicle has a capacity on weight and volume.

The third benchmark is a set of 51 instances which also combines the Solomon data with

the data provided by the industry partner. In addition to the features considered in the

second benchmark, the third benchmark also considers the compatibility between cus-

tomers and vehicles. For all three benchmarks, the travel times are rounded to an integer

value. In what follows, the first benchmark will be referred to as the RW benchmark,

whereas the second benchmark will be referred to as the Solomon benchmark and the

third benchmark will be referred to as the Solomon benchmark Ver2.

Each instance in the RW benchmark contains a MASPDP that occurred on a par-

ticular day. These instances are categorised into six types, “M”, “‘R”, “T”, “A”, “B”,

and “C”. Each type represents the situation of a particular depot. For each instance,

the depot and the customers have a suburb number that represents the location. Each

suburb number has its longitude and altitude which are used to construct the distance

matrix. For the distance between customers (or distance between depot and customers)

with the same suburb number, it is assumed to be 1 mile. Furthermore, it is also assumed

that all vehicles require 2 minutes to travel 1 mile. In addition, all drivers cannot work

longer than 10 hours.

The instances in the Solomon benchmark and Solomon benchmark Ver2 combine the

Solomon data sets with 100 customers Solomon (1987) and the data provided by the

industry partner. These instances were generated in the following way. First, the data

provided by the industry partner is pre-processed and obtains four lists L1, L2, L3, and

L4. Each element in list L1 (L2) contains the weight and volume of the delivery and

pickup required by a two-men customer (one-man customer) whereas each element in list

L3 (L4) contains the arrival time at the depot; depart time from the depot (arrival time

at the depot plus loading time); and the capacity on weight and volume of a two-men

https://www.dropbox.com/scl/fo/k97c6i8vyry4y51lfxhwc/h?rlkey=9x6f582apvgx5c136knl9r24r&dl=0
https://www.dropbox.com/scl/fo/k97c6i8vyry4y51lfxhwc/h?rlkey=9x6f582apvgx5c136knl9r24r&dl=0
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vehicle (one-man vehicle). For each instance of the Solomon benchmark, a customer

from the corresponding instance of the Solomon data sets was randomly paired with an

element in either L1 or L2 and the data regarding a vehicle was randomly selected from

either L3 or L4. Besides, the Solomon benchmark takes into account the information

on instances from the RW benchmark i.e., the ratios between the number of two-men

customers and the total number of customers, as well as the ratios between the number

of two-men vehicles and the total number of vehicles. A ratio with regards to the two-

men customers is randomly selected and is used to determine the number of customers

which is paired with L1. Moreover, a ratio with regards to the two-men vehicle is also

randomly selected and is used to determine the number of two-men vehicles which is

selected from L3. The rest of the customers will be paired with L2 and the rest of the

vehicles will be selected from L4. Since the Solomon data sets have different lengths on

time horizons and different densities on time windows, the starting time and loading time

for drivers at the depot are adjusted to make them suitable for the time window and time

horizon of a particular instance. At last, the number of vehicles in each instance was also

adjusted by preliminary tests, so that, the number of vehicles is not sufficient to allocate

all customers.

4.4.2 Analysis on search strategies

Since the ILS2O alternates between two objectives (see Section 4.3.4), the five search

strategies described in Section 4.3.5 are selected twice, one for each objective. These

choices have resulted in 25 different combinations. The results obtained from ILS2O for

these 25 combinations are presented in Table 4.1.

In Table 4.1, the columns Average and seca show the average objective values and the

average computational time. In each row, different strategies are tested for maximising

the number of served customers while the choice for minimising the total travel time is

fixed, and vice versa for each column. The best objective values are underlined in this

table. They are obtained by Strategy 3 for both objectives. 57.10 is the average number

of served customers whereas 683.94 is the average total travel time. All other entries in

column Average are the relative percentage differences using the best objective values

as the reference. For the first percentage, if it is positive then the average number of

served customs is less than 57.10 whereas for the second percentage, if it is negative
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then the average total travel time is larger than 683.94. In terms of computation time,

using Strategy 3 for both objectives requires 22.89 seconds which is efficient. Since the

performance of Strategy 3 is promising for both objectives, this setting is used for the

ILS2O in the following computational experiments.

Table 4.1: Analysis on the performance of ILS2O with different search strategies on instances
from Solomon benchmark

S1 S2 S3 S4 S5

Average seca Average seca Average seca Average seca Average seca
S1 3.36%| − 53.3% 1.54 2.99%|−53.42% 1.61 0.33%|−54.16% 9.52 0.40%|−54.73% 9.28 0.33%|−54.34% 9.19
S2 2.98%|−52.14% 1.83 2.68%|−52.27% 1.85 0.26%|−53.53% 10.36 0.30%|−54.25% 9.91 0.28%|−53.72% 10.10
S3 0.21%| − 0.42% 13.92 0.21%| − 1.87% 13.79 57.10|683.94 22.89 0.00%| − 0.04% 22.54 0.00| − 0.02% 22.77
S4 0.25%| − 3.97% 15.14 0.21%| − 5.71% 15.01 0.02%| − 4.50% 23.45 0.02%| − 4.37% 22.86 0.02%| − 4.45% 23.04
S5 0.26%| − 0.90% 13.85 0.23%| − 2.20 13.51 0.02%| − 0.78% 22.43 0.02%| − 0.52% 21.66 0.02%| − 0.43% 21.80

4.4.3 Comparison of the performance

This section reports the results obtained by the ILS2O, ILS, 2Phase, ILS-NR and CPLEX.

The results obtained from CPLEX on instances from the RW benchmark, Solomon bench-

mark, and Solomon benchmark Ver2 are presented in Tables 4.2, 4.3, and 4.4. The average

results obtained from the ILS2O, 2Phase and ILS on instances from the RW benchmark,

the Solomon benchmark and the Solomon benchmark Ver2 are presented in Tables 4.5,

4.8, and 4.12 whereas the best and worst cases obtained by these algorithms are reported

in Tables 4.6, 4.9, and 4.12. In addition, the average results, best cases and worst cases

obtained by the ILS-NR are reported in Tables 4.7, 4.10, and 4.13.

In Tables 4.2, 4.3, and 4.4, the first column presents the instances’ name, and the

columns |C| and |T | present the number of customers and the number of vehicles. Each

column O1 presents the number of served customers in the solution obtained by CPLEX;

each column O2 presents the total travel time incurred in the solution obtained by

CPLEX; each column Gap(%) presents the optimality gap; each column Time(s) presents

the computational time required by CPLEX.

With a time limit of 6 hours and a memory limit of 8 GB, CPLEX cannot find the

optimal solution for most of the instances from all three benchmarks. CPLEX cannot even

find optimal solutions for many instances with customers less than 50, whereas CPLEX

can find optimal solutions in the instances for the Workforce Scheduling and Routing

Problem (WSRP) with 25 and 50 tasks. This indicates that the MASPDP studied in

this chapter is computationally more challenging than the instances for WSRP studied
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in Chapter 3. The WSRP studied in Chapter 3 contains the time window constraints,

shift duration constraints, and compatibility constraints. The MASPDP studied in this

chapter contains many additional constraints, including a heterogeneous fleet of vehicles;

weight and volume of the demands; maximum shift length on the drivers; open routes;

and a roster specifying the order of vehicle loading at the depot. Considering these

additional features simultaneously makes the problem more challenging than the instances

for the WSRP. Furthermore, for instances “M20171009” and “M20171010”, CPLEX with

the weighted three-index model can obtain the optimal solutions. For instances “c101”,

“c201”, and “r101” from the Solomon benchmark, CPLEX with the weighted three-index

model has produced the optimal solutions. For instances from the Solomon benchmark

Ver2, CPLEX cannot obtain the optimal solution for almost every instance except the

instance “r101”.

In Tables 4.5 − 4.13, the groups ILS2O, ILS, 2Phase, and ILS-NR report the results

obtained by ILS2O, ILS, 2Phase, and ILS-NR, respectively. In Tables, 4.5, 4.7, 4.8, 4.10,

4.11, 4.13, the columns Average and seca report the average objective value and average

computational time. The column StdV presents the standard deviation over 30 runs. In

column Average (StdV), the first number is the average value (standard deviation) with

respect to the number of served customers and the second number is the average value

(standard deviation) with respect to the total travel time. For the readers’ convenience,

the best values obtained by these algorithms are underlined.

Furthermore, the best case and the worst case obtained by ILS2O, ILS, 2Phase, and

ILS-NR are reported. For 30 runs, the best case represents the solution that gives the

best number of served customers with the smallest total travel time whereas the worst

case represents the solution that gives the worst number of served customers with the

largest total travel time. In Tables 4.6, 4.9, 4.12, the number of served customers and

the total travel time for the best solution and the worst solution obtained by the ILS2O,

ILS, and 2Phase are reported. The column bestj (bestd) reports the number of served

customers (total travel time) of the best solution whereas the column worstj (worstd)

reports the number of served customers (total travel time) of the worst solution. The

best solution and worst solution obtained by the ILS-NR are also reported which can

be found in Tables 4.7, 4.10, and 4.13. In these tables, the group Best (Worst) contains

the objective values of the best solution (worst solution) where column O1 reports the



4.4 Computational experiments 83

Table 4.2: Comparison of performance between weighted three-index model on instances from
RW benchmark

Weighted three-index

|C| |T | λ1 O1 O2 Gap(%) Time(s)
M20170723 30 3 314 28 608 0.00 7349.72
M20170724 26 2 334 22 468 0.00 5603.80
M20170725 14 2 350 14 312 0.00 0.95
M20171008 28 2 302 26 592 5.22 36000.00
M20171009 22 2 314 21 438 0.00 10178.07
M20171010 22 2 410 17 518 0.00 30096.77
M20171016 34 2 338 26 476 19.93 36000.00
M20171017 24 2 332 22 632 4.22 36000.00
M20171021 34 2 332 26 356 18.76 36000.00
M20171024 17 2 288 17 440 0.00 3.25
M20171030 37 2 404 30 580 16.04 36000.00
M20171222 72 7 316 56 1852 37.44 36000.00
M20171223 70 5 454 64 1182 11.24 36000.00
M20171224 70 5 348 55 1134 29.94 36000.00
M20171225 70 5 352 55 1124 21.08 36000.00
R20170723 47 5 266 47 580 0.84 36000.00
R20170724 65 3 290 53 628 4.71 36000.00
R20170725 43 4 220 42 726 3.76 4651.49
R20171008 88 6 256 74 1130 21.34 36000.00
R20171009 63 4 268 55 884 6.48 36000.00
R20171010 44 5 268 44 580 0.62 36000.00
R20171016 72 5 294 66 1250 10.22 36000.00
R20171017 37 4 402 36 734 2.56 36000.00
R20171021 60 5 204 55 856 10.15 8187.09
R20171024 53 6 334 53 668 0.67 36000.00
R20171030 71 7 344 70 1380 4.54 36000.00
R20171212 52 4 342 50 992 5.72 36000.00
R20171219 52 4 268 50 880 5.19 36000.00
R20171222 62 4 256 55 902 13.95 36000.00
R20171223 70 5 320 67 1030 5.37 36000.00
R20171224 70 5 296 60 1160 7.10 36000.00
R20171225 70 5 304 68 1174 5.43 36000.00
T20170723 64 5 228 64 570 1.54 36000.00
T20170724 70 5 194 69 684 2.29 9525.44
T20170725 57 4 210 55 630 5.72 36000.00
T20171008 65 8 308 65 826 1.43 36000.00
T20171009 43 7 332 43 564 0.30 36000.00
T20171010 46 5 380 46 508 0.41 36000.00
T20171016 63 7 312 63 776 1.79 36000.00
T20171017 56 4 467 52 670 5.39 36000.00
T20171021 76 4 206 60 608 7.74 36000.00
T20171024 62 4 272 54 860 8.13 36000.00
T20171030 36 5 244 36 302 0.30 36000.00
T20171212 63 7 238 63 1078 3.59 36000.00
T20171219 54 5 318 54 734 1.49 36000.00
T20171222 91 7 236 79 972 16.20 36000.00
T20171223 70 5 296 66 990 8.43 36000.00
T20171224 70 5 262 63 942 12.26 9447.68
T20171225 70 5 398 67 1008 5.41 36000.00
T20171226 70 5 376 66 904 6.54 36000.00
A20171016 100 4 418 61 1074 15.06 36000.00
A20171222 100 7 458 81 1612 17.06 36000.00
B20171008 100 6 344 75 1302 13.34 36000.00
B20171016 100 5 322 77 1146 8.63 7275.28
B20171030 100 7 352 84 1406 11.85 36000.00
B20171222 100 4 346 63 940 31.19 36000.00
C20170724 100 5 332 90 918 6.55 36000.00
C20171016 100 7 258 94 1274 8.38 36000.00
C20171021 100 4 268 73 950 13.75 36000.00
C20171222 100 7 380 91 1478 12.02 36000.00
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Table 4.3: Comparison of performance between weighted three-index model on instances from
Solomon benchmark

Weighted three-index

|C| |T | λ1 O1 O2 Gap(%) Time(s)
c101 100 5 133 46 226 0.00 585.53
c102 100 2 146 20 149 147.54 4903.90
c103 100 6 140 61 526 56.32 36000.00
c104 100 3 158 28 165 133.77 5841.00
c105 100 5 153 46 365 44.76 36000.00
c106 100 5 197 46 289 81.24 19827.53
c107 100 5 176 48 424 67.38 36000.00
c108 100 6 159 52 570 88.16 36000.00
c109 100 5 116 49 437 90.63 36000.00
c201 100 3 188 66 701 0.00 612.97
c202 100 3 253 64 852 3.85 5040.40
c203 100 5 146 81 1277 9.76 36000.00
c204 100 6 225 95 1273 6.21 36000.00
c205 100 3 139 65 536 1.96 36000.00
c206 100 3 262 77 881 7.72 36000.00
c207 100 3 285 71 824 4.05 36000.00
c208 100 4 211 82 798 3.23 36000.00
r101 100 3 105 23 183 0.00 13.66
r102 100 6 99 47 473 112.58 36000.00
r103 100 5 111 45 335 93.35 36000.00
r104 100 4 105 38 262 131.72 36000.00
r105 100 5 94 41 383 72.62 36000.00
r106 100 3 96 28 193 139.40 36000.00
r107 100 4 108 36 293 107.20 36000.00
r108 100 3 106 29 184 141.60 36000.00
r109 100 3 120 29 196 115.16 36000.00
r110 100 3 96 29 178 149.29 36000.00
r111 100 3 105 31 175 166.98 36000.00
r112 100 3 96 30 188 131.89 36000.00
r201 100 3 250 51 816 15.67 7702.84
r202 100 5 362 94 1683 6.53 36000.00
r203 100 6 222 89 1603 10.64 36000.00
r204 100 5 287 83 857 4.09 36000.00
r205 100 3 199 63 886 9.35 36000.00
r206 100 5 272 92 1020 3.97 36000.00
r207 100 3 267 63 755 4.75 36000.00
r208 100 3 246 75 726 2.80 36000.00
r209 100 4 251 76 1060 5.92 36000.00
r210 100 8 250 70 1242 47.26 36000.00
r211 100 4 158 73 1039 10.25 36000.00
rc101 100 3 129 27 248 67.90 36000.00
rc102 100 2 131 18 148 249.54 36000.00
rc103 100 3 124 23 267 178.61 6406.04
rc104 100 3 102 28 250 168.18 36000.00
rc105 100 5 137 42 354 88.11 36000.00
rc106 100 3 123 26 204 149.51 36000.00
rc107 100 3 117 27 216 130.23 36000.00
rc108 100 6 113 40 418 154.63 36000.00
rc201 100 3 342 58 1020 18.30 36000.00
rc202 100 3 337 50 956 18.95 36000.00
rc203 100 3 217 58 1132 22.23 36000.00
rc204 100 3 253 57 1064 29.43 2381.00
rc205 100 3 229 56 973 12.11 36000.00
rc206 100 3 330 65 880 11.20 36000.00
rc207 100 6 420 79 1551 8.43 36000.00
rc208 100 7 255 72 1221 44.42 36000.00
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Table 4.4: Comparison of performance between weighted three-index model on instances from
Solomon Ver2 benchmark

Weighted three-index

|C| |T | λ1 O1 O2 Gap(%) Time(s)
c102 100 2 165 20 208 80.81 36000
c103 100 6 192 47 610 28.61 36000
c104 100 3 150 28 191 93.75 36000
c105 100 5 196 42 494 34.97 36000
c106 100 5 191 42 413 70.89 36000
c107 100 5 297 43 517 45.32 36000
c108 100 6 164 45 405 78.03 36000
c109 100 5 300 40 538 77.77 36000
c201 100 3 545 57 1273 1.30 36000
c202 100 3 462 56 1145 3.62 36000
c203 100 5 581 73 875 2.25 36000
c204 100 6 386 95 1252 3.23 36000
c205 100 3 728 60 1075 0.68 36000
c206 100 3 540 70 1133 6.05 36000
c207 100 3 630 67 1073 3.32 36000
c208 100 4 516 80 1320 3.62 5404
r101 100 3 119 22 200 0.00 2
r102 100 6 115 47 445 105.97 36000
r103 100 5 105 34 319 115.49 11098
r104 100 4 109 36 305 143.98 36000
r105 100 5 104 26 264 48.12 36000
r106 100 3 104 27 248 121.85 36000
r107 100 4 116 33 347 71.63 36000
r108 100 3 88 28 235 130.39 36000
r109 100 3 121 22 243 101.02 36000
r110 100 3 102 25 203 165.87 10407
r111 100 3 113 27 236 85.16 36000
r112 100 3 91 26 219 155.28 36000
r201 100 3 217 46 718 8.69 36000
r202 100 5 520 66 869 8.35 36000
r203 100 6 458 84 1371 9.58 36000
r204 100 5 373 74 872 3.60 36000
r205 100 3 281 45 680 4.81 36000
r206 100 5 387 77 870 2.13 36000
r207 100 3 435 58 739 4.59 36000
r209 100 4 445 70 1101 2.98 36000
r210 100 8 334 85 1293 3.43 4651
r211 100 4 326 69 999 9.16 13490
rc101 100 3 128 24 264 17.19 36000
rc102 100 2 117 16 148 187.21 36000
rc103 100 3 136 22 248 182.99 36000
rc105 100 5 125 30 3750 66.79 36000
rc106 100 3 121 25 251 118.64 36000
rc107 100 3 128 25 259 89.22 36000
rc108 100 6 114 38 442 135.02 3977
rc203 100 3 372 51 969 20.19 36000
rc204 100 3 399 52 683 2.48 36000
rc205 100 3 582 53 1097 9.09 36000
rc206 100 3 509 45 881 14.54 3007
rc207 100 6 519 68 1602 10.96 2747
rc208 100 7 504 57 1042 56.08 3129
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number of served customers and column O2 reports the total travel time.

For 60 instances from the RW benchmark, the ILS2O obtains solutions that serve

more customers than the solutions obtained by the ILS in 22 instances. For the remaining

instances, the ILS2O obtains solutions that serve the same number of customers but lower

total travel time than the solutions obtained by the ILS in 13 instances. The ILS either

finds better solutions or the same solutions in 25 instances. Comparing the solutions

obtained by the 2Phase algorithm, the ILS2O finds solutions with a higher number of

served customers in 27 instances. In 16 instances, the ILS2O finds solutions with the same

number of served customers but lower total travel time. In the remaining 17 instances,

the 2Phase algorithm finds better solutions than the solutions obtained by the ILS2O.

Moreover, for all instances, the ILS2O outperforms the ILS-NR in terms of solution

quality.

Out of the 56 instances from the Solomon benchmark, the solutions obtained by the

ILS2O serve more customers than the solutions obtained by the ILS in 36 instances. For 9

instances out of 56 instances, the solutions obtained by the ILS2O serve the same number

of customers with a lower total travel time compared with the solutions obtained by the

ILS. For the remaining instances, the ILS finds better solutions. Comparing the solutions

obtained by the 2Phase algorithm, the ILS2O finds solutions with a higher number of

served customers in 41 instances. In 8 instances, the ILS2O finds solutions with the same

number of served customers with a lower total travel time. For the remaining 7 instances,

the 2Phase algorithm finds better solutions than the solutions obtained by the ILS2O.

Similar to the results for the RW benchmark, the solutions obtained from ILS2O are

better than the solutions obtained by the ILS-NR for all instances.

For 51 instances from the Solomon benchmark Ver2, there are 19 instances that the

ILS2O obtains solutions with a higher number of served customers than the solutions

obtained by the ILS. For the remaining instances, the ILS2O obtains solutions that serve

the same number of customers with a lower total travel time than the solutions obtained

by the ILS in 12 instances. The ILS finds better solutions in the remaining 20 instances.

Comparing the solutions obtained by the 2Phase algorithm, the ILS2O outperforms the

2Phase algorithm in 40 instances in terms of the number of served customers. In 7

instances, the ILS2O finds solutions with the same number of served customers with a

lower total travel time. In the remaining 4 instances, the 2Phase algorithm finds better
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solutions than the solutions obtained by the ILS2O. Similar to the results for the RW

benchmark and Solomon benchmark, the ILS2O again outperforms the ILS-NR in all

instances from the Solomon benchmark Ver2.

In addition, this section also investigates the consistency of the ILS2O, ILS, 2Phase,

and ILS-NR. For instances from all three sets of benchmarks, the ILS2O is more stable

than the ILS, 2Phase, and ILS-NR in terms of both the number of served customers and

the total travel time. For 50 out of 60 instances from the RW benchmark, the standard

deviation obtained from ILS2O for the number of served customers is 0. This means that

the ILS2O constantly finds solutions with the same number of served customers. For

instances from the Solomon benchmark and Solomon benchmark Ver2, larger variances

have been observed. However, it can be observed that the ILS2O is still more stable in

comparison with the ILS, 2Phase, and ILS-NR in terms of both objectives.

In terms of computational time, the ILS requires more time in comparison with the

ILS2O, 2Phase, and ILS-NR. The author believes that the local search struggles to find

the local optimal when the objective function is a weighted sum. Although the ILS2O

alternates between the two objectives, the computational time is still competitive with

the computational time required by the ILS, 2Phase, and ILS-NR after observing its

promising performance on the solution quality and consistency.

The effectiveness of the neighbourhood reduction technique has been verified in Gu

et al. (2021) with the ILS-NR whereas the effectiveness of the Lagrangian ILS framework

has been verified in Gu et al. (2022b). With the comparisons of performance on the

solutions obtained by the ILS2O and ILS-NR, the ILS2O outperforms ILS-NR in all

cases. Since the ILS2O is an algorithm under the Lagrangian ILS framework with the

neighbourhood reduction technique, these comparisons indicate that both the Lagrangian

ILS framework and the neighbourhood reduction technique are effective in solving the

MASPDP studied in this chapter.

4.5 Conclusion

This chapter considers a practical vehicle routing problem with simultaneous pickups

and deliveries and ordered objectives. The problem is formulated into a three-index

mathematical formulation. To tackle the problem, this chapter described an iterated local
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Table 4.5: Comparison of performance between ILS2O , ILS and 2Phase ILS on instances
from RW benchmark

ILS2O ILS 2Phase

|C| |T | Average StdV seca Average StdV seca Average StdV seca
M20170723 30 3 28.00|610.93 0.00|2.08 0.53 26.93|837.20 0.64|71.18 0.37 28.00|719.87 0.00|135.20 0.60
M20170724 26 2 22.00|470.27 0.00|8.15 0.33 21.80|493.80 1.10|24.11 0.33 22.00|487.67 0.00|37.08 0.47
M20170725 14 2 14.00|312.00 0.00|0.00 0.00 14.00|320.87 0.00|6.86 0.17 14.00|321.80 0.00|6.53 0.13
M20171008 28 2 26.00|564.60 0.00|6.95 0.53 25.83|576.07 0.38|22.42 0.43 25.13|544.60 0.51|53.02 0.50
M20171009 22 2 21.00|438.00 0.00|0.00 0.03 19.40|555.00 0.77|42.87 0.13 21.00|438.67 0.00|1.52 0.17
M20171010 22 2 17.00|520.40 0.00|4.88 0.10 16.80|559.40 0.76|40.48 0.17 17.00|533.47 0.00|10.41 0.20
M20171016 34 2 27.00|535.67 0.00|10.09 0.97 26.97|567.13 0.18|31.12 1.47 26.43|516.67 0.50|56.87 0.80
M20171017 24 2 22.00|632.53 0.00|1.38 0.30 22.00|632.40 0.00|1.22 0.27 21.77|616.80 0.43|29.02 0.40
M20171021 34 2 27.93|475.47 0.25|31.55 0.83 27.77|472.87 0.43|34.44 1.20 27.13|405.73 0.35|36.38 0.90
M20171024 17 2 17.00|440.00 0.00|0.00 0.03 17.00|440.00 0.00|0.00 0.03 17.00|440.27 0.00|1.01 0.03
M20171030 37 2 30.00|542.00 0.00|0.00 0.93 30.00|558.67 0.00|12.70 2.00 29.63|537.27 0.56|39.14 0.97
M20171222 72 7 71.00|1468.53 0.00|44.79 25.90 71.00|1505.73 0.00|60.06 26.03 70.97|1465.87 0.18|68.62 28.60
M20171223 70 5 69.33|1289.27 0.48|91.60 17.17 68.70|1229.27 0.53|75.03 27.57 68.07|1076.80 0.45|129.30 22.40
M20171224 70 5 59.00|1087.20 0.00|22.70 17.50 59.00|1125.40 0.00|47.45 46.70 58.90|1479.40 0.31|145.34 12.23
M20171225 70 5 60.00|1202.80 0.00|53.66 21.87 59.80|1259.67 0.41|81.84 24.80 59.03|1367.87 0.61|244.44 13.13
R20170723 47 5 47.00|559.47 0.00|7.84 1.77 47.00|562.13 0.00|8.10 2.70 47.00|562.40 0.00|6.13 2.07
R20170724 65 3 53.97|660.20 0.18|23.05 11.97 54.00|659.27 0.00|22.78 13.23 53.03|569.07 0.32|36.63 10.97
R20170725 43 4 42.00|511.67 0.00|13.07 5.10 42.00|501.73 0.00|18.65 3.23 42.00|501.13 0.00|20.42 4.13
R20171008 88 6 86.00|921.20 0.00|25.76 45.30 86.00|924.13 0.00|32.30 47.67 86.00|906.67 0.00|34.41 55.50
R20171009 63 4 57.00|848.73 0.00|22.63 16.40 57.00|872.27 0.00|45.84 15.77 56.73|821.07 0.45|87.06 18.07
R20171010 44 5 44.00|574.13 0.00|3.52 1.27 44.00|573.27 0.00|2.49 2.47 44.00|573.80 0.00|3.29 2.00
R20171016 72 5 70.00|1022.47 0.00|31.01 16.70 70.00|974.40 0.00|35.47 26.07 70.00|985.60 0.00|43.86 30.17
R20171017 37 4 37.00|1065.00 0.00|31.82 1.17 36.67|951.60 0.48|145.43 2.13 36.87|1016.93 0.35|114.83 1.83
R20171021 60 5 58.00|694.07 0.00|25.34 15.07 58.00|688.80 0.00|33.94 14.50 58.00|673.00 0.00|37.62 15.53
R20171024 53 6 53.00|636.67 0.00|10.57 2.77 53.00|635.60 0.00|15.84 5.50 53.00|633.87 0.00|7.39 5.67
R20171030 71 7 71.00|1059.27 0.00|39.51 10.70 71.00|1054.27 0.00|43.28 23.70 71.00|1067.73 0.00|45.37 23.50
R20171212 52 4 52.00|912.67 0.00|10.51 3.30 52.00|915.93 0.00|14.92 6.90 52.00|918.53 0.00|16.51 6.17
R20171219 52 4 51.00|714.73 0.00|17.09 5.37 51.00|707.07 0.00|21.44 7.03 51.00|704.13 0.00|19.38 9.03
R20171222 62 4 59.00|816.40 0.00|35.00 15.10 58.97|840.13 0.18|45.75 17.17 58.13|742.40 0.35|50.78 13.90
R20171223 70 5 69.00|885.67 0.00|25.83 25.83 69.00|914.07 0.00|49.38 20.70 68.80|860.73 0.41|57.75 25.57
R20171224 70 5 62.00|1069.67 0.00|37.52 21.13 62.00|1045.33 0.00|41.29 21.80 62.00|1065.67 0.00|56.84 16.37
R20171225 70 5 70.00|901.47 0.00|19.75 7.43 70.00|905.87 0.00|22.56 13.43 70.00|900.33 0.00|27.73 9.63
T20170723 64 5 64.00|431.07 0.00|6.72 5.13 64.00|430.33 0.00|6.75 8.83 64.00|432.27 0.00|5.87 5.40
T20170724 70 5 69.00|539.73 0.00|12.99 25.20 69.00|527.67 0.00|13.78 16.13 69.00|516.73 0.00|16.37 20.47
T20170725 57 4 57.00|547.80 0.00|13.90 5.20 57.00|545.87 0.00|13.46 7.77 57.00|550.07 0.00|16.68 6.90
T20171008 65 8 65.00|629.33 0.00|7.15 4.83 65.00|628.67 0.00|8.02 13.53 65.00|628.87 0.00|8.64 13.40
T20171009 43 7 43.00|567.47 0.00|4.33 1.53 43.00| 569.47 0.00|6.93 4.17 43.00|569.60 0.00|7.30 3.90
T20171010 46 5 46.00|481.73 0.00|5.17 2.00 46.00|481.60 0.00|5.79 2.20 46.00|483.93 0.00|5.52 2.10
T20171016 63 7 63.00|504.67 0.00|5.16 5.10 63.00|502.53 0.00|6.19 7.87 63.00|503.60 0.00|6.88 6.10
T20171017 56 4 54.00|763.47 0.00|4.55 13.00 53.93|763.00 0.25|44.74 15.60 53.37|661.13 0.49|83.29 11.97
T20171021 76 4 63.00|751.20 0.00|26.68 29.57 62.60|661.67 0.50|111.03 33.57 62.53|653.20 0.51|109.17 28.93
T20171024 62 4 57.00|899.53 0.00|31.87 12.83 57.00|885.60 0.00|28.40 18.33 56.43|836.73 0.50|71.09 15.50
T20171030 36 5 36.00|302.87 0.00|2.27 0.77 36.00|304.33 0.00|2.88 0.87 36.00|303.73 0.00|2.66 0.87
T20171212 63 7 63.00|660.87 0.00|4.02 4.30 63.00|660.93 0.00|3.23 5.67 63.00|658.67 0.00|3.94 5.47
T20171219 54 5 54.00|560.27 0.00|5.75 3.37 54.00|559.27 0.00|8.53 5.43 54.00|561.60 0.00|7.71 4.43
T20171222 91 7 89.00|963.60 0.00|39.56 57.90 89.00|931.53 0.00|37.91 54.07 89.00|918.40 0.00|37.64 56.77
T20171223 70 5 70.00|877.87 0.00|19.93 8.03 70.00|874.27 0.00|26.01 16.17 70.00|879.00 0.00|27.36 14.10
T20171224 70 5 69.00|1171.40 0.00|44.76 20.53 68.63|1022.27 0.49|113.05 32.13 68.07|893.13 0.25|58.92 29.53
T20171225 70 5 69.13|879.93 0.35|129.11 28.00 69.03|847.13 0.18|70.97 27.30 69.00|834.27 0.00|21.78 32.13
T20171226 70 5 68.00|761.93 0.00|18.14 32.17 68.00|759.20 0.00|20.45 23.30 68.00|751.60 0.00|22.32 27.27
A20171016 100 4 63.77|1093.33 0.43|61.71 26.00 63.57|1122.87 0.57|66.91 31.97 62.53|1035.80 0.68|82.56 19.40
A20171222 100 7 87.17|1578.67 0.53|82.85 57.53 86.67|1576.07 0.55|67.73 58.23 85.23|1607.67 0.57|253.91 37.30
B20171008 100 6 81.17|1086.67 0.38|73.64 55.43 81.10|1083.33 0.31|58.33 45.70 80.37|982.07 0.49|80.34 49.03
B20171016 100 5 81.00|1187.93 0.00|37.65 36.23 80.83|1221.47 0.38|47.67 43.70 79.73|1118.67 0.58|85.19 37.70
B20171030 100 7 89.13|1347.33 0.35|82.79 59.90 88.80|1347.27 0.41|75.69 57.50 88.07|1264.93 0.45|127.74 53.97
B20171222 100 4 71.57|981.60 0.50|47.94 39.90 71.40|1009.47 0.50|42.50 48.57 69.20|829.20 0.71|60.86 33.07
C20170724 100 5 94.00|806.13 0.00|20.30 46.53 93.83|769.53 0.38|71.53 56.37 93.07|637.47 0.25|63.15 58.97
C20171016 100 7 98.00|847.40 0.00|30.63 42.03 98.00|779.20 0.00|31.38 59.73 98.00|806.40 0.00|35.23 60.00
C20171021 100 4 77.77|784.33 0.43|44.40 56.57 77.80|787.73 0.41|54.33 53.57 76.70|682.07 0.75|89.56 45.07
C20171222 100 7 99.00|1330.67 0.00|42.31 59.87 99.00|1266.67 0.00|44.90 59.87 99.00|1289.93 0.00|51.36 59.67
Average 57.25|796.37 0.06|26.07 17.21 57.13|796.31 0.18|37.34 19.73 56.90|772.44 0.20|51.72 17.85
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Table 4.6: Comparison on the best and worst performance between ILS2O, ILS and 2Phase
ILS on instances from RW benchmark

