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A B S T R A C T   

Impressing current is a popular technique to adjust corrosion behaviors of structures, both in academic inves-
tigation and engineering practice. Focusing on the specific problem, this paper presents a robust solution strategy 
for analyzing corrosion of reinforced concrete structures, under both voltage-controlled and current-controlled 
power supply. Following fundamental electrochemistry, a nonlinear numerical model incorporating field and 
global variables is developed, where the ways of considering power supplies with different controlling modes are 
presented. To tackle the essential global variable to problems under current-controlled power supply, a pseudo 
discretization method is newly developed to facilitate the highly nonlinear finite element analysis. Given 
moisture-induced nonuniform concrete resistivity, the moisture field in concrete is also modelled and solved 
together with the corrosion propagation through a staggered solution scheme. The proposed approach is care-
fully validated against a variety of reported experiments. Moreover, by directly controlling steel passivation 
state, the influence of steel depassivation extent on the cathodic protection performance for aging reinforced 
concrete structures under different saturation degree is numerically investigated for the first time. It is discovered 
that the protection effectiveness is closely related to the steel depassivation state. It is also revealed that the 
influence of concrete saturation degree on protection performance in a current-controlled system is generally 
more complex than that of a voltage-controlled system.   

1. Introduction 

Detrimental impacts of corrosion on reinforced concrete in-
frastructures, such as cross-sectional loss of reinforcements and cracking 
of the cover concrete, have long been recognized [1–6]. The cost for 
annual restoration of corroded structures brings considerable financial 
burden to many countries [7]. In general, it is well established that steel 
corrosion in concrete is an electrochemical process and inevitably 
affected by electric interferences [8]. For various purposes, external 
power supply is widely imposed on the electrochemical system by aca-
demics and engineers to adjust steel corrosion behavior. 

Given that natural steel corrosion is a long-term process, numerous 
researchers have successfully improved the efficiency of experimental 
studies by impressing current [9–16], see Fig. 1 (a). Under this 
circumstance, an enforced macrocell corrosion occurs, with the steel as 
anode and an auxiliary electrode as cathode, where electrons from the 

power supply are consumed by the reduction reaction on the cathode. As 
a result, an equal number of electrons should be supplied by the iron 
dissolution reaction, hence accelerating corrosion rate. On the other 
hand, suppressing corrosion of reinforced concrete structures by 
external power sources is also common in engineering practices 
[17–24], namely impressed current cathodic protection (ICCP) as shown 
in Fig. 1 (b). In ICCP, electrons flow towards protected steel reinforce-
ment to produce cathodic polarization. Previous studies have demon-
strated that the method could ease the corrosion process to achieve 
longer service life for aging structures [25]. 

Despite the extensive practical applications, only limited and 
incomplete numerical analyses on the power supply-involved corrosion 
system have been reported [26–30], which is mainly caused by the lack 
of robust solution method for solving the highly nonlinear problem. In 
general, the nonlinearity source for electrochemistry-based corrosion 
analyses lies in the boundary condition associated with the electrode 
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polarization [31]. With the further consideration of impressed current, 
the nonlinearity of the resulted numerical system is enhanced, 
depending on the detailed technique for power supply. To be specific, 
the nonlinearity is intensified in the current-controlled mode due to the 
unknown applied voltage, where an extra nonlinear governing equation 
needs to be introduced to solve the complex mixed field and global 
variables. Except for these intrinsic nonlinearities, coupling with other 
fields in concrete, such as moisture field, further complicates the overall 
corrosion modelling [32]. 

To fill the research gap, this paper presents a robust solution strategy 
to tackle the complex numerical system. Following the electrochemical 
theory, the corrosion propagation of reinforced concrete structures 
under both voltage-controlled and current-controlled power supply is 
modelled and solved via finite element method. Especially, a pseudo 
discretization method is freshly proposed to handle the global variable, 
i.e., applied voltage, in the highly nonlinear analysis on problems under 
current-controlled power supply. In view of time-dependent and 
nonuniform concrete resistivity induced by the variation in saturation 
degree, the moisture transport in concrete is also investigated. The 
proposed method is realized through an in-house code in MATLAB and 
validated against reported accelerated corrosion experiments. Further-
more, the developed method is also employed to investigate the cathodic 
protection for aging reinforced concrete structures, where localized 
reinforcement corrosion proceeds with chloride ingress [33]. In engi-
neering practice, chloride-induced depassivation state of reinforcement 
is uncertain when anti-corrosion measure is implemented, which affects 
the protection performance and has yet been thoroughly investigated so 
far. Based on the proposed method, the detailed passivation status of 
rebars can be handled in a straightforward manner, where the influence 
of existing steel depassivation area on corrosion mitigation of reinforced 
concrete structures under different saturation states is systematically 
assessed for the first time. 

2. Model formulation 

2.1. Electrode polarization 

According to electrochemical fundamentals [34], kinetics of elec-
trode reactions are governed by the electrode polarization, which can be 
represented mathematically by Tafel’s equation. In the power supply- 
involved corrosion process, electrode reactions depend on the detailed 
method for connecting the electrochemical system with the external 
power source. For general purposes, we define the rate of various 
oxidation and reduction reactions on anode and cathode in Eqs. (1)–(2). 

ia,j = (− 1)ϑi0
a,jexp

[
2.303(Va − φ − Ea,j)

βa,j

]

(1)  

ic,k = (− 1)ϑi0
c,kexp

[
2.303(Vc − φ − Ec,k)

βc,k

]

(2)  

where subscript a, j means the jth reaction on anode, subscript c, k means 
the kth reaction on cathode, ϑ = 0 and 1 for the oxidation and reduction 

reaction, respectively. Following the conventions, i is the current density 
(A/m2), i0 is the exchange current density (A/m2), V is the electric po-
tential of electrodes (V), φ is the electric potential of concrete (V), E is 
the equilibrium potential (V vs. SCE) and β is the Tafel’s slope (V/dec). 

