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Thesis Abstract

Giardia intestinalis (also known as Giardia lamblia or Giardia duodenalis) is a protozoan parasite
that causes communicable gastrointestinal disease and has received increasing attention due to its
rising prevalence worldwide. The majority of current molecular and epidemiological research on
giardiasis is concentrated on G. intestinalis infection in developing countries, where prevalence
rates remain the highest. Infection of G. intestinalis can occur with only a few cysts, meaning that
overcrowded conditions, poor access to water, sanitation and hygiene facilities, and contaminated
water and food sources result in increased infection risk. The extent to which these risk factors are
relevant in Australia is relatively unknown, however ongoing surveillance has seen G. intestinalis
cases in humans more than double in the last 20 years. The re-emergence of this parasite is
concerning, as it suggests there are unique risk factors and disease reservoirs present in the

Australian setting that are contributing to this rise in case numbers.

To further complicate matters, G. intestinalis has been molecularly categorised into eight
genetically diverse assemblages, all of which have varying host specificities. Of particular
importance are G. intestinalis assemblage A and assemblage B, which have been isolated from
human and animal hosts worldwide. Current molecular assays used in typing G. intestinalis are
often unreliable and have variable amplification success. It remains difficult to genetically
characterise G. intestinalis in clinical samples, and harder still to understand the transmission cycles

and virulence of these assemblages.

When read collectively, the chapters in this body of work address the main research objective,
which is to comprehensively investigate the molecular epidemiology of G. intestinalis cases in
NSW, Australia. The initial chapter presents a comprehensive review outlining our current
knowledge of the two human-specific G. intestinalis assemblages A and B. It highlights the vast
genetic differences seen between the assemblages and summarises the advantages and shortcomings
of commonly used PCR-assays for genotyping G. intestinalis. An in-depth epidemiological analysis
of G. intestinalis cases in South-Western Sydney (SWS) was undertaken in Chapter 2, aiming to
describe the epidemiology and identify sources of exposure in an urban setting in Australia.
Building upon the previous work, Chapters 3 and 4 combined epidemiological and molecular data
to identify the prominent assemblages circulating in Australia. Powerful geospatial tools were
utilised to visualise the spatial and temporal distributions of G. intestinalis cases and assemblages
and to further identify hotspots of increased infection risk. Chapter 5 concludes this body of work

with an overall review of the molecular epidemiology of human G. intestinalis infection in
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Australia, with an emphasis on recent epidemiological findings. It demonstrates that the identified
risk factors of giardiasis are fundamentally unique to Australia. In the public health sphere this
would allow for reliable outbreak detection, help identify drug-resistant isolates and answer long-

standing questions concerning the zoonotic potential of G. intestinalis assemblages A and B.
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Exegesis

The primary objective of this body of research was to combine molecular epidemiological tools and
geospatial analyses to describe and explore the distribution of G. intestinalis cases and assemblages
A and B in NSW, Australia. This project consists of five chapters, each of which represents an
independent study with relevant background, methodologies, results, discussions and concluding
remarks included. When read in succession, these papers outline the backbone of the research, and
logically lead into the next chapter to address each research aim. Chapters 1 and 2 have been
published in separate, international journals, hence do differ regarding the formatting and
referencing style. The remaining 3 chapters have been formatted for journal submission and are

intended to be admitted for review.

The following paragraphs provide a brief overview for each chapter, addressing the main objectives
of each paper, the methodologies used and how each work is interconnected as part of the main

project.

Chapter 1 presents an up-to-date literature review detailing the current molecular assays used to
genotype G. intestinalis and provides background information on two genetically unique
assemblages that are commonly seen in human infections, assemblage A and B. While comparative
genomics have allowed researchers to successfully genotype G. intestinalis at the assemblage, sub-
assemblage and even sub-type level, there remains complications regarding the reliability of
common genetic markers such as the beta-giardin (bg), glutamate dehydrogenase (gdh) and
triosephosphate isomerase (¢pi). As these markers differ vastly in their genetic variability, there are
increasing reports of variable PCR-amplification success, preferential amplification of one
assemblage over another and inconsistent typing results depending on whichever genetic marker
and primer-set is used. For this reason, this review recommends that a minimum of two loci should

be implemented in future molecular studies to allow for reliable results.

Chapter 2 is a matched case-control study that involved the recruitment of Giardia-positive
participants from South-Western Sydney (SWS), one of the largest health districts in New South
Wales (NSW). As very few Australian studies have documented the prevalence of giardiasis, or
identified the risk factors that drive local transmission, this research is a first of its kind. The SWS
area is often overlooked in epidemiological studies despite being the largest growing health district
in Sydney. It contains both rural and urban areas and is one of the most demographically diverse

districts. In this chapter, univariate and multivariable analyses are run to compare G. intestinalis
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cases with controls, and to detect significant risk factors that are specific to SWS. The main findings
from this chapter indicate that common risk factors of giardiasis, such as drinking non-municipal
water, have no significance in an Australian setting. For this reason, the study recommends further
investigation into the G. intestinalis assemblages in circulation in NSW, and the potential sources of

infection.