ILS2O ILS 2Phase

|C| |T | bestj bestd worstj worstd bestj bestd worstj worstd bestj bestd worstj worstd
M20170723 30 3 28 608 28 616 28 628 26 914 28 610 28 994
M20170724 26 2 22 468 22 512 22 468 16 568 22 468 22 666
M20170725 14 2 14 312 14 312 14 312 14 326 14 312 14 326
M20171008 28 2 26 560 26 576 26 560 25 548 26 560 24 448
M20171009 22 2 21 438 21 438 21 438 18 602 21 438 21 442
M20171010 22 2 17 518 17 530 17 518 14 738 17 518 17 548
M20171016 34 2 27 528 27 562 27 536 26 448 27 528 26 596
M20171017 24 2 22 632 22 636 22 632 22 636 22 632 21 580
M20171021 34 2 28 456 27 384 28 456 27 448 28 456 27 426
M20171024 17 2 17 440 17 440 17 440 17 440 17 440 17 444
M20171030 37 2 30 542 30 542 30 542 30 580 30 542 28 420
M20171222 72 7 71 1350 71 1534 71 1400 71 1608 71 1356 70 1306
M20171223 70 5 70 1306 69 1366 70 1396 68 1282 69 1168 67 944
M20171224 70 5 59 1038 59 1126 59 1048 59 1246 59 1152 58 1522
M20171225 70 5 60 1074 60 1338 60 1194 59 1220 60 1182 58 1620
R20170723 47 5 47 548 47 574 47 548 47 576 47 548 47 578
R20170724 65 3 54 604 53 612 54 608 54 714 54 626 52 454
R20170725 43 4 42 482 42 538 42 478 42 550 42 476 42 548
R20171008 88 6 86 864 86 990 86 872 86 986 86 848 86 978
R20171009 63 4 57 806 57 916 57 792 57 976 57 772 56 790
R20171010 44 5 44 572 44 584 44 572 44 580 44 572 44 582
R20171016 72 5 70 972 70 1104 70 916 70 1078 70 916 70 1112
R20171017 37 4 37 1036 37 1154 37 1036 36 774 37 1036 36 746
R20171021 60 5 58 644 58 758 58 640 58 760 58 590 58 766
R20171024 53 6 53 628 53 678 53 628 53 702 53 628 53 654
R20171030 71 7 71 986 71 1156 71 990 71 1178 71 976 71 1164
R20171212 52 4 52 896 52 944 52 894 52 960 52 894 52 956
R20171219 52 4 51 686 51 762 51 672 51 770 51 676 51 760
R20171222 62 4 59 758 59 914 59 778 58 772 59 804 58 804
R20171223 70 5 69 840 69 930 69 810 69 1032 69 774 68 786
R20171224 70 5 62 980 62 1170 62 966 62 1124 62 976 62 1176
R20171225 70 5 70 870 70 942 70 868 70 954 70 862 70 946
T20170723 64 5 64 418 64 442 64 420 64 450 64 420 64 446
T20170724 70 5 69 520 69 576 69 506 69 552 69 496 69 560
T20170725 57 4 57 524 57 590 57 526 57 574 57 526 57 606
T20171008 65 8 65 620 65 644 65 620 65 650 65 620 65 648
T20171009 43 7 43 564 43 578 43 564 43 588 43 564 43 588
T20171010 46 5 46 476 46 500 46 476 46 502 46 476 46 500
T20171016 63 7 63 492 63 514 63 492 63 514 63 492 63 518
T20171017 56 4 54 760 54 780 54 760 53 632 54 762 53 628
T20171021 76 4 63 704 63 802 63 668 62 562 63 698 62 606
T20171024 62 4 57 846 57 966 57 822 57 948 57 848 56 824
T20171030 36 5 36 302 36 310 36 302 36 310 36 302 36 310
T20171212 63 7 63 652 63 670 63 656 63 672 63 652 63 666
T20171219 54 5 54 552 54 576 54 554 54 586 54 554 54 578
T20171222 91 7 89 884 89 1040 89 856 89 1002 89 850 89 1012
T20171223 70 5 70 836 70 922 70 834 70 934 70 828 70 940
T20171224 70 5 69 1086 69 1262 69 1016 68 962 69 1016 68 930
T20171225 70 5 70 1196 69 856 70 1210 69 888 69 794 69 888
T20171226 70 5 68 722 68 798 68 704 68 790 68 704 68 800
A20171016 100 4 64 1000 63 1072 64 998 62 1036 63 958 61 1086
A20171222 100 7 88 1612 86 1526 88 1700 86 1638 86 1468 84 1476
B20171008 100 6 82 1184 81 1098 82 1200 81 1136 81 1000 80 1066
B20171016 100 5 81 1110 81 1276 81 1144 80 1224 81 1272 79 1088
B20171030 100 7 90 1426 89 1370 89 1258 88 1372 89 1366 87 1100
B20171222 100 4 72 960 71 1018 72 1002 71 1052 70 828 68 798
C20170724 100 5 94 742 94 842 94 732 93 678 94 842 93 680
C20171016 100 7 98 778 98 910 98 714 98 856 98 734 98 876
C20171021 100 4 78 772 77 744 78 748 77 740 78 748 74 486
C20171222 100 7 99 1246 99 1408 99 1172 99 1356 99 1210 99 1462
Average 57.33 773.77 57.15 828.80 57.32 771.50 56.72 821.57 57.18 756.07 56.53 787.47
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Table 4.7: The performance ILS-NR on instances from RW benchmark

Average Std V Time(s) Best Worst

|C| |T | O1 O2 O1 O2 O1 O2 O1 O2
M20170723 30 3 28.00 812.00 0.00 0.00 0.13 28 812 28 812
M20170724 26 2 21.93 645.33 0.25 40.80 0.10 22 558 21 680
M20170725 14 2 14.00 446.00 0.00 0.00 0.00 14 446 14 446
M20171008 28 2 24.63 617.93 0.56 27.93 0.17 26 620 24 678
M20171009 22 2 21.00 635.40 0.00 43.40 0.03 21 562 21 718
M20171010 22 2 17.00 681.27 0.00 52.72 0.07 17 582 17 798
M20171016 34 2 26.10 629.40 0.31 35.81 0.30 27 604 26 686
M20171017 24 2 21.30 662.73 0.53 20.28 0.10 22 640 20 708
M20171021 34 2 26.87 541.33 0.43 27.96 0.33 28 572 26 582
M20171024 17 2 16.90 559.73 0.31 67.96 0.00 17 464 16 444
M20171030 37 2 28.90 628.87 0.40 14.61 0.40 30 622 28 648
M20171222 72 7 69.43 2233.33 0.50 88.68 3.47 70 2114 69 2392
M20171223 70 5 65.80 1538.73 0.61 59.98 3.47 67 1494 65 1616
M20171224 70 5 57.47 1526.67 0.63 66.25 3.20 59 1504 56 1534
M20171225 70 5 57.50 1572.80 0.57 66.84 3.40 59 1458 57 1672
R20170723 47 5 47.00 878.00 0.00 0.00 0.00 47 878 47 878
R20170724 65 3 52.13 776.07 0.43 24.94 2.60 53 756 51 802
R20170725 43 4 42.00 1048.33 0.00 79.79 0.50 42 850 42 1220
R20171008 88 6 85.60 1636.13 0.50 57.48 7.40 86 1486 85 1746
R20171009 63 4 55.27 1174.93 0.45 43.31 2.37 56 1140 55 1258
R20171010 44 5 44.00 916.00 0.00 0.00 0.00 44 916 44 916
R20171016 72 5 68.67 1431.67 0.48 60.04 3.50 69 1300 68 1540
R20171017 37 4 35.93 1256.73 0.25 97.35 0.37 36 1066 35 1386
R20171021 60 5 58.00 1343.67 0.00 70.72 1.80 58 1164 58 1466
R20171024 53 6 53.00 1096.00 0.00 0.00 0.00 53 1096 53 1096
R20171030 71 7 70.67 1962.00 0.48 123.73 1.43 71 1856 70 2098
R20171212 52 4 51.43 1216.13 0.77 30.25 0.67 52 1156 50 1244
R20171219 52 4 50.47 1142.20 0.51 38.65 1.20 51 1096 50 1196
R20171222 62 4 57.03 1168.33 0.41 43.16 2.47 58 1172 56 1196
R20171223 70 5 67.73 1367.60 0.45 47.04 3.23 68 1272 67 1414
R20171224 70 5 60.70 1508.60 0.53 52.43 3.27 62 1478 60 1608
R20171225 70 5 69.77 1482.80 0.43 48.05 0.93 70 1408 69 1514
T20170723 64 5 64.00 618.00 0.00 0.00 0.00 64 618 64 618
T20170724 70 5 69.00 1157.07 0.00 88.72 2.63 69 970 69 1316
T20170725 57 4 56.77 958.67 0.43 46.72 0.57 57 884 56 1024
T20171008 65 8 65.00 1118.00 0.00 0.00 0.00 65 1118 65 1118
T20171009 43 7 43.00 1184.00 0.00 0.00 0.00 43 1184 43 1184
T20171010 46 5 46.00 830.00 0.00 0.00 0.00 46 830 46 830
T20171016 63 7 63.00 836.00 0.00 0.00 0.00 63 836 63 836
T20171017 56 4 52.53 1049.53 0.51 51.46 1.43 53 948 52 1124
T20171021 76 4 61.93 1003.93 0.25 63.19 4.23 62 862 61 1036
T20171024 62 4 55.33 1144.20 0.48 55.88 2.30 56 1088 55 1250
T20171030 36 5 36.00 668.00 0.00 0.00 0.00 36 668 36 668
T20171212 63 7 63.00 1072.00 0.00 0.00 0.00 63 1072 63 1072
T20171219 54 5 54.00 1242.00 0.00 0.00 0.00 54 1242 54 1242
T20171222 91 7 88.73 1948.47 0.45 95.09 7.47 89 1804 88 2030
T20171223 70 5 69.93 1383.13 0.25 46.20 0.67 70 1320 69 1354
T20171224 70 5 67.10 1395.53 0.31 52.72 3.77 68 1380 67 1492
T20171225 70 5 68.53 1324.27 0.51 63.53 3.23 69 1200 68 1444
T20171226 70 5 67.97 1319.93 0.18 67.73 3.07 68 1188 67 1230
A20171016 100 4 61.73 1275.60 0.64 35.37 4.90 63 1236 60 1260
A20171222 100 7 82.70 2137.33 0.60 92.71 9.20 84 2108 82 2274
B20171008 100 6 79.60 1561.60 0.50 60.04 8.70 80 1462 79 1684
B20171016 100 5 78.93 1520.73 0.69 38.36 8.03 80 1506 78 1534
B20171030 100 7 86.93 2027.47 0.64 92.12 9.40 88 1876 86 2184
B20171222 100 4 67.97 1134.33 0.76 33.19 7.90 70 1102 67 1172
C20170724 100 5 92.83 1165.40 0.38 61.26 8.77 93 1068 92 1176
C20171016 100 7 97.97 1640.60 0.18 92.91 6.97 98 1470 97 1684
C20171021 100 4 75.40 1021.00 0.50 41.18 9.67 76 962 75 1100
C20171222 100 7 97.87 2059.20 0.43 63.27 10.20 99 2032 97 2204
Average 56.33 1182.21 0.33 44.53 2.67 56.82 1119.60 55.78 1235.53
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Table 4.8: Comparison of performance between ILS2O, ILS and 2Phase ILS on instances from
Solomon benchmark

ILS2O ILS 2Phase

|C| |T | Average StdV seca Average StdV seca Average StdV seca
c101 100 5 46.00|227.23 0.00|4.33 15.60 46.00|248.23 0.00|21.66 34.10 46.00|272.83 0.00|44.54 10.40
c102 100 2 22.00|86.20 0.00|5.17 4.63 21.93|92.70 0.25|9.17 10.73 21.63|105.37 0.49|21.23 3.17
c103 100 6 63.70|419.93 0.47|22.04 29.33 63.47|402.30 0.51|22.62 51.27 63.43|402.23 0.50|31.71 23.67
c104 100 3 29.00|118.87 0.00|9.23 9.37 29.00|123.33 0.00|13.85 13.07 29.00|132.13 0.00|20.17 5.10
c105 100 5 46.00|247.40 0.00|23.43 15.17 46.00|240.07 0.00|18.60 37.90 46.00|289.57 0.00|57.84 15.23
c106 100 5 46.97|244.57 0.18|41.80 17.83 46.60|264.73 0.50|30.27 39.37 46.90|265.07 0.31|55.07 12.67
c107 100 5 49.00|305.47 0.00|19.07 18.63 48.97|315.13 0.18|13.13 39.43 48.57|339.73 0.50|40.22 12.23
c108 100 6 56.77|390.93 0.43|32.80 23.13 56.60|363.80 0.50|33.22 34.73 56.00|384.87 0.45|89.11 18.83
c109 100 5 51.00|272.97 0.00|31.57 21.30 51.00|282.70 0.00|24.82 46.50 51.00|293.60 0.00|37.26 14.70
c201 100 3 66.00|1062.90 0.25|143.47 40.73 65.47|888.83 0.57|127.83 27.37 65.83|1613.30 0.38|409.37 20.77
c202 100 3 64.00|708.13 0.00|52.84 30.47 63.97|669.57 0.18|67.68 30.73 64.00|864.10 0.00|340.67 24.70
c203 100 5 82.00|683.73 0.00|45.51 51.93 82.00|687.77 0.00|43.64 55.40 82.00|720.20 0.00|55.67 46.93
c204 100 6 97.00|899.23 0.00|46.01 59.07 96.77|811.50 0.43|77.76 59.87 97.00|914.53 0.00|49.62 59.93
c205 100 3 65.00|704.30 0.00|66.97 30.40 64.90|594.80 0.31|59.71 28.30 65.00|671.70 0.00|82.60 27.67
c206 100 3 80.03|1186.97 0.18|108.39 50.67 79.87|992.00 0.35|70.30 48.80 79.40|984.63 0.56|132.33 49.73
c207 100 3 72.00|991.03 0.00|59.81 34.10 71.77|725.47 0.43|93.62 37.13 71.90|831.50 0.31|98.37 39.90
c208 100 4 82.00|772.43 0.00|52.43 52.47 82.00|626.13 0.00|29.95 52.40 82.00|650.60 0.00|42.76 52.73
r101 100 3 22.97|187.47 0.18|4.27 10.70 22.97|188.97 0.18|5.42 23.37 22.07|228.90 0.37|21.34 3.03
r102 100 6 55.80|436.90 0.41|19.09 22.70 54.93|438.43 0.58|19.50 56.90 53.77|460.77 0.94|50.22 15.00
r103 100 5 49.83|321.50 0.46|10.03 17.27 49.53|328.27 0.51|12.67 47.43 48.87|317.07 0.73|15.69 12.67
r104 100 4 45.77|253.10 0.43|9.27 15.87 45.23|255.17 0.43|9.60 47.70 44.57|244.83 0.73|12.17 9.47
r105 100 5 43.87|344.43 0.35|15.40 16.17 43.87|346.37 0.35|18.15 44.83 42.57|363.87 0.77|35.20 10.63
r106 100 3 32.63|187.80 0.49|5.27 11.17 32.27|190.27 0.45|7.78 22.87 31.77|180.40 0.57|7.91 5.77
r107 100 4 42.50|251.53 0.57|7.11 15.00 42.17|258.30 0.38|9.08 34.50 40.97|239.30 0.67|12.57 9.13
r108 100 3 35.00|171.93 0.00|7.20 10.23 34.90|173.17 0.31|6.29 28.30 34.07|170.57 0.58|8.44 5.37
r109 100 3 31.33|191.33 0.48|5.97 8.90 31.37|193.47 0.49|6.86 22.03 30.23|190.30 1.10|16.01 5.03
r110 100 3 31.70|177.70 0.47|10.57 8.43 31.60|176.93 0.50|7.33 34.43 31.00|178.67 0.91|12.67 4.83
r111 100 3 34.03|179.53 0.41|7.10 10.40 33.93|180.93 0.25|5.90 31.57 33.03|175.90 1.00|9.03 5.83
r112 100 3 35.03|170.53 0.32|7.90 9.40 34.57|170.07 0.50|7.66 25.50 33.53|170.37 0.82|13.43 5.47
r201 100 3 54.23|832.20 0.43|58.73 45.23 54.00|788.50 0.00|35.97 30.63 53.57|874.00 0.50|118.09 19.50
r202 100 5 95.97|1113.00 0.18|43.26 54.70 95.37|1039.63 0.49|87.16 58.80 95.23|1016.20 0.43|99.56 57.37
r203 100 6 92.97|1304.53 0.18|128.27 38.30 92.27|958.43 0.45|116.63 59.90 92.53|1092.70 0.51|173.22 58.80
r204 100 5 84.60|891.87 0.50|164.75 51.33 84.50|790.27 0.51|112.45 57.43 84.03|691.80 0.18|59.24 54.53
r205 100 3 66.00|854.50 0.00|32.30 26.77 66.00|819.77 0.00|37.42 39.33 65.60|820.00 0.50|60.83 32.33
r206 100 5 93.00|924.10 0.00|24.71 58.23 93.00|883.93 0.00|18.41 59.77 93.00|890.57 0.00|38.75 57.30
r207 100 3 64.00|667.50 0.00|17.81 40.83 64.00|622.97 0.00|16.91 43.80 64.00|652.83 0.00|30.55 36.60
r208 100 3 75.00|589.40 0.00|12.23 46.83 75.00|583.10 0.00|15.73 53.30 75.00|585.77 0.00|18.03 37.63
r209 100 4 78.00|1000.53 0.00|31.81 50.97 77.70|896.20 0.47|73.87 56.83 77.03|810.70 0.18|45.23 47.37
r210 100 8 98.00|845.73 0.00|21.12 60.00 98.00|832.63 0.00|19.08 55.73 98.00|823.43 0.00|25.25 58.53
r211 100 4 76.00|739.47 0.00|28.71 48.30 76.00|704.53 0.00|23.18 56.10 76.00|713.30 0.00|35.30 50.63
rc101 100 3 26.93|247.70 0.25|4.11 13.27 26.53|252.30 0.73|13.74 24.30 25.87|264.63 0.78|17.41 3.63
rc102 100 2 20.77|159.33 0.50|3.01 5.33 20.07|154.63 0.37|9.38 19.70 18.67|163.43 1.06|13.35 1.77
rc103 100 3 28.77|232.10 0.43|11.16 9.87 28.37|224.03 0.49|17.03 24.67 26.67|217.43 0.66|21.15 4.13
rc104 100 3 34.63|229.00 0.67|9.47 9.93 33.90|213.97 0.40|12.35 27.90 32.67|220.20 0.96|19.03 5.00
rc105 100 5 46.03|400.13 0.41|16.42 15.77 45.50|402.17 0.51|12.80 43.87 43.77|426.50 1.19|39.91 8.90
rc106 100 3 29.87|229.90 0.35|4.47 6.60 29.70|230.27 0.53|6.27 27.67 28.00|244.10 1.02|21.05 3.97
rc107 100 3 30.60|233.00 0.50|13.38 8.80 30.57|237.03 0.50|15.59 26.47 29.17|232.83 0.95|16.19 4.13
rc108 100 6 59.83|407.93 1.18|11.26 18.87 58.43|407.93 0.82|15.17 55.20 56.03|422.07 1.69|31.22 12.70
rc201 100 3 60.73|1188.07 0.45|62.83 37.93 60.53|1180.57 0.57|69.33 48.33 58.77|1133.43 0.77|151.55 24.37
rc202 100 3 53.00|782.93 0.00|22.69 45.53 53.00|808.53 0.00|35.30 38.03 52.70|811.90 0.47|85.58 20.47
rc203 100 3 62.00|775.77 0.00|25.70 54.67 62.00|786.43 0.00|32.20 51.70 61.13|747.33 0.35|69.45 37.03
rc204 100 3 70.00|804.17 0.00|33.89 27.40 69.93|765.00 0.25|65.75 41.10 69.77|763.70 0.43|88.45 41.87
rc205 100 3 59.00|1041.73 0.00|28.14 34.07 59.00|1022.47 0.00|46.31 34.00 58.43|976.40 0.50|88.17 26.70
rc206 100 3 68.80|1010.43 0.41|52.11 43.33 68.47|977.73 0.51|71.10 51.03 67.23|892.80 0.63|70.92 31.07
rc207 100 6 82.00|1049.20 0.00|31.64 56.17 82.00|971.83 0.00|43.02 60.00 81.97|980.50 0.18|52.97 56.37
rc208 100 7 99.00|804.83 0.00|28.29 52.80 99.00|819.60 0.00|33.38 58.10 99.00|828.57 0.00|47.25 58.83
Average 56.94|563.48 0.22|32.08 28.98 56.72|528.64 0.30|34.46 40.54 56.18|552.75 0.48|60.02 24.68
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Table 4.9: Comparison on the best and worst performance between ILS2O, ILS and 2Phase
ILS on instances from Solomon benchmark

ILS2O ILS 2Phase

|C| |T | bestj bestd worstj worstd bestj bestd worstj worstd bestj bestd worstj worstd
c101 100 5 46 226 46 250 46 227 46 310 46 226 46 407
c102 100 2 22 84 22 99 22 84 21 117 22 84 21 177
c103 100 6 64 395 63 437 64 378 63 468 64 397 63 432
c104 100 3 29 106 29 138 29 106 29 151 29 106 29 186
c105 100 5 46 225 46 310 46 225 46 301 46 225 46 454
c106 100 5 47 219 46 260 47 223 46 305 47 219 46 323
c107 100 5 49 285 49 362 49 296 48 319 49 289 48 484
c108 100 6 57 325 56 428 57 327 56 414 57 322 55 649
c109 100 5 51 233 51 341 51 234 51 347 51 233 51 383
c201 100 3 67 1073 66 1217 67 1101 65 1036 66 1076 65 1724
c202 100 3 64 604 64 802 64 558 63 528 64 570 64 1959
c203 100 5 82 585 82 782 82 582 82 773 82 607 82 818
c204 100 6 97 816 97 993 97 784 96 696 97 813 97 1026
c205 100 3 65 557 65 817 65 526 64 542 65 523 65 845
c206 100 3 81 1687 80 1267 80 909 79 901 80 1008 78 847
c207 100 3 72 869 72 1127 72 652 71 652 72 679 71 699
c208 100 4 82 639 82 875 82 569 82 679 82 568 82 752
r101 100 3 23 183 22 176 23 183 22 170 23 227 21 222
r102 100 6 56 416 55 453 56 444 54 441 56 437 52 546
r103 100 5 51 334 49 324 50 317 49 338 50 307 47 296
r104 100 4 46 241 45 254 46 252 45 286 46 248 43 258
r105 100 5 44 328 43 351 44 328 43 354 44 342 41 414
r106 100 3 33 187 32 189 33 192 32 212 33 187 31 192
r107 100 4 43 244 41 242 43 252 42 277 42 235 40 254
r108 100 3 35 161 35 184 35 161 34 175 35 165 33 197
r109 100 3 32 189 31 204 32 189 31 209 32 198 28 239
r110 100 3 32 165 31 185 32 170 31 185 32 167 29 194
r111 100 3 35 186 33 192 34 166 33 179 34 170 30 195
r112 100 3 36 180 34 168 35 161 34 184 35 165 31 218
r201 100 3 55 878 54 862 54 715 54 862 54 793 53 883
r202 100 5 96 1059 95 966 96 1077 95 1121 96 1090 95 1051
r203 100 6 93 1165 92 862 93 1068 92 967 93 1161 92 984
r204 100 5 85 955 84 723 85 828 84 733 85 954 84 775
r205 100 3 66 799 66 936 66 758 66 913 66 793 65 824
r206 100 5 93 844 93 962 93 854 93 916 93 843 93 999
r207 100 3 64 611 64 698 64 588 64 667 64 587 64 721
r208 100 3 75 565 75 610 75 555 75 618 75 552 75 639
r209 100 4 78 931 78 1057 78 857 77 818 78 921 77 875
r210 100 8 98 802 98 894 98 786 98 871 98 778 98 881
r211 100 4 76 682 76 785 76 669 76 771 76 650 76 790
rc101 100 3 27 243 26 244 27 248 24 300 27 252 24 309
rc102 100 2 21 160 19 160 21 160 19 140 21 160 17 195
rc103 100 3 29 226 28 247 29 235 28 233 28 220 25 219
rc104 100 3 35 219 33 230 35 249 33 231 34 206 31 217
rc105 100 5 47 411 45 409 46 391 45 424 46 427 41 412
rc106 100 3 30 228 29 237 30 228 28 231 30 232 26 300
rc107 100 3 31 227 30 252 31 228 30 232 31 247 27 218
rc108 100 6 61 407 58 430 60 416 57 404 59 425 51 420
rc201 100 3 61 1135 60 1201 61 1114 59 1100 60 1094 57 905
rc202 100 3 53 738 53 823 53 755 53 891 53 756 52 826
rc203 100 3 62 728 62 826 62 722 62 854 62 801 61 787
rc204 100 3 70 741 70 870 70 693 69 625 70 683 69 700
rc205 100 3 59 949 59 1095 59 956 59 1133 59 967 58 1044
rc206 100 3 69 938 68 981 69 949 68 1053 68 893 66 837
rc207 100 6 82 981 82 1104 82 867 82 1065 82 877 81 864
rc208 100 7 99 747 99 859 99 747 99 887 99 723 99 951
Average 57.18 537.70 56.48 584.82 57.05 505.52 56.20 546.59 56.93 515.68 55.21 607.43
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Table 4.10: The performance ILS-NR on instances from Solomon benchmark

Average Std V Time(s) Best Worst

|C| |T | O1 O2 O1 O2 O1 O2 O1 O2
c101 100 5 46.00 409.67 0.00 40.49 5.53 46 336 46 473
c102 100 2 21.40 156.97 0.50 42.39 1.73 22 101 21 213
c103 100 6 62.80 590.97 0.55 31.20 11.20 64 520 62 641
c104 100 3 29.00 250.17 0.00 29.83 2.23 29 169 29 299
c105 100 5 45.87 429.43 0.35 47.33 6.07 46 362 45 543
c106 100 5 45.93 480.57 0.37 47.10 6.37 47 487 45 614
c107 100 5 48.20 484.33 0.41 52.46 6.50 49 364 48 567
c108 100 6 55.70 600.67 0.47 38.71 7.70 56 531 55 682
c109 100 5 50.80 462.03 0.41 29.08 7.03 51 415 50 538
c201 100 3 65.80 1917.20 0.41 176.53 10.47 66 1571 65 2207
c202 100 3 64.00 1932.37 0.00 133.11 8.93 64 1668 64 2208
c203 100 5 82.00 2703.93 0.00 192.28 9.53 82 2292 82 3042
c204 100 6 97.00 3087.17 0.00 249.11 6.80 97 2524 97 3593
c205 100 3 65.00 1898.33 0.00 185.67 8.80 65 1490 65 2240
c206 100 3 79.97 1808.23 0.18 109.14 16.73 80 1520 79 1769
c207 100 3 72.00 1975.90 0.00 133.46 9.10 72 1753 72 2277
c208 100 4 82.00 2508.27 0.00 174.61 9.57 82 2022 82 2827
r101 100 3 22.07 234.43 0.45 18.34 1.87 23 209 21 258
r102 100 6 53.23 504.97 0.86 14.61 5.63 55 479 52 523
r103 100 5 48.17 372.10 0.70 10.87 4.93 49 347 46 389
r104 100 4 44.00 294.23 0.83 12.65 4.20 45 278 42 317
r105 100 5 42.60 405.00 0.67 11.52 4.47 44 386 41 419
r106 100 3 31.40 215.07 0.62 9.38 2.67 32 204 30 232
r107 100 4 40.60 296.17 0.93 10.05 4.37 42 277 38 315
r108 100 3 33.37 211.00 0.89 8.69 2.40 35 193 31 226
r109 100 3 30.13 216.57 0.90 11.59 2.20 32 198 28 239
r110 100 3 30.63 206.77 1.00 12.20 2.17 32 184 28 229
r111 100 3 32.67 208.17 1.21 10.14 2.40 34 193 30 228
r112 100 3 33.30 201.00 0.99 10.35 2.53 35 180 31 223
r201 100 3 53.67 1278.63 0.48 85.60 7.80 54 1107 53 1355
r202 100 5 95.53 2184.87 0.51 168.29 14.73 96 1924 95 2412
r203 100 6 92.73 2439.13 0.45 133.31 14.37 93 2268 92 2486
r204 100 5 84.50 2231.17 0.51 187.00 7.93 85 2068 84 2416
r205 100 3 66.00 1411.27 0.00 58.73 9.47 66 1226 66 1490
r206 100 5 93.00 2273.40 0.00 102.38 11.13 93 2053 93 2440
r207 100 3 64.00 1502.47 0.00 67.29 6.93 64 1366 64 1623
r208 100 3 75.00 1564.43 0.00 63.44 6.63 75 1355 75 1679
r209 100 4 77.80 1807.63 0.41 113.91 12.80 78 1656 77 1700
r210 100 8 98.00 1875.83 0.00 285.64 6.87 98 1271 98 2332
r211 100 4 76.00 1747.50 0.00 135.26 8.10 76 1524 76 2018
rc101 100 3 25.67 275.33 0.66 12.17 1.93 27 255 24 284
rc102 100 2 18.57 182.47 1.04 12.47 0.87 21 161 17 200
rc103 100 3 26.67 271.13 0.71 14.82 1.63 28 265 25 294
rc104 100 3 33.00 264.80 1.08 12.84 2.17 35 243 31 297
rc105 100 5 43.47 465.63 1.41 20.09 4.23 46 455 41 507
rc106 100 3 27.57 270.03 0.90 16.87 1.80 29 248 26 303
rc107 100 3 29.37 264.27 0.96 14.97 1.83 31 251 27 301
rc108 100 6 55.17 478.17 2.25 22.79 5.17 59 442 50 518
rc201 100 3 59.00 1426.93 0.74 49.62 9.50 60 1339 58 1477
rc202 100 3 53.00 1383.07 0.00 68.37 6.60 53 1241 53 1490
rc203 100 3 61.23 1390.70 0.43 43.52 9.07 62 1375 61 1441
rc204 100 3 70.00 1457.83 0.00 41.60 7.37 70 1344 70 1533
rc205 100 3 58.40 1492.63 0.50 75.83 7.73 59 1314 58 1630
rc206 100 3 67.77 1359.70 0.77 59.11 11.30 69 1327 67 1468
rc207 100 6 82.00 2433.47 0.00 114.96 12.80 82 2149 82 2669
rc208 100 7 99.00 2410.10 0.00 267.27 6.73 99 1892 99 2947
Average 56.10 1092.93 0.49 73.23 6.64 56.86 953.07 55.13 1207.88
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Table 4.11: Comparison of performance between ILS2O, ILS and 2Phase ILS on instances
from Solomon Ver2 benchmark