Despite that rates of most electrode reactions obey aforementioned 
equations, the oxygen reduction reaction in the steel corrosion process is 
further constrained by the oxygen accessibility [35], i.e., concentration 
polarization. In this regard, Tafel’s equation with a limiting current 
density is applied to this specific reaction [1,8], see Eqs. (3)–(4). 

iO2 = −
i0
O2

⋅exp
(

2.303(Va/c − φ− EO2 )

βO2

)

1 +
i0O2
iL

⋅exp
(

2.303(Va/c − φ− EO2 )

βO2

) (3a)  

iL =
DO2 zO2 Fcext

O2

L
(3b)  

DO2 = 1.92 × 10− 6 ×

(
ϕ

1 − χ

)1.8

⋅[1 − θ(RH)]
2.2 (4)  

where in Eq. (3), subscript a/c indicates that the reaction could happen 
on either anode or cathode, subscript O2 denotes the oxygen reduction 
reaction, iL is the limiting current density (A/m2) controlled by oxygen 
availability, DO2 is the oxygen diffusivity (m2/s), zO2 = 4 is the valency 
( - ) of oxygen reduction reaction, F is the Faraday constant 
(96485.333 C/mol), L is the shortest length (m) from the electrode 
surface to the exposure surface, cext

O2 
is the oxygen concentration 

(mol/m3) in the exposure environment. In Eq. (4), ϕ is concrete porosity 
( - ), χ is volume fraction ( - ) of aggregates in the concrete mix, θ is the 
concrete saturation ratio ( - ) as a function of relative humidity (RH). 

2.2. Electric field in concrete 

As shown in Tafel’s equations, the electric field in concrete plays a 
central role in evaluating the electrochemical reaction rate. In this study, 
the potential distribution in concrete is modelled by the classical Lap-
lace’s equation [36–38], as shown in Eq. (5). The electrode polarization- 
related boundary conditions, as written in Eqs. (6)–(7), give rise to the 
high nonlinearity of the overall numerical system. 

∇⋅i = 0 (5a)  

i = −
1
ρ∇φ (5b)  

− i⋅n|Γa
= ia =

∑

j
ia,j (6)  

− i⋅n|Γc
= ic =

∑

k
ic,k (7)  

where in Eq. (5), i is the current density vector in concrete (A/m2), ρ is 
the electrical resistivity of concrete (Ω⋅m). In Eqs. (6)–(7), n is the unit 

Fig. 1. Schematic diagram of: (a) accelerated corrosion experiment; (b) ICCP of reinforced concrete.  
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normal vector pointing outward from the electrode surface, Γa and Γc 
are the surface of anode and cathode, respectively, ia and ic are net 
current density (A/m2) on surface of anode and cathode, respectively. 

Concrete resistivity, essential to the Laplace’s model, strongly relies 
on the material saturation degree according to the previous study [39]. 
To this end, an empirical equation reported by Garcia et al. [40] is 
employed to take the effect into account, see Eq. (8), where the moisture 
field is evaluated by the Richard’s equation [41], as written in Eqs. (9)– 
(11). 

ρ = 0.437w− 2.53
L = 0.437[ϕ⋅θ(RH)]

− 2.53 (8)  

Ψ
∂RH

∂t
− ∇⋅(DM∇RH) = 0 (9a)  

DM =
ρLDL + ρVSDV

ρL
(9b)  

Ψ = ϕ
∂θ(RH)

∂RH
(9c)  

DL =
K
μwLPCS (10)  

DV = wGD/τ (11)  

where in Eq. (8), wL is the volume fraction of liquid water in concrete 
( - ). In Eqs. (9)–(11), DM is the overall moisture diffusivity (m2/s), DL 

and ρL are the diffusivity (m2/s) and density (kg/m3) of liquid water, DV 

and ρVS are the diffusivity (m2/s) of vapor water and saturated vapor 
density (kg/m3), K is the permeability of concrete with the consideration 
of the pore structure (m2), μ is the viscosity of the pore solution ( - ), PCS 
is the average saturation vapor pressure (Pa), wG is the volumetric 
content of vapor (m3/m3), D is the intrinsic diffusivity of vapor water 
(m2/s), and τ is the concrete tortuosity ( - ), where the detailed evalu-
ation approach refers to [41]. 

2.3. External power supply 

The other key to evaluating kinetics of electrode reactions is the 
correct representation of electrode potentials, which are often regarded 
as 0 in the modelling of natural corrosion. In the present electrochemical 
system, however, the corresponding values depend on the power source. 
Assuming that the resistivity of electrodes and power supply wires are 
negligible relative to that of the concrete, potentials of electrodes 
distribute uniformly and correspond to the applied voltage (Vapp). As a 
result, the consideration of the voltage-controlled power supply in the 
electrochemical model is in a straightforward manner, as shown in Eqs. 
(12)–(13). 

Vc = 0 (12)  

Va = Vapp (13) 

Nevertheless, regarding the current-controlled power supply, Vapp 

becomes a variable to maintain the average net current density on 
anode, namely applied current density (iapp). As a result, the changing 
voltage cannot be directly applied in Tafel’s equations for evaluating 
anodic polarization. In this specific case, this crucial parameter indeed is 
governed by Eq. (14), where the analysis is further complicated by not 
only the increased model nonlinearity but also the involvement of an 
extra variable, i.e., Vapp. To handle this special variable, a pseudo dis-
cretization method is proposed in the solution scheme, which will be 
discussed in detail in Section 3. 