Chapter 3 builds upon the previous chapter by incorporating data from G. intestinalis positive
cases within the entire state of NSW rather than just the district of SWS. The study uses two
molecular typing methods targeting the small subunit ribosomal RNA (SSU-rRNA) and
triosephosphate isomerase (tpi) loci. Giardia intestinalis assemblages that are successfully
amplified are coded into data on SPSS software and incorporated into comprehensive
epidemiological analyses. This combination of molecular epidemiology aimed to determine the
distribution, sources of transmission and patterns of infection of G. intestinalis assemblages in the
context of NSW, Australia. Interestingly, groupings of cases were observed in urban communities,
and seasonal trends suggested that outdoor water activities play a larger role in transmitting G.

intestinalis than previously suggested.

Chapter 4 reads as a continuation of the preceding chapter. Chapter 3 had previously identified
geographical trends of G. intestinalis infection across NSW, observing ‘hotspots’ of cases in
metropolitan Sydney. To substantiate these potential spatial clusters, a combination of geospatial
tools was applied to the data. Tools such as hotspot analyses, spatial autocorrelation and purely
spatial cluster detection are only recently gaining popularity in epidemiological and public health
studies. However, use of these spatial tools regarding protozoan parasites such as G. intestinalis are
incredibly rare. Chapter 4 details how geographical and temporal differences across NSW
ultimately influence G. infestinalis incidence and distribution. Using previous assemblage data from
Chapter 3, this paper geographically maps the various genetic types of G. intestinalis within NSW.
Geospatial analyses such as these are essential for sporadic case and outbreak surveillance, and
when used in conjunction with molecular data can become a powerful tool for disease prevention

and control.

Chapter 5 provides an extensive look into the molecular epidemiology of G. intestinalis,
specifically in the context of developed countries such as Australia. As infrastructure in Australia’s
cities and regional centres continue to rapidly urbanise, it is more important than ever to continue
surveillance on enteric protozoa such as G. intestinalis. Issues of overcrowding, waterborne-

outbreaks and cases imported from overseas play a large role in the re-emergence and increasing
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trends of G. intestinalis infection in Australia. The chapter also delves into current issues regarding
molecular typing and highlights the necessity for routine genotyping of G. intestinalis infections in

diagnostic laboratories.
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ARTICLE INFO ABSTRACT

Keywords: Giardia intestinalis continues to be one of the most encountered parasitic discases around the world. Although
Giardiasis more [requently detected in developing countries, Giardia infections nonetheless pose significant public health
Molecular biology problems in developed countries as well. Molecular characterisation of Giardia isolates from humans and animals
?::::]:izimﬁﬂ feveals that there are two genetically different assemblages (known as asssmbla‘lge A and B) ﬂ?at cause hun.lan
Typing infections. However, the current molecular assays used to genotype G. intestinalis isolates are quite controversial.

This is in part due to a complex phenomenon where assemblages are incorrectly typed and underreported
depending on which targeted locus is sequenced. In this review, we outline current knowledge based on molecular
epidemiological studies and raise questions as to the reliability of current genotyping assays and a lack of a
globally accepted method. Additionally, we discuss the clinical symptoms caused by G. intestinalis infection and
how these symptoms vary depending on the assemblage infecting an individual. We also introduce the hosi-
parasite factors that play a role in the subsequent clinical presentation of an infected person, and explore

which assemblages are most seen globally.

1. Introduction

Glardia intestinalis (also known as Giardia lamblia or Giardia duode-
nalis} is a protozoan parasite, commonly reported throughout the world
as the most important non-viral cause of human diarrhea. Annually, it
affects an estimated 280 million people worldwide; however, incidence
of the disease is highest in developing countries (Esch & Petersen, 2013).
Some studies theorise that the true number of G. intestinalis infections
globally is much higher as cases can go unreported due to high rates of
asymptomatic infection with the parasite (Fletcher et al., 2012). Inter-
estingly, locally acquired cases and outbreaks of Giardia are continually
reported in developed countries. In the USA and Canada, giardiasis
continues to be onc of the most reported causes of intestinal parasite
infection despite there being an overall decline in infection rates (Pard-
han-Ali et al., 2012; Coffey et al., 2020). Meanwhile in New South Wales
(NSW), Australia, ongoing discasc surveillance has scen Giardia cases
more than double in the last 20 years (NSW NCIMS, 2021). In urbanised
communities, G. intestinalis infection is generally seen in children,
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particularly those attending day-care centres. Giardiasis has also been
linked to waterborne outbreaks involving non-potable drinking sources
and swimming pools.

Giardia tntestinalis is split into eight unique, genetic assemblages
(assemblages A to 1) which can only be separated by molecular geno-
typing. Assemblages A and B have been described as having broad host
distribution, being isolated from not only humans, but other mammals
making them potential zoonotic genotypes (Adam et al., 2013). The
remaining assemblages C-H are specific to animal hosts. Comparative
genomic analyses based on the sequenced genomes of assemblage A
(isolate WB) and assemblage B (isolate GS) have shown that the two
assemblages share only 77% nucleotide identity in protein-coding re-
gions (Jerlstrom-Hultqvist et al., 2010). Interestingly, there is a stronger
similarity observed between assemblage A and assemblage E isolates, and
assemblage B shows greater phylogenetic distance from both genomes
(Xu et al., 2012; Adam et al., 2013). The differences between the two
human isolates implies that assemblages A and B should be regarded as
two separate Giardia species (Franzén et al., 2009).