ILS2O ILS 2Phase

|C| |T | Average StdV seca Average StdV seca Average StdV seca
c102 100 2 20.00|204.67 0.00|2.04 6.93 20.00|205.57 0.00|2.94 10.27 19.50| 223.37 0.51|24.69 3.20
c103 100 6 49.00|510.60 0.00|8.59 24.37 49.00|512.97 0.00|9.61 54.67 49.00| 514.43 0.00|10.31 22.77
c104 100 3 29.00|159.23 0.00|4.75 11.70 29.00|170.33 0.00|9.76 15.03 29.00| 161.73 0.00|14.96 7.50
c105 100 5 43.00|480.03 0.00|12.94 23.40 42.87|488.83 0.35|23.64 40.07 42.53| 564.07 0.51|84.23 13.40
c106 100 5 44.03|437.83 0.18|41.38 24.90 44.00|444.53 0.00|21.54 51.33 43.83| 483.50 0.38|94.45 18.63
c107 100 5 44.00|536.77 0.00|15.66 22.37 44.00|554.33 0.00|16.50 44.77 44.00| 619.70 0.00|90.20 16.87
c108 100 6 47.77|443.63 0.43|22.23 28.03 47.80|443.77 0.41|27.94 38.17 47.13| 471.67 0.43|55.77 23.73
c109 100 5 42.00|486.07 0.00|11.10 18.50 42.00|501.43 0.00|27.90 54.87 41.80| 505.60 0.41|52.29 16.43
c201 100 3 57.07|1360.93 0.25|86.80 51.27 57.37|1426.40 0.49|135.83 45.67 56.80| 1556.07 0.48|225.48 25.33
c202 100 3 56.93|1232.80 0.25|67.42 42.17 56.60|1200.63 0.50|119.71 47.37 56.10| 1333.33 0.31|356.68 23.47
c203 100 5 74.00|777.37 0.00|28.61 56.23 74.00|820.53 0.00|40.69 60.00 74.00| 849.57 0.00|50.86 51.57
c204 100 6 96.00|1086.30 0.00|49.32 59.73 96.00|1023.90 0.00|58.52 60.00 96.00| 1067.57 0.00|66.23 60.00
c205 100 3 60.00|1229.90 0.00|45.44 38.73 60.00|1164.83 0.00|39.66 37.73 60.00| 1185.83 0.00|51.96 41.33
c206 100 3 71.83|1415.53 0.38|117.48 57.93 72.00|1405.03 0.00|22.42 57.67 70.90| 1227.73 0.31|60.49 51.70
c207 100 3 68.00|1128.00 0.00|44.37 48.50 68.00|1062.83 0.00|35.87 47.47 67.90| 1115.17 0.40|79.59 49.03
c208 100 4 81.00|1195.97 0.00|65.29 58.43 81.00|1039.60 0.00|41.71 59.60 80.37| 945.07 0.49|146.60 59.70
r101 100 3 21.90|199.77 0.31|1.01 10.63 21.30|187.63 0.47|9.59 31.87 21.07| 231.63 0.45|23.68 4.50
r102 100 6 54.63|452.10 0.49|12.21 37.00 53.50|451.37 0.68|18.08 60.00 51.97| 462.97 0.76|45.93 22.80
r103 100 5 41.97|376.23 0.18|13.67 24.43 42.03|375.73 0.18|14.30 50.03 40.83| 398.30 0.83|38.53 11.57
r104 100 4 44.07|265.27 0.58|10.48 24.73 43.73|265.33 0.45|6.39 55.13 43.23| 260.67 0.77|12.23 16.47
r105 100 5 26.00|249.77 0.00|2.16 10.20 26.00|254.13 0.00|4.07 23.67 25.97| 309.03 0.18|42.80 5.23
r106 100 3 29.87|195.90 0.35|4.94 14.67 29.80|197.73 0.41|5.98 30.37 29.40| 205.40 0.50|15.68 8.47
r107 100 4 35.00|284.50 0.00|2.54 17.83 35.00|290.07 0.00|5.97 31.63 34.20| 299.77 0.89|23.46 9.73
r108 100 3 31.97|188.10 0.18|4.84 16.73 32.00|189.90 0.00|4.56 34.37 31.43| 194.97 0.57|12.60 8.67
r109 100 3 24.00|196.67 0.00|6.48 5.77 24.00|197.83 0.00|9.20 23.87 23.50| 236.63 0.73|22.26 3.73
r110 100 3 29.67|191.30 0.48|4.36 23.07 29.33|199.50 0.48|8.86 34.17 28.93| 196.33 0.74|13.52 8.97
r111 100 3 28.77|218.77 0.43|9.89 7.70 28.93|220.47 0.25|5.35 22.50 27.73| 216.23 0.83|16.97 6.20
r112 100 3 33.00|180.23 0.64|9.16 15.60 32.80|184.70 0.61|11.88 35.23 31.90| 184.87 0.61|15.13 8.23
r201 100 3 47.00|828.00 0.00|31.90 46.23 46.57|781.63 0.50|79.40 39.07 46.17| 789.37 0.38|127.64 22.00
r202 100 5 70.00|1023.80 0.00|25.46 58.03 69.73|1012.37 0.45|74.39 60.00 69.17| 926.13 0.38|81.88 52.20
r203 100 6 89.00|1037.13 0.00|27.68 60.00 89.00|1053.00 0.00|42.59 60.00 89.00| 1130.20 0.00|48.43 60.00
r204 100 5 75.00|806.50 0.00|15.29 54.33 74.97|782.00 0.18|31.35 55.47 74.77| 1065.53 0.43|458.39 58.23
r205 100 3 45.77|735.40 0.43|36.99 14.23 45.93|744.87 0.25|19.88 21.13 44.63| 673.07 0.49|95.36 17.17
r206 100 5 78.00|970.13 0.00|20.99 55.23 77.93|955.10 0.25|44.15 59.37 78.00| 990.03 0.00|44.53 60.00
r207 100 3 60.00|851.03 0.00|11.34 35.53 60.00|847.70 0.00|22.11 52.13 59.90| 845.80 0.31|38.92 48.20
r209 100 4 71.00|910.83 0.00|25.53 40.00 71.00|876.90 0.00|23.53 60.00 70.90| 886.60 0.31|35.42 54.47
r210 100 8 86.00|1162.67 0.00|34.33 57.27 86.00|1025.17 0.00|21.97 59.97 86.00| 1045.73 0.00|29.04 59.87
r211 100 4 73.00|760.07 0.00|14.79 48.63 73.00|725.87 0.00|21.97 57.20 73.00| 723.20 0.00|29.15 51.80
rc101 100 3 23.90|269.10 0.31|4.04 11.83 23.90|268.07 0.55|9.48 28.60 23.17| 280.60 0.46|12.98 5.23
rc102 100 2 17.93|172.73 0.25|1.60 4.77 16.90|165.23 0.71|11.67 20.23 16.27| 176.93 1.08|19.39 4.57
rc103 100 3 25.47|243.90 0.51|17.60 17.17 25.30|236.27 0.47|17.89 34.80 24.60| 253.27 0.72|22.49 6.23
rc105 100 5 29.97|387.47 0.18|7.77 12.67 29.83|393.03 0.38|5.30 26.17 29.13| 429.47 0.82|43.26 6.93
rc106 100 3 26.03|243.97 0.18|6.20 9.73 26.23|247.87 0.50|12.02 30.93 25.00| 248.97 0.87|20.10 5.93
rc107 100 3 26.87|256.50 0.35|11.05 11.33 26.90|258.23 0.31|8.86 29.07 26.47| 258.03 0.51|19.92 6.70
rc108 100 6 51.87|470.30 0.51|20.93 30.43 51.60|458.53 0.62|20.43 55.97 50.07| 470.20 1.08|37.27 18.83
rc203 100 3 54.00|849.53 0.00|25.40 58.03 54.00|862.63 0.00|25.01 57.73 53.60| 860.40 0.56|68.16 44.80
rc204 100 3 52.93|745.73 0.25|24.15 23.23 52.90|761.57 0.31|34.77 34.43 51.43| 629.50 0.73|55.31 15.87
rc205 100 3 55.00|1128.83 0.00|25.12 45.33 55.00|1124.67 0.00|30.56 41.03 54.53| 1080.30 0.51|95.17 39.27
rc206 100 3 48.50|910.60 0.51|59.22 25.43 48.47|915.50 0.51|69.19 42.07 46.80| 841.87 0.55|109.95 16.27
rc207 100 6 73.00|1156.57 0.00|32.42 57.47 73.00|1137.37 0.00|34.98 59.20 72.57| 1122.90 0.86|91.97 55.37
rc208 100 7 87.00|924.00 0.00|25.00 54.13 87.00|940.90 0.00|25.51 60.00 87.00| 932.53 0.00|30.05 60.00
Average 50.03|637.82 0.17|23.72 31.62 49.95|628.52 0.22|27.95 43.18 49.44| 640.82 0.45|65.93 26.85
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Table 4.12: Comparison on the best and worst performance between ILS2O, ILS and 2Phase
ILS on instances from Solomon Ver2 benchmark

ILS2O ILS 2Phase

|C| |T | bestj bestd worstj worstd bestj bestd worstj worstd bestj bestd worstj worstd
c102 100 2 20 204 20 214 20 204 20 218 20 204 19 290
c103 100 6 49 503 49 529 49 505 49 539 49 503 49 537
c104 100 3 29 149 29 176 29 153 29 198 29 149 29 212
c105 100 5 43 462 43 513 43 473 42 491 43 468 42 779
c106 100 5 45 595 44 473 44 414 44 496 44 374 43 665
c107 100 5 44 516 44 579 44 516 44 585 44 547 44 824
c108 100 6 48 434 47 488 48 434 47 460 48 434 46 443
c109 100 5 42 475 42 513 42 475 42 590 42 475 41 724
c201 100 3 58 1580 57 1491 58 1573 57 1383 58 1634 56 1941
c202 100 3 57 1155 56 1055 57 1177 56 1123 57 1831 56 1996
c203 100 5 74 722 74 835 74 747 74 898 74 758 74 1006
c204 100 6 96 993 96 1182 96 910 96 1107 96 944 96 1201
c205 100 3 60 1112 60 1326 60 1061 60 1226 60 1075 60 1291
c206 100 3 72 1383 71 1299 72 1370 72 1467 71 1183 70 1105
c207 100 3 68 990 68 1206 68 980 68 1131 68 1049 66 861
c208 100 4 81 1071 81 1288 81 946 81 1122 81 1041 80 887
r101 100 3 22 200 21 197 22 200 21 193 22 237 20 209
r102 100 6 55 438 54 485 55 456 52 464 53 406 50 394
r103 100 5 42 361 41 350 43 416 42 411 42 371 38 464
r104 100 4 45 263 43 284 44 257 43 263 44 250 42 304
r105 100 5 26 248 26 253 26 248 26 259 26 259 25 346
r106 100 3 30 191 29 206 30 191 29 208 30 191 29 246
r107 100 4 35 279 35 290 35 284 35 309 35 287 32 332
r108 100 3 32 179 31 196 32 182 32 203 32 183 30 222
r109 100 3 24 188 24 204 24 188 24 218 24 215 22 281
r110 100 3 30 188 29 201 30 200 29 213 30 189 27 224
r111 100 3 29 207 28 230 29 204 28 224 29 216 26 209
r112 100 3 34 191 32 193 34 191 32 214 33 179 31 230
r201 100 3 47 773 47 891 47 795 46 730 47 983 46 990
r202 100 5 70 966 70 1072 70 985 69 963 70 980 69 940
r203 100 6 89 991 89 1092 89 990 89 1147 89 1036 89 1214
r204 100 5 75 771 75 833 75 730 74 729 75 794 74 731
r205 100 3 46 735 45 697 46 735 45 695 45 657 44 646
r206 100 5 78 926 78 1003 78 900 77 875 78 890 78 1094
r207 100 3 60 825 60 867 60 809 60 931 60 803 59 764
r209 100 4 71 861 71 968 71 825 71 917 71 831 70 836
r210 100 8 86 1089 86 1253 86 980 86 1087 86 976 86 1096
r211 100 4 73 710 73 782 73 656 73 760 73 669 73 783
rc101 100 3 24 264 23 276 24 264 21 230 24 268 22 269
rc102 100 2 18 173 17 167 18 173 16 149 18 173 14 217
rc103 100 3 26 249 25 263 26 250 25 235 26 269 23 247
rc105 100 5 30 382 29 415 30 384 29 408 30 383 28 521
rc106 100 3 27 266 26 247 27 266 25 253 27 266 24 282
rc107 100 3 27 250 26 237 27 250 26 244 27 250 26 313
rc108 100 6 53 486 51 522 53 486 51 467 52 477 48 488
rc203 100 3 54 799 54 890 54 811 54 899 54 841 52 676
rc204 100 3 53 732 52 701 53 732 52 700 53 757 50 584
rc205 100 3 55 1091 55 1188 55 1085 55 1210 55 1121 54 1044
rc206 100 3 49 948 48 947 49 954 48 867 48 894 46 808
rc207 100 6 73 1087 73 1211 73 1074 73 1187 73 1078 69 828
rc208 100 7 87 883 87 1013 87 889 87 991 87 874 87 1008
Average 50.22 618.31 49.69 662.57 50.20 607.41 49.53 644.84 50.04 625.92 48.51 678.47



96
Iterated Local Search for the Simultaneous Pickups and Deliveries Problem

Arising in Retail Industry with Ordered Objectives

Table 4.13: The performance ILS-NR on instances from Solomon benchmark Ver2

Average Std V Time(s) Best Worst

|C| |T | O1 O2 O1 O2 O1 O2 O1 O2
c102 100 2 19.40 277.57 0.50 44.37 2.00 20 210 19 362
c103 100 6 49.00 955.70 0.00 114.99 5.30 49 777 49 1173
c104 100 3 29.00 269.43 0.00 18.48 3.90 29 232 29 300
c105 100 5 42.43 655.10 0.50 61.88 8.97 43 567 42 764
c106 100 5 43.63 632.03 0.49 56.59 11.20 44 559 43 768
c107 100 5 44.00 744.60 0.00 32.73 7.33 44 676 44 803
c108 100 6 47.07 737.47 0.37 55.64 8.73 48 672 46 837
c109 100 5 41.83 756.97 0.38 59.77 5.63 42 609 41 879
c201 100 3 56.80 1697.23 0.41 105.94 12.80 57 1497 56 1804
c202 100 3 56.10 1870.87 0.31 152.20 9.60 57 1699 56 2151
c203 100 5 74.00 2328.30 0.00 183.76 12.23 74 1972 74 2667
c204 100 6 96.00 2939.37 0.00 275.76 13.23 96 2380 96 3582
c205 100 3 60.00 2025.77 0.00 151.48 9.83 60 1783 60 2360
c206 100 3 71.53 1928.77 0.51 126.52 20.53 72 1638 71 2109
c207 100 3 68.00 2093.13 0.00 133.22 14.13 68 1815 68 2325
c208 100 4 80.80 2551.50 0.41 174.09 19.57 81 2263 80 2974
r101 100 3 21.03 245.00 0.49 11.62 3.27 22 234 20 253
r102 100 6 52.10 515.60 0.84 16.35 11.43 54 492 51 552
r103 100 5 41.03 421.73 0.96 14.79 5.90 42 397 38 455
r104 100 4 42.27 310.77 1.20 14.16 7.23 45 287 40 322
r105 100 5 25.80 336.67 0.48 27.23 3.13 26 284 24 396
r106 100 3 29.17 235.23 0.59 11.93 4.03 30 202 28 255
r107 100 4 34.03 336.07 0.81 16.39 4.67 35 301 32 361
r108 100 3 31.10 223.73 0.80 11.49 4.33 32 205 30 250
r109 100 3 23.50 253.10 0.68 10.77 2.03 24 233 22 268
r110 100 3 28.87 224.13 0.63 9.49 3.83 30 216 27 244
r111 100 3 27.53 248.17 0.57 8.67 3.03 28 219 26 261
r112 100 3 31.70 212.27 0.65 10.06 4.27 33 206 31 229
r201 100 3 46.60 1056.90 0.50 58.64 9.13 47 963 46 1126
r202 100 5 69.63 1622.07 0.49 108.08 13.63 70 1542 69 1768
r203 100 6 89.00 2318.73 0.00 119.23 18.40 89 2036 89 2610
r204 100 5 74.77 1842.30 0.43 140.45 11.90 75 1601 74 2003
r205 100 3 44.70 1040.80 0.53 98.92 3.60 46 1161 44 1190
r206 100 5 78.00 1870.53 0.00 103.78 10.50 78 1687 78 2073
r207 100 3 60.00 1484.53 0.00 66.92 8.97 60 1349 60 1606
r209 100 4 71.00 1693.87 0.00 85.78 13.03 71 1523 71 1865
r210 100 8 86.00 2253.60 0.00 132.70 10.77 86 1978 86 2503
r211 100 4 73.00 1689.70 0.00 102.20 13.63 73 1474 73 1906
rc101 100 3 23.07 290.00 0.83 11.47 3.03 24 275 21 312
rc102 100 2 16.50 195.03 1.07 11.26 1.67 18 182 14 216
rc103 100 3 24.77 289.33 0.68 10.97 2.80 26 295 23 321
rc105 100 5 28.97 479.50 0.85 30.20 3.17 30 431 27 470
rc106 100 3 24.70 280.00 1.06 14.41 2.70 27 270 23 301
rc107 100 3 26.40 291.27 0.56 10.66 3.07 27 280 25 280
rc108 100 6 49.83 529.20 1.26 19.52 7.67 51 495 46 528
rc203 100 3 53.97 1415.57 0.18 66.45 9.80 54 1296 53 1463
rc204 100 3 52.10 1413.40 0.40 99.28 6.33 53 1432 51 1403
rc205 100 3 54.83 1535.90 0.38 74.26 10.50 55 1347 54 1611
rc206 100 3 47.10 1263.20 0.80 58.94 4.60 48 1206 46 1316
rc207 100 6 73.00 2042.53 0.00 129.64 16.93 73 1785 73 2341
rc208 100 7 87.00 2389.90 0.00 157.99 11.63 87 2003 87 2703

49.46 1084.59 0.44 71.02 8.23 50.06 965.41 48.55 1208.22
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search that alternatives between the two objectives. The computational experiments were

carried out on three sets of benchmarks. One is provided by the industry partner and the

other two are derived from the standard Solomon benchmark for vehicle routing problems.

The results of the computational experiments demonstrate the good performance of the

proposed algorithm in terms of computational time, solution quality and stability.
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5
Simultaneous Pickup and Delivery Problem with

Preloading under Uncertainty

Abstract

This chapter studies a Simultaneous Pickup and Delivery Problem with Preloading under

Uncertainty. Two groups of vehicles are considered. The assignment of customers to

the vehicles of the first group (preloading) is done when only a subset of all customers

is known, whereas the assignment of customers to the vehicles of the second group is

done when all remaining customers are known. This problem is formulated as a two-

stage stochastic program and solved by the sample average approximation approach. An

optimisation algorithm under the Lagrangian ILS framework is described for the sample

average approximation approach. The results of the computational experiment on a set

of instances derived from historical data provided by the industry partner have shown the

proposed algorithm has good performance in terms of computational time and solution

quality.

5.1 Introduction

The problem studied in this chapter is suggested by the industry partner who provides

the next-day delivery service in the retail sector, i.e., a customer’s demand is fulfilled on

the following day Yaman et al. (2012), Wollenburg et al. (2018). In this problem, some

vehicles must return to the depot after serving all the allocated customers and load some

demands that need to be fulfilled on the next day. This practice is called preloading.

These vehicles return to the designated locations (depots owned by the drivers) after the

preloading and begin their routes for the next day directly from the designated locations.

The purpose of preloading is to deal with the limited capacity at the depot. When a
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customer makes a purchase, the depot will receive the customer’s demand and wait for a

vehicle to fulfil the delivery. If the depot runs out the space when a customer’s demand

arrives that means the depot cannot store the demand before its delivery commences,

then this customer must be outsourced which is expensive. The preloading loosens the

heavy burden at the depot by moving certain demands to the vehicles. Thereby, reducing

the total outsourcing cost.

Although preloading can be beneficial by accommodating more customers, there are

certain limitations. For example, if the total customer’s demands are less than the ca-

pacity of the depot, then instead of preloading, it is better to make the decisions for

the allocation of customers to vehicles when all customer’s demands are revealed. The

decisions for the allocation of customers for preloading are also complex. One of the

reasons is due to the uncertainty of customers’ demands after the preloading. Another

reason is because of the drivers’ preferences. After serving the last customer, the driver

may end up at a location far away from the depot and is not willing to come back to the

depot. Therefore, it is difficult to determine the drivers who are suitable to perform the

preloading. In addition, the finishing times may vary for drivers, for example, a driver

may finish early and require a wait for preloading to commence. Therefore, it is also

difficult to determine the appropriate starting time for preloading.

In this chapter, the preloading problem is simplified to investigate the potential to

apply the stochastic programming approach. The simplified version assumes that the

selection of the vehicles for preloading is not part of the model. In addition, the time

for vehicles loading at the depot as well as the time for vehicles preloading at the de-

pot are specified by a roster. In the latter case, the roster ensures a sufficient number

of vehicles available when preloading commences. The problem also considers features

studied in Chapter 4, including simultaneous pickup and delivery; a heterogeneous fleet

of vehicles; time windows for customers; compatibility between customers and vehicles;

open routes; restriction on shift length; vehicles’ capacity (for weight and volume). This

simplified version is called Simultaneous Pickup and Delivery Problem with Preloading

under Uncertainty (SPDPP) and is modelled as a 2-stage stochastic program.

The decision stages are illustrated in Figure 5.1. In Stage 1, some vehicles are required

to do preloading at the depot at a certain time of the day. As mentioned above, it is

assumed that the selection of the vehicles for preloading is not part of the model. Decisions
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Figure 5.1: Illustration of the decision stages in the SPDPP

need to be made on the allocation of customers at the depot to the preloading vehicles

although not all customers are known. In Stage 2, when all customers are revealed,

the vehicles that are not involved in preloading need to come to the depot and load

the delivery items for the remaining customers (typically at the beginning of the next

day). The goal for the problem is to maximise the expected total number of allocated

customers.

The SPDPP is formulated as a 2-stage stochastic program and is tackled by the

sample average approximation (SAA) approach. The SAA approach generates a set of

scenarios and converts the 2-stage stochastic model into a deterministic mixed integer

programming (MIP) model. The SAA solution converges asymptotically to the optimal

solution of the 2-stage model when the sample size approaches infinity Kleywegt et al.

(2002). Since the second stage of the SPDPP is a vehicle routing problem, the size of the

MIP model increases quadratically with the number of scenarios.

In this chapter, the optimisation procedure developed for the SAA approach is another

implementation of the iterated local search under the Lagrangian ILS framework and is

referred to as the ILS-SAA. Since the allocation for the first stage in the SAA approach

must be the same for all the scenarios in the second stage which is called the non-

anticipativity constraints, the ILS-SAA made several modifications compared with the

Lagrangian ILS presented in Chapter 3. These modifications include how the initial

feasible solutions are constructed, how local search is performed with a new local search

operator, as well as how the perturbation mechanism works.

(a) The procedure to construct the initial feasible solution is 2-stage which is different

compared with the corresponding procedure in the Lagrangian ILS in Chapter 3. It



102
Simultaneous Pickup and Delivery Problem with Preloading under

Uncertainty

first constructs the first stage solution for the SAA approach which is the route for

preloading vehicles. Then, taking the unallocated customers from the first-stage

solution together with the customers who appeared after the preloading in each

scenario, the second-stage solution is constructed which comprises the routes for

other vehicles in each scenario.

(b) The perturbation mechanism is also different in comparison with the perturbation

mechanism in the Lagrangian ILS. In the ILS-SAA, the perturbation changes the

first-stage solution first which involves an unallocated preloading customer with re-

spect to the first-stage solution. If this customer is allocated in some scenarios of the

second-stage solution, then, in order to respect the non-anticipativity constraints,

this customer is removed from the second-stage solution. After the perturbation of

the first-stage solution. The mechanism changes the routes for each scenario in the

second-stage solution.

(c) Since the neighbourhood operators considered in the Lagrangian ILS in Chapter 3

do not handle the non-anticipativity constraints, the local search in the ILS-SAA

considers a new operator that transforms the input solution taking into account

both the first-stage and second-stage solution simultaneously and at the same time

respecting the non-anticipativity constraints. This operator allows the ILS-SAA to

explore suitable solutions for the SAA approach.

In addition, the number of Lagrange multipliers used in the ILS-SAA is larger than the

number of Lagrange multipliers used in the Lagrangian ILS in Chapter 3. In Lagrangian

ILS, a single Lagrange multiplier is used for the total violation of certain constraints,

for example, β in (3.40) is used for the total violation on maximum duration among all

routes. In ILS-SAA, a single Lagrange multiplier for one type of constraint for both

first-stage and second-stage solutions is inadequate. Therefore, the ILS-SAA introduces

Lagrange multipliers for both the first-stage and second-stage solutions. For the second-

stage solution, the ILS-SAA introduces Lagrange multipliers for each scenario in the

second stage. That means a Lagrange multiplier is the penalty for the total violation

of certain constraints on all routes in either the first-stage solution or a scenario in the

second stage.

To evaluate the performance of the ILS-SAA, a set of instances derived from historical
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data provided by the industrial partner. The results of the computational experiments

obtained from solving the MIP model of the SAA approach with a single scenario, 5

scenarios and 10 scenarios have demonstrated that the proposed ILS-SAA has good per-

formance in terms of computational time and solution quality, especially for the instances

with 10 scenarios.

The remaining part of the chapter is organised as follows. Section 5.2 presents the

2-stage stochastic programming formulation for the SPDPP and the formulation for the

sample average approximation approach. Section 5.3 describes the iterated local search

designed for this approach. Then, the results of the computational experiments are

reported in Section 5.4. At last, Section 5.5 concludes the chapter.

5.2 Problem statement

The SPDPP is formulated below as a 2-stage stochastic program. Two sets of vehicles are

considered, T1 and T2, and two sets of customers are considered, C1 and C2. The first set

of vehicles T1 can only serve customers constituting the set C1. The Preloading involves

the assignment of customers in C1 to the vehicles in T1 and the construction of routes for

these vehicles where these decisions are made without any knowledge of C2. Furthermore,

each vehicle in T1 has an associated depot (owned by the driver) and the corresponding

route is constructed under the assumption that this vehicle can depart from its depot at

any time. When customers are allocated to vehicles in T2 and the corresponding routes

are constructed under the condition that all vehicles depart from the depot (owned by the

industry partner) and are loaded according to the roster. The assignment of customers

to the vehicles in T2 is made using all available information: the subset of C1 comprised

of all customers who are not allocated to the vehicles in T1 as well as all customers in C2.

Let G = {L,A} be a directed graph where the set of vertices L = {0} ∪C1 ∪C2 ∪D,

C1 = {1, 2, ..., l1}, C2 = {l1+1, l1+2, ..., l1+l2}, and D = {l1+l2+1, l1+l2+2, ..., l1+l2+d}.

The set of arcs A = A0 ∪ AC ∪ AD where A0 = {(0, i)|i ∈ C1 ∪ C2}, AC = {(i, j)|i 6=

j, ∀i, j ∈ C1∪C2}, AD = {(i, j)|∀i ∈ D, j ∈ C1}. Vertex 0 represents the depot; vertices in

C1 represent the customers who can be assigned to vehicles in T1; vertices in C2 represent

the customers who occur after the construction of routes for vehicles in T1; vertices in D

represent the depots owned by the subcontractors. Each arc (i, j) ∈ A has an associated
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travel time ti,j.

For each customer i ∈ C2, ζ̃i is a random variable which indicates whether customer

i occurs or not (0:no, 1:yes). Let ζω = {ζωi |i ∈ C2} be a particular realisation of the

random vector ζ̃ = {ζ̃i|i ∈ C2}. The delivery of customer i ∈ C1 ∪ C2 is characterised by

its weight wdi and volume vdi . The pickup of customer i ∈ C1∪C2 is also characterised by

its weight wpi and volume vpi . Furthermore, for customer i ∈ C1 ∪C2, the associated time

window [ai, bi] indicates the earliest and latest time when the subcontractor can start the

corresponding services, and let pi > 0 be the service time required for the subcontractor

to complete the service.

Each vehicle i ∈ T1∪T2 is characterised by its weight capacity Wi and volume capacity

Vi. Each vehicle i ∈ T1 departs from its own home location, whereas all vehicles i ∈ T2

depart from the same depot. A vehicle is not required to return to the depot after

serving its allocated customers. The subcontractor in vehicle i ∈ T1∪T2 finishes the shift

after serving the last allocated customer. Due to the loading capacity of the depot, each

vehicle i ∈ T2 arrives at the depot at the specified starting time ri with loading time δi.

Furthermore, there exists a maximal duration Ψi on the shift time of the subcontractor

in vehicle i ∈ T1 ∪ T2, which is the length of the time interval between the time when the

subcontractor starts loading at the depot and the time when subcontractor finishes the

service of the last allocated customer.

Each customer i ∈ C1∪C2 can be allocated only once, but not all vehicles are capable

to serve certain customers. Two types of vehicles are considered, i.e., T ′ ⊂ T1 ∪ T2 and

T ′′ ⊂ T1 ∪ T2. The customers are also classified into two types C ′1 ⊂ C1 (C ′2 ⊂ C2) and

C ′′1 ⊂ C1 (C ′′2 ⊂ C2). The vehicles in T ′′ ∩T1 (T ′′ ∩T2) can serve all customers in C1 (C2)

whereas the vehicles in T ′ ∩ T1 (T ′ ∩ T2) can only serve customers in C ′1 (C ′2).

Let Eω(·) denotes the mathematical expectation operator taken with respect to ζ̃.

The objective is to maximise the total expected number of allocated customer services

while respecting all the constraints on subcontractors, vehicles, customers, depot, and

non-anticipatity.

max
∑
i∈T1

∑
j∈C1

ηij + Eω[Q(ρ, ω)] (5.1)
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Table 5.1: Symbols for 2-stage formulation

Variables
xijk If customer j ∈ C1 is the immediate predecessor of customer k ∈ C1

in the route of vehicle i ∈ T1 (0:no, 1:yes).
x̂ijk If customer j ∈ C1 ∪ C2 is the immediate predecessor of customer

k ∈ C1 ∪ C2 in the route of vehicle i ∈ T2 (0:no, 1:yes).
ρi If customer i ∈ C1 is not allocated to any vehicles in T1 (0:no,

1:yes).
ηij If customer j ∈ C1 is allocated to vehicle i ∈ T1 (0:no, 1:yes).
η̂ij If customer j ∈ C1 ∪ C2 is allocated to vehicle i ∈ T2 (0:no, 1:yes).
γij If customer j ∈ C1 is the first customer to visit after vehicle i ∈ T1

departing from the depot (0:no, 1:yes).
γ̂ij If customer j ∈ C1 ∪ C2 is the first customer to visit after vehicle

i ∈ T2 departing from the depot (0:no, 1:yes).
θij If customer j ∈ C1 is the last customer in the route of vehicle i ∈ T1

(0:no, 1:yes).

θ̂ij If customer j ∈ C1 ∪C2 is the last customer in the route of vehicle
i ∈ T2 (0:no, 1:yes).

ψij The time when subcontractor in vehicle i ∈ T1 starts serving cus-
tomer j ∈ C1.