∫

Γa

iads =

∫

Γa

∑

j
( − 1)ϑi0

a,jexp
[

2.303
(
Vapp − φ − Ea,j

)

βa,j

]

ds

=

∫

Γa

iapp ds

(14)  

3. Solution strategy 

3.1. Solution procedures 

To solve the complex numerical problem of reinforcement corrosion 
under external power supply, a numerical procedure is developed 
herein. The simultaneous moisture transportation and electrochemical 
corrosion analysis are decoupled by a staggered solution scheme, as 
illustrated in Fig. 2. After the determination of RH field in the staggered 
step 1, the electrochemical analysis is conducted in the staggered step 2 
based on the RH-controlled concrete resistivity and oxygen accessibility. 

3.2. Finite element formulation 

To successfully implement the proposed numerical procedure, 
detailed algorithms for solving both stagger steps are developed based 
on finite element method. Herein, particular emphasis is put on the 
solution process of current-controlled analysis, in which a pseudo dis-
cretization method is proposed. 

3.2.1. Moisture transportation 
According to finite element theory [42], the weak form for the 

moisture transportation analysis is first established in Eq. (15), which is 
further discretized spatially by the Galerkin method, see Eqs. (16)–(20). 
∫

Ω
WRHΨṘH +∇WRH⋅DM∇RH dΩ = 0 (15)  

MRHU̇RH +KRHURH = FRH (16) 

with 

U̇RH =
[

ṘH1 ⋯ ṘHnn− 1 ṘHnn
]T (17)  

URH = [RH1 ⋯ RHnn− 1 RHnn ]
T (18)  

MRH =

∫

Ω
NTΨN dΩ (19)  

KRH =

∫

Ω
BTDRHB dΩ (20)  

where WRH is the weighting function of RH, ṘH is the time derivative of 
RH, Ω denotes the domain of one finite element, MRH, KRH and FRH are 
damping matrix, stiffness matrix and force vector for RH analysis, 
respectively, note that FRH results from Dirichlet boundary conditions, 
URH and U̇RH are vectors that consist of nodal RH and time derivatives of 
them, nn is the number of nodes in one finite element, N is the vector 
containing shape functions, B is the matrix formed by spatial derivatives 
of shape functions, and DRH = diag(DM,DM) is the moisture diffusivity 
matrix. 

Moreover, to deal with the time derivative terms in Eq. (16), we 
apply the implicit Euler method for the temporal discretization in the 
time-dependent analysis, yielding a system of equations as shown in Eqs. 
(21)–(23). 

K̃RHURH − F̃RH = 0 (21) 

with 

K̃RH = MRH +ΔtKRH (22) 
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F̃RH = MRHU
←

RH +ΔtFRH (23)  

where K̃RH and F̃RH are modified stiffness matrix and force vector after 

the application of implicit Euler method, U
←

RH is the vector consisting of 
nodal RH of last time step, Δt is the time step of analysis. 

3.2.2. Electrochemical analysis 
As demonstrated in Section 2, depending on the detailed technique 

for controlling power supply, different electrochemical models are 
defined. In the voltage-controlled analysis, only a field variable is 
involved, i.e., φ. As a result, the numerical system can be solved by the 
conventional finite element method, where model derivation is shown in 
Eqs. (24)–(28). 
∫

Ω
∇Wφ⋅

1
ρ∇φ dΩ =

∫

Γa

WφiadΓ+

∫

Γc

Wφic dΓ (24)  

KφUφ = Fφ (25) 

with 

Uφ = [φ1 ⋯ φnn− 1 φnn ] (26)  

Kφ =

∫

Ω
BTDφB dΩ (27)  

Fφ =

∫

Γa

NTia dΓ+

∫

Γc

NTic dΓ (28)  

where Wφ is the weighting function related to φ, Kφ and Fφ are stiffness 
matrix and force vector for φ analysis, respectively, Uφ is the vector that 
consists of nodal φ, and Dφ = diag(1/ρ,1/ρ) is the concrete conductivity 
matrix. 

Nevertheless, the current-controlled analysis leads to an unconven-
tional finite element system, consisting of the governing equation of Vapp 

in Eq. (14), and the weak form of Eq. (24). To deal with this problem, the 
complex mathematical system is rearranged into two parts as: 

Sub − system I :
⎧
⎪⎨

⎪⎩

∫

Ω
∇Wφ⋅

1
ρ∇φ dΩ

0
=

{
∫

Γa

Wφia dΓ +

∫

Γc

Wφic dΓ

0

(29a)  

Sub − system II :
⎧
⎨

⎩

0
∫

Γa

ia dΓ
=

⎧
⎨

⎩

0
∫

Γa

iapp dΓ
(29b) 

In virtue of the division, the numerical system is allowed to be dis-
cretized sequentially. Galerkin method is first applied to the sub-system 
I, which, however, is hindered by the feature that Vapp does not exhibit 
explicitly in the equation. In this regard, we further modify the sub- 
system I into Eq. (30). 

Sub − system I :
⎧
⎪⎨

⎪⎩

∫

Ω
∇Wφ⋅

1
ρ∇φdΩ

0
=

{
∫

Γa

WφiadΓ +

∫

Γc

WφicdΓ

0

⇔
∫

Ω
∇Wφ⋅

1
ρ∇φ + WV ⋅0⋅VappdΩ

=

∫

Γa

Wφia + WV ⋅0dΓ +

∫

Γc

Wφic + WV ⋅0dΓ

(30)  

where WV is the weighting function related to Vapp. 
In Eq. (30), the unknown variable Vapp is defined as a global variable 

in this paper, which may cause numerical difficulty in discretizing sub- 
system I. To be more specific, the difference of the so-called global 
variable with other field variables is illustrated in Fig. 3. As shown in 
Fig. 3, the global variable is defined as a single valued constant 
throughout elements and not required to be interpolated based on nodal 
values by shape functions, which can be mathematically expressed as: 

Vapp = UV (31) 

Fig. 2. Numerical procedure for reinforcement corrosion analysis under external power supply.  

B. Dong et al.                                                                                                                                                                                                                                    



Engineering Structures 294 (2023) 116724

5

where UV is the degree of freedom representing Vapp in the finite element 
system. 