2667-114X/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the GG BY-NC-ND license (http://creativecommons.org/licenses/by-

ne-nd/4.0/).
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Despite the advances made in genetically characterising G. intestinalis,
there is continuing ambiguity surrounding the associations with specific
symptoms and prevalence rates for assemblages A and B. This is in part
due to a lack of standard molecular methodology used by researchers
when genotyping G. intestinalis samples. Additionally, it is not common
practice for clinical laboratories to genotype patient samples, and so the
brunt of G. intestinalis cases remained uncategorised. The most used
markers, including the small subunit ribosomal RNA (SSU-rRNA),
glutamate dehydrogenase (gdh), triosephosphate isomerase (ipf) and
A-glardin (bg) are known to show conflicting genotyping results when
used independently, and even more so in samples involving mixed as-
semblages. In this paper, we review the correlation between G. intestinalis
assemblages and disease pattern, explore the potential of zoonotic
transmission and summarise the advantages and shortcomings of
commonly used biomarkers for discriminating Giardia assemblages.

2. Perceptions of zoonotic potential

For the most part, it is acknowledged that there is limited epidemi-
ological evidence and too much ambiguity surrounding host specificity to
confidently support zoonotic transmission of G. intestinalis assemblages A
and B (Bowman & Lucio-Forster, 2010; Plutzer etal., 2010; Helmy et al.,
2014). While these assemblages have been found in both humans and
animals, the question of the zoonotic potential of pets, livestock and
wildlife remains unclear.

2.1. Giardiasis in wildlife

Multiple epidemiological investigations focused on waterborne out-
breaks have implicated wild animals as having transmitted giardiasis to
humans (Sulaiman et al., 2003; Sroka et al.,, 2015). An Australian
investigation employed PCR coupled single-strand conformation poly-
morphism (SSCP) and phylogenetic analyses of loci in the
triosephosphate isomerase (pi) gene to characterise G. intestinalis found
in wildlife living near major drinking-water catchments {(Nolan et al.,
2013). The study successfully defined 28 distinct sequence types all of
which represented assemblage A. One of these assemblage A genetic
variants had been previously reported from humans {Lasek-Nesselquist,
2009; Wielinga et al., 2011), cattle (Feng et al., 2008), cats (Suzuki et al.,
2011), dogs (Lasek-Nesselquist, 2009), white-tailed deer (Trout et al.,
2003) and gulls (Lasek-Nesselquist et al., 2008) worldwide, suggesting
that there is a potential for zoonotic infections to occur, ot at the very
least that wildlife are possible reservoirs for zoonotic Giardia. Interest-
ingly, this Australian study also identified marsupials infected with novel
assemblage A variants which contained one to two polymorphic nucle-
otide positions (Nolan et al., 2013). Not only is it difficult to assign these
genetic variants to a specific genotype but it raises questions as to
whether these novel assemblage A subtypes are transmissible to humans.
It is suggested that this genetic variability exists among G. intestinalis
genotypes due to mixed infections and allelic divergence (Caccio & Ryan,
2008). There is an obvious need to develop a more robust classification
system for these new subtypes.

Earlier investigations have also successfully isolated the human-
specific assemblages A and B from the faeces of beavers and muskrats
found in water samples around the animal habitats (Weniger et al., 1983;
Crabtree et al., 1996; Appelbee et al., 2005). However, it must be noted
that these previous studies inferred that waterborne infections by Giardia
species were from marsupials or aquatic mammal soutces, but evidence
of causation was lacking. It is just as likely that the wildlife acquired the
zoonotic genotypes from drinking water sources contaminated with
human faeces, or even perhaps agricultural runoff suggesting humans
may be considered a major reservoir of giardiasis for wildlife. Reverse
zoonotic transmission is also plausible and must be considered to fully
understand giardiasis epidemiology (Palmer et al., 2008).
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2.2. Giardiasis in livestock

Hoofed animals such as cattle, sheep and pigs are infected with
assemblage E; however, various worldwide studies show an increasing
trend of isolating the zoonotic assemblage A from infected livestock
suggesting that zoonotic transmission from animals to humans can oceur
{Minetti et al., 2014; Adam et al., 2016; Zhang et al., 2016). Yet most of
these studies were focused mainly on young calves despite previous
literature reporting that the distribution of assemblages A and E are
associated with cattle age (Trout et al,, 2007; Mark-Carew et al., 2012;
Bartley et al.,, 2019). Assemblage A is predominantly detected in young
cattle while assemblage E is more often found in older livestock. Inter-
estingly, an Indian study was able to identify the zoonotic sub-assemblage
Al in both calves and dairy farm workers (Khan et al,, 2011), despite
humans being predominantly infected with sub-assemblage AIl (Faria
etal., 2017; Lecova et al., 2018; Hernandez et al., 2019). Moreover, there
was a significant correlation (P-value < 0.0001) between sub-assemblage
Al and individuals who bred livestock observed in a Syrian study (Skhal
et al., 2017). While sub-assemblage Al is regarded as having a broad host
range and has most commonly been reported in cats, pigs, sheep, and
cattle (Peng et al., 2016; Liet al., 2017; Wang et al., 2017; Lecova et al.,
2020), the occurrence of this zoonotic sub-assemblage in humans suggests
that cattle can contribute to contamination of the environment and thus to
human infections indirectly.