ψ̂ij The time when subcontractor in vehicle i ∈ T2 starts serving cus-
tomer j ∈ C1 ∪ C2.

yj The weight of the vehicle when leaving customer j ∈ C1 ∪ C2.
zj the volume of the vehicle when leaving customer j ∈ C1 ∪ C2.

subject to:

∑
i∈T1

ηij + ρj = 1, ∀j ∈ C1 (5.2)

∑
j∈C1

γij ≤ 1, ∀i ∈ T1 (5.3)

γij +
∑
k∈C1

xik,j = ηij, ∀i ∈ T1, ∀j ∈ C1 (5.4)

θij +
∑
k∈C1

xij,k = ηij, ∀i ∈ T1, ∀j ∈ C1 (5.5)

aj ≤ ψij, ∀i ∈ T1, ∀j ∈ C1 (5.6)

ψij ≤ bj, ∀i ∈ T1, ∀j ∈ C1 (5.7)

(ri + ti,k)γ
i
k ≤ ψik, ∀i ∈ T1, ∀k ∈ C1 (5.8)

ψij + (pj + tj,k)x
i
j,k + (ak − bj)(1−xij,k) ≤ ψik,

∀i ∈ T1, ∀j ∈ C1, ∀k ∈ C1, k 6= j
(5.9)
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pj + ψij − ri − (pj + bj − ri)(1− θij) ≤ Ψi, i ∈ T1, ∀j ∈ C1 (5.10)∑
k∈C1

wdkη
i
k ≤ Wi, ∀i ∈ T1 (5.11)

yk ≤ Wi + (max
e∈T1

We −Wi)(1− ηik), ∀i ∈ T1, k ∈ C1 (5.12)∑
j∈C1

wdj η
i
j − wdk + wpk − (max

e∈T1
We − wdk + wpk)(1−γ

i
k) ≤ yk,

∀i ∈ T1, k ∈ C1

(5.13)

yj − wdk + wpk − (max
e∈T1

We − wdk + wpk)(1− x
i
j,k) ≤ yk,

∀i ∈ T1, ∀j ∈ C1, ∀k ∈ C1, k 6= j

(5.14)

∑
k∈C1

vdkη
i
k ≤ Vi, ∀i ∈ T1 (5.15)

zk ≤ Vi + (max
e∈T1

Ve − Vi)(1− ηik), ∀i ∈ T1, k ∈ C1 (5.16)∑
j∈C1

vdj η
i
j − vdk + vpk − (max

e∈T1
Ve − vdk + vpk)(1− γ

i
k) ≤ zk,

∀i ∈ T1, k ∈ C1

(5.17)

zj − vdk + vpk − (max
e∈T1

Ve − vdk + vpk)(1− x
i
j,k) ≤ zk,

∀i ∈ T1, ∀j ∈ C1, ∀k ∈ C1, k 6= j

(5.18)

∑
i∈T ′∩T1

∑
k∈C′′1

ηik = 0 (5.19)

xij,k ∈ {0, 1}, ∀j ∈ C1, ∀k ∈ C1, k 6= j, ∀i ∈ T1 (5.20)

ηij ∈ {0, 1}, ∀i ∈ T1, ∀j ∈ C1 (5.21)

γij ∈ {0, 1}, ∀i ∈ T1, ∀j ∈ C1 (5.22)

θij ∈ {0, 1}, ∀i ∈ T1, ∀j ∈ C1 (5.23)

ρj ∈ {0, 1}, ∀j ∈ C1 (5.24)

where for a particular scenario ω, Q(ρ, ω) is defined as

Q(ρ, ω) = max
∑
i∈T2

∑
j∈C1∪C2

η̂ij (5.25)
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subject to:

(5.26)∑
i∈T2

η̂ij ≤ 1, ∀j ∈ C2 (5.27)

∑
i∈T2

η̂ij ≤ ρj, ∀j ∈ C1 (5.28)

∑
i∈T2

η̂ij ≤ ζωj , ∀j ∈ C2 (5.29)

∑
j∈C1∪C2

γ̂ij ≤ 1, ∀i ∈ T2 (5.30)

γ̂ij +
∑

k∈C1∪C2

x̂ikj = η̂ij, ∀i ∈ T2, j ∈ C1 ∪ C2 (5.31)

θ̂ij +
∑

k∈C1∪C2

x̂ijk = η̂ij, ∀i ∈ T2, j ∈ C1 ∪ C2 (5.32)

aj ≤ ψ̂ij, ∀j ∈ C1 ∪ C2, i ∈ T2 (5.33)

ψ̂ij ≤ bj, ∀j ∈ C1 ∪ C2, i ∈ T2 (5.34)

(ri + δi + t0,k)γ̂
i
k ≤ ψ̂ik, ∀i ∈ T2, k ∈ C1 ∪ C2 (5.35)

ψ̂ij + (pj + tjk)x̂
i
jk + (ak − bj)(1−x̂ijk) ≤ ψ̂ik,

∀i ∈ T2, j ∈ C1 ∪ C2, k ∈ C1 ∪ C2, k 6= j
(5.36)

pj + ψ̂ij − ri − (pj + bj − ri)(1− θ̂ij) ≤ Ψ̂i, ∀j ∈ C1 ∪ C2, i ∈ T2 (5.37)∑
k∈C1∪C2

wdkη̂
i
k ≤ Wi, ∀i ∈ T2 (5.38)

yk ≤ Wi + (max
e∈T2

We −Wi)(1− η̂ik), ∀i ∈ T2, k ∈ C1 ∪ C2 (5.39)∑
j∈C1∪C2

wdj η̂
i
j − wdk + wpk − (max

e∈T2
We − wdk + wpk)(1−γ̂

i
k) ≤ yk,

∀i ∈ T2, k ∈ C1 ∪ C2

(5.40)

yj − wdk + wpk − (max
e∈T2

We − wdk + wpk)(1− x̂
i
jk) ≤ yk,

∀i ∈ T2, ∀j ∈ C1 ∪ C2, k ∈ C1 ∪ C2, k 6= j

(5.41)
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∑
k∈C1∪C2

vdk η̂
i
k ≤ Vi, ∀i ∈ T2 (5.42)

zk ≤ Vi + (max
e∈T2

Ve − Vi)(1− η̂ik), ∀i ∈ T2, k ∈ C1 ∪ C2 (5.43)∑
j∈C1∪C2

vdj η
i
j − vdk + vpk − (max

e∈T2
Ve − vdk + vpk)(1−γ̂

i
k) ≤ zk,

∀i ∈ T2, k ∈ C1 ∪ C2

(5.44)

zj − vdk + vpk − (max
e∈T2

Ve − vdk + vpk)(1− x̂
i
jk) ≤ zk,

∀i ∈ T2, ∀j ∈ C1 ∪ C2, k ∈ C1 ∪ C2, k 6= j

(5.45)

∑
i∈T ′∩T2

∑
k∈C′′1 ∪C′′2

η̂ik = 0 (5.46)

x̂ijk ∈ {0, 1}, ∀j ∈ C1 ∪ C2, ∀k ∈ C1 ∪ C2, k 6= j, ∀i ∈ T2 (5.47)

η̂ij ∈ {0, 1}, ∀i ∈ T2, ∀j ∈ C1 ∪ C2 (5.48)

γ̂ij ∈ {0, 1}, ∀i ∈ T2, ∀j ∈ C1 ∪ C2 (5.49)

θ̂ij ∈ {0, 1}, ∀i ∈ T2, ∀j ∈ C1 ∪ C2 (5.50)

The objective function (5.1) maximises the expected total number of allocated cus-

tomers. Constraints (5.2) ensure a customer in C1 is allocated to at most one vehicle

in T1. Constraints (5.3) and (5.8) guarantee that a vehicle either stays at its depot or

visits exactly one customer. Constraints (5.4) and (5.5) ensure that each customer must

have an immediate successor from the same route except for the last customer. The time

when a shift can commence, the travelling time between locations, and the time windows

are stipulated by (5.8), (5.9) and (5.6) − (5.9) respectively. The shift length, weight

capacity, volume capacity, and compatibility between customers in C1 and vehicles in T1

are enforced by (5.10), (5.11)-(5.14), (5.15)-(5.18), and (5.19) respectively.

By virtue of constraints (5.28), the objective function (5.25) for Q(ρ, ω) maximises the

total number of allocated customers including customers from C2 and customers from C1

who are not allocated in preloading. The constraints (5.27) and (5.29) ensure a vehicle

can only serve customers that occurred in scenario ω at most once. Constraints (5.35)

guarantee that a vehicle either stays at the depot or spends sufficient time to load and

then visits the first customer in its route. The constraints (5.30) − (5.34), (5.37) − (5.45)

have the same purposes as the constraints (5.3) − (5.7), (5.10) − (5.18). The differences

between these constraints are that C1 is replaced by C1 ∪ C2 and T1 is replaced by T2.
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Furthermore, constraints (5.6), 5.7, and (5.9) eliminate subtours by virtue of pi > 0.

Similarly, (5.33), (5.34), and (5.36) eliminate subtours by virtue of pi > 0. It should be

noted that the second stage of the problem is exactly the same as the problem (4.1)−(4.23)

considered in Chapter 4.

It should be noted that the 2-stage model can be solved independently at each stage

if all customers at stage 1 can be allocated by preloading.

5.2.1 Sample average approximation formulation

Let S = {ζ1, ζ2, ..., ζ |S|} be a sample of ζ̃. The 2-stage stochastic programming model

described above can be approximated by the sample average approximation Kleywegt

et al. (2002) using the following deterministic mixed integer linear programming model.

In what follows, this model will be referred to as the SAA model.

max
∑
i∈T1

∑
j∈C1

ηij +
1

|S|
∑
s∈S

∑
i∈T2

∑
j∈C1∪C2

η̂ijs (5.51)

subject to:

(5.2)− (5.24)

∑
i∈T2

η̂ijs ≤ ζsj , ∀j ∈ C2, ∀s ∈ S (5.52)

∑
i∈T2

η̂ijs ≤ 1, ∀j ∈ C2, ∀s ∈ S (5.53)

∑
i∈T2

η̂ijs ≤ ρj, ∀j ∈ C1, ∀s ∈ S (5.54)

∑
j∈C1∪C2

γ̂ijs ≤ 1, ∀i ∈ T2, ∀s ∈ S (5.55)

γ̂ijs +
∑

k∈C1∪C2

x̂ikjs = η̂ijs, ∀i ∈ T2, ∀j ∈ C1 ∪ C2, ∀s ∈ S (5.56)

θ̂ijs +
∑

k∈C1∪C2

x̂ijks = η̂ijs, ∀i ∈ T2, ∀j ∈ C1 ∪ C2, ∀s ∈ S (5.57)

aj ≤ ψ̂ijs ≤ bj, ∀j ∈ C1 ∪ C2, ∀i ∈ T2, ∀s ∈ S (5.58)
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(ri + δi + t0k)γ̂
i
ks ≤ ψ̂iks, ∀i ∈ T2, ∀k ∈ C1 ∪ C2, ∀s ∈ S (5.59)

ψ̂ijs + (pj + tjk)x̂
i
jks+(ak − bj)(1− x̂ijks) ≤ ψ̂iks,

∀i ∈ T2, ∀j ∈ C1 ∪ C2, ∀k ∈ C1 ∪ C2, k 6= j, ∀s ∈ S
(5.60)

pj + ψ̂ijs − ri − (pj + bj − ri)(1− θ̂ijs) ≤ Ψi, ∀j ∈ C1 ∪ C2, ∀i ∈ T2, ∀s ∈ S (5.61)∑
k∈C1∪C2

wdkη̂
i
ks ≤ Wi, ∀i ∈ T2, ∀s ∈ S (5.62)

yks ≤ Wi + (max
e∈T2

We −Wi)(1− η̂iks), ∀i ∈ T2, ∀k ∈ C1 ∪ C2, ∀s ∈ S (5.63)∑
j∈C1∪C2

wdj η̂
i
js − wdk + wpk − (max

e∈T2
We−wdk + wpk)(1− γ̂

i
ks) ≤ yks,

∀i ∈ T2, ∀k ∈ C1 ∪ C2, ∀s ∈ S
(5.64)

yjs − wdk + wpk − ( max
e∈T2

We − wdk + wpk)(1− x̂
i
jks) ≤ yks,

∀i ∈ T2, ∀j ∈ C1 ∪ C2, ∀k ∈ C1 ∪ C2, k 6= j, ∀s ∈ S
(5.65)

∑
k∈C1∪C2

vdk η̂
i
ks ≤ Vi, ∀i ∈ T2, ∀s ∈ S (5.66)

zks ≤ Vi + (max
e∈T2

Ve − Vi)(1− η̂iks), ∀i ∈ T2, ∀k ∈ C1 ∪ C2, ∀s ∈ S (5.67)∑
j∈C1∪C2

vdj η̂
i
js − vdk + vpk − (max

e∈T2
Ve − vdk+v

p
k)(1− γ̂

i
ks) ≤ zks,

∀i ∈ T2, ∀k ∈ C1 ∪ C2, ∀s ∈ S
(5.68)

zjs − vdk + vpk − (max
e∈T2

Ve − vdk+v
p
k)(1− x̂

i
jks) ≤ zks,

∀i ∈ T2, ∀j ∈ C1 ∪ C2, k ∈ C1 ∪ C2, k 6= j, ∀s ∈ S
(5.69)

∑
i∈T ′∪T2

∑
k∈C′′1 ∪C′′2

η̂iks = 0, ∀s ∈ S (5.70)

x̂ijks ∈ {0, 1}, ∀j ∈ C1 ∪ C2, ∀k ∈ C1 ∪ C2, k 6= j, ∀i ∈ T2, ∀s ∈ S (5.71)

η̂ijs ∈ {0, 1}, ∀i ∈ T2, ∀j ∈ C1 ∪ C2, ∀s ∈ S (5.72)

γ̂ijs ∈ {0, 1}, ∀i ∈ T2, ∀j ∈ C1 ∪ C2, ∀s ∈ S (5.73)

θ̂ijs ∈ {0, 1}, ∀i ∈ T2, ∀j ∈ C1 ∪ C2, ∀s ∈ S (5.74)
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5.3 Iterated local search for sample average approx-

imation

This section describes the iterated local search designed for the SAA model of the consid-

ered SPDPP. In what follows, the iterated local search is referred to as ILS-SAA. Similar

to the iterated local search described in Chapter 4, the ILS-SAA is another implementa-

tion of the Lagrangian ILS described in Chapter 3. Therefore, the ILS-SAA also requires

an alternative mixed integer linear programming formulation. The formulation (5.75) -

(5.106) below is equivalent to (5.51) − (5.74), but in contrast to (5.51) − (5.74), involves

the following new variables.

Table 5.2: Symbols for ILS-SAA

Variables
µij The time warps associated with customer j ∈ C1 in the route of

vehicle i ∈ T1 defined in (3.16) − (3.20).
τi The violation by the vehicle i ∈ T1 of the permissible shift duration.
φi The maximum violation on weight capacity for vehicle i ∈ T1.
ϕi The maximum violation on volume capacity for the vehicle i ∈ T1.
µ̂ijs The time warps (defined in (3.16) − (3.20)) associated with cus-

tomer j ∈ C1 ∪C2 in the route of vehicle i ∈ T2 for scenario s ∈ S.
τ̂is The violation by the vehicle i ∈ T2 of the permissible shift duration

for scenario s ∈ S.

φ̂is The maximum violation on weight capacity for the vehicle i ∈ T2

in scenario s ∈ S.
ϕ̂is The maximum violation on volume capacity for vehicle i ∈ T2 in

scenario s ∈ S.

max
∑
i∈T1

∑
j∈C2

ηij +
1

|S|
∑
s∈S

∑
i∈T2

∑
j∈C1∪C2

η̂ijs (5.75)

subject to:

(5.2)− (5.6), (5.8), (5.13), (5.14), (5.17)− (5.24),

(5.52)− (5.57), (5.59), (5.64), (5.65), (5.68)− (5.74),

ψij − bj ≤ µij, ∀i ∈ T1, ∀j ∈ C1 (5.76)
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ψij − µij + (pj + tj,k)x
i
j,k + (ak − bj)(1−xij,k) ≤ ψik,

∀i ∈ T1, ∀j ∈ C1, ∀k ∈ C1, k 6= j
(5.77)

pj + ψij − ri − (pj + bj − ri)(1− θij) +
∑
k∈C1

µik ≤ Ψi + τi, i ∈ T1, ∀j ∈ C1 (5.78)

∑
i∈T1

∑
j∈C1

µij ≤ 0 (5.79)

∑
i∈T1

τi ≤ 0 (5.80)

∑
k∈C1

wdkη
i
k ≤ Wi + φi, ∀i ∈ T1 (5.81)

yk ≤ Wi + φi + (max
e∈T1

We −Wi)(1− ηik), ∀i ∈ T1, k ∈ C1 (5.82)∑
i∈T1

φi ≤ 0 (5.83)

∑
k∈C1

vdkη
i
k ≤ Vi + ϕi, ∀i ∈ T1 (5.84)

zk ≤ Vi + ϕi + (max
e∈T1

Ve − Vi)(1− ηik), ∀i ∈ T1, k ∈ C1 (5.85)∑
i∈T1

ϕi ≤ 0 (5.86)

aj ≤ ψ̂ijs, ∀j ∈ C1 ∪ C2, ∀i ∈ T2, ∀s ∈ S (5.87)

ψ̂ijs − bj ≤ µ̂ijs, ∀j ∈ C1 ∪ C2, ∀i ∈ T2, ∀s ∈ S (5.88)

ψ̂ijs − µ̂ijs + (pj + tjk)x̂
i
jks+(ak − bj)(1− x̂ijks) ≤ ψ̂iks,

∀i ∈ T2, ∀j ∈ C1 ∪ C2, ∀k ∈ C1 ∪ C2, k 6= j, ∀s ∈ S
(5.89)

pj + ψ̂ijs − ri − (pj + bj − ri)(1− θ̂ijs) ≤ Ψi + τ̂is, ∀j ∈ C1 ∪ C2, ∀i ∈ T2, ∀s ∈ S (5.90)∑
i∈T2

∑
j∈C1∪C2

µ̂ijs ≤ 0, ∀s ∈ S (5.91)

∑
i∈T2

τ̂is ≤ 0, ∀s ∈ S (5.92)

∑
k∈C1∪C2

wdkη̂
i
ks ≤ Wi + φ̂is, ∀i ∈ T2, ∀s ∈ S (5.93)

yks ≤ Wi + φ̂is + (max
e∈T2

We −Wi)(1− η̂iks), ∀i ∈ T2, ∀k ∈ C1 ∪ C2, ∀s ∈ S (5.94)∑
i∈T2

φ̂is ≤ 0, ∀s ∈ S (5.95)
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∑
k∈C1∪C2

vdk η̂
i
ks ≤ Vi + ϕ̂i, ∀i ∈ T2, ∀s ∈ S (5.96)

zks ≤ Vi + ϕ̂i + (max
e∈T2

Ve − Vi)(1− η̂iks), ∀i ∈ T2, ∀k ∈ C1 ∪ C2, ∀s ∈ S (5.97)∑
i∈T2

ϕ̂is ≤ 0, ∀s ∈ S (5.98)

µij ≥ 0, ∀i ∈ T1, j ∈ C1 (5.99)

τi ≥ 0, ∀i ∈ T1 (5.100)

φi ≥ 0, ∀i ∈ T1 (5.101)

ϕi ≥ 0, ∀i ∈ T1 (5.102)

µ̂ijs ≥ 0, ∀i ∈ T2, j ∈ C1 ∪ C2, s ∈ S (5.103)

τ̂is ≥ 0, ∀i ∈ T2, s ∈ S (5.104)

φ̂is ≥ 0, ∀i ∈ T2, s ∈ S (5.105)

ϕ̂is ≥ 0, ∀i ∈ T2, s ∈ S (5.106)

The objective function (5.75) is the same as in the objective function (5.51) in the

SAA model. Constraints (5.77), (5.89) correspond to (3.17), (3.19) and (3.20) in the

definition of time warps, whereas constraints (5.76) and (5.88) correspond to (3.18). The

constraints (5.79), (5.80), (5.83), (5.86), (5.91), (5.92), (5.95), (5.98) guarantee that µij,

τi, φi, ϕi, µ̂
i
js, τ̂is, φ̂is, ϕ̂is are zero.

The dualisation of (5.79), (5.80), (5.83), (5.86), (5.91), (5.92), (5.95), (5.98), using

Lagrange multipliers α > 0, β > 0, σ > 0, κ > 0, αs > 0, βs > 0, σs > 0, κs > 0, for all

s ∈ S, gives the following Lagrangian relaxation.

max
∑
i∈T1

∑
j∈C1

ηij − α
∑
i∈T1

∑
j∈C1

µij − β
∑
i∈T1

τi − σ
∑
i∈T1

φi − κ
∑
i∈T1

ϕi

+
1

|S|
∑
s∈S

∑
i∈T2

∑
j∈C1∪C2

η̂ijs

−
∑
s∈S

αs
∑
i∈T2

∑
j∈C1∪C2

µ̂ijs −
∑
s∈S

βs
∑
i∈T2

τ̂is

−
∑
s∈S

σs
∑
i∈T2

φ̂is −
∑
s∈S

κs
∑
i∈T2

ϕ̂is

(5.107)

subject to:

(5.2)− (5.6), (5.76)− (5.78), (5.81), (5.82),
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(5.13), (5.14), (5.84), (5.85), (5.17)− (5.24),

(5.52)− (5.57), (5.87)− (5.90), (5.93), (5.94),

(5.64), (5.65), (5.96), (5.97), (5.68)− (5.74), (5.99)− (5.106)

As mentioned above, since the ILS-SAA is adapted from the Lagrangian ILS described

in Chapter 3, the pseudocode below looks similar to the Lagrangian ILS. However, the

main components of the ILS-SAA have been completely redesigned.

ILS-SAA
1: π∗ ← INITIAL-SAA
2: h← 1
3: while h ≤M do
4: if π′ is feasible and f(π′) < f(π∗) then
5: π∗ ← π′

6: end if
7: κ ← WEIGHTS-SAA(π′)
8: π′ ← SEARCH-SAA(π′)
9: e← 1
10: while e ≤ E and π′ is infeasible do
11: κ ← ADJUST-SAA(κ, π′)
12: π′ ← SEARCH-SAA(π′)
13: e← e+ 1
14: end while
15: if π′ is feasible and f(π′) < f(π∗) then
16: π∗ ← π′

17: h← 0
18: end if
19: π′ ← PERTURB-SAA(π∗, h)
20: h← h+ 1
21: end while
22: return π∗

• The subroutine INITIAL-SAA constructs the initial feasible solution for the consid-

ered problem, whereas the subroutine PERTURB-SAA generates a random solution

using the current best feasible solution. Both subroutines must respect the non-

anticipativity constraints.

• Let κ = (α, β, σ, κ, α1, α2, ..., α|S|, β1, β2, ..., β|S|, σ1, σ2, ..., σ|S|, κ1, κ2, ..., κ|S|) com-

prises all Lagrange multipliers. The subroutine WEIGHTS-SAA computes the ini-

tial values for all the Lagrange multipliers, whereas the subroutine ADJUST-SAA

updates these values by taking into account the violation of constraints of the input
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solution.

• Although the scheme for the subroutine SEARCH-SAA is the same as the subrou-

tine SEARCH in the Lagrangian ILS in Chapter 3, the neighbourhood operators

used in the subroutine SEARCH-SAA have been redesigned.

5.3.1 Initial solutions for ILS-SAA

The subroutine INITIAL-SAA constructs routes using a sweep heuristic Gillett and Miller

(1974). For the first stage solution, a list of customers in C1 is constructed based on the

geographic coordinates of the customers. Then these customers are inserted into a route

corresponding to a vehicle in T1 one by one until no customer can be inserted, in which

case a new route is constructed. Since vehicles in T ′ ∩T1 can only serve customers in C ′1,

whereas vehicles in T ′′ ∩ T1 can serve all types of customers in C1, the sweep heuristic

constructs the routes for vehicles in T ′ ∩ T1 first, then followed by the routes for vehicles

in T ′′ ∩ T1. When inserting a customer into the route, the heuristic chooses the insertion

position that respects all the constraints with the smallest increase in travel time. The

sweep heuristic terminates until either no customers in C1 can be inserted into the routes

of the vehicle in T1. Using the same heuristic, the routes for the second stage solution

are constructed by generating a list of customers in C2 and a subset of C1 comprises

customers who are not allocated in the first stage solution.

5.3.2 Subroutine WEIGHTS-SAA

The input of the subroutine WEIGHTS-SAA is an output of either the subroutine START

or the subroutine PERTURB-SAA. The output of the subroutine WEIGHTS-SAA is α, β,

σ, κ, and αs, βs, σs, and κs for all s ∈ S in (5.107), which are the weights used to calculate

the penalty for the violation of constraints. For input solution π, the violation of time

windows uij(π) and uijs(π) for all s ∈ S; the violation of permissible shift duration τi(π)

and τis(π) for all s ∈ S; the violation of vehicle’s weight capacity φi(π) and φis(π); the

violation of vehicle’s volume capacity ϕi(π) and ϕis(π) for all s ∈ S are calculated based

on the technique in Vidal et al. (2013). The subroutine WEIGHTS-SAA computes the

weights in the penalty for the violation of constraints (the values of Lagrange multipliers)
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as follows:

α =
∑
i∈T1

∑
j∈C1

uij(π) ; β =
∑
i∈T1

τi(π) ; σ =
∑
i∈T1

φi(π) ; κ =
∑
i∈T1

ϕi(π) ;

αs =
∑
i∈T2

∑
j∈C1∪C2

uijs(π) , ∀s ∈ S ; βs =
∑
i∈T2

τis(π) , ∀s ∈ S ;

σs =
∑
i∈T2

φis(π) , ∀s ∈ S ; κs =
∑
i∈T2

ϕis(π) , ∀s ∈ S .

So, each call of the subroutine WEIGHTS-SAA results in Lagrange multipliers (weights)

that reflect the violation of constraints by the input solution.

5.3.3 Subroutine SEARCH-SAA

The local search attempts to solve the Lagrangian relaxation problem for fixed values of

the Lagrange multipliers (for fixed weights in the augmented objective function), using six

local search optimisation procedures, each with one of the six operators N0, N1, N2, N3,

N4, N5. Each operator Ni transforms an input solution π, by applying transformations

(moves) from the set of transformations associated with this operator, and returns as the

result some solution π′ (denoted π′ = Ni(π)) where π′ is either the input solution π, or

one of the transformations of π.

N0 Interchange a sequence of up to two consecutive visits in two different routes of the

first-stage solution.

N1 For a sequence of up to two consecutive visits in a route of a vehicle in T1 and at

most one customer j ∈ C1 who is not allocated to any vehicles in T1. Interchange

their allocations if customer j is allocated in a scenario of the second-stage solution,

otherwise, the customers in the sequence become unallocated. To make it easier

to understand, Figure 5.2 shows a solution with 2 scenarios, whereas Figures 5.3

and 5.4 show two examples of the transformation associated with this operator. In

Figures 5.3 and 5.4, the circle nodes represent customers in C1, whereas the square

nodes represent customers in C2

N2 – For each scenario of the second stage, interchange a sequence of up to two



5.3 Iterated local search for sample average approximation 117

Figure 5.2: Example of a solution with 2 scenarios

consecutive visits in the route of a vehicle in T2 with a sequence of up to two

consecutive visits in the route of another vehicle in T2.

– For each scenario of the second stage, interchange a sequence of up to two

consecutive visits in a route of a vehicle in T2 (the customers in this sequence

become unallocated) with at most one unallocated customer in C2.

The set of transformations associated with operator N3 is comprised of all transfor-

mations that extract one visit from a route and insert it into a different position of the

same route. Operator N4 is similar to N3, but, instead of one visit, each transformation

performed by N4 extracts a sequence of two consecutive visits and inserts this sequence

into a different position of the same route. Each transformation performed by N5 reverses

the order of a sequence of consecutive visits in a route.

5.3.4 Subroutine ADJUST-SAA

The weights α, β, σ, κ, αs, βs, σs, and κs of the penalty for the violation of constraints

(5.79), (5.80), (5.83), (5.86), (5.91), (5.92), (5.95), and (5.98) are computed prior to

each call of the subroutine SEARCH-SAA and remain unchanged till the next call of this
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subroutine. Prior to a call of the subroutine SEARCH-SAA, these penalties are computed

either by the subroutine WEIGHTS-SAA, or by the subroutine ADJUST-SAA. If an

optimal solution π̂ of the Lagrangian relaxation problem can be found, then according to

a commonly used version of the Lagrangian relaxation method Fisher (1981), Guignard

(2003), the weights α, β, σ, κ, αs, βs, σs, and κs are updated to

α + λ
∑
i∈T1

∑
j∈C

uij(π̂) (5.108)

β + λ
∑
i∈T1

τi(π̂) (5.109)

σ + λ
∑
i∈T1

φi(π̂) (5.110)

κ+ λ
∑
i∈T1

ϕi(π̂) (5.111)

αs + λ
∑
i∈T2

∑
j∈C1∪C2

uijs(π̂), ∀s ∈ S (5.112)

βs + λ
∑
i∈T2

τis(π̂), ∀s ∈ S (5.113)

σs + λ
∑
i∈T2

φis(π̂), ∀s ∈ S (5.114)

κs + λ
∑
i∈T2

ϕis(π̂), ∀s ∈ S (5.115)

where µij(π̂), i ∈ T1, j ∈ C1; τi(π̂), i ∈ T1; φi(π̂), i ∈ T1; ϕi(π̂), i ∈ T1; µijs(π̂), i ∈ T2, j ∈

C1 ∪C2, s ∈ S; τis(π̂), i ∈ T2, s ∈ S; φis(π̂), i ∈ T2, s ∈ S; and ϕis(π̂), i ∈ T2, s ∈ S are the

violations of constraints (5.79), (5.80), (5.83), (5.86), (5.91), (5.92), (5.95), and (5.98)

caused by solution π̂, and

λ =
Λ (f(π∗)− fLR(π̂))

A
(5.116)

where Λ is a positive parameter, f(·) is the original objective function, fLR(·) is the

augmented objective function (the objective function for the LR problem), and π∗ is the
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Figure 5.3: First example of a transformation associated with the operator N1

best currently known solution for the original problem, and

A =
(∑
i∈T1

∑
j∈C1

µij(π̂)
)2

+
(∑
i∈T1

τi(π̂)
)2

+
(∑
i∈T1

φi(π̂)
)2

+
(∑
i∈T1

ϕi(π̂)
)2

+
∑
s∈S

((∑
i∈T2

∑
j∈C1∪C2

µijs(π̂)
)2

+
(∑
i∈T2

τis(π̂)
)2

+
(∑
i∈T2

φis(π̂)
)2

+
(∑
i∈T2

ϕis(π̂)
)2
)
.

(5.117)

Since the subroutine SEARCH-SAA cannot guarantee the optimal solution π̂, (5.116)

can result in a negative value. Therefore, instead of (5.108) − (5.115), the ILS-SAA uses

α + λ
∑
i∈T1

∑
j∈C

uij(π) (5.118)

β + λ
∑
i∈T1

τi(π) (5.119)

σ + λ
∑
i∈T1

φi(π) (5.120)

κ+ λ
∑
i∈T1

ϕi(π) (5.121)

αs + λ
∑
i∈T2

∑
j∈C1∪C2

uijs(π), ∀s ∈ S (5.122)

βs + λ
∑
i∈T2

τis(π), ∀s ∈ S (5.123)

σs + λ
∑
i∈T2

φis(π), ∀s ∈ S (5.124)

κs + λ
∑
i∈T2

ϕis(π), ∀s ∈ S (5.125)
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Figure 5.4: Second example of a transformation associated with the operator N1

where µij(π), i ∈ T1, j ∈ C; τi(π), i ∈ T1; φi(π), i ∈ T1; ϕi(π), i ∈ T1; µijs(π), i ∈ T2, j ∈

C1 ∪C2, s ∈ S; τis(π), i ∈ T2, s ∈ S; φis(π), i ∈ T2, s ∈ S; and ϕis(π), i ∈ T2, s ∈ S are the

violations of constraints (5.79), (5.80), (5.83), (5.86), (5.91), (5.92), (5.95), and (5.98)

caused by the output π of the subroutine SEARCH-SAA, and

λ =
χ f(π∗)

A
(5.126)

where χ is a positive parameter and

A =
(∑
i∈T1

∑
j∈C1

µij(π)
)2

+
(∑
i∈T1

τi(π)
)2

+
(∑
i∈T1

φi(π)
)2

+
(∑
i∈T1

ϕi(π)
)2

+
∑
s∈S

((∑
i∈T2

∑
j∈C1∪C2

µijs(π)
)2

+
(∑
i∈T2

τis(π)
)2

+
(∑
i∈T2

φis(π)
)2

+
(∑
i∈T2

ϕis(π)
)2
)
.

(5.127)

5.3.5 Perturbation

The PERTURB-SAA procedure expands the search space by randomly perturbing the

current best solution s∗. If there are customers in C1 who are not allocated to a vehicle

in T1, the first-stage solution is modified by randomly choosing one of these customers,

and then inserting the customer into the route of a vehicle in T1 in such a way that this

insertion results in the largest increase of (5.107) with α = 1, β = 1, σ = 1, κ = 1,
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αs = 1, βs = 1, σs = 1, κs = 1 for all s ∈ S. If this customer has been allocated in the

second-stage solution, this customer is removed from the second stage. For each scenario

of the second stage, if there are customers in C2 who are not allocated to any vehicle

in T2, then one of these customers is randomly selected and inserted into the route of a

vehicle in T2 in such a way that this insertion results in the largest increase of (5.107)

with α = 1, β = 1, σ = 1, κ = 1, αs = 1, βs = 1, σs = 1, κs = 1 for all s ∈ S.

Then, for the first-stage solution and the solution for each scenario of the second stage,

the subroutine PERTURB-SAA selects two random sequences of consecutive customers

in two random routes; and swaps their position in these two routes. This random swap

will be performed multiple times which depends on the counter h in the pseudocode for

the ILS-SAA. To be specific, the number of swaps starts from one and increases by one

each time when counter h in ILS-SAA increases. The current best solution s∗ may also

be updated in this process.

5.3.6 ILS-SAA for multiple scenarios

The problem size of the SAA model increases when the number of scenarios considered in

the model increases. Therefore, the SAA model with more scenarios is computationally

more difficult to solve compared with the SAA model with a single scenario. To solve

the SAA model with multiple scenarios, the ILS-SAA is enhanced by the multi-start

framework Mart́ı (2003) and will be referred to as the multi-start ILS-SAA (MSILS-

SAA). The pseudocode below outlines the MSILS-SAA.