In order to handle the global variable in the same way as field var-
iables, we freshly propose a pseudo discretization approach for Vapp, in 
which Eq. (31) is logistically expanded to represent the φ-related degree 
of freedoms, see: 

Vapp = UV

⇔ Vapp = 0⋅φ1 + ⋯ + 0⋅φnn + 1⋅UV = NV⋅U
∼

φ
(32)  

where NV = [01×nn 1] is the shape function vector of the Vapp, Ũφ =

[UT
φ UV ]

T is the vector consisting of all degree of freedoms in one finite 
element. 

The discretized form for the sub-system I of Eq. (30) can be obtained 
by Galerkin method as: 

K̂φ Ûφ = F̂φ (33) 

with 

K̂ =

∫

Ω
B̂

T
D̂φ B̂ dΩ (34a)  

B̂ =
[

BT NT
V

]T
=

[
B 02×1

01×nn 1

]

(34b)  

D̂φ =

[
Dφ 02×1

01×2 0

]

(34c)  

F̂φ =

∫

Γa

N̂
T

î
I
a dΓ+

∫

Γc

N̂
T

î
I
c dΓ (35a)  

N̂ =
[

NT NT
V

]T
=

[
N 0

01×nn 1

]

(35b)  

î
I
a = [ ia 0 ]T, î

I
c = [ ic 0 ]T (35c)  

where the sign ̂ means that the components correspond to the current- 
controlled analysis, with the consideration of the global variable. 
Except for the contribution to construct the equation system for finite 
element analysis, more importantly, the proposed pseudo discretization 
method can facilitate the solution of the highly nonlinear numerical 
system, which will be showcased in Section 3.3. 

Following the discretization of sub-system I, the sub-system II should 
be modified correspondingly, as given in Eqs. (36)–(37). 
⎧
⎨

⎩

0nn×1∫

Γa

ia dΓ =

⎧
⎨

⎩

0nn×1∫

Γa

iapp dΓ ⇔
∫

Γa

iII
a dΓ =

∫

Γa

iapp dΓ (36) 

with 

iII
a = [ 01×nn ia ]

T
, iapp = [ 01×nn iapp ]

T (37) 

As a result, we can write the complete system of equations for the 
current-controlled analysis to be solved by finite element method in Eq. 
(38). 

K̂φ Ûφ +

∫

Γa

iII
a dΓ = F̂φ +

∫

Γa

iapp dΓ (38)  

3.3. Newton-Raphson method implementation 

Newton-Raphson method [43,44], widely adopted for numerical 
simulations, is applied herein to solve the intended problem. Firstly, in 
terms of moisture transportation analysis, a modified method that 
eliminates nonlinearity and improves solution efficiency is used. To be 
specific, damping and stiffness matrices are estimated according to the 
previous time step, which has been proven effective in the authors’ 
previous study [45], where the iteration procedure is given in Eq. (39). 

ii+1URH = iiURH − J− 1
RH(K̃RH

iiURH − F̃RH) (39a)  

JRH = K̃RH = MRH(U
←

RH)+ΔtKRH(U
←

RH) (39b)  

where ii indicates the iith iteration, JRH is the Jacobian for solving the 
RH field. 

On the other hand, nonlinearity exists in the boundary condition for 
corrosion analysis, preventing the application of modified Newton- 
Raphson method. Therefore, the classical iteration process is imple-
mented, where the solution processes for the voltage-controlled and 
current-controlled analysis are listed in Eq. (40) and Eq. (41), respec-
tively. 

jj+1Uφ = jjUφ − J− 1
φ (Kφ

jjUφ − Fφ) (40a)  

Jφ = Kφ −
∂Fφ

∂Uφ
(40b)  

jj+1 Ûφ = jj Ûφ − Ĵ
− 1
φ (K̂φ

jj Ûφ +

∫

Γa

iII
a dΓ − F̂φ −

∫

Γa

iapp dΓ) (41a)  

Ĵφ = K̂φ +

∫

Γa

∂iII
a

∂Ûφ
dΓ −

∂F̂φ

∂Ûφ
(41b)  

where jj indicates the jjth iteration, Jφ and Ĵφ are Jacobians for the 
voltage-controlled and current-controlled analysis, respectively. 

By evaluating Eqs. (40)–(41), the accurate representation of partial 
deviation terms is essential to the solution. Attributing to the pseudo 
discretization approach as introduced for the global variable, these 
terms for both current-controlled and voltage-controlled analyses can be 
derived in a straightforward manner in Eqs. (42)–(43). 

∂Fφ

∂Uφ
=

∫

Γa

NT∂ia

∂φ
N dΓ +

∫

Γc

NT∂ic

∂φ
N dΓ (42)  

Fig. 3. Difference between the field and global variable.  
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∫

Γa

∂iII
a

∂Ûφ
dΓ =

∫

Γa

∂iII
a

∂Y
N̂ dΓ , Y = [φ Vapp ]

T (43a)  

∂F̂φ

∂Ûφ
=

∫

Γa

N̂
T∂̂i

I
a

∂Y
N̂ dΓ+

∫

Γc

N̂
T∂̂i

I
c

∂Y
N̂ dΓ (43b)  

4. Model validations 

4.1. Problem descriptions 

Two accelerated experiments with constant iapp of 250 μA/cm2 as 
reported by Fu et al. [29] and Chen et al. [30] are investigated herein to 
validate the effectiveness of the proposed algorithm, where the sche-
matic experimental setups are illustrated in Fig. 4. 

In Fu et al. [29], a cylindrical specimen is exposure to the air for 2 
days, where an embedded stainless-steel wire functions as the cathode. 
Different from this air-exposed method, Chen et al. [30] connected a 
fully immersed reinforced concrete block to an auxiliary electrode 
through the power source for 22 days. According to the literature 
[46,47], steel depassivation occurs with chloride ingress, which can be 
presented by a gradual reduction of βFe. In both experimental studies, 
the samples were submerged in NaCl solution for a long period before 
impressing current to ensure concrete saturation and complete steel 
depassivation. By doing so, the modelling of depassivation process of 
reinforcement can be ignored, where chloride penetration is not 
required to be considered in numerical studies. 