Yet authors of other studies remain unconvinced that livestock is the
source of rransmission for G. intestinalis in humans, particularly in com-
munities living in developed countries {Thompson & Monis, 2011; Ryan
& Caccio, 2013). In countries like Australia, the USA and Germany, there
is limited exposure between farmers and their livestock, and stronger
control measures are implemented to prevent contaminated agricultural
runoff leading into water systems. This is reflected in the molecular
studies from these countries which observe a higher prevalence of the
non-zoonotic, host-specific assemblage E in livestock {Trout et al., 2004;
Ng et al., 2011; Gillhuber et al., 2013). Further molecular studies are
needed to understand the risk that cattle pose, as well as to properly
define the transmission dynamics between livestock and humans.

2.3. Giardiasis in dogs

The possible role of companion animals as a source of G. intestinalis
infection in humans is still unclear as studies have yet to provide any
causal evidence of zoonoses. In Australia, G. intestinalis was observed in
9.4% of domestic dogs and only assemblages C and D were detected
{Palmer et al., 2008). On the other hand, a recent Australian study found
that individuals who handle domestic animals have a significant risk of
infection (OR = 2.04) (Zajaczkowski et al., 2018) and a report from
Germany observed 60% of dogs with G. intestinalis were predominantly
infected with the human-defined assemblage A {Leonhard et al., 2007).
Likewise, studies in England, Malaysia and Thailand support the zoonotic
potential of assemblage A and implicate domestic animals as reservoirs of
zoonotic Giardia (Traub et al., 2009; Anuar et al., 2014; Minetti et al.,
2015a). It has been theorised that transmission of potentially zoonotic
assemblages between humans and their pets is favoured in domestic
households as there is a higher chance of contact between humans and
canines (Thompson & Monis, 2004; Feng & Xiao, 2011). Likewise, dogs
that are kennelled or housed independently have been reported to have a
higher prevalence of assemblages A and B (Dado et al., 2012). Although it
appears that domestic canines have a high potential zoonotic risk,
without further molecular investigations that can confirm identical ge-
notypes between owner and pet, as well as case-control studies that can
establish the initial transmission source, the zoonotic potential of
G. intestinalis assemblages will remain unclear.

In a recent multi-locus genotyping study, humans living in rural
Cambodian communities were found to be predominantly infected with
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BIII {72.5%) followed by AIL {27.5%) (Inpankaew et al., 2014). Molecular
characterisation of the canine population reported only 2% of dogs
harbouring sub-assemblage BIII suggesting that the animals have a
minimal risk for transmitting to humans (Inpankaew et al., 2014).
Interestingly, the dogs in the study were semi-domesticated and shared
contact with humans; however, it is possible that the canine-specific
assemblages outcompeted assemblages A and B (Inpankaew et al.,
2014; Schir et al., 2014).

3. International prevalence of Giardia assemblages

The prevalence of giardiasis varies from 2% in developed countries to
70% in developing countries (Geurden et al.,, 2009; Jdlio et al.,, 2012;
Fletcher et al, 2013; Choy et al., 2014). Higher rates of disease in
developing nations are attributed to a combination of local risk factors
including lack of basic sanitation and hygiene facilities, inadequate ac-
cess to potable drinking water and poor housing (Slack, 2012; Fletcher
et al., 2013). As developed countries have better access to good quality
sanitation and hygiene facilities, there is a misconception that
G. intestinalis infection in industrialised countries is mainly associated
with international travel to developing nations (Schlagenhauf et al.,
2015). However, it is likely that endemic giardiasis cases are being
underestimated, particularly because returning travellers are more likely
to be tested for G. intestinglis infection, compared with those without a
travel history (Zajaczkowski et al., 2018). Indeed, a Scottish study found
that a total of 93% (26/28) Giardia-positive cases would have been
omitted from routine screening as they did not have a recent travel his-
tory or travelled to a ‘low-risk’ region (Currie et al., 2017). Emerging
studies have also observed the possibility that majority of giardiasis cases
in industrialised countries are in fact a result of endemic transmission and
local risk factors (Espelage et al., 2010; Plutzer et al., 2010; Minetti et al.,
2015b; Woschke et al.,, 2021). A German case-control study observed
more than half of G. intestinalis infections were acquired by individuals
who did not report travelling overseas prior to illness onset (Espelage
et al.,, 2010).