Let < = {1, 2, . . . , ς} be the set of scenarios in an SAA model with |<| scenarios. The

MSILS-SAA applies the ILS-SAA |<| times. Each application begins with a different

feasible solution. Between lines 6 and 12, an initial feasible solution is constructed. As

shown in figure 5.5, at each application, an SAA model with a single scenario is built (line

6). Then ILS-SAA is applied to this model. The first-stage solution of the output will

be used as the first-stage solution for the SAA model with |<| scenarios. Between lines 7

and 12, the second-stage solution is constructed scenario by scenario. First, |<| vehicle

routing problems studied in Gu et al. (2021) are built. Each problem uses customers

in a scenario and unallocated customers in the first-stage solution (line 9). Then, the

ILS presented in Gu et al. (2021) is applied to each problem which results in a complete

second-stage solution for the SAA model with |<| scenarios. Using the feasible solution
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Figure 5.5: Constructing initial feasible solution of MSILS-SAA

as the starting solution, the MSILS-SAA applies the ILS-SAA to solve the SAA models

with |�| scenarios (line 13). The MSILS-SAA terminates when it runs out of the starting

solutions and returns the best feasible solution found so far.

MSILS-SAA
1: m ← 1
2: π ← Empty solution
3: f(π∗) ← −∞
4: while m ∈ � do
5: Build an SAA model with a single scenario using scenario m
6: π ←Apply ILS-SAA to this model and construct the first stage solution
7: e ← 1
8: while e ∈ � do
9: Build a model studied in Gu et al. (2021) using customers in scenario e and

unallocated customers in the first-stage solution
10: π ← Apply ILS in Gu et al. (2021) to this model and construct part of the second

stage solution
11: e ← e+ 1
12: end while
13: π ← ILS-SAA(π)
14: if π is feasible and f(π) > f(π∗) then
15: π∗ ← π
16: end if
17: m ← m+ 1
18: end while
19: return π∗
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5.4 Computational experiments

This section presents the results of computational experiments. Since there is no method

exists in the literature that solves the same SAA model in this chapter, to evaluate the

performance of the proposed ILS-SAA in solving the SAA model, its performance is

compared with the performance of CPLEX and an algorithm referred to as the Greedy

algorithm. The Greedy algorithm has two phases. In the first phase, CPLEX is used to

find the first-stage solution that serves the largest number of customers in C1 ignoring

what customers will appear in C2. Then, by taking into account the customers that are

not allocated in the first stage together with customers who appeared in C2 from each

scenario, the second phase of the Greedy algorithm repeatedly applies the iterated local

search described in Gu et al. (2021) to find the solution for each scenario in the second

stage that serves the largest number of customers.

Since the neighbourhood reduction technique described in Gu et al. (2021) demon-

strates good performance for maximising the number of allocated customers in the de-

terministic version of the SPDPP, a version of the ILS-SAA using the neighbourhood

reduction technique has been implemented. To distinguish between the two versions,

the ILS-SAA with neighbourhood reduction technique will be referred to as the Reduced

ILS-SAA and the ILS-SAA without neighbourhood reduction technique will be referred

to as the NoReduced ILS-SAA.

For both Reduced ILS-SAA and NoReduced ILS-SAA, the maximum number of ex-

change operations in the subroutine PERTURB-SAA is five, which is the same as the

Lagrangian ILS; the parameter E is 100; the parameter M is computed according to

Θ × (|C1| + |C2| + 10(|T1| + |T2|)), where C1 ∪ C2 is the set of all customers; T1 ∪ T2 is

the set of all vehicles; Θ is a parameter to control M . Similar to the Lagrangian ILS, the

ILS-SAA increases the number of exchange operations in perturbation after each M/5

sequential iterations that fail to obtain an improving solution.

To investigate the performance of the ILS-SAA, CPLEX, and the Greedy algorithm

for SAA models with different scenarios, these algorithms were applied to SAA models

with 1 scenario, 5 scenarios, and 10 scenarios. The computational experiments did not

test the algorithms on SAA models with a larger number of scenarios. As shown in the

results below, the solutions obtained from CPLEX become worse when the number of

scenarios in the SAA model increases from 1 to 10. The reason is that when the number
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of scenarios in the SAA model increases the problem size also increases. CPLEX is not

able to find good solutions for SAA models with a large number of scenarios within the

given time limit and memory limit.

In addition to the comparisons of the objective values obtained from the ILS-SAA,

CPLEX, and the Greedy algorithm for solving the SAA models. To evaluate the so-

lution quality of the first-stage solutions obtained from these algorithms, this section

also conducted a stochastic analysis. For a first-stage solution produced by either the

ILS-SAA, CPLEX or the Greedy algorithm, the stochastic analysis constructs a set of

VRPSPDs studied in Gu et al. (2021) using a set of random samples. Each sample is

a set of customers in C2. The VRPSPD studied in Gu et al. (2021) is constructed by

combining the customers in a sample with the unallocated customers of C1 in a particular

first-stage solution. For each VRPSPD, the iterated local search described in Gu et al.

(2021) is applied. Then, an expected total number of allocated customers is computed

for a particular first-stage solution using the numbers of allocated customers obtained

from solving the VRPSPDs constructed by this first-stage solution. Please note that the

stochastic analysis uses the same set of samples for the first-stage solutions obtained by

the ILS-SAA, CPLEX and the Greedy algorithm.

All computational experiments are conducted on a computer with Intel Xeon CPU E5-

2697 v3 2.60GHz and 8GB RAM. All algorithms were programmed in C++ and compiled

with g++, using the optimisation level O3. The version for CPLEX used for all tests is

12.10. The time limit is 6 hours and the memory limit is 8GB RAM.

In what follows, Section 5.4.1 discusses the benchmark instances used for the com-

putational experiments. Section 5.4.2 analyses how the performance of the ILS-SAA

changes with the variation of parameters χ and Θ. In section 5.4.3, the performance of

the ILS-SAA is compared with the performance of the Greedy algorithm and CPLEX

solving the SAA model with a single scenario. Then, in section 5.4.4, the performance of

the MSILS-SAA is compared with the performance of the Greedy algorithm and CPLEX

when the SAA model has 5 scenarios and 10 scenarios. Section 5.4.5 presents the re-

sults obtained from the stochastic analyses on the first-stage solutions obtained from the

Greedy algorithm; CPLEX for SAA models with 1, 5, and 10 scenarios; ILS-SAA for

SAA model with 1 scenario; and MSILS-SAA for SAA models with 5 and 10 scenarios.
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5.4.1 Test instances

The instances used for the computational experiments were derived from the historical

data from September 2021 to April 2022 provided by the industry partner. The data

include each customer’s demand, location, time window, and service time. In addition,

driver rosters and the capacity of the vehicles were also provided. 43 instances were de-

rived which can be classified into seven groups. Each group corresponds to the customers

who appeared on a particular day of the week. For example, the customers in the instance

“FR1” were randomly selected from a list of customers who appeared on Friday in the

historical data. The maximum shift duration for all drivers is 10 hours. Furthermore,

for each instance, 94 random samples of customers in C2 were generated using the same

historical data. These random samples were used for the stochastic analysis.

5.4.2 Sensitivity analysis

In this subsection, the performance of the Reduced ILS-SAA and NoReduced ILS-SAA

are analysed with the variation of Θ and χ. Table 5.3 (Table 5.4) presents the re-

sults obtained from the Reduced ILS-SAA (NoReduced ILS-SAA) using a combination

of χ ∈ {0.5, 2, 5, 10, 50, 100, 1000} when Θ = 1. Table 5.5 (Table 5.6) presents the re-

sults obtained from the Reduced ILS-SAA (NoReduced ILS-SAA) using a combination of

Θ ∈ {0.1, 1, 5, 10, 20, 30, 50} when χ = 0.5. In these tables, the group EJ reports the ex-

pected number of allocated customers and the group Time(s) reports the computational

time.

In Tables 5.3 and 5.4, it can be observed that for both Reduced ILS-SAA and NoRe-

duced ILS-SAA, the algorithms perform the best when χ = 0.5 with respect to the

average of the expected number of allocated customers. To facilitate the reading, these

values in Tables 5.3 and 5.4 are in bold. The parameter χ controls how fast the Lagrange

multipliers can increase (see (5.126)). It can be seen that a small χ (χ = 0.5) leads to

good solution quality and short computational time, whereas when χ is large (χ = 1000),

the solution quality deteriorates and requires more time. In the following computational

experiments, χ = 0.5 is used for both Reduce ILS-SAA and NoReduced ILS-SAA.

Tables 5.5 and 5.6 have shown that the solution quality improves when Θ increases

at the cost of computational time. This observation is expected since Θ can increase
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Table 5.3: The performance of the Reduced ILS-SAA with χ when Θ = 1

EJ Time(s)

Inst 0.5 2 5 10 50 100 1000 0.5 2 5 10 50 100 1000
FR1 27.00 26.00 26.00 28.00 28.00 26.00 28.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
FR2 38.00 39.00 35.00 38.00 38.00 38.00 38.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
FR3 35.00 35.00 34.00 34.00 36.00 34.00 35.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
FR4 54.00 52.00 55.00 54.00 54.00 53.00 52.00 1.00 1.00 2.00 1.00 3.00 1.00 1.00
FR5 62.00 63.00 62.00 63.00 62.00 63.00 62.00 1.00 4.00 2.00 2.00 1.00 3.00 2.00
FR6 73.00 80.00 76.00 77.00 76.00 77.00 78.00 1.00 10.00 4.00 3.00 4.00 7.00 5.00
FR7 60.00 58.00 61.00 61.00 61.00 58.00 59.00 3.00 2.00 2.00 3.00 3.00 2.00 2.00
FR8 88.00 89.00 88.00 90.00 91.00 89.00 89.00 5.00 5.00 5.00 6.00 6.00 4.00 4.00
FR9 69.00 68.00 69.00 68.00 69.00 69.00 68.00 3.00 3.00 4.00 3.00 2.00 4.00 2.00
MO1 13.00 13.00 13.00 13.00 13.00 13.00 13.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
MO2 36.00 35.00 36.00 33.00 35.00 35.00 34.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00
MO3 44.00 45.00 45.00 45.00 45.00 47.00 45.00 1.00 0.00 0.00 1.00 0.00 2.00 0.00
MO5 64.00 64.00 65.00 65.00 65.00 64.00 64.00 1.00 2.00 2.00 2.00 2.00 1.00 2.00
MO8 88.00 88.00 86.00 89.00 87.00 89.00 89.00 5.00 4.00 0.00 5.00 8.00 4.00 8.00
MO9 72.00 72.00 71.00 72.00 72.00 72.00 73.00 2.00 2.00 2.00 3.00 3.00 2.00 3.00
SA1 25.00 25.00 24.00 25.00 25.00 25.00 24.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SA2 25.00 23.00 25.00 24.00 23.00 24.00 24.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
SA3 43.00 43.00 43.00 43.00 42.00 42.00 42.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00
SA4 54.00 52.00 52.00 49.00 50.00 49.00 49.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00
SA5 63.00 64.00 63.00 62.00 62.00 62.00 64.00 2.00 4.00 3.00 2.00 1.00 1.00 3.00
SA6 69.00 69.00 71.00 71.00 68.00 69.00 67.00 2.00 2.00 3.00 2.00 3.00 3.00 2.00
SA7 83.00 82.00 83.00 82.00 81.00 82.00 83.00 6.00 3.00 4.00 3.00 3.00 4.00 4.00
SA8 83.00 84.00 79.00 79.00 80.00 79.00 82.00 4.00 6.00 4.00 5.00 5.00 3.00 7.00
SA9 70.00 70.00 70.00 70.00 70.00 70.00 70.00 2.00 2.00 2.00 2.00 3.00 3.00 2.00
SU1 25.00 23.00 24.00 24.00 25.00 25.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SU2 22.00 21.00 21.00 21.00 22.00 21.00 21.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
SU5 56.00 56.00 56.00 56.00 55.00 56.00 56.00 1.00 2.00 2.00 1.00 1.00 1.00 1.00
TH2 35.00 37.00 36.00 36.00 34.00 36.00 36.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
TH4 53.00 53.00 54.00 53.00 54.00 53.00 54.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00
TH9 67.00 67.00 67.00 67.00 66.00 67.00 67.00 2.00 3.00 2.00 2.00 2.00 2.00 2.00
TU1 26.00 26.00 26.00 26.00 26.00 26.00 26.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
TU2 33.00 33.00 32.00 31.00 30.00 32.00 32.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
TU3 42.00 42.00 42.00 41.00 42.00 42.00 41.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00
TU8 81.00 81.00 81.00 81.00 80.00 80.00 79.00 4.00 4.00 3.00 3.00 4.00 5.00 3.00
TU9 67.00 68.00 67.00 68.00 68.00 68.00 67.00 2.00 2.00 2.00 2.00 3.00 4.00 1.00
WE1 15.00 13.00 13.00 13.00 15.00 14.00 14.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
WE2 35.00 35.00 35.00 35.00 33.00 33.00 33.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
WE3 43.00 43.00 42.00 42.00 42.00 43.00 43.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
WE4 55.00 55.00 53.00 55.00 55.00 55.00 54.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
WE5 55.00 56.00 54.00 53.00 53.00 55.00 56.00 2.00 3.00 2.00 2.00 2.00 3.00 2.00
WE6 84.00 83.00 83.00 81.00 82.00 83.00 82.00 3.00 3.00 5.00 2.00 3.00 3.00 2.00
WE7 75.00 74.00 74.00 74.00 73.00 74.00 73.00 2.00 4.00 2.00 2.00 3.00 3.00 3.00
WE9 72.00 71.00 72.00 71.00 69.00 71.00 72.00 4.00 3.00 3.00 3.00 2.00 4.00 4.00
Avg 53.00 52.93 52.65 52.63 52.49 52.63 52.63 1.53 1.86 1.53 1.58 1.72 1.77 1.74

the number of iterations for both Reduced ILS-SAA and NoReduced ILS-SAA. In ad-

dition, the Reduced ILS with Θ = 30 consistently obtains a better solution compared

with the Reduced ILS with Θ = 0.1, whereas the NoReduced ILS with Θ = 5 consis-

tently obtains a better solution compared with the NoReduced ILS with Θ = 0.1. This

observation suggests that the NoReduced ILS converges faster compared with the Re-

duced ILS. Overall, the computational times required for both the Reduced ILS-SAA

and NoReduced ILS-SAA are acceptable even with Θ = 50. Therefore, in the following

computational experiments, Θ = 50 is used for both algorithms.
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Table 5.4: The performance of the NoReduced ILS-SAA with χ when Θ = 1

EJ Time(s)

Inst 0.5 2 5 10 50 100 1000 0.5 2 5 10 50 100 1000
FR1 28.00 28.00 26.00 26.00 26.00 26.00 27.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
FR2 39.00 38.00 38.00 39.00 38.00 39.00 38.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00
FR3 36.00 35.00 36.00 35.00 36.00 34.00 35.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
FR4 53.00 55.00 55.00 55.00 53.00 54.00 53.00 2.00 2.00 4.00 2.00 1.00 2.00 2.00
FR5 62.00 62.00 60.00 62.00 65.00 61.00 62.00 2.00 2.00 2.00 2.00 5.00 2.00 2.00
FR6 77.00 79.00 78.00 78.00 79.00 79.00 75.00 5.00 10.00 6.00 7.00 6.00 8.00 5.00
FR7 63.00 63.00 60.00 62.00 63.00 64.00 63.00 8.00 6.00 4.00 11.00 9.00 10.00 7.00
FR8 89.00 88.00 90.00 89.00 89.00 89.00 90.00 6.00 8.00 11.00 7.00 6.00 7.00 10.00
FR9 69.00 68.00 68.00 68.00 69.00 69.00 69.00 3.00 4.00 4.00 4.00 4.00 4.00 4.00
MO1 13.00 13.00 13.00 13.00 13.00 13.00 13.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MO2 36.00 35.00 36.00 36.00 34.00 34.00 34.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
MO3 45.00 45.00 46.00 44.00 45.00 46.00 45.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MO5 64.00 64.00 64.00 64.00 64.00 64.00 64.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00
MO8 89.00 88.00 90.00 89.00 90.00 89.00 88.00 6.00 4.00 5.00 7.00 7.00 10.00 8.00
MO9 72.00 72.00 72.00 72.00 72.00 72.00 74.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00
SA1 25.00 25.00 25.00 25.00 25.00 25.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
SA2 23.00 25.00 23.00 22.00 22.00 25.00 19.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
SA3 43.00 43.00 42.00 43.00 43.00 43.00 42.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00
SA4 53.00 52.00 53.00 53.00 53.00 53.00 52.00 2.00 2.00 3.00 1.00 2.00 2.00 2.00
SA5 64.00 62.00 65.00 64.00 63.00 64.00 64.00 4.00 4.00 7.00 4.00 4.00 5.00 4.00
SA6 69.00 69.00 70.00 71.00 68.00 69.00 70.00 2.00 2.00 2.00 3.00 2.00 3.00 3.00
SA7 83.00 82.00 83.00 82.00 83.00 82.00 82.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
SA8 83.00 83.00 83.00 81.00 77.00 83.00 78.00 5.00 5.00 6.00 5.00 4.00 9.00 5.00
SA9 70.00 70.00 70.00 70.00 70.00 70.00 70.00 2.00 3.00 2.00 3.00 3.00 3.00 2.00
SU1 22.00 22.00 22.00 23.00 23.00 23.00 23.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
SU2 21.00 21.00 21.00 21.00 22.00 21.00 21.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
SU5 56.00 56.00 57.00 57.00 56.00 57.00 56.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00
TH2 36.00 37.00 34.00 35.00 36.00 35.00 35.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
TH4 53.00 53.00 53.00 54.00 53.00 53.00 54.00 2.00 2.00 1.00 2.00 1.00 1.00 1.00
TH9 67.00 67.00 67.00 67.00 66.00 67.00 66.00 2.00 2.00 3.00 2.00 3.00 4.00 3.00
TU1 26.00 26.00 26.00 26.00 26.00 26.00 26.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TU2 33.00 32.00 31.00 31.00 30.00 31.00 31.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00
TU3 41.00 42.00 42.00 42.00 38.00 41.00 42.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00
TU8 81.00 81.00 81.00 81.00 81.00 79.00 81.00 4.00 5.00 5.00 4.00 5.00 4.00 4.00
TU9 67.00 68.00 68.00 68.00 68.00 67.00 68.00 3.00 2.00 2.00 4.00 3.00 3.00 3.00
WE1 16.00 15.00 16.00 15.00 15.00 14.00 14.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
WE2 36.00 35.00 35.00 35.00 32.00 31.00 34.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
WE3 43.00 43.00 43.00 43.00 42.00 43.00 42.00 1.00 0.00 1.00 0.00 0.00 1.00 1.00
WE4 55.00 55.00 55.00 54.00 55.00 55.00 55.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00
WE5 55.00 55.00 54.00 54.00 55.00 55.00 55.00 2.00 2.00 3.00 2.00 3.00 2.00 2.00
WE6 85.00 84.00 83.00 84.00 84.00 82.00 84.00 5.00 5.00 6.00 5.00 5.00 5.00 9.00
WE7 75.00 73.00 75.00 74.00 74.00 73.00 73.00 3.00 3.00 4.00 3.00 4.00 4.00 5.00
WE9 72.00 71.00 72.00 71.00 70.00 71.00 72.00 6.00 5.00 15.00 6.00 8.00 9.00 7.00
Avg 53.21 53.02 53.05 52.98 52.70 52.81 52.65 2.09 2.21 2.63 2.35 2.40 2.70 2.53
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Table 5.5: The performance of the Reduced ILS with Θ when χ = 0.5

EJ Time(s)

Inst 0.1 1 5 10 20 30 50 0.1 1 5 10 20 30 50
FR1 26.00 27.00 28.00 28.00 28.00 28.00 28.00 0.00 0.00 0.00 1.00 3.00 2.00 6.00
FR2 38.00 38.00 40.00 40.00 40.00 40.00 40.00 0.00 0.00 4.00 7.00 6.00 12.00 23.00
FR3 34.00 35.00 35.00 35.00 35.00 36.00 36.00 1.00 1.00 2.00 3.00 6.00 9.00 17.00
FR4 55.00 54.00 56.00 56.00 56.00 56.00 56.00 0.00 1.00 7.00 15.00 25.00 45.00 59.00
FR5 62.00 62.00 62.00 64.00 65.00 64.00 65.00 0.00 1.00 7.00 19.00 36.00 64.00 108.00
FR6 73.00 73.00 73.00 73.00 73.00 73.00 73.00 0.00 1.00 2.00 4.00 7.00 11.00 19.00
FR7 60.00 60.00 63.00 61.00 63.00 63.00 64.00 1.00 3.00 17.00 23.00 55.00 59.00 115.00
FR8 87.00 88.00 89.00 91.00 91.00 90.00 90.00 1.00 5.00 24.00 70.00 89.00 132.00 234.00
FR9 66.00 69.00 69.00 69.00 69.00 70.00 69.00 0.00 3.00 13.00 23.00 45.00 79.00 173.00
MO1 13.00 13.00 13.00 13.00 13.00 13.00 13.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00
MO2 36.00 36.00 36.00 36.00 36.00 36.00 36.00 0.00 0.00 1.00 1.00 3.00 3.00 7.00
MO3 45.00 44.00 46.00 46.00 47.00 46.00 46.00 0.00 1.00 5.00 11.00 23.00 21.00 38.00
MO5 65.00 64.00 65.00 66.00 66.00 66.00 66.00 0.00 1.00 7.00 16.00 52.00 45.00 82.00
MO8 88.00 88.00 89.00 89.00 90.00 90.00 90.00 1.00 5.00 24.00 48.00 81.00 124.00 270.00
MO9 72.00 72.00 72.00 73.00 73.00 75.00 74.00 0.00 2.00 9.00 19.00 39.00 67.00 116.00
SA1 24.00 25.00 25.00 24.00 25.00 25.00 24.00 0.00 0.00 0.00 0.00 1.00 2.00 4.00
SA2 24.00 25.00 25.00 25.00 25.00 25.00 26.00 0.00 0.00 1.00 1.00 3.00 4.00 13.00
SA3 43.00 43.00 43.00 43.00 43.00 43.00 43.00 0.00 1.00 2.00 5.00 8.00 12.00 25.00
SA4 48.00 54.00 54.00 56.00 55.00 53.00 53.00 0.00 1.00 6.00 15.00 17.00 42.00 52.00
SA5 63.00 63.00 62.00 62.00 62.00 65.00 65.00 0.00 2.00 8.00 14.00 28.00 145.00 239.00
SA6 70.00 69.00 71.00 71.00 71.00 71.00 72.00 0.00 2.00 11.00 20.00 45.00 64.00 133.00
SA7 82.00 83.00 83.00 83.00 83.00 83.00 83.00 1.00 6.00 18.00 39.00 66.00 96.00 196.00
SA8 83.00 83.00 84.00 85.00 87.00 86.00 85.00 0.00 4.00 21.00 43.00 137.00 121.00 238.00
SA9 70.00 70.00 70.00 71.00 70.00 70.00 70.00 1.00 2.00 11.00 35.00 44.00 63.00 119.00
SU1 22.00 25.00 25.00 25.00 23.00 23.00 25.00 0.00 0.00 0.00 1.00 1.00 1.00 4.00
SU2 21.00 22.00 21.00 21.00 22.00 21.00 21.00 0.00 0.00 0.00 1.00 2.00 2.00 3.00
SU5 55.00 56.00 56.00 56.00 57.00 57.00 57.00 0.00 1.00 6.00 10.00 20.00 24.00 56.00
TH2 36.00 35.00 36.00 37.00 37.00 37.00 37.00 0.00 0.00 1.00 1.00 3.00 5.00 10.00
TH4 53.00 53.00 54.00 54.00 54.00 54.00 54.00 1.00 1.00 6.00 11.00 18.00 24.00 62.00
TH9 67.00 67.00 67.00 67.00 67.00 67.00 67.00 0.00 2.00 14.00 24.00 45.00 70.00 128.00
TU1 26.00 26.00 26.00 26.00 26.00 26.00 26.00 0.00 0.00 0.00 0.00 1.00 1.00 3.00
TU2 33.00 33.00 33.00 33.00 33.00 33.00 33.00 0.00 0.00 1.00 1.00 2.00 3.00 6.00
TU3 39.00 42.00 42.00 42.00 42.00 42.00 42.00 0.00 1.00 2.00 4.00 7.00 10.00 18.00
TU8 81.00 81.00 82.00 82.00 82.00 82.00 82.00 1.00 4.00 19.00 36.00 66.00 105.00 168.00
TU9 66.00 67.00 70.00 68.00 69.00 68.00 69.00 0.00 2.00 36.00 21.00 40.00 62.00 110.00
WE1 13.00 15.00 14.00 13.00 15.00 15.00 15.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
WE2 35.00 35.00 35.00 35.00 36.00 36.00 36.00 0.00 0.00 1.00 1.00 3.00 8.00 7.00
WE3 43.00 43.00 43.00 43.00 43.00 43.00 43.00 0.00 1.00 2.00 5.00 10.00 14.00 26.00
WE4 55.00 55.00 56.00 56.00 56.00 56.00 56.00 0.00 1.00 6.00 10.00 20.00 29.00 58.00
WE5 54.00 55.00 56.00 55.00 56.00 56.00 56.00 1.00 2.00 8.00 15.00 32.00 42.00 107.00
WE6 84.00 84.00 85.00 85.00 85.00 85.00 85.00 0.00 3.00 17.00 26.00 59.00 98.00 181.00
WE7 75.00 75.00 76.00 76.00 76.00 77.00 76.00 0.00 2.00 14.00 26.00 51.00 106.00 132.00
WE9 70.00 72.00 71.00 72.00 72.00 72.00 72.00 1.00 4.00 11.00 22.00 44.00 68.00 131.00
Avg 52.44 53.00 53.51 53.63 53.88 53.88 53.93 0.23 1.53 8.00 15.05 28.91 44.05 81.37
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Table 5.6: The performance of the NoReduced ILS-SAA with Θ when χ = 0.5

EJ Time(s)

Inst 0.1 1 5 10 20 30 50 0.1 1 5 10 20 30 50
FR1 26.00 28.00 27.00 27.00 28.00 28.00 28.00 0.00 0.00 1.00 1.00 4.00 6.00 7.00
FR2 38.00 39.00 39.00 40.00 40.00 40.00 40.00 0.00 1.00 3.00 7.00 16.00 23.00 34.00
FR3 35.00 36.00 36.00 36.00 36.00 36.00 36.00 0.00 0.00 2.00 4.00 6.00 10.00 16.00
FR4 52.00 53.00 55.00 56.00 57.00 56.00 57.00 0.00 2.00 10.00 17.00 35.00 59.00 104.00
FR5 61.00 62.00 62.00 62.00 62.00 62.00 65.00 1.00 2.00 9.00 18.00 36.00 62.00 136.00
FR6 76.00 77.00 79.00 79.00 79.00 78.00 80.00 0.00 5.00 32.00 48.00 114.00 141.00 283.00
FR7 56.00 63.00 63.00 64.00 64.00 64.00 64.00 1.00 8.00 27.00 69.00 118.00 217.00 306.00
FR8 87.00 89.00 91.00 91.00 90.00 93.00 92.00 1.00 6.00 34.00 71.00 111.00 205.00 359.00
FR9 69.00 69.00 69.00 69.00 69.00 69.00 69.00 0.00 3.00 16.00 29.00 55.00 97.00 154.00
MO1 13.00 13.00 13.00 13.00 13.00 13.00 13.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00
MO2 36.00 36.00 36.00 36.00 36.00 36.00 36.00 0.00 0.00 1.00 1.00 2.00 3.00 5.00
MO3 45.00 45.00 45.00 46.00 46.00 46.00 46.00 0.00 1.00 4.00 14.00 20.00 32.00 54.00
MO5 64.00 64.00 66.00 66.00 65.00 66.00 66.00 1.00 1.00 8.00 18.00 30.00 51.00 84.00
MO8 90.00 89.00 90.00 89.00 90.00 90.00 90.00 0.00 6.00 31.00 62.00 97.00 194.00 250.00
MO9 72.00 72.00 72.00 74.00 74.00 75.00 74.00 1.00 3.00 15.00 29.00 57.00 102.00 138.00
SA1 24.00 25.00 25.00 26.00 25.00 25.00 26.00 0.00 0.00 0.00 2.00 3.00 5.00 7.00
SA2 25.00 23.00 25.00 25.00 25.00 25.00 26.00 0.00 0.00 1.00 1.00 2.00 2.00 5.00
SA3 42.00 43.00 43.00 43.00 43.00 43.00 43.00 0.00 1.00 2.00 5.00 9.00 14.00 24.00
SA4 51.00 53.00 54.00 55.00 55.00 56.00 56.00 0.00 2.00 9.00 18.00 45.00 69.00 105.00
SA5 62.00 64.00 64.00 64.00 64.00 64.00 65.00 1.00 4.00 19.00 27.00 64.00 108.00 292.00
SA6 69.00 69.00 71.00 72.00 71.00 72.00 72.00 0.00 2.00 12.00 25.00 46.00 82.00 133.00
SA7 82.00 83.00 83.00 83.00 83.00 83.00 83.00 1.00 5.00 21.00 42.00 78.00 132.00 211.00
SA8 83.00 83.00 83.00 85.00 85.00 86.00 85.00 0.00 5.00 22.00 54.00 98.00 181.00 281.00
SA9 70.00 70.00 70.00 70.00 70.00 70.00 70.00 1.00 2.00 11.00 22.00 44.00 69.00 118.00
SU1 22.00 22.00 22.00 22.00 22.00 22.00 22.00 0.00 0.00 0.00 0.00 1.00 1.00 2.00
SU2 21.00 21.00 21.00 22.00 22.00 21.00 22.00 0.00 0.00 0.00 1.00 1.00 2.00 3.00
SU5 56.00 56.00 57.00 57.00 57.00 56.00 57.00 0.00 1.00 8.00 19.00 20.00 32.00 56.00
TH2 35.00 36.00 37.00 37.00 37.00 37.00 37.00 0.00 0.00 0.00 2.00 3.00 4.00 6.00
TH4 52.00 53.00 54.00 54.00 54.00 54.00 54.00 0.00 2.00 7.00 17.00 27.00 42.00 66.00
TH9 67.00 67.00 67.00 67.00 67.00 67.00 67.00 0.00 2.00 10.00 21.00 43.00 74.00 116.00
TU1 26.00 26.00 26.00 26.00 26.00 26.00 26.00 0.00 0.00 1.00 1.00 1.00 3.00 4.00
TU2 33.00 33.00 33.00 33.00 33.00 33.00 33.00 0.00 1.00 0.00 1.00 2.00 3.00 5.00
TU3 38.00 41.00 42.00 42.00 42.00 42.00 42.00 0.00 0.00 2.00 3.00 6.00 11.00 17.00
TU8 81.00 81.00 82.00 82.00 82.00 82.00 82.00 1.00 4.00 23.00 45.00 97.00 142.00 248.00
TU9 68.00 67.00 68.00 69.00 69.00 69.00 69.00 0.00 3.00 11.00 25.00 47.00 90.00 160.00
WE1 13.00 16.00 13.00 15.00 13.00 15.00 15.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00
WE2 35.00 36.00 36.00 36.00 35.00 35.00 36.00 0.00 0.00 1.00 2.00 2.00 3.00 5.00
WE3 43.00 43.00 43.00 43.00 43.00 43.00 43.00 0.00 1.00 2.00 4.00 9.00 14.00 23.00
WE4 55.00 55.00 55.00 55.00 56.00 56.00 56.00 0.00 1.00 6.00 12.00 25.00 45.00 58.00
WE5 55.00 55.00 55.00 55.00 55.00 55.00 56.00 1.00 2.00 9.00 20.00 38.00 71.00 119.00
WE6 84.00 85.00 85.00 85.00 85.00 85.00 85.00 0.00 5.00 21.00 36.00 73.00 131.00 230.00
WE7 75.00 75.00 76.00 76.00 76.00 76.00 76.00 1.00 3.00 16.00 31.00 63.00 100.00 164.00
WE9 70.00 72.00 72.00 72.00 72.00 72.00 72.00 0.00 6.00 36.00 67.00 148.00 217.00 332.00
Avg 52.49 53.21 53.60 53.93 53.86 54.00 54.23 0.26 2.09 10.30 20.74 39.44 66.30 109.81
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5.4.3 Performance comparison between CPLEX, Greedy algo-

rithm, and ILS-SAA with single scenario

This section presents the results of solving the SAA model with a single scenario. The

performance of the Greedy algorithm, CPLEX, Reduced ILS-SAA, and NoReduced ILS-

SAA is compared in Tables 5.7 and 5.8. The first four columns in Table 5.7 show the

instance’s name, number of customers in both C1 and C2, number of vehicles in T1,

and number of vehicles in T2. The groups Greedy, CPLEX, Reduced ILS-SAA, and

NoReduced ILS-SAA report the results obtained from the Greedy algorithm, CPLEX

using the SAA model, Reduced ILS-SAA, and NoReduced ILS-SAA, respectively. Each

column 1st reports the number of customers that were allocated to vehicles in T1 and

each column Gap(%) reports the optimality gap. In addition, the third column under

the group Greedy reports the time required by the first phase, whereas the last column

reports the time required by the second phase. Please note that the objective values in

columns EJ are in bold if the algorithm obtained the best values compared with other

algorithms.