Despite the identical anodic iron dissolution reaction as shown in Eq. 
(44), different experimental settings could result in different cathodic 
reactions. In the experiment of Fu et al. [29], considerable oxygen 
reduction reaction happens on cathode due to the sufficient oxygen 
supply from the atmosphere. On the contrary, the oxygen availability in 
the study designed by Chen et al. [30] is hindered by the surrounding 
solution, where the hydrogen evolution reaction dominates instead. 
Cathodic reactions in these two electrochemical systems are summa-
rized in Eq. (45), and electrochemical parameters for fully depassivated 
reinforcement are listed in Table. 1 [45,48]. Note that subscripts Fe, O2 
and H2 denote iron dissolution reaction, oxygen reduction reaction and 
hydrogen evolution reaction respectively (Fu et al. [29]) (Chen et al. 
[30]). 

Fe − 2e− = Fe2+ (44)  

O2 + 4e− + 2H2O = 4OH− (45a)  

2H2O+ 2e− = H2 + 2OH− (45b) 

Based on the proposed algorithm, two-dimensional finite element 
analyses are implemented, where bilinear quadrilateral (Q4) elements 
are employed for meshing. In terms of the experiment of Fu et al. [29], 
the minimum and maximum element size are defined as 4e-4 mm and 
0.2 mm respectively, where 8671 elements are generated. Moreover, 
11,450 elements are applied to model the experiment of Chen et al. [30] 
by setting the minimum and maximum element size as 3.2e-3 mm and 
1.5 mm respectively. 

4.2. Accelerated corrosion under air-exposed condition 

To achieve precise modelling results, convergence performance of 
the solution algorithm is evaluated first. Given that the model cannot be 
solved analytically, the numerical solution with 5-min time step is taken 
as the reference for assessment. Compared to the reference, the 
convergence of the algorithm against various time stepping choices is 
assessed by the coefficient of determination (R2) in Eq. (46). 

R2 = 1 −
⃦
⃦U − Uref

⃦
⃦2

⃦
⃦Uref − Uref

⃦
⃦2 (46)  

where ‖⋯‖ is the 2-norm of a vector, U and Uref are the investigated 
solution vector and reference solution vector, respectively, Uref is the 
mean of the reference solution vector. 

The convergence performance of the algorithm is shown in Fig. 5, 
where the solution converges gradually with decreasing time step. To be 
more specific, the marginal modelling precision loss is achieved by the 
2-hour time step, which is indicated by a value of R2 close to 1. 
Therefore, the 2-hour time step is adopted in the following analyses. 

After the convergence study, the corrosion propagation in the 
experiment of Fu et al. [29] is simulated by the algorithm, with the 
environmental RH of 50% as the boundary condition. However, rather 
than the corrosion rate, the reported corrosion response in the experi-
ment is the final rust thickness on the rebar surface, which was measured 
on several cross sections to consider the material heterogeneity. In the 

Fig. 4. Schematic experimental setups from: (a) Fu et al. [29]; (b) Chen et al. [30].  

Table 1 
Electrochemical parameters of electrode reactions for validation.  

Exchange current density 
(A/m2) 

Equilibrium potential (V vs. 
SCE) 

Tafel’s slope (V/dec) 

i0Fe 
[45] 

i0O2 

[45] 
i0H2 

[48] 
EFe 

[45] 
EO2 

[45] 
EH2 

[48] 
βFe 
[45] 

βO2 

[45] 
βH2 

[48] 

3 ×
10- 

4 

1 ×
10-5 

1.1 
× 10- 

2  

− 0.68  0.16  − 0.95  0.09  − 0.18  − 0.15  

B. Dong et al.                                                                                                                                                                                                                                    



Engineering Structures 294 (2023) 116724

7

numerical study, Faraday’s law of Eq. (47) is employed for the calcu-
lation of rust thickness [49], where the simulated and experimental 
results are compared in Fig. 6. 

r(t) =
nAFe

∫ t
0 iFedt

zFeFρS
(47)  

where r(t) is the rust thickness (m) on rebar surface at the time t (s), n is 
the rust expansion coefficient ( - ), AFe is the molar mass of iron (g/mol), 
zFe is valency ( - ) of iron dissolution reaction, ρS is the mass density of 
steel (g/m3). In the present modelling, n is assumed to be 3.55. 

According to Fig. 6, the simulated result well respects the measured 
rust thickness, which manifests the competence of the proposed solution 
method. Either in the modelling or the experiment, the highly localized 
corrosion pattern generated by this corrosion acceleration method is 
revealed. The corrosion degree of rebar depends on the distance away 
from the stainless-steel wire, where more severe corrosion is observed 
for the spot closer to the cathode. Generally, the cathode-facing side of 
the steel interacts with the cathode more actively, leading to significant 
rust accumulation. Furthermore, inhomogeneous concrete resistivity 
induced by the gradual drying of the specimen intensifies the corrosion 
nonuniformity. To validate this claim, the streamline of current density 
at the end of testing duration is numerically obtained in Fig. 7 to visu-
alize current paths between electrodes. Moreover, by choosing several 
moments, the time-variant concrete resistivity is evaluated and shown in 
Fig. 8. 

As shown in Fig. 8, the concrete resistivity is unevenly distributed, 
and the nonuniformity is gradually alleviated with the reducing mois-
ture difference between the material and the exterior atmosphere. 
Noticeably, throughout the air-exposed experiment, the resistivity of the 
concrete core is constantly smaller than that of the outer layer. By 
examining Fig. 7, the streamline of current density between the upper 
part of the steel and cathode mainly locates at the low resistivity region, 
which facilitates the corrosion by the reduced energy consumption in 

the galvanic coupling. It is demonstrated that the localized corrosion 
pattern is controlled by the combined effect of length and resistivity of 
current paths between electrodes. 