There is still a lot of uncertainty surrounding the distribution of
G. intestinalis assemblages around the world mainly because there are
limited molecular epidemiological studies of giardiasis in humans and
the results are often difficult to compare. While G. intestinalis assemblages
A and B are globally distributed, most studies based in both developed
and developing regions agree that assemblage B is the most commonly
found in human infections (Kohli et al., 2008; Breathnach et al., 2010;
Tungtrongehitr et al.,, 2010). Higher prevalence of assemblage B has been
reported in Canada (Igbal et al., 2015), China (Yu et al.,, 2019), England
{Minetti et al., 2015a), Kenya (Mbae et al., 2016), Spain {Wang et al.,
2019). Assemblage B infections have a higher parasitic load and
increased rate of cyst shedding which would explain the higher detection
rates in comparison to assemblage A infections (Kohli et al., 2008). Yet
higher rates of assemblage A infections have been observed in countries
such as Brazil (Souza et al., 2007), Ethiopia (Damitie et al., 2018), Iran
(Kasaeli et al., 2018; Mahmoudi et al., 2020), New Zealand (Winkworth
et al., 2008), Syria (Skhal et al., 2017) and Romania {Costache et al.,
2020). Due to limited molecular epidemiological studies of giardiasis in
humans, an accurate geographical pattern for individual G. intestinalis
assemblages cannot be concluded. However, a recent study has noted
that the occurrence of mixed-assemblage infections appears to be higher
in developing countries as opposed to developed regions of the world
{Samie et al., 2020). This can be attributed to overcrowded living con-
ditions and higher contact among infected individuals, allowing assem-
blages A and B to persist and to re-circulate in these communities (Asher
et al., 2014).

There are very few studies that can explain why the prevalence of
G. intestinalis assemblages seen in communities vary so widely. This may
be due to a lack of sensitive surveillance systems that monitor giardiasis
prevalence. Most likely, there are several factors at play that influence
genotype dominance. These factors could be linked to differences in
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wildlife populations and the potential for zoonotic disease transmission,
as well as cultural, human behavioural and climatic variances across
regions in the world. It {s proposed that the host's age or gender can also
alter the transmission dynamics and the distribution of assemblages A
and B. A study in England observed that assemblage A was more common
in adults aged greater than or equal to 65 years-old, while assemblage B
was more prevalent in children (Minetti et al., 2015a). Likewise, studies
in Spain and Egypt observed children were more commonly infected by
assemblage B than adults (El Basha et al., 2016; Wang et al., 2019). It is
theorised that older individuals develop a potential immunity to
G. intestinalis assemblage B, which would explain why assemblage A in-
fections tend to be recorded in adults rather than children. It is also
possible that these age-related differences are the result of other factors,
such as different typing techniques, sample sizes and target populations
used during the studies.

4. Molecular tools for genetic characterisation of G. intestinalis

There is an increasing use of molecular PCR being applied to study
Giardia from a variety of mammalian species. This method provides a
highly sensitive and specific approach to diagnostics and unlike con-
ventional methods, can accurately characterise Giardie at the species-
and assemblage-level. PCR-based restriction fragment length poly-
morphism (PCR-RFLP) targeting the bg, gdh or tpi genetic markers is one
of the earliest molecular tools used by investigators to genotype
G. intestinalis (Aydin et al., 2004; Almeida et al., 2006; Gelanew et al.,
2007; Pelayo et al., 2008; Lebbad et al., 2011; Sarkari et al., 2012; Rafiei
et al., 2020). Studies that have utilised a PCR-RFLP method commonly
detect a higher prevalence of inter-assemblage mixed infections that are
not always caught by standard PCR {Amar et al., 2002; Read et al., 2004,
Lalle etal., 2005; Van der Giessen et al., 2006). Yet advancements in DNA
sequencing technologies means the PCR-RFLP method is rapidly
becoming obsolete. It is a far more time-consuming procedure and is
often subject to contamination.

PCR amplification of G. intestinalis involves using assemblage-specific
primers and partially sequencing one or more of the following loci; small
subunit ribosomal RNA (SSU rRNA), glutamate dehydrogenase (gdh),
triosephosphate isomerase (i) or g-giardin {bg) (see Table 1), Other
targeted loci that are used albeit less commonly are the elongation factor
1-alpha (ef-1) (Traub et al., 2004), the GLORF-C4 {C4) (Yong et al., 2002)
and the intergenomic rDNA spacer region (IGS) (Lee et al, 2006).
Although most genotyping studies use a single gene to characterise their
isolates, there remains a crucial need for the development of a novel
genotyping method that targets more than one locus for identifying
G. intestinalis assemblages. Most studies that have characterised
G. intestinalis by testing at single genetic loci have shown inconsistent
subtyping results (Read et al., 2004; Cooper et al,, 2007; Gelanew et al.,
2007). One study observed that three of the loci (SSU rRNA, tpi and gdh)
classified human isolates as assemblage A. However, genotyping of those
same isolates at the bg gene as a single gene target showed a higher
similarity to assemblage B {Caccio et al., 2008).