Although the Greedy algorithm uses CPLEX for the first phase, without considering

the uncertainty, the problem size for the first phase is relatively small. Therefore, the

first phase can still produce good solutions. In addition, the superior performance of

the algorithm used in the second phase has been proven in Gu et al. (2021). As shown

in Table 5.7, the Greedy algorithm outperforms CPLEX for 39 out of 43 instances with

respect to the objective value within the same amount of computational time. Comparing

the performance between the Greedy algorithm, Reduced ILS-SAA, and NoReduced ILS-

SAA. The Reduced ILS-SAA outperforms the Greedy algorithm for 17 out of 43 instances

and produces the same objective values for 19 out of 43 instances. The NoReduced ILS-

SAA outperforms the Greedy algorithm for 20 out of 43 instances and produces the same

objective values for 18 out of 43 instances. In Table 5.8, with a total of 36 instances, the

objective values obtained by the NoReduecd ILS-SAA are better than the values obtained

by the Reduced ILS-SAA on 7 instances and are the same on 35 instances. This draws

the conclusion that the NoReduced ILS-SAA has better performance than the Reduced

ILS-SAA.

The difference between the NoReduced ILS and Reduced ILS-SAA is that the Reduced

ILS applies the neighbourhood reduction technique described in Chapter 4. The idea of
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the neighbourhood reduction technique in Chapter 4 is to find solutions that have better

value on the objective function compared with the current best-known feasible solution.

The technique ignores those solutions that have objective values worse than the current

best-known feasible solution thereby increasing the ability to find good solutions as well

as reducing the computational time. In Chapter 4, the effectiveness of the neighbourhood

reduction technique has been demonstrated by extensive computational experiments.

This contradiction may caused by the difference in the objective functions of the problem

studied in this chapter and the problem studied in Chapter 4. The objective of the studied

problem in Chapter 4 is to maximise the total number of served customers. The objective

value is recorded as an integer number which means a solution is better if it serves at

least one more customer than the current best-known feasible solution. In contrast, the

objective of the studied problem in this chapter is to maximise the expected total number

of served customers and the objective value is recorded as a real number. This difference

makes the neighbourhood reduction technique unsuitable for the Reduced ILS-SAA. The

reason could be that for the objective function in Chapter 4, many solutions may have the

same objective value. Hence, the algorithm in Chapter 4 has many candidate solutions

to find feasible solutions with 1 or more number of the served customers than the current

best-known feasible solution. It is not the case for the objective function of the problem

in this Chapter because each solution of the problem may have its unique objective value.

In terms of computational time, the Reduced ILS-SAA and NoReduced ILS-SAA

are incomparably better compared with the Greedy algorithm and CPLEX. With the

neighbourhood reduction technique, the Reduced ILS-SAA does require a shorter com-

putational time compared with the NoReduced ILS-SAA. But taking into account the

excellent solution quality produced by the NoReduced ILS-SAA, the computational time

for the NoReduced ILS-SAA is acceptable.

5.4.4 Performance comparison between CPLEX, Greedy algo-

rithm, and ILS-SAA with multiple scenarios

This section presents the results of solving the SAA model with 5 scenarios and 10

scenarios. Since the results in Section 5.4.3 have shown that the NoReduced ILS-SAA

outperforms the Reduced ILS-SAA, this section only reports the results obtained from

the NoReduced ILS-SAA.
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Table 5.7: Comparison between the performance of Greedy algorithm, CPLEX, Reduced ILS-
SAA, NoReduced ILS-SAA with one scenario (part1)

Greedy CPLEX

Inst |C| |T1| |T2| 1st Gap(%) Time(s) EJ Time(s) 1st EJ Gap(%) Time(s)
FR1 15 1 2 9.00 0.00 107.00 27.00 0.00 6.00 26.00 15.38 18346.00
FR2 25 2 2 10.00 150.00 21600.00 41.00 1.00 8.00 33.00 45.45 21600.00
FR3 25 2 3 23.00 8.70 21600.00 36.00 0.00 20.00 34.00 23.53 21600.00
FR4 35 2 3 21.00 66.67 21600.00 55.00 2.00 14.00 42.00 54.76 21600.00
FR5 35 3 4 29.00 20.69 21600.00 64.00 2.00 22.00 57.00 22.81 21600.00
FR6 45 3 4 29.00 50.00 21600.00 80.00 5.00 23.00 69.00 30.43 21600.00
FR7 45 4 3 14.00 221.43 21600.00 62.00 7.00 11.00 49.00 79.59 21600.00
FR8 50 5 4 44.00 13.64 21600.00 90.00 7.00 33.00 77.00 29.87 21600.00
FR9 40 4 4 29.00 37.93 21600.00 69.00 2.00 26.00 63.00 25.40 21600.00
MO1 15 1 1 7.00 0.00 6.00 13.00 0.00 6.00 13.00 100.00 21600.00
MO2 25 2 1 20.00 25.00 15308.00 34.00 0.00 17.00 30.00 63.33 13078.00
MO3 25 2 3 19.00 31.58 21600.00 47.00 1.00 17.00 45.00 8.89 21600.00
MO5 35 3 3 30.00 16.67 21600.00 64.00 1.00 24.00 61.00 13.11 21600.00
MO8 50 4 4 42.00 19.05 21600.00 88.00 5.00 42.00 82.00 18.29 21600.00
MO9 40 4 4 34.00 14.71 21600.00 72.00 2.00 21.00 62.00 29.03 21600.00
SA1 15 1 2 4.00 0.00 5.00 26.00 0.00 4.00 25.00 4.00 21600.00
SA2 25 2 1 14.00 71.43 11587.00 26.00 0.00 13.00 22.00 90.91 21600.00
SA3 25 2 3 22.00 13.64 20531.00 43.00 0.00 15.00 41.00 12.20 21600.00
SA4 35 2 3 18.00 88.89 9342.00 54.00 3.00 13.00 45.00 55.56 21600.00
SA5 35 3 4 19.00 84.21 21600.00 66.00 5.00 13.00 59.00 18.64 21600.00
SA6 45 3 3 38.00 18.42 18169.00 68.00 2.00 30.00 58.00 43.10 21600.00
SA7 45 4 4 38.00 18.42 21600.00 83.00 3.00 26.00 72.00 20.83 21600.00
SA8 50 4 3 38.00 31.58 21600.00 80.00 11.00 33.00 64.00 54.69 21600.00
SA9 40 4 4 34.00 17.65 15642.00 70.00 2.00 30.00 67.00 19.40 21600.00
SU1 15 1 2 14.00 7.14 21600.00 25.00 0.00 9.00 25.00 0.00 14012.00
SU2 25 2 1 16.00 56.25 21600.00 21.00 0.00 15.00 20.00 100.00 21600.00
SU5 35 2 3 32.00 9.38 21600.00 57.00 1.00 28.00 54.00 27.66 21600.00
TH2 25 2 1 20.00 20.00 21600.00 35.00 0.00 20.00 34.00 29.41 6097.00
TH4 35 2 3 24.00 20.83 21600.00 54.00 2.00 18.00 50.00 30.00 21600.00
TH9 40 4 4 34.00 11.76 21600.00 67.00 1.00 27.00 62.00 29.03 21600.00
TU1 15 1 2 11.00 0.00 78.00 26.00 0.00 7.00 26.00 3.85 21600.00
TU2 25 2 1 20.00 5.00 21600.00 32.00 0.00 19.00 31.00 29.03 21600.00
TU3 25 2 2 22.00 9.09 10507.00 42.00 1.00 18.00 41.00 9.76 13813.00
TU8 50 5 4 43.00 9.30 21600.00 80.00 7.00 32.00 67.00 49.25 21600.00
TU9 40 4 4 33.00 21.21 21600.00 69.00 4.00 22.00 63.00 25.40 21600.00
WE1 15 1 1 9.00 0.00 4353.00 15.00 0.00 8.00 16.00 62.50 21600.00
WE2 25 2 1 22.00 13.64 21600.00 35.00 0.00 17.00 29.00 55.17 21600.00
WE3 25 2 3 19.00 26.32 21600.00 43.00 1.00 13.00 40.00 15.00 21600.00
WE4 35 3 3 29.00 17.24 21600.00 55.00 1.00 25.00 48.00 41.67 21600.00
WE5 35 3 4 29.00 20.69 21600.00 57.00 3.00 18.00 45.00 55.56 21600.00
WE6 45 4 4 38.00 18.42 6823.00 83.00 4.00 29.00 70.00 28.57 21600.00
WE7 45 4 3 40.00 12.50 5111.00 75.00 2.00 39.00 69.00 27.54 21600.00
WE9 40 4 4 16.00 150.00 21600.00 72.00 7.00 9.00 54.00 46.30 21600.00
Avg 24.56 33.70 17301.60 53.51 2.21 19.53 47.44 35.93 20608.05
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Table 5.8: Comparison between the performance of Greedy algorithm, CPLEX, ILS-SAA with
one scenario (part2)

Reduced ILS-SAA NoReduced ILS-SAA

Inst |C| |T1| |T2| 1st EJ Time(s) 1st EJ Time(s)
FR1 15 1 2 6.00 28.00 6.00 6.00 28.00 7.00
FR2 25 2 2 10.00 40.00 23.00 10.00 40.00 34.00
FR3 25 2 3 19.00 36.00 17.00 21.00 36.00 16.00
FR4 35 2 3 24.00 56.00 59.00 27.00 57.00 104.00
FR5 35 3 4 26.00 65.00 108.00 28.00 65.00 136.00
FR6 45 3 4 31.00 73.00 19.00 30.00 80.00 283.00
FR7 45 4 3 17.00 64.00 115.00 18.00 64.00 306.00
FR8 50 5 4 42.00 90.00 234.00 47.00 92.00 359.00
FR9 40 4 4 29.00 69.00 173.00 35.00 69.00 154.00
MO1 15 1 1 7.00 13.00 2.00 7.00 13.00 1.00
MO2 25 2 1 22.00 36.00 7.00 22.00 36.00 5.00
MO3 25 2 3 13.00 46.00 38.00 18.00 46.00 54.00
MO5 35 3 3 25.00 66.00 82.00 30.00 66.00 84.00
MO8 50 4 4 48.00 90.00 270.00 49.00 90.00 250.00
MO9 40 4 4 33.00 74.00 116.00 36.00 74.00 138.00
SA1 15 1 2 3.00 24.00 4.00 4.00 26.00 7.00
SA2 25 2 1 14.00 26.00 13.00 14.00 26.00 5.00
SA3 25 2 3 16.00 43.00 25.00 19.00 43.00 24.00
SA4 35 2 3 16.00 53.00 52.00 20.00 56.00 105.00
SA5 35 3 4 15.00 65.00 239.00 16.00 65.00 292.00
SA6 45 3 3 39.00 72.00 133.00 42.00 72.00 133.00
SA7 45 4 4 38.00 83.00 196.00 38.00 83.00 211.00
SA8 50 4 3 45.00 85.00 238.00 45.00 85.00 281.00
SA9 40 4 4 32.00 70.00 119.00 36.00 70.00 118.00
SU1 15 1 2 11.00 25.00 4.00 14.00 22.00 2.00
SU2 25 2 1 16.00 21.00 3.00 16.00 22.00 3.00
SU5 35 2 3 29.00 57.00 56.00 31.00 57.00 56.00
TH2 25 2 1 22.00 37.00 10.00 22.00 37.00 6.00
TH4 35 2 3 23.00 54.00 62.00 23.00 54.00 66.00
TH9 40 4 4 35.00 67.00 128.00 35.00 67.00 116.00
TU1 15 1 2 10.00 26.00 3.00 9.00 26.00 4.00
TU2 25 2 1 20.00 33.00 6.00 20.00 33.00 5.00
TU3 25 2 2 17.00 42.00 18.00 19.00 42.00 17.00
TU8 50 5 4 45.00 82.00 168.00 44.00 82.00 248.00
TU9 40 4 4 34.00 69.00 110.00 32.00 69.00 160.00
WE1 15 1 1 8.00 15.00 1.00 8.00 15.00 1.00
WE2 25 2 1 22.00 36.00 7.00 23.00 36.00 5.00
WE3 25 2 3 17.00 43.00 26.00 17.00 43.00 23.00
WE4 35 3 3 30.00 56.00 58.00 30.00 56.00 58.00
WE5 35 3 4 23.00 56.00 107.00 29.00 56.00 119.00
WE6 45 4 4 42.00 85.00 181.00 43.00 85.00 230.00
WE7 45 4 3 41.00 76.00 132.00 40.00 76.00 164.00
WE9 40 4 4 17.00 72.00 131.00 17.00 72.00 332.00
Avg 24.00 53.93 81.37 25.35 54.23 109.81
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Table 5.9 compares the performance of the Greedy algorithm, CPLEX, and NoRe-

duced MSILS-SAA for the SAA model with 5 scenarios. Table 5.10 compares the perfor-

mance of these methods for the SAA with 10 scenarios. Since the NoReduced MSILS-SAA

are comprised of a number of applications of the NoReduced ILS-SAA, in these tables, the

best objective value obtained by these applications is reported. The column titled “Best

1st” reports the number of customers allocated to vehicles in T1, whereas the column

titled “Best EJ” reports the expected total number of allocated customers.

With respect to the solution quality obtained for the SAA model with 5 scenarios,

the NoReduced MSILS-SAA outperforms both the Greedy algorithm and CPLEX for 34

out of 43 instances. For the SAA model with 10 scenarios, the NoReduced MSILS-SAA

outperforms both the Greedy algorithm and CPLEX for 37 of 43 instances. There is one

instance that CPLEX cannot even obtain a feasible solution. In terms of computational

time, the NoReduced MSILS-SAA is better than both the Greedy algorithm and CPLEX.

Both tables show that the stochastic programming approach can be a useful tool for the

problem of preloading under uncertainty.

5.4.5 Stochastic analysis on the first-stage solutions

This subsection presents the results for the stochastic analysis on first-stage solutions

obtained from CPLEX for solving SAA models with 1 scenario, 5 scenarios, and 10

scenarios; the Greedy algorithm; the NoReduced ILS-SAA for solving the SAA model

with 1 scenario; and the NoReduced MSILS-SAA for solving the SAA models with 5

scenarios and 10 scenarios. The groups CPLESSAA1, CPLEXSAA5, and CPLEXSAA10

report the results obtained from the first-stage solution produced by CPLEX from solving

SAA models with 1 scenario, 5 scenarios, and 10 scenarios. The group NoReduced ILS-

SAA1 presents the result obtained from the first-stage solutions produced by NoReduced

ILS-SAA for solving the SAA model with 1 scenario whereas the groups NoReduced

MSILS-SAA5 and NoReduced MSILS-SAA10 present the results obtained from the first-

stage solutions produced by NoReduced MSILS-SAA for solving the SAA models with 5

scenarios and 10 scenarios. The columns Time∗(s) report the total time used to evaluate

the first-stage solution.

In Table 5.11, the expected total number of allocated customers for the first-stage

solutions obtained from CPLEX becomes worse when the number of scenarios increases
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Table 5.9: Comparison between the performance of Greedy algorithm, CPLEX, NoReduced
MSILS-SAA with 5 scenarios

NoReduced
Greedy CPLEX MSILS-SAA

Inst |C| |T1| |T2| 1st EJ Time(s) 1st EJ Gap(%) Time(s) Best
1st

Best
EJ

Time(s)

FR1 15 1 2 9.00 26.20 107.00 2.00 24.00 20.83 21600.00 9.00 26.40 2.00
FR2 25 2 2 10.00 39.60 21604.00 7.00 29.60 62.84 21600.00 10.00 39.80 14.00
FR3 25 2 3 23.00 37.60 21601.00 9.00 27.80 64.03 21600.00 22.00 37.80 9.00
FR4 35 2 3 21.00 55.20 21616.00 8.00 24.20 184.30 21600.00 25.00 57.60 46.00
FR5 35 3 4 29.00 63.60 21611.00 14.00 49.00 42.04 21600.00 26.00 63.20 43.00
FR6 45 3 4 29.00 76.60 21630.00 2.00 17.40 417.24 21600.00 33.00 78.60 113.00
FR7 45 4 3 14.00 65.60 21652.00 5.00 30.20 192.72 21600.00 19.00 68.20 119.00
FR8 50 5 4 44.00 89.60 21624.00 13.00 31.20 216.67 21600.00 48.00 92.00 130.00
FR9 40 4 4 29.00 65.40 21609.00 19.00 46.80 64.10 21600.00 35.00 66.20 57.00
MO1 15 1 1 7.00 12.00 6.00 7.00 11.80 126.27 21600.00 6.00 12.40 1.00
MO2 25 2 1 20.00 31.20 15309.00 13.00 22.60 112.39 21600.00 22.00 33.60 0.00
MO3 25 2 3 19.00 44.60 21604.00 3.00 25.80 86.05 21600.00 19.00 44.80 19.00
MO5 35 3 3 30.00 61.40 21604.00 16.00 52.20 33.24 21600.00 28.00 62.80 35.00
MO8 50 4 4 42.00 89.20 21630.00 29.00 73.80 31.98 21600.00 46.00 90.40 116.00
MO9 40 4 4 34.00 71.80 21613.00 12.00 58.40 36.99 21600.00 34.00 74.00 57.00
SA1 15 1 2 4.00 25.60 6.00 2.00 24.00 15.00 21600.00 4.00 26.20 3.00
SA2 25 2 1 14.00 26.40 11588.00 11.00 21.00 129.05 21600.00 14.00 25.80 2.00
SA3 25 2 3 22.00 44.80 20532.00 10.00 41.00 18.54 21225.00 20.00 45.00 12.00
SA4 35 2 3 18.00 57.60 9361.00 11.00 40.60 68.47 21600.00 19.00 58.80 49.00
SA5 35 3 4 19.00 65.20 21618.00 4.00 46.80 49.57 21600.00 19.00 65.20 105.00
SA6 45 3 3 38.00 69.60 18184.00 30.00 55.20 63.04 21600.00 43.00 75.00 59.00
SA7 45 4 4 38.00 83.40 21620.00 16.00 55.40 60.29 21600.00 40.00 84.00 105.00
SA8 50 4 3 38.00 76.80 21633.00 32.00 63.00 49.22 21600.00 48.00 82.60 88.00
SA9 40 4 4 34.00 70.60 15653.00 14.00 53.80 48.33 21600.00 35.00 72.20 63.00
SU1 15 1 2 14.00 26.80 21600.00 6.00 23.00 22.61 19440.00 14.00 23.00 2.00
SU2 25 2 1 16.00 22.60 21600.00 14.00 19.80 112.12 13999.00 17.00 23.80 0.00
SU5 35 2 3 32.00 60.00 21608.00 26.00 51.20 34.37 21600.00 33.00 60.60 32.00
TH2 25 2 1 20.00 36.00 21600.00 13.00 23.20 93.10 21600.00 22.00 38.40 0.00
TH4 35 2 3 24.00 52.60 21607.00 16.00 44.60 44.39 21600.00 22.00 53.80 35.00
TH9 40 4 4 34.00 65.60 21612.00 17.00 33.80 136.69 21600.00 35.00 66.00 58.00
TU1 15 1 2 11.00 25.40 79.00 2.00 23.40 17.09 3790.00 9.00 25.60 2.00
TU2 25 2 1 20.00 34.60 21600.00 16.00 28.20 50.35 21600.00 20.00 35.20 1.00
TU3 25 2 2 22.00 42.80 10508.00 6.00 32.00 47.5 21600.00 22.00 42.80 6.00
TU8 50 5 4 43.00 84.60 21616.00 22.00 61.40 62.87 21600.00 44.00 86.40 98.00
TU9 40 4 4 33.00 70.00 21611.00 13.00 38.40 107.29 21600.00 32.00 71.80 64.00
WE1 15 1 1 9.00 16.20 4353.00 5.00 12.60 123.63 21600.00 8.00 16.20 0.00
WE2 25 2 1 22.00 35.20 21600.00 16.00 28.80 62.50 21600.00 22.00 35.20 2.00
WE3 25 2 3 19.00 43.40 21603.00 3.00 36.60 36.07 21600.00 17.00 44.20 10.00
WE4 35 3 3 29.00 56.20 21606.00 13.00 42.60 63.38 21600.00 30.00 58.00 27.00
WE5 35 3 4 29.00 59.20 21609.00 13.00 47.60 44.96 21600.00 28.00 59.00 46.00
WE6 45 4 4 38.00 81.00 6840.00 9.00 56.40 59.22 21600.00 43.00 83.00 80.00
WE7 45 4 3 40.00 72.20 5122.00 34.00 63.40 37.22 21600.00 41.00 73.80 49.00
WE9 40 4 4 16.00 72.20 21637.00 6.00 52.00 52.69 21600.00 17.00 72.20 125.00
Avg 24.56 53.63 17312.23 12.53 38.25 0.79 20950.09 25.58 54.69 43.81
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Table 5.10: Comparison between the performance of Greedy algorithm, CPLEX, NoReduced
MSILS-SAA with 10 scenarios

NoReduced
Greedy CPLEX MSILS-SAA

Inst |C| |T1| |T2| 1st EJ Time(s) 1st EJ Gap(%) Time(s) 1st EJ Time(s)
FR1 15 1 2 9.00 26.00 108.00 2.00 23.10 23.38 21600.00 9.00 26.40 7.00
FR2 25 2 2 10.00 41.30 21608.00 4.00 30.40 58.53 21600.00 10.00 41.60 58.00
FR3 25 2 3 23.00 37.20 21603.00 2.00 14.10 245.88 21600.00 22.00 37.30 29.00
FR4 35 2 3 21.00 56.30 21632.00 5.00 17.00 307.06 21600.00 27.00 58.50 174.00
FR5 35 3 4 29.00 63.80 21620.00 5.00 14.30 386.01 21600.00 26.00 64.40 166.00
FR6 45 3 4 29.00 76.40 21655.00 6.00 33.30 170.27 21600.00 33.00 78.50 443.00
FR7 45 4 3 14.00 65.30 21708.00 5.00 20.50 326.83 21600.00 19.00 68.20 433.00
FR8 50 5 4 44.00 91.10 21649.00 10.00 16.60 498.19 21600.00 48.00 92.90 533.00
FR9 40 4 4 29.00 65.50 21618.00 23.00 55.20 38.41 21600.00 35.00 66.40 253.00
MO1 15 1 1 7.00 12.40 6.00 6.00 11.40 135.86 21600.00 7.00 12.60 1.00
MO2 25 2 1 20.00 30.50 15309.00 11.00 19.80 142.42 21600.00 22.00 32.70 4.00
MO3 25 2 3 19.00 44.40 21608.00 2.00 22.80 114.04 21600.00 18.00 44.30 74.00
MO5 35 3 3 30.00 61.20 21609.00 15.00 41.90 65.87 21600.00 31.00 63.10 133.00
MO8 50 4 4 42.00 89.80 21655.00 8.00 31.80 206.92 21600.00 49.00 91.10 464.00
MO9 40 4 4 34.00 72.60 21623.00 5.00 37.00 115.95 21600.00 34.00 74.50 241.00
SA1 15 1 2 4.00 26.20 7.00 1.00 21.80 29.36 21600.00 4.00 26.80 14.00
SA2 25 2 1 14.00 25.60 11588.00 10.00 17.90 165.36 21600.00 14.00 25.30 5.00
SA3 25 2 3 22.00 44.50 20534.00 5.00 37.00 32.43 16556.00 21.00 44.70 50.00
SA4 35 2 3 18.00 56.90 9373.00 7.00 22.80 202.19 21600.00 21.00 58.50 195.00
SA5 35 3 4 19.00 65.60 21639.00 0.00 31.70 120.82 21600.00 19.00 65.80 442.00
SA6 45 3 3 38.00 69.80 18198.00 18.00 33.30 168.47 21600.00 44.00 75.30 239.00
SA7 45 4 4 38.00 83.50 21646.00 7.00 25.00 257.60 21600.00 40.00 83.90 435.00
SA8 50 4 3 38.00 77.00 21666.00 6.00 13.10 624.63 21600.00 47.00 83.40 372.00
SA9 40 4 4 34.00 72.60 15669.00 3.00 44.40 79.05 21600.00 35.00 73.40 272.00
SU1 15 1 2 14.00 27.40 21600.00 2.00 18.30 55.74 21600.00 14.00 23.20 9.00
SU2 25 2 1 16.00 23.20 21601.00 10.00 15.60 174.79 21600.00 17.00 24.10 3.00
SU5 35 2 3 32.00 60.70 21615.00 0 0 N/A 21600.00 33.00 61.30 125.00
TH2 25 2 1 20.00 35.70 21600.00 19.00 30.90 45.31 21600.00 22.00 38.10 5.00
TH4 35 2 3 24.00 52.60 21614.00 13.00 30.50 113.10 21600.00 22.00 53.60 132.00
TH9 40 4 4 34.00 65.10 21624.00 16.00 28.00 185.71 21600.00 36.00 65.70 235.00
TU1 15 1 2 11.00 24.90 79.00 1.00 22.40 19.20 21600.00 9.00 25.10 14.00
TU2 25 2 1 20.00 34.20 21601.00 8.00 29.30 47.51 21600.00 20.00 34.90 5.00
TU3 25 2 2 22.00 42.90 10509.00 8.00 32.00 49.38 21600.00 22.00 42.90 32.00
TU8 50 5 4 43.00 84.00 21631.00 10.00 26.30 279.47 21600.00 45.00 85.80 395.00
TU9 40 4 4 33.00 70.20 21626.00 7.00 19.10 316.62 21600.00 35.00 71.60 256.00
WE1 15 1 1 9.00 16.20 4353.00 5.00 13.10 113.74 21600.00 9.00 17.00 1.00
WE2 25 2 1 22.00 35.20 21601.00 16.00 27.50 72.21 21600.00 23.00 36.00 7.00
WE3 25 2 3 19.00 43.40 21607.00 2.00 35.80 37.71 21600.00 20.00 44.20 45.00
WE4 35 3 3 29.00 56.40 21613.00 5.00 9.10 664.84 21600.00 30.00 58.10 114.00
WE5 35 3 4 29.00 61.40 21616.00 10.00 29.30 135.84 21600.00 27.00 61.40 231.00
WE6 45 4 4 38.00 81.50 6861.00 5.00 24.20 270.66 21600.00 40.00 83.50 406.00
WE7 45 4 3 40.00 73.00 5133.00 24.00 44.50 93.48 21600.00 41.00 74.50 222.00
WE9 40 4 4 16.00 73.50 21677.00 4.00 45.30 75.50 21600.00 18.00 73.50 549.00
Avg 24.56 53.88 17323.07 7.70 25.99 173.01 21482.70 26.00 54.98 181.93
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in the SAA model. This is because as the number of scenarios increases the problem

size also increases. CPLEX is not able to construct good first-stage solutions when the

problem size becomes large. Furthermore, since CPLEX couldn’t produce first-stage

solutions with a desired number of allocated customers, this becomes a computational

burden for the iterated local search in Gu et al. (2021) to compute the second-stage

solutions. This explains why the values in column Time∗(s) are larger compared with

the corresponding values obtained from the Greedy algorithm, NoReduced ILS-SAA, and

NoReduced MSILS-SAA.

The total expected number of allocated customers of the first-stage solutions obtained

from ILS-SAA becomes better when the ILS-SAA solves an SAA model with a larger

number of scenarios. For 31 out of 43 instances, even the first-stage solutions obtained

from NoReduced ILS-SAA for solving the SAA model with 1 scenario are better than the

first-stage solutions obtained from the Greedy algorithm in terms of the total expected

number of allocated customers. For the first-stage solutions obtained from the Greedy

algorithm, they are obtained by allocating as many as possible for the customer in C1

ignoring what will happen for customers in C2. From the stochastic analysis, it has been

observed that this strategy may not always be the ideal strategy. For example, for 7

out of 43 instances, the MSILS-SAA10 obtained the first-stage solution with the same

number of allocated customers in C1 as the first-stage solution obtained by the Greedy

algorithm and produced a higher expected total number of allocated customers. This is

an indication that the choices of which customers to allocate in preloading are important

and do have a big impact when the customers in C2 are revealed. Therefore, it is worth

trying the ILS-SAA for an SAA model.