4.3. Accelerated corrosion under immersed condition 

The numerical approach is further validated against the experiment 
of Chen et al. [30], where the resistivity of solution is assumed as 1 Ω⋅m. 
Despite that Faraday’s law is stilled followed to estimate the rust 
thickness, the fitted rust expansion coefficient of 3.15 in the present 
experiment is slightly smaller than the fitted value in the previous 
experiment. This distinction can be explained by the different exposure 
conditions, as the parameter is indeed susceptible to the environment in 
concrete [50,51]. The comparison of the modelled and experimental- 
measured rust thickness is shown in Fig. 9, where the modelled corro-
sion rate is also illustrated. The concrete and solution resistivity remain 
constant throughout the immersed experiment, hence the corrosion rate 
in Fig. 9 corresponds to any point in time throughout the experiment. 

According to Fig. 9, the modelling result agrees well with the 
measured rust accumulation at the end of the test. Different from the 
experiment of Fu et al. [29], both the rust and corrosion rate along the 
rebar surface only present slight nonuniformity in the soaking setting. 
The other noticeable difference is that the lower part of the rebar is less 
corroded than the upper part, in spite of being closer to the auxiliary 
electrode. To further investigate such an uncharacteristic finding, the 
streamline of current density during the accelerated corrosion experi-
ment is numerically obtained in Fig. 10. 

Fig. 10 illustrates that the current flows from the anode to the 
cathode through both concrete and the surrounding solution. While the 
lower part of the rebar interacts with the auxiliary electrode by the 
current in the concrete, the upper part mainly relies on the current in the 
solution. As shown in Fig. 10, the magnitude of current flowing in the 
solution is remarkably greater than that in the concrete, which coincides 
with the fact that solution resistivity is much lower than concrete re-
sistivity. Despite the fact that the current path between the upper rebar 
and the cathode is longer, power consumption in the path tends to be 
less due to smaller overall resistivity. In this regard, a more serious 
corrosion status is observed at the upper part of the rebar in Fig. 9. 
Moreover, due to the constant resistivity of the corrosion cell, a specific 
relation exists between the intended corrosion rate and required power 
supply in the fully immersed experiment. By taking advantage of the 
proposed algorithm, the correlation is determined for the investigated 
experiment in the present study, see Fig. 11. 

The relation between the applied voltage and rebar corrosion rate is 
illustrated in Fig. 11, which can be established by either a series of 
voltage-controlled or current-controlled studies. This finding not only 
verifies the authors’ claim, but also demonstrates the consistency be-
tween the voltage-controlled and current-controlled corrosion analysis 

Fig. 5. Convergence plot of the algorithm.  

Fig. 6. Comparison of simulated and experimental rust thickness r at day 2.  

Fig. 7. Streamline of current density in concrete at the end of experi-
ment (A/m2). 
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by using the proposed algorithms. Interestingly, the rebar corrosion does 
not initiate in a weak power source, as the hydrogen evolution reaction 
on the cathode can only be stimulated by a strong electric field [48]. The 
other significant discovery is that the applied voltage and the acceler-
ation effect correlates linearly in the range of high voltage, which is of 
potential to provide guidance for the design of a similar type of accel-
erated experimentation. 

5. Analyses and discussions 

5.1. Problem descriptions 

Several numerical cases are designed for comprehensively investi-
gating the influence of steel depassivation status on the effectiveness of 
cathodic protection for aging structures. A circular reinforced concrete 
specimen with initial RH of 80%, resembling the pier of aging bridges, is 

applied in the analyses [52], where 12 rebars evenly distribute along the 
circumference. The specimen is subjected to the atmosphere with RH of 
30% for a period of 120 days to generate continuous variation in satu-
ration degree, see Fig. 12. A layer of zinc, which can be used for both 
sacrificial anode cathodic protection (SACP) and ICCP [53], is placed 
over the concrete exterior surface to protect reinforcements. In engi-
neering practice, a typical example of such a measure is the Depoe Bay 
Bridge located in the United States, where 5900 m2 of zinc anode was 
adopted through thermal spray [54], see Fig. 13. 

Generally, reinforcement depassivation occurs from the spot closest 
to the exposure surface due to the gradual chloride ingress [55], where 
continuous localized corrosion occurs. As the focal point of present study 
is the steel status when the cathodic protection employs, detailed 
modelling of chloride ingress and the depassivation process is ignored. 
In this regard, the depassivation status is indicated by the area of steel 
depassivation zone using an angle α, see Fig. 12. In the present study, the 

Fig. 8. Time-dependent change of concrete resistivity distribution (Ω⋅m).  

Fig. 9. (a) Comparison of simulated and experimental rust thickness r at day 22 (μm); (b) simulated corrosion current density distribution along rebar surface 
iFe (A/m2). 

Fig. 10. Streamline of current density in concrete and surrounding solu-
tion (A/m2). Fig. 11. Relation between the power supply and rebar corrosion.  
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investigated angle ranges from 40◦ to 160◦ with an interval of 20◦. 
In the cathodic protection system, zinc is sacrificed to mitigate the 

rebar corrosion. Three different electrode reactions are considered on 
the steel surface, encompassing iron dissolution reaction, oxygen 
reduction reaction and hydrogen evolution reaction. Most of the elec-
trochemical parameters for these reactions follow the Table. 1, expect 
for βFe. Depending on the steel depassivation state, βFe are defined as 
0.09 and 3 for the active part and the passive part in the present study, 
respectively. Moreover, the zinc-supplied protection current density is 
essential to the modelling, which is estimated by a Butler-Volmer type 
equation presented in Eq. (48) [40], and treated as two superimposed 
Tafel’s equations. Electrochemical parameters for the anode are sum-
marized in Table. 2. Following the necessary parameters, two- 
dimensional finite element analyses are conducted, where the mesh is 
composed of 6493 elements, with densification near the exposure 
surface. 

ia = i0
a{exp[

2.303(Vapp − φ − Ea)

βox
a

] − exp[
2.303(Vapp − φ − Ea)

βred
a

]} (48)  

where i0a is the exchange current density (A/m2), Ea is the equilibrium 
potential (V vs. SCE), βox

a and βred
a are the Tafel’s slope for the oxidation 

and reduction reaction on the zinc anode, respectively. 