4.1. The occurrence of mixed-assemblage infections

‘Assemblage swapping’ has been identified in clinical, animal, and
environmental samples and is thought to be a result of mixed-assemblage
infections (Almeida et al., 2010). Mixed-assemblage infections contain-
ing both assemblage A and B are rarely identified accurately, and most
studies report only a 3-10% prevalence (Kohli et al., 2008). There is
speculation that mixed assemblage infections are being underreported
due to the preferential amplification of one assemblage over the other
depending on the primer set being used (Wielinga & Thompson, 2007).
Moreover, primers used for typing G. intestinalis not only differ in their
specificities (see Table 1) but have been reported to have variable
amplification success rates (Costache et al., 2020; Chourabi et al., 2021,
Iwashita et al., 2021).
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Interestingly, PCR-based studies that use assemblage-specific primers
targeting the tpi locus are more likely to observe mixed-assemblage in-
fections in comparison to other PCR methodologies (Huey et al., 2013;
Elhadad et al., 2021) (see Table 2). Huey et al. {2013) originally noted a
mixed-infection rate of 64%; however, the rate was underestimated when
using a multi-locus genotyping approach on the same isolates.
Multi-locus PCR remains the foremost tool for efficient genotyping of
G. intestinalis; but it is clearly not without its biases, particularly when
dealing with mixed assemblage infections.

Mixed infections can be a result of genetic exchanges occurring be-
tween assemblages in a single cyst, forming hybrids known as recombi-
nants (Lasek-Nesselquist, 2009; Almeida et al., 2010). While originally it
was presumed that the reproduction of Giardia was exclusively asexual,
whole-genome sequencing {(WGS)} studies have identified homologs of
genes involved in meiosis (Ramesh et al., 2005; Poxleitner et al., 2008).
This suggests that the fusion of two nuclei, or karyogamy, and ultimately
somatic recombination is possible in the cyst stage. Additionally, popu-
lation genetic data {Cooper et al., 2007; Kosuwin et al., 2010) and
epidemiological studies (Teodorovic et al,, 2007; Lasek-Nesselquist et al.,
2009) have indicated strong evidence for recombination within and be-
tween G. intestinalis assemblage isolates. While sexual recombination in
G. intestinalis is theoretically possible, there has yet to be confirmation of
meiosis through direct observation. It is likely that the mechanism of
sexual reproduction is an infrequent and/or rare phenomenon that can
happen only under specific host conditions.

Another strong point in favour of Giardia being a sexually reproduc-
ing organism is the overall low levels of allelic sequence divergence seen
in both assemblages (Morrison et al., 2007; Teodorovic et al, 2007;
Lasek-Nesselquist et al., 2009; Jerlstrom-Hultqvist et al., 2010). Allelic
sequence heterogeneity (ASH) levels are reported as low as 0.01-0.03%
in assemblage A and 0.4-0.5% in assemblage B {Cooper et al.,, 2007;
Mortrison et al., 2007; Teodorovic et al., 2007; Adam et al., 2013; Xu et
al., 2020). It is assumed that sexually reproducing organisms maintain a
lower level of allelic heterozygosity by the need for chromosome pairing
during meiosis. In contrast, asexual organisms with a ploidy of two or
more have highly divergent allelic sequences because of independently
evolving nuclei (Birky Jr., 2010).

It is also important to note that G. intestinalis assemblage B possesses
higher ASH in comparison to assemblage A (Caccio et al., 2008; Lalle
et al., 2009; Ankarklev et al.,, 2012; Huey et al., 2013). This high poly-
morphism in assemblage B is reflected in the high frequency of double
peaks seen in sequence chromatograms. Oftentimes, this makes assigning
a subtype to assemblage B isolares difficult. Some studies have also
indicated that the bg, gdh and tpi markers are more likely to show het-
erogenecus templates due to their highly polymorphic nature (Wielinga
& Thompson, 2007). A genotyping study did not detect mixed-infection
profiles when using the conserved SSU rRNA target, and only identified
two intra-assemblage mixed infections when running a gdh assay (Hus-
sein et al., 2009), A novel multi-locus genotyping method is needed; one
that utilises polymorphic genetic markers to reliably identify assem-
blages but without masking rue mixed infections. Ideally
assemblage-specific primer sets should be incorporated into a multi-locus
genotyping method.

4.2, Comparing common molecular methods used for genotyping
G. intestinalis

Markers used in genotyping G. intestinalis isolates differ vastly in
terms of their genetic variability, as well as test sensitivity and specificity
{Wielinga & Thompson, 2007), The SSU rRNA gene remains one of the
most used markers for genotyping G. intestinalis assemblages due to its
highly conserved sequence, multi-copy nature and subsequent high
amplification rate in PCR. Most genotyping studies that target the SSU
rRNA utilise a nested-PCR methodology using primers RH11/RH4 and
GiarF/GiarR developed by Hopkins et al. {1997) and Read et al. (2002).
Due to high copy numbers in the SSU rRNA gene, these nested primers
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are found to be incredibly sensitive. This is particularly advantageous
when dealing with low quantities of parasite load or high amounts of PCR
inhibitors. Evidence of this was seen in a study by Minetti et al. (2015a)
where Giardia-positive specimens wete successfully typed at the SSU
tRNA gene, despite having previously failed to amplify when using other
loci (bg, gdh, tpi). Although SSU rRNA gene remains a commonly used
option for typing, it is recommended that it be used strictly for con-
firming the presence or absence of Giardia DNA in specimens rather than
for sub-typing purposes. This is because a major limitation of using any
SSU rRNA primer is the low genetic variation between assemblages
making it impossible to differentiate between sub-assemblages (see
Table 1).