5.5 Conclusion

This chapter studies Simultaneous Pickup and Delivery with Preloading under Uncer-

tainty. This problem is formulated as a two-stage stochastic program and solved by a

sample average approximation approach. An Iterated local search, extended from the

Lagrangian ILS, is designed for the sample average approximation approaches, Named

ILS-SAA. This algorithm is tested on benchmark instances derived from real historical

data. The results of computational experiments have shown that ILS-SAA outperforms
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Table 5.11: Stochastic analysis on first stage solutions obtained from CPLEX, the Greedy
algorithm, NoReduced ILS-SAA, and NoReduced MSILS-SAA (part1)

CPLEXSAA1 CPLEXSAA5 CPLEXSAA10

Inst |C| |T1| |T2| 1st EJ T ime∗(s) 1st EJ T ime∗(s) 1st EJ T ime∗(s)
FR1 15 1 2 6 25.49 8.00 2 25.54 15.00 2 25.60 14.00
FR2 25 2 2 8 38.48 54.00 7 38.83 58.00 4 37.04 73.00
FR3 25 2 3 20 36.97 21.00 9 31.14 77.00 2 25.53 145.00
FR4 35 2 3 14 53.69 219.00 8 50.99 281.00 5 49.79 337.00
FR5 35 3 4 22 61.68 130.00 14 60.40 233.00 5 60.65 382.00
FR6 45 3 4 23 75.52 362.00 2 68.10 1009.00 6 70.38 876.00
FR7 45 4 3 11 62.44 461.00 5 58.78 575.00 5 58.19 566.00
FR8 50 5 4 33 87.03 417.00 13 80.20 1011.00 10 76.39 1137.00
FR9 40 4 4 26 64.70 128.00 19 63.29 187.00 23 63.56 145.00
MO1 15 1 1 6 12.23 1.00 7 12.64 2.00 6 11.81 2.00
MO2 25 2 1 17 28.22 3.00 13 25.40 4.00 11 23.65 4.00
MO3 25 2 3 17 45.06 31.00 3 42.01 103.00 2 42.43 110.00
MO5 35 3 3 24 61.61 93.00 16 58.28 172.00 15 57.27 172.00
MO8 50 4 4 42 91.87 230.00 29 89.33 491.00 8 81.50 1417.00
MO9 40 4 4 21 70.18 245.00 12 70.05 409.00 5 68.09 552.00
SA1 15 1 2 4 26.85 12.00 2 26.17 18.00 1 25.22 19.00
SA2 25 2 1 13 25.13 3.00 11 23.40 4.00 10 23.01 3.00
SA3 25 2 3 15 44.57 36.00 10 44.17 58.00 5 43.14 94.00
SA4 35 2 3 13 55.17 280.00 11 55.21 286.00 7 52.71 328.00
SA5 35 3 4 13 65.40 283.00 4 63.06 486.00 0 61.87 598.00
SA6 45 3 3 30 69.11 253.00 30 66.37 237.00 18 60.35 452.00
SA7 45 4 4 26 80.24 449.00 16 76.49 805.00 7 73.15 1165.00
SA8 50 4 3 33 74.44 421.00 32 75.17 417.00 6 58.54 894.00
SA9 40 4 4 30 73.34 183.00 14 71.13 455.00 3 67.35 802.00
SU1 15 1 2 9 18.36 4.00 6 17.62 5.00 2 13.97 11.00
SU2 25 2 1 15 22.61 4.00 14 21.55 4.00 10 18.50 5.00
SU5 35 2 3 28 60.61 73.00 26 59.77 84.00 0 47.90 398.00
TH2 25 2 1 20 35.82 4.00 13 31.29 6.00 19 34.41 2.00
TH4 35 2 3 18 54.05 100.00 16 53.21 114.00 13 51.43 137.00
TH9 40 4 4 27 63.55 225.00 17 59.76 426.00 16 57.28 456.00
TU1 15 1 2 7 24.49 6.00 2 24.49 14.00 1 24.36 22.00
TU2 25 2 1 19 34.45 3.00 16 32.83 4.00 8 27.34 6.00
TU3 25 2 2 18 42.10 22.00 6 36.68 62.00 8 37.45 57.00
TU8 50 5 4 32 80.72 418.00 22 76.78 693.00 10 68.43 930.00
TU9 40 4 4 22 69.93 273.00 13 69.47 465.00 7 66.49 622.00
WE1 15 1 1 8 16.33 0.00 5 13.63 1.00 5 13.68 1.00
WE2 25 2 1 17 31.06 5.00 16 31.17 4.00 16 30.53 4.00
WE3 25 2 3 13 42.51 58.00 3 43.01 134.00 2 42.46 147.00
WE4 35 3 3 25 55.59 106.00 13 51.53 259.00 5 47.31 397.00
WE5 35 3 4 18 58.19 173.00 13 57.15 285.00 10 57.16 332.00
WE6 45 4 4 29 78.67 358.00 9 72.36 850.00 5 71.73 1106.00
WE7 45 4 3 39 72.47 96.00 34 70.07 130.00 24 65.52 218.00
WE9 40 4 4 9 70.97 536.00 6 69.52 601.00 4 68.66 660.00

19.53 52.60 157.84 12.53 50.42 268.23 7.70 47.95 367.40
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Table 5.12: Stochastic analysis on first stage solutions obtained from CPLEX, the Greedy
algorithm, NoReduced ILS-SAA, and NoReduced MSILS-SAA (part2)

NoReduced NoReduced NoReduced
Greedy ILS-SAA1 MSILS-SAA5 MSILS-SAA10

Inst 1st EJ T ime∗(s) 1st EJ T ime∗(s) 1st EJ T ime∗(s) 1st EJ T ime∗(s)
FR1 9 25.66 5.00 6 26.44 9.00 9 25.64 5.00 9 26.00 5.00
FR2 10 41.00 49.00 10 41.33 48.00 10 41.46 44.00 10 41.21 52.00
FR3 23 37.32 15.00 21 37.24 19.00 22 37.28 16.00 22 37.27 17.00
FR4 21 56.98 133.00 27 59.54 88.00 25 59.01 110.00 27 59.45 88.00
FR5 29 63.63 87.00 28 64.60 95.00 26 64.31 113.00 26 64.24 112.00
FR6 29 77.21 324.00 30 78.52 270.00 33 78.61 223.00 33 78.41 225.00
FR7 14 64.83 442.00 18 67.37 367.00 19 67.86 338.00 19 67.74 343.00
FR8 44 89.21 257.00 47 90.37 236.00 48 91.30 211.00 48 91.27 216.00
FR9 29 65.59 100.00 35 66.55 69.00 35 66.53 63.00 35 66.39 64.00
MO1 7 12.61 1.00 7 12.56 1.00 6 12.24 1.00 7 12.59 1.00
MO2 20 31.04 3.00 22 33.11 2.00 22 32.99 2.00 22 33.00 3.00
MO3 19 45.36 28.00 18 45.23 31.00 19 45.23 27.00 18 45.24 29.00
MO5 30 60.80 56.00 30 62.87 69.00 28 61.69 71.00 31 62.59 56.00
MO8 42 91.57 250.00 49 92.26 158.00 46 92.46 193.00 49 92.54 156.00
MO9 34 72.36 110.00 36 73.47 108.00 34 74.17 126.00 34 74.16 124.00
SA1 4 26.45 15.00 4 26.82 13.00 4 26.85 12.00 4 26.83 12.00
SA2 14 25.97 3.00 14 25.90 3.00 14 25.89 3.00 14 25.89 4.00
SA3 22 44.66 19.00 19 44.82 20.00 20 44.93 20.00 21 44.94 18.00
SA4 18 57.04 173.00 20 57.71 159.00 19 57.90 172.00 21 57.40 142.00
SA5 19 65.91 191.00 16 65.29 226.00 19 66.02 203.00 19 65.88 192.00
SA6 38 70.04 158.00 42 74.10 118.00 43 74.81 113.00 44 74.99 104.00
SA7 38 82.68 225.00 38 83.00 237.00 40 83.31 211.00 40 83.33 219.00
SA8 38 77.52 304.00 45 82.61 159.00 48 83.94 140.00 47 83.83 159.00
SA9 34 73.56 137.00 36 74.04 123.00 35 74.18 125.00 35 74.04 128.00
SU1 14 23.01 2.00 14 22.49 2.00 14 23.00 2.00 14 23.01 2.00
SU2 16 23.69 4.00 16 23.59 4.00 17 24.54 4.00 17 24.61 3.00
SU5 32 61.47 52.00 31 61.81 57.00 33 62.18 48.00 33 62.05 45.00
TH2 20 35.69 5.00 22 37.62 2.00 22 37.62 5.00 22 37.54 4.00
TH4 24 53.26 64.00 23 53.86 71.00 22 53.94 78.00 22 53.83 75.00
TH9 34 65.47 126.00 35 66.15 99.00 35 66.24 102.00 36 66.27 96.00
TU1 11 24.77 4.00 9 24.76 5.00 9 24.89 4.00 9 24.89 5.00
TU2 20 34.69 3.00 20 35.39 3.00 20 35.44 3.00 20 35.43 3.00
TU3 22 42.52 12.00 19 42.27 19.00 22 42.51 13.00 22 42.55 13.00
TU8 43 83.63 218.00 44 85.24 196.00 44 85.19 199.00 45 85.26 173.00
TU9 33 70.01 162.00 32 70.86 171.00 32 71.05 162.00 35 71.19 123.00
WE1 9 15.82 1.00 8 15.63 1.00 8 15.60 1.00 9 16.63 0.00
WE2 22 36.09 3.00 23 37.11 3.00 22 36.21 3.00 23 36.94 3.00
WE3 19 43.29 36.00 17 44.34 35.00 17 44.32 37.00 20 44.41 28.00
WE4 29 56.59 68.00 30 58.01 72.00 30 58.00 71.00 30 58.10 74.00
WE5 29 61.28 72.00 29 61.21 66.00 28 60.90 78.00 27 61.10 83.00
WE6 38 80.36 195.00 43 82.79 151.00 43 82.16 148.00 40 82.00 181.00
WE7 40 72.82 86.00 40 73.34 85.00 41 74.19 81.00 41 74.29 86.00
WE9 16 72.22 355.00 17 72.12 336.00 17 72.15 328.00 18 72.20 318.00

24.56 53.85 105.88 25.35 54.75 93.16 25.58 54.85 90.91 26.00 54.92 88.00
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a Greedy algorithm and CPLEX in terms of computation time and solution quality.



6
Conclusions and future work

6.1 Conclusions

This thesis describes an optimisation framework that amalgamates the iterated local

search method and the Lagrangian relaxation technique. Three variants of the vehicle

routing problem are studied in this thesis. For each of the studied problems, a problem-

specific optimisation procedure is derived under the Lagrangian ILS framework. These

three optimisation procedures are common in terms of how the weights of coefficients are

adjusted and how the local search algorithm is performed. Although the Lagrangian ILS

framework can be directly applied to all three problems, to produce solutions with good

quality, the algorithms under this framework still require problem-specific mechanisms to

further enhance their performance.

6.1.1 Workforce Scheduling and Routing Problem

In Chapter 3, a new optimisation procedure for the Workforce Scheduling and Routing

Problem is described. This procedure, referred to as the Lagrangian ILS, is based on the

idea of an amalgamation of the iterated local search and Lagrangian relaxation, which

was first introduced in Gu et al. (2019). Through various changes, the Lagrangian ILS

significantly outperforms the original implementation of the idea of such amalgamation

presented in Gu et al. (2019) in instances with 25 and 50 tasks. In particular, the La-

grangian ILS constantly produces the optimal solutions in almost all instances with 25

and 50 tasks. The computational experiments have also shown the superior performance

of the Lagrangian ILS in comparison with CPLEX and the algorithm in Xie et al. (2017)

both, in terms of the solution quality and the computational time. The computational

experiments were conducted on a set of benchmark instances from the literature, re-

garded as standard in the publications on this topic. The exceptional performance of the
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Lagrangian ILS is particularly evident in large instances, outperforming the algorithm

in Xie et al. (2017) even when the Lagrangian ILS can only use half the permissible

number of iterations. After applying the Lagrangian ILS to the WSRP, its performance

demonstrates a great potential for solving the industry problems studied in Chapters 4

and 5.

6.2 Multi-attribute Simultaneous Pickup and Deliv-

ery Problem

In Chapter 4, a practical vehicle routing problem with simultaneous pickups and deliver-

ies is studied. The problem considers ordered objectives where the primary objective is

to maximise the number of served customers and the secondary objective is to minimise

the total travel time. This problem is formulated into a three-index mathematical formu-

lation and solved by an iterated local search that alternates between the two objectives

during the application of local search. This iterated local search, called ILS2O, is based

on the Lagrangian ILS and a neighbourhood reduction technique. The computational

experiments were conducted on three sets of benchmarks. One is provided by a real-

world transportation company and the other two are derived from the standard Solomon

benchmark for vehicle routing problems. The results demonstrate the ILS2O algorithm

outperforms a 2Phase algorithm, CPLEX, the iterated local search described in Xie et al.

(2017) in terms of solution quality and stability within a time limit of 1 minute.

6.3 Simultaneous Pickup and Delivery Problem with

Preloading under Uncertainty

In chapter 5, the preloading problem faced by the industry partner is simplified as the

Simultaneous Pickup and Delivery with Preloading under Uncertainty by assuming the

selection of vehicles for preloading is known and by assuming not all customers can be allo-

cated during preloading. This problem is formulated as a 2-stage stochastic program and

solved by the sample average approximation approach. An iterated local search extended

from the Lagrangian ILS is designed for the sample average approximation approach.
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This iterated local search, named ILS-SAA is tested on instances derived from real-world

historical data. The results of the computational experiments have demonstrated that

the ILS-SAA outperforms a greedy algorithm and CPLEX in terms of computational

time and solution quality.

In addition, using 94 scenarios to evaluate the first-stage solution obtained by various

algorithms, it has been verified that allocating as many customers as possible in the

preloading may not always be a good policy.

6.4 Future work

This section outlines some potential directions for future research for the work presented

in this thesis.

• Given the superior performance of the Lagrangian ILS described in Chapter 3 for

the Workforce Scheduling and Routing Problem, the development of algorithms

under the Lagrangian ILS framework for different vehicle routing problems such as

vehicle routing problems with multi-depot, multi-trip, and multi-period, etc. This

can be a promising direction for future research.

• In Chapter 4, the instances used in the computational experiments contain at most

100 customers. Due to urbanisation and the growth of e-commerce, especially

during the COVID-19 pandemic, there has been an ever-increasing demand for

home delivery services. It is worth investigating the performance of the ILS2O

described in Chapter 4 on large-scale instances.

• The ILS-SAA described in Chapter 5 is a prototype that aims at testing whether the

sample average approximation approach with the Lagrangian ILS has the potential

to solve the Simultaneous Pickup and Delivery with Preloading under Uncertainty.

The results of the computational experiments demonstrate the promising perfor-

mance of the ILS-SAA. Therefore, it is worth investigating its performance with

additional developments, for example, an advanced algorithm to generate the ini-

tial feasible solutions and new local search operators that cope with the problem

features.
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Furthermore, in this thesis, the presented algorithms are heuristics that focus on find-

ing good solutions in a short time. However, after seeing the promising performance

of algorithms under the Lagrangian ILS framework, it may be worth developing algo-

rithms under this framework when a sufficient amount of computational time is permit-

ted. For example, developing a population-based algorithm or an exact algorithm under

this framework can be a promising direction.
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A
Tables

A.1 Detailed computational results on performance

comparison

Table A.1: Comparison between the performance of CPLEX, ILS in Xie et al. (2017), Imple-
mented ILS and Lagrangian ILS on small and medium instances

Implemented
CPLEX ILS ILS Lagrangian ILS

Instances |C| |K| Opt∗ sec∗ %∗ seca %∗ seca %∗ |Opt| seca secw secb
C101 5x4 25 4 271.70 0.05 -0.46 0.11 0.00 0.40 0.00 5 0.40 1.00 0.00
C201 5x4 25 2 863.08 0.02 0.00 0.09 0.00 0.00 0.00 5 0.00 0.00 0.00
C203 5x4 25 2 835.83 23.44 0.00 0.15 -0.09 0.20 0.00 5 0.20 1.00 0.00
R101 5x4 25 4 2195.04 0.02 0.00 0.22 0.00 0.80 0.00 5 0.60 1.00 0.00
R201 5x4 25 2 1091.07 0.14 0.00 0.03 -0.15 0.20 0.00 5 0.00 0.00 0.00
RC101 5x4 25 4 862.21 3.46 0.00 0.37 0.00 0.80 -0.46 1 0.40 1.00 0.00
RC201 5x4 25 3 465.25 0.28 -0.01 0.06 0.00 0.60 0.00 5 0.20 1.00 0.00
C101 6x6 25 4 927.35 0.02 0.00 0.09 0.00 0.20 0.00 5 0.20 1.00 0.00
C201 6x6 25 2 1217.10 0.01 0.00 0.01 0.00 0.40 0.00 5 0.20 1.00 0.00
C203 6x6 25 2 930.60 3.18 0.00 0.03 -1.67 0.20 0.00 5 0.20 1.00 0.00
R101 6x6 25 4 2857.05 0.03 -0.39 0.30 -0.52 0.80 0.00 5 0.40 1.00 0.00
R201 6x6 25 2 1377.42 0.11 -3.28 0.05 -1.01 0.40 0.00 5 0.20 1.00 0.00
RC101 6x6 25 4 1361.80 1.41 0.00 0.23 0.00 0.80 0.00 5 0.40 1.00 0.00
RC201 6x6 25 3 1228.89 5.63 0.00 0.14 0.00 0.20 0.00 5 0.20 1.00 0.00
C101 7x4 25 4 789.08 0.02 0.00 0.06 0.00 0.20 0.00 5 0.20 1.00 0.00
C103 7x4 25 4 671.06 186.38 0.00 0.11 -1.76 0.60 0.00 5 0.20 1.00 0.00
C201 7x4 25 2 738.35 0.02 0.00 0.02 0.00 0.00 0.00 5 0.20 1.00 0.00
C203 7x4 25 2 684.98 51.76 0.00 0.03 -1.57 0.20 0.00 5 0.00 0.00 0.00
R101 7x4 25 4 2447.74 0.01 0.00 0.12 0.00 0.40 0.00 5 0.40 1.00 0.00
R201 7x4 25 2 959.51 0.07 0.00 0.07 0.00 0.00 0.00 5 0.00 0.00 0.00
R203 7x4 25 2 849.47 115.23 0.00 0.03 -1.58 0.20 0.00 5 0.20 1.00 0.00
RC101 7x4 25 4 1669.63 0.12 0.00 0.09 0.00 0.60 0.00 5 0.20 1.00 0.00
RC201 7x4 25 3 967.60 0.41 0.00 0.08 -0.19 0.20 0.00 5 0.20 1.00 0.00
C101 5x4 50 6 830.00 0.69 0.00 1.09 0.00 6.60 0.00 5 2.40 3.00 2.00
C201 5x4 50 4 859.54 0.06 0.00 0.78 0.00 2.00 0.00 5 1.20 2.00 1.00
R101 5x4 50 6 4507.87 0.41 -0.08 6.84 0.00 8.40 0.00 5 5.00 7.00 4.00
R201 5x4 50 4 1107.51 15.97 -0.43 2.13 -1.98 6.00 0.00 5 2.20 3.00 2.00
C101 6x6 50 6 1154.84 57.42 0.00 1.95 0.00 8.80 0.00 5 3.60 4.00 3.00
C201 6x6 50 4 1203.93 0.05 0.00 0.66 0.00 1.40 0.00 5 1.40 2.00 1.00
R101 6x6 50 6 5190.32 1.19 0.00 2.62 0.00 8.00 0.00 5 5.00 7.00 4.00
R201 6x6 50 4 1647.70 104.03 -0.14 1.99 -0.20 4.80 0.00 5 2.80 3.00 2.00
C101 7x4 50 6 1356.54 0.83 -0.83 1.26 0.00 4.00 0.00 5 3.80 5.00 3.00
C201 7x4 50 4 1312.21 0.04 0.00 0.37 0.00 1.20 0.00 5 1.00 1.00 1.00
R101 7x4 50 6 4463.80 0.32 -0.12 2.01 -0.12 5.80 0.00 5 3.20 4.00 2.00
R201 7x4 50 4 1553.23 46.30 0.00 0.93 0.00 3.40 0.00 5 1.60 2.00 1.00
Average 1469.98 17.69 -0.16 0.72 -0.31 1.97 -0.01 4.89 1.10 1.77 0.74

The performance of the Lagrangian ILS, ILS in Xie et al. (2017), Implemented ILS,

and CPLEX on the small (25 tasks) and medium (50 tasks) instances is given in Table A.1.



148 Tables

Table A.2: Comparison between ILS in Xie et al. (2017), Lagrangian ILS, CPLEX, Implemented
ILS, and ILS-HNS in Zhou et al. (2020) on large instances from category “NoTeam Reduced”

ILS Lagrangian ILS

Instances |C| |K| Average Worst Best seca %a %w %b
ˆ|C| ˆ|K| seca secw secb

C101 5x4 100 8 5691.28 5780.75 5589.76 33.65 1.22 2.37 0.04 22.40 8.00 43.60 49.00 37.00
C103 5x4 100 8 2830.77 2921.15 2650.69 38.05 6.18 6.16 1.79 7.00 8.00 39.20 42.00 34.00
C201 5x4 100 4 2781.37 2800.21 2755.52 11.40 0.93 1.60 0.00 6.00 4.00 13.80 14.00 13.00
C203 5x4 100 4 2393.88 2407.41 2383.01 15.89 0.24 0.58 0.30 6.00 4.00 16.60 20.00 12.00
R101 5x4 100 12 5572.16 5590.55 5561.83 62.46 0.17 0.19 0.19 21.00 12.00 46.40 55.00 39.00
R103 5x4 100 12 1765.16 1943.30 1658.23 63.82 0.48 5.53 -0.85 1.60 12.00 45.00 47.00 43.00
R201 5x4 100 4 2866.39 2887.93 2839.54 14.14 0.51 0.84 0.04 6.00 4.00 20.60 26.00 18.00
R203 5x4 100 4 2349.24 2360.57 2335.76 12.86 0.02 -0.12 -0.16 6.00 4.00 14.20 17.00 11.00
RC101 5x4 100 11 4983.98 5093.47 4909.89 46.74 1.81 3.38 1.64 16.80 11.00 33.00 39.00 29.00
RC103 5x4 100 11 2421.65 2499.04 2301.86 39.24 5.35 7.06 1.76 4.00 11.00 32.00 38.00 27.00
RC201 5x4 100 5 3090.03 3100.00 3083.49 15.79 0.34 0.57 0.42 6.00 5.00 23.80 29.00 20.00
RC203 5x4 100 5 2530.63 2568.56 2512.64 12.54 0.64 1.84 0.05 6.00 5.00 18.80 21.00 18.00
C101 6x6 100 8 7695.83 7783.33 7660.86 30.17 0.45 1.57 0.00 32.00 8.00 46.20 62.00 38.00
C103 6x6 100 8 5066.61 5195.96 4971.66 37.08 3.54 3.61 3.36 17.40 8.00 41.00 49.00 34.00
C201 6x6 100 4 3313.45 3331.26 3298.68 21.10 1.07 1.60 0.62 9.00 4.00 36.40 44.00 32.00
C203 6x6 100 4 2479.44 2484.72 2468.53 23.56 0.58 0.38 0.77 6.00 3.00 36.80 41.00 28.00
R101 6x6 100 13 6005.32 6083.98 5948.71 56.05 0.14 -0.70 0.06 22.20 13.00 50.80 56.00 47.00
R103 6x6 100 13 2290.01 2383.03 2225.67 61.65 -0.90 0.69 0.36 4.60 12.00 51.00 63.00 40.00
R201 6x6 100 4 3574.46 3633.35 3510.36 32.37 1.19 1.76 2.00 8.80 4.00 43.00 54.00 38.00
R203 6x6 100 4 2462.68 2504.36 2443.97 23.00 0.02 0.64 -0.04 6.00 3.00 36.40 47.00 25.00
RC101 6x6 100 12 5029.94 5142.08 4975.34 43.80 1.72 2.40 1.44 16.00 12.00 42.20 47.00 36.00
RC103 6x6 100 12 2257.78 2337.45 2113.03 45.74 5.44 3.69 0.60 2.20 12.00 36.40 43.00 30.00
RC201 6x6 100 4 4550.99 4608.61 4490.33 31.23 1.35 1.99 0.81 12.00 4.00 52.20 57.00 47.00
RC203 6x6 100 4 2686.83 2719.03 2671.23 19.58 1.08 1.69 0.91 6.00 3.00 40.00 51.00 34.00
C101 7x4 100 9 5284.48 5360.98 5246.13 19.88 0.80 2.21 0.08 19.00 9.00 29.40 37.00 23.00
C103 7x4 100 9 2059.98 2163.05 2009.86 24.70 2.56 3.56 1.45 2.00 9.00 23.00 27.00 20.00
C201 7x4 100 4 2808.29 2830.03 2781.07 8.11 1.04 1.00 0.28 5.00 4.00 19.80 23.00 18.00
C203 7x4 100 4 2297.16 2366.11 2262.00 9.98 1.10 2.31 0.03 5.00 4.00 16.80 23.00 12.00
R101 7x4 100 14 5238.11 5283.80 5127.29 33.24 0.57 0.36 0.07 17.60 14.00 31.20 39.00 22.00
R103 7x4 100 14 2222.76 2333.64 2139.77 33.70 1.41 1.96 1.63 3.40 14.00 21.60 27.00 18.00
R201 7x4 100 5 2678.32 2693.43 2664.93 9.51 0.62 1.01 0.28 5.00 5.00 17.00 22.00 15.00
R203 7x4 100 5 2223.96 2242.78 2209.32 10.09 0.83 1.26 0.45 5.00 5.00 13.40 18.00 10.00
RC101 7x4 100 12 5440.59 5556.76 5373.05 29.21 -0.17 0.43 0.13 18.60 12.00 22.40 28.00 17.00
RC103 7x4 100 12 2615.16 2653.73 2591.39 24.52 0.93 2.30 0.21 5.00 12.00 24.00 29.00 19.00
RC201 7x4 100 5 2934.44 2948.77 2910.73 9.44 0.66 0.99 0.00 5.00 5.00 15.80 18.00 14.00
RC203 7x4 100 5 2308.80 2314.51 2305.62 10.14 0.52 0.34 1.07 5.00 4.80 18.20 22.00 15.00
Average 3466.72 3525.21 3416.16 28.18 1.23 1.86 0.60 9.63 7.55 30.89 36.78 25.92
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Table A.3: Comparison between ILS in Xie et al. (2017), Lagrangian ILS, CPLEX, Implemented
ILS, and ILS-HNS in Zhou et al. (2020) on large instances from category “NoTeam Reduced”
(continued)

CPLEX Implemented ILS ILS-HNS

Instances |C| |K| Obj Gap(%) sec∗ %a %w %b seca %a %w %b

C101 5x4 100 8 5643.50 12.06 14400.00 0.72 1.78 -0.15 101.60 -0.12 1.02 -1.34
C103 5x4 100 8 − − 14400.00 1.59 0.43 -1.00 107.00 -14.55 -14.25 -17.02
C201 5x4 100 4 2755.20 0.00 1.46 0.93 1.60 0.00 21.40 0.93 1.60 0.00
C203 5x4 100 4 − − 14400.00 -2.22 -2.04 -2.48 44.20 0.28 0.57 -0.07
R101 5x4 100 12 5446.89 0.00 792.03 0.17 0.11 0.20 168.00 -7.70 -8.14 -7.05
R103 5x4 100 12 − − 14400.00 1.59 5.75 -1.08 189.60 -16.45 -11.92 -19.10
R201 5x4 100 4 − − 14400.00 -0.76 -0.46 -1.10 40.20 -1.26 -1.51 -1.47
R203 5x4 100 4 − − 14400.00 -2.90 -3.53 -2.50 64.00 0.72 1.19 0.15
RC101 5x4 100 11 5501.32 65.41 14400.00 2.58 3.47 2.49 116.00 -13.88 -19.01 -7.95
RC103 5x4 100 11 − − 14400.00 1.86 0.88 -0.20 147.40 -10.68 -14.55 -11.48
RC201 5x4 100 5 3211.45 15.21 14400.00 -1.45 -2.89 -0.60 66.60 -0.33 -1.18 -0.02
RC203 5x4 100 5 − − 14400.00 -1.41 -0.63 -1.86 85.80 0.31 1.52 -0.08
C101 6x6 100 8 7660.86 7.79 14400.00 0.32 0.89 0.00 82.20 -0.52 -0.20 -0.10
C103 6x6 100 8 − − 14400.00 1.75 3.24 0.75 111.60 -12.41 -11.57 -11.87
C201 6x6 100 4 3278.07 0.00 1861.88 0.45 0.98 0.00 34.20 0.70 0.37 0.62
C203 6x6 100 4 − − 14400.00 -3.83 -4.40 -3.22 40.60 -0.29 -0.40 -0.41
R101 6x6 100 13 5944.91 0.00 1189.44 0.94 2.22 0.00 194.40 -9.96 -12.00 -9.42
R103 6x6 100 13 − − 14400.00 2.60 5.63 0.28 230.60 -26.30 -30.78 -21.33
R201 6x6 100 4 − − 14400.00 -0.81 0.33 -2.03 72.20 -6.78 -9.73 -3.26
R203 6x6 100 4 − − 14400.00 -4.84 -3.97 -4.22 71.80 -1.05 -0.52 -0.07
RC101 6x6 100 12 5320.99 62.43 14400.00 1.71 3.19 1.11 159.20 -23.17 -24.50 -19.55
RC103 6x6 100 12 − − 14400.00 -0.13 0.75 -3.56 174.20 -37.80 -39.57 -40.85
RC201 6x6 100 4 − − 14400.00 0.65 -0.18 0.79 61.00 -13.02 -14.32 -11.64
RC203 6x6 100 4 − − 14400.00 -3.69 -4.67 -1.27 60.20 -1.00 -0.80 -0.44
C101 7x4 100 9 5246.13 6.34 14400.00 0.80 2.22 0.09 65.60 0.28 1.21 -0.09
C103 7x4 100 9 − − 14400.00 0.27 2.83 0.02 62.60 -11.55 -13.56 -10.10
C201 7x4 100 4 2773.41 0.00 21.46 0.54 0.60 0.28 20.20 1.08 1.73 0.28
C203 7x4 100 4 − − 14400.00 -1.16 0.68 -1.07 34.40 0.69 3.12 -0.31
R101 7x4 100 14 5079.67 0.00 481.65 1.88 0.70 0.93 105.20 -8.99 -10.09 -10.05
R103 7x4 100 14 − − 14400.00 0.13 0.02 0.45 107.00 -4.45 -1.76 -5.12
R201 7x4 100 5 2673.28 10.25 14400.00 -0.17 -0.25 -0.04 56.00 0.03 0.11 0.00
R203 7x4 100 5 − − 14400.00 -1.35 -1.60 -0.72 75.00 0.43 1.07 0.03
RC101 7x4 100 12 5694.57 41.86 14400.00 0.09 0.89 0.12 111.20 -15.71 -16.50 -12.94
RC103 7x4 100 12 − − 14400.00 -0.23 -3.15 0.00 91.00 -9.84 -15.40 -2.02
RC201 7x4 100 5 3030.43 17.73 14400.00 -0.58 -0.81 -0.66 56.40 0.37 0.61 -0.23
RC203 7x4 100 5 − − 14400.00 -1.32 -2.07 -0.34 67.80 -0.20 -0.37 -0.11
Average − − 12120.78 -0.15 0.24 -0.57 91.57 -6.73 -7.18 -6.23
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Table A.4: Comparison between ILS in Xie et al. (2017), Lagrangian ILS, CPLEX, Implemented
ILS, and ILS-HNS in Zhou et al. (2020) on large instances from category “NoTeam Complete”

ILS Lagrangian ILS

Instances |C| |K| Average Worst Best seca %a %w %b
ˆ|K| seca secw secb

C101 5x4 100 17 1107.76 1117.56 1097.67 33.70 0.57 -0.01 0.07 12.40 23.00 27.00 21.00
C103 5x4 100 17 1026.51 1045.80 1012.86 38.63 0.64 1.88 -0.45 11.00 23.20 27.00 21.00
C201 5x4 100 8 1157.56 1157.56 1157.56 9.21 0.00 0.00 0.00 7.00 10.00 11.00 9.00
C203 5x4 100 8 1059.68 1068.72 1054.21 21.17 0.80 0.94 0.69 5.00 21.40 27.00 19.00
R101 5x4 100 25 1668.00 1676.64 1658.93 43.66 0.41 0.76 -0.01 20.20 41.00 49.00 34.00
R103 5x4 100 25 1243.54 1253.46 1235.05 58.66 0.78 1.32 0.22 15.00 63.00 81.00 52.00
R201 5x4 100 7 1436.37 1447.84 1431.16 27.61 0.60 1.39 0.24 6.00 25.60 33.00 20.00
R203 5x4 100 7 1100.75 1105.09 1097.55 23.91 0.61 0.32 0.51 6.00 20.00 25.00 18.00
RC101 5x4 100 22 1695.67 1710.32 1673.94 51.32 1.35 1.25 0.93 15.80 39.00 47.00 34.00
RC103 5x4 100 22 1355.40 1383.61 1321.66 59.19 3.40 4.67 1.24 11.80 56.40 62.00 52.00
RC201 5x4 100 9 1606.08 1620.59 1589.24 27.02 1.38 2.26 0.33 8.00 20.60 23.00 19.00
RC203 5x4 100 9 1165.81 1169.24 1162.95 24.84 0.19 0.49 -0.05 6.00 24.20 29.00 20.00
C101 6x6 100 16 988.43 1001.62 972.89 45.79 0.53 0.98 0.00 11.40 27.20 33.00 24.00
C103 6x6 100 16 911.62 933.90 900.82 53.15 1.61 3.76 0.57 10.20 40.80 45.00 35.00
C201 6x6 100 7 826.42 832.56 821.55 42.76 0.59 1.32 0.00 4.00 38.00 47.00 34.00
C203 6x6 100 7 693.50 699.19 689.60 44.15 0.49 1.04 0.00 4.00 41.20 49.00 36.00
R101 6x6 100 26 1660.15 1664.28 1657.55 67.27 0.15 0.11 0.24 19.60 45.00 53.00 40.00
R103 6x6 100 26 1225.80 1238.01 1216.08 73.23 0.61 1.37 0.00 14.00 80.80 92.00 68.00
R201 6x6 100 7 1270.25 1278.94 1265.56 55.72 0.47 0.95 0.24 6.00 42.40 51.00 35.00
R203 6x6 100 7 933.41 940.98 930.74 56.79 1.31 1.91 1.34 5.00 72.40 85.00 64.00
RC101 6x6 100 24 1674.61 1682.62 1663.30 61.94 0.76 0.56 0.50 15.40 48.00 60.00 39.00
RC103 6x6 100 24 1309.18 1331.28 1297.09 86.38 3.29 3.61 3.37 11.20 63.40 70.00 58.00
RC201 6x6 100 8 1380.38 1394.90 1367.89 52.16 0.71 1.24 0.09 6.00 42.60 46.00 34.00
RC203 6x6 100 8 1014.51 1024.80 1003.81 49.44 1.14 2.04 0.47 5.00 57.20 64.00 44.00
C101 7x4 100 17 1370.78 1381.59 1357.05 22.31 0.15 -0.68 0.00 14.80 13.80 17.00 11.00
C103 7x4 100 17 1233.60 1256.67 1220.19 27.96 1.33 2.90 0.92 13.00 19.60 26.00 16.00
C201 7x4 100 8 1263.00 1289.68 1256.30 10.56 0.53 2.59 0.00 8.00 11.20 12.00 10.00
C203 7x4 100 8 1145.36 1150.85 1137.07 17.89 0.61 0.00 0.32 7.60 14.80 21.00 9.00
R101 7x4 100 28 1787.22 1796.48 1781.13 39.28 0.39 0.34 0.43 21.60 31.00 40.00 25.00
R103 7x4 100 28 1349.32 1373.27 1337.92 43.54 0.71 1.98 0.17 16.60 39.20 54.00 30.00
R201 7x4 100 10 1406.55 1412.46 1401.68 19.36 0.23 0.41 0.25 9.00 15.20 17.00 13.00
R203 7x4 100 10 1164.89 1170.12 1160.51 18.45 -0.10 -0.41 0.00 8.20 19.20 23.00 14.00
RC101 7x4 100 23 1822.30 1837.41 1805.39 36.51 2.10 2.34 1.37 17.20 24.40 29.00 22.00
RC103 7x4 100 23 1436.23 1450.97 1427.40 38.30 1.07 1.00 1.75 13.20 30.20 38.00 23.00
RC201 7x4 100 9 1706.24 1727.00 1697.82 15.34 0.34 0.94 0.00 9.00 11.60 13.00 10.00
RC203 7x4 100 9 1235.76 1238.74 1230.63 16.81 1.17 -0.66 1.42 8.00 15.40 20.00 12.00
Average 1289.79 1301.80 1280.35 39.28 0.86 1.25 0.48 10.62 33.67 40.17 28.47
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Table A.5: Comparison between ILS in Xie et al. (2017), Lagrangian ILS, CPLEX, Implemented
ILS, ILS-HNS in Zhou et al. (2020) on large instances from category “NoTeam Complete”
(continued)