5.2. Rebar corrosion without cathodic protection 

To investigate the necessity of cathodic protection measures for the 
aging structure, natural corrosion is evaluated first. In engineering 
practice, the most common experimental technique in corrosion 
assessment is the polarization resistance method [45], where the 
average corrosion current density over the rebar is measured. In this 
regard, taking advantage of the proposed method, the average corrosion 
rate without protection is numerically obtained in Fig. 14. 

As shown in Fig. 14, the average corrosion rate increases as the 
depassivation progresses, which is consistent with the well-recognized 
corrosion propagation process [57]. It is also noticed that the corro-
sion gradually decelerates as the atmospheric exposure. To explain the 
phenomenon, changes of RH and corresponding concrete resistivity are 
evaluated in Fig. 15. As shown in Fig. 15, as the progressive increase of 
the resistivity with continuous drying, there witnesses a reduction in 
terms of interaction between active and passive steel, hence the decrease 
of corrosion rate. Moreover, it is recognized that the average response 
cannot fully depict the detailed corrosion intensity [45], and the 
maximum corrosion rate of the reinforcements is further investigated in 
Fig. 16. 

Fig. 12. Reinforced concrete specimen for the numerical analysis.  

Fig. 13. Depoe Bay Bridge with thermally spayed zinc over the surface (picture 
from [56]). 

Table 2 
Electrochemical parameters for zinc anode [40].  

i0a
(

A/m2
)

Ea(V vs. SCE) βox
a (V/dec) βred

a (V/dec)

4e-3 − 1.01 0.019 − 0.05  
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Fig. 16 shows that the maximum corrosion rate of the reinforcements 
far exceeds the average rate, which verifies the above claim. Despite that 
the average corrosion rate increases with the gradual steel depassiva-
tion, higher maximum corrosion rate is observed in more severely 
localized corrosion. Moreover, as concrete drying proceeds, the mono-
tonic decreasing trend of corrosion rate as indicated by average corro-
sion rate is absent when examining the maximum current density. To be 
more specific, the decreasing tendency is only witnessed in the activa-
tion zone with α of 40◦, while the corrosion rate and the saturation 
degree gradually becomes inversely correlated with the progressive 
depassivation. This interesting finding can be explained by evaluating 
the effects of concrete saturation degree. The drying can lead to not only 
deceleration of the overall corrosion process, but also shift of corrosion 
towards the intersection between active and passive steel. In fact, as 
shown in Fig. 17, the intersection part is where maximum current 
density appears. These two opposite effects on maximum corrosion rate 
vary with steel depassivation states, resulting in a complicated relation 
between the corrosion rate and concrete saturation degree. 

According to the literature [35,45], active corrosion propagation is 
widely considered to proceed when measured corrosion current density 
is greater than the critical value of 1 mA/m2. Herein, despite that 

different characteristics are observed in Fig. 14 and Fig. 16, the average 
and maximum corrosion rates are both much larger than the critical 
corrosion rate during the exposure period. Therefore, the cathodic 
protection method is necessary to be implemented to ensure the safety of 
aging structures. Moreover, aiming at the overall protection of rebars, 
the maximum corrosion rate is employed to evaluate the protection 
performance in the following discussions, where the complete protec-
tion is indicated by a corrosion rate smaller than 1 mA/m2. 

5.3. Rebar corrosion with SACP and voltage-controlled ICCP 

To mitigate the severe corrosion issue in aging structures, the zinc 
layer is installed to interfere with the electrochemical system. The pro-
tection effect without impressed current is investigated first, where the 
external power supply is in an open circuit state to produce SACP, i.e., 
Vapp = 0V. By taking two specific depassivation state as example, i.e., 
activation zones with α of 40◦ and 160◦, the current flow in the SACP is 
shown in Fig. 18. 

Fig. 18 illustrates the protection current flowing from the zinc layer 
to the reinforcements in the concrete, which complies with the principle 
of SACP [58]. To assess the performance of SACP, the maximum steel 

Fig. 14. Average corrosion rate of the aging structure without 
cathodic protection. 

Fig. 15. Time-dependent change of RH and concrete resistivity.  

Fig. 16. Maximum corrosion rate of the aging structure without 
cathodic protection. 
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corrosion rate throughout the exposure period is showcased in Fig. 19. 
Despite that higher corrosion localization leads to larger maximum 
corrosion rate in the natural scenario, the stronger localized corrosion 
can be arrested by SACP more effectively, as illustrated in Fig. 19. 
However, the fact that maximum corrosion rate of all reinforcements is 
always greater than 1 mA/m2 manifests the deficiency of SACP, thus 
power supply should be connected to perform ICCP. 

The voltage-controlled technique is first applied to the power supply 
of ICCP. For thorough efficacy investigation, a series of numerical 
studies with constant Vapp ranging from 0.5 V to 3 V with an interval of 
0.5 V are conducted, where the corrosion responses of reinforcements 
are shown in Fig. 20. 