Sub-typing (meaning typing at the level of sub-assemblages)
G. intestinalis isolates is only possible when using the single-copy genes
tpi, gdh or bg. In comparison to the SSU rRNA gene, the tpi and gdh
markers have the highest discriminatory power, followed by the bg gene
meaning that they support major assemblage and sub-assemblage typing.
There are several primer sets used for tpi assays (see Table 1); however,
the most used are the nested-PCR primers (AL3543/AL3546 and
AL3544/A13545) described by Sulaiman et al. (2003). Later studies then
incorporated assemblage-specific primers (Af/Ar and Bf/Br) to be used
alongside the primer sets of Sulaiman et al. (2003), and this allowed for
the detection of assemblages A and B (Geurden et al., 2008; Levecke et
al., 2009). Assemblage-specific primers such as these are advantageous
for multiple reasons. First, the assemblages are identified by differing
PCR product lengths and this allows researchers to genotype G. intestinalis
isolates without the need for sequence analyses. This makes it a time and
cost-efficient method. Secondly, these primers can detect mixed assem-
blages more effectively than standard PCR primers (Sahagtin et al., 2008;
Ajjampur et al., 2009; Breathnach et al., 2010; Huey et al., 2013). Using
general primers can often overlook mixed assemblage cases because of
the variable proportions of assemblages A and B DNA. Despite the
popularity of the tpi marker for genotyping purposes, there is evidence
that tpi primers have variable amplification success. MLST studies that
have utilised the AL3543/AL3546 primer set have observed low ampli-
fication rates for tpi genes when comparing to bg and gdh (Chourabietal.,
2021; Iwashita et al., 2021). Yet another MLST study using the same
primers found that typing at the tpi gene had the highest amplification
success compared to the gdh and ITS regions (Costache et al., 2020).
Several factors may be causing this lack of reliability, including the DNA
yield and method of DNA extraction, as well as the possibility of DNA
contaminants and inhibitors (Faria et al., 2017). It may also be a result of
nucleotide mismatches that are affecting PCR primer-binding sites and
leading to the non-amplification of some isolates (Capewell et al., 2021).
This only accentuates the idea that current single locus-based typing of
G. intestinalis is limited and may in fact be missing essential genetic data.
Several studies have recommended utilising a multi-locus sequence
typing {(MLST) methodology involving targeting a combination of
commonly used markers (bg, gdh, i and SSU rRNA) to increase suc-
cessful PCR chances. This process allows subtypes of each locus to be
combined into a multi-locus genotype (MLG) {Caccio et al., 2008).

Typing G. intestinalis at the gdh marker involves using the semi-nested
primers GDHeF/GDHIF and GDHIR, which can discriminate between sub-
assemblages Al All, BIII and BIV once digested with enzymes (see
Table 1) (Read et al., 2004), This PCR-RFLP method is widely used as it
offers a cheap, but effective alternative to subtyping by sequence anal-
ysis. However, similarly with other PCR-RFLP, this assay has a limited
ability to detect genetic variations and can often miss novel sub-types,
some that often differ by one nucleotide (Caccio et al., 2008). As such,
it is recommended that the nested primers Gdhl /Gdh2 and Gdh3/Gdh4
are used as an alternative to the PCR-RFLP assay (Caccio et al., 2008).
These primers offer greater discrimination through sequencing and can
discriminate between all major assemblages and sub-assemblages (see
Table 1). However, amplifying single-copy genes such as gdh, bg and pi is
not without disadvantages. The high polymorphism seen in these genetic
markers can make it difficult to discriminate between assemblage B
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subtypes {Caccid et al,, 2008; Lebbad et al.,, 2008; Lalle et al., 2009;
Ankarklev et al, 2012; Huey et al, 2013). Additionally, amplifying
single-copy genes often leads to discordant data, as it has been reported
that certain isolates are amplified at one locus but not at another {Traub
et al., 2004; Cooper et al.,, 2007; Gelanew et al., 2007).