CPLEX Implemented ILS ILS-HNS

Instances |C| |K| Obj Gap(%) sec∗ %a %w %b seca %a %w %b

C101 5x4 100 17 1096.85 0.00 89.32 0.08 -0.13 -0.03 117.00 0.98 1.85 0.07
C103 5x4 100 17 1534.45 66.38 14400.00 -0.45 -0.56 -0.81 152.20 0.66 1.07 0.00
C201 5x4 100 8 1157.56 0.00 0.73 0.00 0.00 0.00 25.60 0.00 0.00 0.00
C203 5x4 100 8 - - 14400.00 -0.15 -0.09 0.05 65.80 1.20 2.04 0.69
R101 5x4 100 25 1652.13 0.00 1236.85 0.25 0.43 0.15 496.40 0.22 0.27 -0.05
R103 5x4 100 25 1974.25 62.41 14400.00 0.49 0.88 0.07 586.80 -0.09 -0.13 -0.24
R201 5x4 100 7 - - 14400.00 -0.77 -1.15 0.15 85.20 -0.14 -0.45 0.18
R203 5x4 100 7 - - 14400.00 -1.31 -1.85 -1.20 106.40 0.52 0.18 0.51
RC101 5x4 100 22 1749.89 22.25 14400.00 0.91 1.25 0.19 330.20 0.66 0.44 0.28
RC103 5x4 100 22 1993.82 66.79 14400.00 1.88 2.08 0.25 494.00 0.72 0.75 0.07
RC201 5x4 100 9 1774.33 22.68 14400.00 -0.04 -0.17 -0.59 152.20 0.74 0.94 0.33
RC203 5x4 100 9 - - 14400.00 -1.09 -2.14 -0.41 106.80 0.09 -0.08 0.12
C101 6x6 100 16 972.89 0.00 45.69 0.41 0.93 0.00 170.20 -0.12 -0.24 -0.05
C103 6x6 100 16 - - 14400.00 0.58 0.36 0.54 261.60 0.98 1.80 0.76
C201 6x6 100 7 821.55 0.00 61.99 0.45 0.64 0.00 80.60 0.59 1.32 0.00
C203 6x6 100 7 - - 14400.00 0.25 0.57 0.00 143.40 0.49 1.04 0.00
R101 6x6 100 26 1648.27 0.00 1849.44 0.11 0.21 0.17 542.60 0.01 -0.24 0.25
R103 6x6 100 26 10849.90 93.55 5339.76 0.45 1.04 0.00 713.80 0.22 0.54 -0.20
R201 6x6 100 7 - - 14400.00 -0.61 -0.95 -0.15 150.80 -1.43 -3.56 -0.25
R203 6x6 100 7 - - 14400.00 0.44 0.64 0.66 190.00 -0.95 -1.83 -0.11
RC101 6x6 100 24 1712.10 23.63 2833.96 0.07 -0.07 -0.04 370.40 0.03 0.18 0.04
RC103 6x6 100 24 1925.34 66.56 14400.00 1.68 1.21 2.33 632.20 0.71 0.37 3.30
RC201 6x6 100 8 - - 14400.00 -0.17 0.29 -0.50 144.40 -0.74 -1.34 -0.56
RC203 6x6 100 8 - - 14400.00 -0.32 -0.44 -0.29 169.00 -1.05 -1.31 -0.91
C101 7x4 100 17 1357.05 0.00 14.76 -0.82 -0.74 -1.29 82.40 0.02 0.00 0.00
C103 7x4 100 17 - - 14400.00 0.11 1.14 -0.29 146.60 0.63 1.66 0.44
C201 7x4 100 8 1256.30 0.00 0.31 -0.79 0.00 0.00 27.20 0.53 2.59 0.00
C203 7x4 100 8 - - 14400.00 -3.63 -4.59 -3.38 79.20 0.57 -0.15 0.32
R101 7x4 100 28 1764.78 0.00 444.14 0.26 -0.26 0.60 348.80 0.05 -0.26 0.43
R103 7x4 100 28 - - 14400.00 -0.08 1.13 -0.39 425.00 -0.49 -0.12 -0.41
R201 7x4 100 10 1410.52 6.12 14400.00 -0.66 -1.58 0.02 83.80 0.17 0.05 0.25
R203 7x4 100 10 - - 14400.00 -4.11 -5.01 -3.04 124.80 -0.65 -2.51 0.04
RC101 7x4 100 23 1838.86 16.06 14400.00 0.79 0.93 0.66 263.80 0.22 0.29 0.19
RC103 7x4 100 23 - - 14400.00 0.50 0.77 0.23 321.80 0.45 0.72 0.94
RC201 7x4 100 9 - - 14400.00 -0.26 -0.83 0.00 76.80 0.07 -0.05 0.00
RC203 7x4 100 9 - - 14400.00 -1.02 -2.66 0.53 78.40 -1.04 -2.27 0.93
Average 10331.03 -0.18 -0.24 -0.16 231.84 0.13 0.10 0.20
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The performance of the Lagrangian ILS, ILS, Implemented ILS, ILS-HNS in Zhou et al.

(2020), and CPLEX on Large (100 tasks) instances from the two categories, “NoTeam

Reduced” and “NoTeam Complete” is given in Tables A.2, A.3, A.4, and A.5. In these

tables, the first three columns are the instance’s name, the number of tasks and the

number of service providers.

In Table A.1, the columns Opt∗ and sec∗ give the optimal objective value and the

computational time required by CPLEX. Each column %∗ gives the percentage differences

(3.45) of the objective value with respect to the objective value obtained by CPLEX. Each

column seca reports the average computational time required by the respective algorithm.

The worst and best times required by the Lagrangian ILS are shown in columns secw and

secb. Furthermore, the column |Opt| gives the number out of 5 groups that the Lagrangian

ILS obtains the optimal solution. The values obtained by the Lagrangian ILS are in bold

if they are better than the values obtained by ILS and Implemented ILS.

In Tables A.2, A.3, A.4, and A.5, the columns Average, Worst, Best give the average,

worst, best objective values produced by the ILS in Xie et al. (2017). The columns Obj

and Gap(%) show the objective values and the optimality gap obtained by CPLEX. 0%

in column Gap(%) means the objective value is optimal. The columns %a, %w, %b are

the percentage difference of average, worst, best objective values relative to the average,

worst, best values reported in Xie et al. (2017). In addition, the columns ˆ|C| and ˆ|K| show

the average number of outsourced tasks and the average number of service providers used.

The objective values obtained by the Lagrangian ILS are in bold if they are better than

the values obtained by ILS, Implemented ILS, and ILS-HNS whereas the computational

times required by the Lagrangian ILS are in bold if they are smaller than the time required

by ILS and Implemented ILS.

A.2 Detailed computational results on sensitivity anal-

ysis

Tables A.6 and A.7 present the analyses on the performance of the Lagrangian ILS with

ω ∈ {0.5, 7, 15} on large (100 tasks) instances from the categories “NoTeam Reduced” and

“NoTeam Complete” using ψ = 50 and γ = 2. All percentage differences are referenced

to the corresponding values obtained by the Lagrangian ILS with ω = 0.5. Furthermore,
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Table A.6: Sensitivity analysis on the performance of the Lagrangian ILS with ω when ψ = 50
and γ = 2 for large instances from category “NoTeam Reduced”

w = 0.5 w = 7 w = 15

Instances Average Worst Best seca %a %w %b seca %a %w %b seca
C101 5x4 5651.34 5693.86 5590.79 27.00 0.37 0.88 -0.32 250.80 0.82 0.80 0.06 657.20
C103 5x4 2735.81 2861.35 2648.41 20.20 2.66 2.28 2.08 223.80 4.71 7.91 2.19 463.80
C201 5x4 2755.52 2755.52 2755.52 8.20 0.00 0.00 0.00 72.00 0.00 0.00 0.00 155.00
C203 5x4 2388.39 2394.82 2376.48 9.80 -0.15 -0.36 -0.34 84.00 0.30 0.06 0.02 149.20
R101 5x4 5573.35 5594.99 5551.43 25.20 0.28 0.65 -0.11 306.00 0.67 0.53 1.88 487.60
R103 5x4 1874.80 1939.20 1768.58 26.80 5.48 6.21 6.24 204.40 5.03 0.85 5.82 466.60
R201 5x4 2860.05 2883.04 2838.50 11.60 0.61 0.82 0.00 117.80 0.75 1.54 0.00 193.80
R203 5x4 2341.70 2347.77 2335.90 8.40 0.17 0.11 0.16 80.20 0.40 0.66 0.16 147.40
RC101 5x4 4938.50 5068.07 4880.45 19.60 1.63 3.35 2.19 168.60 1.75 3.24 2.19 389.20
RC103 5x4 2340.87 2505.81 2281.10 17.20 6.61 9.91 5.91 184.40 6.52 9.63 6.82 331.80
RC201 5x4 3084.00 3097.32 3076.10 12.20 0.27 0.48 0.18 110.60 0.27 0.52 0.13 251.60
RC203 5x4 2520.16 2540.27 2511.29 10.40 0.35 1.14 0.00 96.60 0.17 0.31 0.00 198.80
C101 6x6 7660.86 7660.86 7660.86 26.40 0.00 0.00 0.00 240.20 0.00 0.00 0.00 511.60
C103 6x6 4919.85 4979.85 4818.55 24.00 1.53 1.07 0.29 243.40 1.89 2.16 0.42 553.40
C201 6x6 3288.42 3303.94 3278.07 19.20 0.31 0.78 0.00 213.60 0.31 0.78 0.00 451.00
C203 6x6 2460.54 2468.17 2454.02 18.80 0.29 0.39 0.18 190.40 0.26 0.25 0.18 366.60
R101 6x6 6102.83 6162.33 5970.73 29.00 2.55 3.47 0.43 333.20 2.59 3.53 0.43 596.40
R103 6x6 2297.62 2367.90 2215.10 31.20 2.85 3.58 0.15 230.00 3.61 6.44 0.05 580.00
R201 6x6 3568.41 3609.33 3551.83 19.60 2.34 1.74 3.14 254.80 1.75 1.76 2.98 692.40
R203 6x6 2460.59 2489.00 2437.28 19.80 0.77 1.44 0.00 157.80 0.43 0.44 0.00 412.40
RC101 6x6 4999.87 5102.17 4924.98 20.60 2.22 3.73 1.82 266.20 2.29 3.58 1.82 634.00
RC103 6x6 2189.73 2271.85 2101.68 21.80 0.09 1.66 -0.87 208.40 2.71 1.98 0.07 535.80
RC201 6x6 4506.70 4563.49 4450.47 28.40 1.06 1.88 0.17 332.60 1.70 2.64 0.70 814.80
RC203 6x6 2656.09 2675.32 2646.91 21.60 0.31 0.88 0.00 202.40 0.31 0.91 0.00 436.80
C101 7x4 5274.75 5311.78 5246.13 12.60 0.64 1.31 0.15 171.80 0.63 1.31 0.09 361.80
C103 7x4 2024.68 2110.19 1977.30 14.80 2.75 5.91 1.02 118.60 2.75 5.86 1.02 235.80
C201 7x4 2773.41 2773.41 2773.41 12.00 0.00 0.00 0.00 127.60 0.00 0.00 0.00 266.80
C203 7x4 2274.81 2286.93 2261.33 9.20 0.59 1.09 0.00 107.20 0.59 1.12 0.00 196.00
R101 7x4 5238.77 5290.99 5133.88 17.00 2.65 3.16 1.06 171.00 2.06 0.94 0.60 325.00
R103 7x4 2211.23 2274.09 2133.68 12.60 -0.08 0.14 1.14 118.20 2.44 1.64 1.38 233.60
R201 7x4 2664.93 2669.15 2661.68 8.20 0.19 0.28 0.16 83.80 0.26 0.34 0.16 152.20
R203 7x4 2209.64 2217.39 2201.33 8.20 0.40 0.45 0.10 68.40 0.40 0.45 0.10 140.00
RC101 7x4 5503.19 5548.14 5477.84 13.20 1.58 1.27 1.90 146.40 2.37 3.08 2.04 317.20
RC103 7x4 2657.10 2751.24 2591.39 12.20 2.54 5.77 0.21 108.60 2.63 5.77 0.21 223.20
RC201 7x4 2918.10 2922.88 2912.39 8.20 0.16 0.19 0.20 88.00 0.29 0.23 0.25 199.20
RC203 7x4 2302.18 2309.86 2291.57 8.20 0.60 0.16 0.61 100.60 0.98 1.06 0.61 185.60
Average 3450.80 3494.51 3410.75 17.04 1.24 1.83 0.77 171.73 1.52 2.01 0.90 369.82

on large instances from category “NoTeam Reduced”, Table A.8 presents the results

obtained from the Lagrangian ILS with ψ ∈ {5, 50, 150, 400} when γ = 2 and ω = 1, and

Table A.9 presents the results obtained from the Lagrangian ILS with γ ∈ {0.2, 2, 10, 100}

when ψ = 50 and ω = 1. In Tables A.8 and A.9, the Average, Best, seca give the average,

best objective values and the average computational time.



154 Tables

Table A.7: Sensitivity analysis on the performance of the Lagrangian ILS with ω when ψ = 50
and γ = 2 on large instances from category “NoTeam Complete”

w = 0.5 w = 7 w = 15

Instances Average Worst Best seca %a %w %b seca %a %w %b seca
C101 5x4 1100.07 1104.89 1096.85 13.40 0.29 0.73 0.00 123.40 0.29 0.73 0.00 224.40
C103 5x4 1018.71 1026.46 1012.86 14.60 0.17 0.88 -0.24 133.40 0.25 0.84 0.00 229.20
C201 5x4 1157.56 1157.56 1157.56 6.00 0.00 0.00 0.00 56.60 0.00 0.00 0.00 116.20
C203 5x4 1050.06 1057.84 1046.93 11.60 0.30 1.03 0.00 105.80 0.30 1.03 0.00 202.00
R101 5x4 1665.35 1681.02 1659.39 19.80 0.49 1.25 0.34 173.20 0.71 1.40 0.44 433.20
R103 5x4 1236.76 1240.19 1233.57 38.20 0.37 0.56 0.26 288.40 0.41 0.63 0.30 520.00
R201 5x4 1432.19 1441.87 1427.75 12.60 0.31 0.98 0.00 120.20 0.31 0.98 0.00 213.60
R203 5x4 1097.81 1102.87 1092.29 13.00 0.42 0.54 0.00 103.00 0.31 0.45 0.00 169.40
RC101 5x4 1673.35 1684.33 1654.80 20.60 0.65 0.69 -0.05 197.60 0.85 1.06 0.11 445.20
RC103 5x4 1326.72 1343.62 1317.55 32.00 1.66 2.36 1.28 274.40 1.65 2.47 1.28 595.20
RC201 5x4 1591.16 1598.68 1583.97 12.60 0.45 0.92 0.00 117.80 0.45 0.92 0.00 216.40
RC203 5x4 1166.91 1173.74 1163.47 13.80 0.45 0.99 0.17 157.40 0.46 1.04 0.17 288.80
C101 6x6 984.65 1002.37 972.89 14.80 1.19 2.94 0.00 121.00 0.86 1.31 0.00 260.40
C103 6x6 903.93 923.82 895.14 21.40 1.04 3.04 0.21 193.00 1.02 2.97 0.21 393.40
C201 6x6 821.55 821.55 821.55 23.40 0.00 0.00 0.00 254.40 0.00 0.00 0.00 504.40
C203 6x6 691.61 693.45 689.60 28.60 0.29 0.55 0.00 252.20 0.29 0.55 0.00 469.00
R101 6x6 1656.66 1664.10 1650.71 28.60 0.43 0.56 0.15 234.80 0.38 0.48 0.15 549.40
R103 6x6 1218.87 1221.17 1216.08 46.80 0.23 0.42 0.00 406.60 0.23 0.42 0.00 743.40
R201 6x6 1267.63 1270.60 1262.36 25.00 0.38 0.54 -0.01 212.00 0.38 0.57 0.03 390.00
R203 6x6 929.21 932.88 924.57 31.80 1.03 1.07 0.62 334.80 0.94 1.06 0.62 615.80
RC101 6x6 1664.95 1669.53 1661.24 24.60 0.60 0.44 0.59 223.80 0.60 0.38 0.63 488.40
RC103 6x6 1276.48 1286.60 1268.59 48.40 1.27 1.47 1.33 452.80 1.50 1.33 1.33 726.80
RC201 6x6 1373.74 1385.81 1366.72 25.00 0.32 0.90 0.00 256.60 0.41 0.90 0.00 421.00
RC203 6x6 1007.75 1023.01 1003.87 30.80 0.48 1.87 0.47 238.40 0.39 1.87 0.01 490.00
C101 7x4 1365.47 1381.59 1357.05 8.80 -0.19 0.32 0.00 79.80 0.62 1.78 0.00 151.60
C103 7x4 1225.43 1237.30 1218.50 11.00 0.95 1.05 0.79 83.20 1.01 1.52 0.79 185.80
C201 7x4 1256.30 1256.30 1256.30 6.80 0.00 0.00 0.00 65.20 0.00 0.00 0.00 131.20
C203 7x4 1135.90 1137.14 1133.47 8.80 0.21 0.32 0.00 80.20 0.21 0.32 0.00 154.60
R101 7x4 1779.33 1785.68 1775.08 18.60 0.51 0.46 0.53 169.40 0.56 0.80 0.45 300.20
R103 7x4 1350.84 1365.78 1338.45 24.40 0.80 1.45 0.57 198.80 0.53 1.09 0.57 364.00
R201 7x4 1399.20 1403.42 1398.14 11.60 0.08 0.38 0.00 82.80 0.01 0.20 0.00 170.20
R203 7x4 1175.46 1183.55 1166.71 12.00 1.17 1.75 0.57 92.40 1.26 1.75 0.57 202.20
RC101 7x4 1795.16 1807.24 1783.57 14.00 0.51 0.02 0.16 127.80 0.72 1.33 0.16 297.20
RC103 7x4 1418.46 1429.47 1402.46 15.80 0.73 0.65 0.15 139.60 1.03 0.84 0.15 331.20
RC201 7x4 1701.94 1715.93 1697.82 8.60 0.24 1.06 0.00 64.00 0.24 1.06 0.00 114.20
RC203 7x4 1224.99 1251.66 1213.14 11.40 0.91 2.90 0.03 90.60 0.40 0.45 0.03 195.00
Average 1281.73 1290.64 1275.58 19.70 0.52 0.97 0.22 175.15 0.54 0.96 0.22 341.75
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Table A.8: Sensitivity analysis on the performance of the Lagrangian ILS with ψ when γ = 2
and w = 1 for large instances from category “NoTeam Reduced”

ψ = 5 ψ = 50 ψ = 150 ψ = 400

Instances Average Best seca %a %b seca %a %b seca %a %b seca
C101 5x4 5647.95 5620.91 52.80 0.46 0.59 43.60 0.55 0.54 35.20 -0.10 0.59 21.40
C103 5x4 2710.20 2641.89 54.60 2.01 1.46 39.20 -1.45 -1.22 32.20 -1.80 -0.39 26.00
C201 5x4 2755.52 2755.52 23.40 0.00 0.00 13.80 0.00 0.00 14.80 0.00 0.00 12.80
C203 5x4 2383.07 2375.99 26.20 -0.21 0.00 16.60 -0.58 -0.43 14.20 -0.31 0.00 16.20
R101 5x4 5634.11 5561.83 66.00 1.27 0.19 46.40 0.72 0.12 41.20 1.00 0.06 28.80
R103 5x4 1885.96 1663.30 62.20 6.86 -0.54 45.00 0.74 -9.34 40.40 3.37 -0.22 38.80
R201 5x4 2838.89 2838.50 48.20 -0.45 0.00 20.60 -0.65 0.00 18.40 -1.19 -0.63 15.20
R203 5x4 2339.05 2335.76 22.80 -0.42 -0.16 14.20 -0.05 0.15 12.60 -0.10 0.15 14.40
RC101 5x4 4893.14 4789.81 46.40 -0.01 -0.83 33.00 -0.14 -0.24 27.80 -0.04 0.05 24.60
RC103 5x4 2301.10 2245.02 38.80 0.40 -0.73 32.00 0.74 -0.41 31.80 -1.86 -1.40 25.20
RC201 5x4 3080.56 3072.11 40.00 0.03 0.05 23.80 -0.09 -0.30 15.00 -0.03 -0.09 14.60
RC203 5x4 2521.63 2512.64 29.40 0.28 0.05 18.80 0.05 0.00 15.80 0.11 0.05 17.80
C101 6x6 7660.86 7660.86 60.80 0.00 0.00 46.20 0.00 0.00 36.20 -0.26 0.00 19.40
C103 6x6 4914.46 4818.71 54.40 0.56 0.29 41.00 -0.81 -2.26 33.80 -0.43 -0.40 25.20
C201 6x6 3284.40 3278.07 48.40 0.19 0.00 36.40 0.04 0.00 31.20 -0.44 0.00 22.80
C203 6x6 2460.25 2451.92 55.80 -0.20 0.09 36.80 0.19 0.07 27.00 -0.26 -0.32 26.80
R101 6x6 5966.29 5948.79 73.80 -0.51 0.06 50.80 -0.50 -0.37 50.20 -0.89 0.07 28.20
R103 6x6 2268.38 2223.06 77.80 -1.86 0.24 51.00 -0.50 0.27 51.00 -0.97 -0.36 39.80
R201 6x6 3536.10 3440.32 70.80 0.12 0.00 43.00 -0.65 -3.23 38.00 -0.49 -2.00 26.20
R203 6x6 2452.33 2445.06 44.60 -0.41 0.00 36.40 -0.45 0.08 25.00 0.11 0.08 23.80
RC101 6x6 4999.90 4926.10 53.80 1.13 0.46 42.20 0.37 0.46 34.40 1.03 0.29 25.80
RC103 6x6 2259.48 2192.21 55.00 5.51 4.19 36.40 0.43 2.15 31.60 1.33 2.15 36.60
RC201 6x6 4481.43 4448.62 79.00 -0.18 -0.12 52.20 0.51 0.58 41.40 0.32 0.58 29.20
RC203 6x6 2664.52 2649.69 61.20 0.25 0.10 40.00 0.23 0.00 25.60 -0.46 -0.49 27.40
C101 7x4 5245.47 5241.64 35.20 0.06 0.00 29.40 0.02 -0.01 22.60 -0.31 0.00 12.60
C103 7x4 2033.07 1971.26 41.60 1.27 -0.48 23.00 0.91 0.02 19.80 -1.67 -0.19 17.80
C201 7x4 2773.41 2773.41 37.00 -0.20 0.00 19.80 -0.47 0.00 11.60 -0.21 0.00 11.80
C203 7x4 2272.64 2261.33 34.20 0.03 0.00 16.80 -0.33 0.00 13.20 -0.78 0.00 13.80
R101 7x4 5326.33 5269.67 46.20 2.22 2.77 31.20 2.29 3.16 28.80 0.44 0.07 17.60
R103 7x4 2239.31 2130.03 36.20 2.14 1.18 21.60 -0.40 -4.44 20.80 0.80 -0.33 20.00
R201 7x4 2659.95 2657.34 29.60 -0.07 0.00 17.00 -0.28 -0.16 11.60 -0.39 -0.16 11.00
R203 7x4 2204.45 2199.10 22.00 -0.04 -0.02 13.40 -0.27 -0.16 12.40 -0.35 -0.49 10.60
RC101 7x4 5495.16 5366.12 31.80 0.82 0.00 22.40 1.19 -0.13 21.40 1.36 -0.13 16.80
RC103 7x4 2663.83 2586.03 31.20 2.74 0.00 24.00 1.82 0.00 20.60 -0.89 -0.21 18.40
RC201 7x4 2916.85 2912.38 25.60 0.06 0.06 15.80 -0.14 0.06 11.80 -0.25 0.06 10.20
RC203 7x4 2293.54 2279.74 26.40 -0.14 -0.06 18.20 -0.77 -1.29 11.80 -0.49 0.09 15.80
Average 3446.21 3404.02 45.64 0.66 0.25 30.89 0.06 -0.45 25.87 -0.14 -0.10 21.21
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Table A.9: Sensitivity analysis on the performance of the Lagrangian ILS with γ when ψ = 50
and w = 1 for large instances from category “NoTeam Reduced”

γ = 0.5 γ = 2 γ = 10 γ = 100

Instances Average Best seca %a %b seca %a %b seca %a %b seca
C101 5x4 5675.01 5627.26 52.20 0.93 0.70 43.60 0.86 0.70 37.40 0.57 0.52 42.40
C103 5x4 2675.17 2628.91 44.60 0.72 0.97 39.20 -2.84 -1.63 32.60 -1.97 -0.08 35.00
C201 5x4 2755.52 2755.52 19.20 0.00 0.00 13.80 0.00 0.00 13.60 0.00 0.00 13.80
C203 5x4 2379.96 2375.99 17.80 -0.34 0.00 16.60 -0.49 -0.42 16.80 -0.85 -0.68 16.60
R101 5x4 5585.98 5570.15 68.80 0.42 0.34 46.40 0.90 2.21 35.00 0.46 0.35 32.00
R103 5x4 1852.00 1766.49 55.00 5.15 5.34 45.00 -0.45 -1.32 35.00 -0.99 -0.23 36.60
R201 5x4 2849.98 2838.50 28.00 -0.06 0.00 20.60 0.27 0.00 23.60 0.15 0.00 22.60
R203 5x4 2340.71 2332.23 14.60 -0.35 -0.31 14.20 -0.54 -0.15 15.60 -0.40 -0.31 14.80
RC101 5x4 4928.17 4903.95 54.00 0.70 1.52 33.00 -0.54 -0.25 28.60 -0.39 -0.05 22.40
RC103 5x4 2317.98 2288.88 46.60 1.12 1.20 32.00 1.18 1.42 27.00 -2.89 -0.98 28.40
RC201 5x4 3084.78 3082.46 23.60 0.17 0.39 23.80 -0.18 0.00 20.60 -0.31 0.00 20.40
RC203 5x4 2527.03 2511.29 17.40 0.49 0.00 18.80 0.23 0.00 19.20 0.28 0.00 17.80
C101 6x6 7660.86 7660.86 64.00 0.00 0.00 46.20 0.00 0.00 55.40 0.00 0.00 48.00
C103 6x6 4851.47 4798.15 50.80 -0.73 -0.14 41.00 -2.18 -2.78 49.60 -1.85 -0.61 44.80
C201 6x6 3293.59 3278.07 38.20 0.47 0.00 36.40 0.47 0.00 39.60 0.35 0.00 38.60
C203 6x6 2456.72 2450.24 33.00 -0.34 0.02 36.80 -0.23 -0.06 43.00 0.06 0.00 40.80
R101 6x6 5972.56 5970.73 84.80 -0.41 0.43 50.80 -1.41 0.43 44.80 -0.61 0.43 42.00
R103 6x6 2339.89 2258.82 62.80 1.25 1.82 51.00 3.10 1.92 45.60 3.19 1.89 41.40
R201 6x6 3542.39 3445.87 51.20 0.30 0.16 43.00 -0.14 -2.90 48.40 -0.13 -0.84 42.80
R203 6x6 2445.72 2437.28 32.20 -0.68 -0.32 36.40 -0.72 -0.29 30.20 -0.78 -0.29 25.20
RC101 6x6 4993.84 4917.09 62.40 1.01 0.28 42.20 0.59 -0.56 31.80 1.38 1.67 31.20
RC103 6x6 2252.08 2213.38 45.20 5.20 5.11 36.40 1.82 3.78 37.00 -1.01 1.14 36.40
RC201 6x6 4512.52 4477.23 55.20 0.51 0.52 52.20 0.03 0.15 59.20 -0.55 0.15 51.20
RC203 6x6 2658.28 2646.91 33.80 0.01 0.00 40.00 -0.37 -0.57 39.20 -0.50 -0.79 41.20
C101 7x4 5262.16 5242.08 39.00 0.38 0.01 29.40 0.33 0.00 24.80 0.30 0.01 23.40
C103 7x4 1984.48 1968.08 28.40 -1.14 -0.64 23.00 -5.19 -1.40 25.60 -3.33 -0.06 21.40
C201 7x4 2774.01 2773.41 25.60 -0.18 0.00 19.80 -0.03 0.00 19.60 0.02 0.00 19.60
C203 7x4 2277.70 2262.00 21.60 0.25 0.03 16.80 -0.54 -0.70 15.80 0.12 0.03 15.80
R101 7x4 5225.79 5103.09 45.40 0.34 -0.40 31.20 -0.38 0.46 24.60 -0.11 -0.40 25.80
R103 7x4 2166.33 2110.80 37.60 -1.15 0.28 21.60 -7.19 -4.71 20.20 -6.11 -6.04 16.20
R201 7x4 2662.69 2657.34 17.00 0.04 0.00 17.00 0.05 0.00 17.20 -0.09 0.00 17.40
R203 7x4 2204.81 2199.10 14.40 -0.03 -0.02 13.40 0.00 0.00 12.40 -0.15 -0.08 15.20
RC101 7x4 5494.07 5477.84 36.20 0.80 2.04 22.40 0.33 1.70 18.20 0.08 0.00 15.60
RC103 7x4 2611.57 2586.03 28.40 0.80 0.00 24.00 -1.20 -0.21 16.20 -1.33 0.00 20.00
RC201 7x4 2913.48 2905.21 21.60 -0.06 -0.19 15.80 -0.20 -0.19 16.00 -0.03 -0.19 17.00
RC203 7x4 2285.22 2277.62 18.60 -0.50 -0.15 18.20 -0.67 -0.34 15.20 -0.70 -0.09 14.80
Average 3439.29 3411.08 38.59 0.42 0.53 30.89 -0.43 -0.16 29.29 -0.50 -0.15 28.02



B
Mathematical models

B.1 Weighted sum three-index model for MASPDP

The mixed integer program presented below is used to test the performance of CPLEX

with the three-index model. It is modified from the problems (4.1)−(4.23) and (4.24)−(4.25)

using weighted sum where λ1 is the weight for objective function (4.1) and λ2 is the weight

for objective function (4.24).

maxλ1

∑
i∈T

∑
j∈C

ηij − λ2

∑
k∈T

∑
(i,j)∈AC

ti,jx
k
i,j +

∑
i∈T

∑
j∈C

t0,jγ
i
j

 (B.1)

subject to:

(4.2)− (4.23)
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neighborhood search. In Handbook of Metaheuristics, pages 57–97. Springer, 2019.

Gerhard Hiermann, Jakob Puchinger, Stefan Ropke, and Richard F Hartl. The electric
fleet size and mix vehicle routing problem with time windows and recharging stations.
European Journal of Operational Research, 252(3):995–1018, 2016.

Richard P Hornstra, Allyson Silva, Kees Jan Roodbergen, and Leandro C Coelho. The
vehicle routing problem with simultaneous pickup and delivery and handling costs.
Computers & Operations Research, 115:104858, 2020.

Toshihide Ibaraki, Shinji Imahori, Koji Nonobe, Kensuke Sobue, Takeaki Uno, and Mut-
sunori Yagiura. An iterated local search algorithm for the vehicle routing problem with
convex time penalty functions. Discrete Applied Mathematics, 156(11):2050–2069, 2008.

Leonie M Johannsmann, Emily M Craparo, Thor L Dieken, Armin R Fügenschuh, and
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