According to Fig. 20, generally, the corrosion of steel with smaller 
depassivation extent can be restrained by voltage-controlled ICCP more 
effectively. Throughout the exposure period, while the steel with acti-
vation zone α of 40◦ is completely protected by ICCP using controlled 
voltage of 2 V, the required voltage raises to 3 V for the steel with 
activation zone α of 160◦ for maintaining an effective protection. For 
ICCP controlled in voltage greater than 1.5 V, however, a stage when the 
protection effectiveness is independent of the steel depassivation state is 
observed in the early exposure, where the duration of the stage increases 
with the enhancing power source. The influence of concrete saturation 
state on voltage-controlled ICCP is also illustrated in Fig. 20. It is evident 
that the protection performance reduces with the gradual concrete 
drying. This phenomenon is caused by the decreasing protection current 

provided by zinc anode under the progressively increasing concrete 
resistivity, see Fig. 21. It is worth mentioning that only the case with α of 
activation zone = 40◦ is illustrated in Fig. 21 to ease the writing, where 
the effect of depassivation state on the current is marginal based on the 
numerical investigation. 

Fig. 17. Corrosion current density (mA/m2) distribution along rebar surface at the end of exposure: (a) α = 40◦; (b) α = 160◦.  

Fig. 18. Streamline of current density (mA/m2) in concrete at Day 120: (a) α = 40◦; (b) α = 160◦.  

Fig. 19. Maximum steel corrosion rate with different α in SACP.  
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5.4. Rebar corrosion with current-controlled ICCP 

In this section, the proposed algorithm is further applied to examine 
the effectiveness of current-controlled ICCP. To be specific, the protec-
tion current density provided by zinc anode, i.e., iapp, is kept as constants 
in numerical studies, ranging from 40 mA/m2 to 100 mA/m2 with an 
interval of 20 mA/m2. The protection performances of current- 
controlled ICCP are shown in Fig. 22. 

According to Fig. 22, the anti-corrosion performance of current- 
controlled ICCP is more remarkable for steel with smaller 

depassivation area, which is consistent with the general trend found in 
SACP and voltage-controlled ICCP. Therefore, the effectiveness of a 
cathodic protection system is dependent not only on the volume of the 
protected structures [59], but also on the depassivated state of the 
protected structure, which should be considered in engineering practice. 
Moreover, concrete drying leads to a complicated variation in protection 
effectiveness of current-controlled ICCP. To explain this interesting 
phenomenon, current-controlled ICCP is sketched in Fig. 23. 

As illustrated in Fig. 23, in current-controlled ICCP, constant number 
of electrons transport from the zinc coating to the steel through the 

Fig. 20. Maximum steel corrosion rate with different α in voltage-controlled ICCP: (a) 0.5 V; (b) 1 V; (c) 1.5 V; (d) 2 V; (e) 2.5 V; (f) 3 V.  
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external circuit, i.e., wires, under the effect of power supply. Meanwhile, 
due to the macrocell corrosion, electrons are released by the depassi-
vated steel and accumulate on the passive steel, which stimulates the 
zinc-provided electrons towards the corroding part. In the early expo-
sure phase, the influence recedes due to the concrete drying-induced 
macrocell corrosion mitigation [60], leading to the protection level 
reduction. Nevertheless, as drying proceeds, the protection current 
received by the zinc anode-facing depassivated steel augments [61] for 

lessening the power consumption in the internal circuit, i.e., concrete. In 
consequence, following the initial decreasing stage, protection perfor-
mance exhibits an increasing trend, see Fig. 22. With the enlarging 
activated area of steel, it is observed that the competed effects of con-
crete drying gradually balance in the later exposure phase. It may be 
caused by less electron accumulation on passive steel due to the domi-
nation of microcell corrosion, as well as the longer distance between the 
most corroded spot and zinc anode. 

6. Conclusions 

In this work, a robust finite element-based algorithm is developed for 
analyzing corrosion propagation of reinforced concrete structures under 
external power supply, where a novel pseudo discretization approach is 
introduced for the global variable in the current-controlled analysis. The 
Newton-Raphson method is exploited to solve the highly nonlinear nu-
merical system. In virtue of the staggered solution scheme, the effect of 
the moisture transportation on the corrosion process is considered as 
well. The proposed method is validated against reported accelerated 
corrosion experiments. Furthermore, the performance of SACP and ICCP 
on the reinforced concrete specimen is assessed, in which the influence 
of steel depassivation extent and concrete saturation state is clarified. 
The following significant insights are summarized through the numeri-
cal investigations:  

1. The steel corrosion pattern generated in the accelerated corrosion 
experiments is significantly impacted by the experimental setups, 
where the air-exposure method generates more localized corrosion 
than the soaking method. 

Fig. 21. Change of protection current density provided by zinc anode in 
voltage-controlled ICCP. 

Fig. 22. Maximum steel corrosion rate with different α in current-controlled ICCP: (a) 40 mA/m2; (b) 60 mA/m2; (c) 80 mA/m2; (d) 100 mA/m2.  
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2. ICCP can mitigate the corrosion of reinforcements more effectively 
than the SACP, and the performance of ICCP improves with the 
enhancement of power supply.  

3. The performances of both current-controlled and voltage-controlled 
ICCP are dependent on the steel depassivation state. To be specific, 
the corrosion of steel with smaller activation area is easier to prevent, 
even though higher maximum corrosion rate is observed before the 
anti-corrosion measure.  

4. The effects of concrete saturation state on voltage-controlled and 
current-controlled ICCP are different. While the protection level 
provided by voltage-controlled ICCP decreases as concrete drying, an 
increasing trend of current-controlled ICCP performance is found 
after the initial decline stage. 

Overall, the proposed solution strategy can be expanded to more 
complex corrosion models in a straightforward manner, where rein-
forcement depassivation with chloride ingress and variations in elec-
trochemical properties can be considered under the effect of power 
supply. By doing so, further studies are expected to enrich the under-
standing regarding the efficiency of accelerated corrosion experiments 
and the effect of cathodic protection on reinforcement depassivation 
state. Therefore, the current work plays a backbone role in solving 
power supply-involved corrosion problems. 
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