Studies have also characterised G. intestinalis isolates by targeting
the IGS region of tDNA in single-locus PCR assays {Lee et al., 2006;
Al-Mohammed, 2011), as well as by incorporating this marker in MLST
{Hussein et al., 2017; Costache et al.,, 2020). The IGS is a multi-copy
and highly variable region that spans the 5.85 rDNA and two inter-
nal transcribed spacers (ITS1-5.8S-ITS2), making it suitable for clas-
sifying G. intestinalis into the major assemblages. In fact, a recent
report has observed a strong agreement between tpi and IGS loci when
classifying G. intestinalis into assemblages; both markers revealed
100% concordant results (Jerez Puebla et al, 2020).
Assemblage-specific primers targeting the IGS region of rDNA have
been successfully used to identify G. intestinalis assemblages without
the need for sequence analyses (Lee et al., 2006; Hussein et al., 2017).
These primers {GLF/GLR) and the pairs (GA1F/GABR, GA2F/GABR
and GBF/GABR) are specific for assemblages AIL AIl and B (see
Table 1). The GLF/GLR primers are not only highly specific but sen-
sitive (92.3%) and have shown greater polymorphism than the fpi gene
{Hussein et al., 2017). Between assemblages A and B, the difference in
their nucleotide sequences was found to be 25%, approximately 200
bp {(Lee et al, 2006). More recently, the primers GLF/GLR were
incorporated into a real-time PCR reaction using high-resolution
melting curve analyses (HRM) (see Table 1) (Al-Mohammed, 2011).
This method allows investigators to genotype G. intestinalis using a
one-step, closed-tube method without needing sequencing or electro-
phoresis, all within 80 min. It must be noted that caution should be
taken when sequencing the IGS region of rDNA as there are currently
insufficient sequence data of reference isolates available for compari-
son within GenBank. For this reason, it is recommended that future
studies avoid single loci genotyping methods, and at the very least,
target a combination of tpi and IGS loci. Both loci are highly poly-
morphic and provide discriminating sub-genotype and phylogenetic
data. It is also suggested to take advantage of the multi-copy nature of
SSU rRNA gene and target this locus alongside the #pi and IGS region.
This will ensure a high success of PCR amplification in specimens that
might otherwise fail to amplify.

Aydin et al. (2004)
ElBakri et al. (2014)
Breathnach et al. (2010)

Reference

5.091; P =0.018).

0.003).

+ Fever was significantly more common in

linked with assemblage B infection; however, this

and assemblage A infection (17 out of 20 isolates;
was not statistically significant.

P < 0.001).
» Majority of asymptomatic infections are

associated with assemblage B (22 out of 24
infections (A+B) and diarrhoea (OR = 8.899;

Symptoms observed and assemblage associations
isolates).

diarrhoea and assemblage B infection

{OR = 10.533; P = 0.001).
+ An association was also found between mixed

assemblage A infections (OR
> Longer illness or asymptomatic [nfection was

+ Strong association between diarrhoeal symptoms
P

» Strong association between the presence of

» Duodenal aspirates (n = 12)

» Stool specimens (n = 44)
Assemblage A (50%)

Genotypes detected (%)
Assemblage A (43%)
Assemblage B (57%)
Assemblage B (50%)
Assemblage A (45.7%)
Assemblage B (41.3%)
Mixed A+B (13.0%)
Assemblage A (24%)
Assemblage B (73%)
Mixed A+B (3%)

4.3. Novel molecular methods used for genotyping G. intestinalis

Locus targeted

tpi
wi
tpi

In addition to standard PCR, there is an urgent need for the devel-
opment of novel molecular methods that can discriminately and geneti-
cally classify G. intestinalis into assemblage types. It is essential that a
molecular-based classification system, such as a PCR-based barcoding
approach, is introduced as the standard. DNA barcoding is a highly
discriminatory tool used for genomic, epidemiological and tran-
scriptomic research as it allows researchers to make direct genetic
comparisons within and among Giardia sequences (Almeida et al., 2010).
Such comparative genomic studies can also predict links between
phenotypic traits seen in G. intestinalis assemblages and parasite-host
interplay, virulence, and pathogenicity.

The strength of this PCR-based barcoding system increases with the
number of genes targeted, so it is imperative that G. intestinalis sequence
data are extended to help identify further genetic markers. Currently,
identifyying novel genetic markers is difficult due to the limited published
sequence information for alternative loei. High throughput next-
generation sequencing (NGS) comparing the genetically diverse pro-
files of each G. intestinalis assemblage will help to identify new genetic
markers showing sufficient assemblage and/or intra-assemblage differ-
ences. Once these novel markers are found, they can be used as additional
‘barcodes’ for future genotyping (Minetti et al., 2015a).

While other studies have developed barcoding techniques used for
identifying and subtyping protozoan parasites {Scicluna et al., 2006;

asymptomatic giardiasis were included in the study
(n =56).

symptomatic patients (n = 20}, asymptomatic
individuals residing in Sharjah, UAE (n = 67)

patients (n = 24).
Giardia-positive stool samples from healthy

Giardia-positive stool samples collected from

symptomatic patients (n = 6); asymptomatic
hospital diagnostic laboratories (n = 199)

patients (n = 6)

Samples from patients with symptomatic/
Forty-four samples were stool specimens:
Twelve samples were duodenal aspirates:

Study outline and sample size
# This result was more significant when mixed assemblage cases (A and B) and mixed intestinal infections were excluded from the analysis.

® This result was only significant when mixed intestinal infections were excluded from the analysis.

United Arab Emirates
United Kingdom

Country
Turkey

Table 2 (continued)
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Nzelu et al., 2015); to date, only one study has genetically characterised
Giardia isolates using systematic DNA barcoding (Nolan et al., 2011).
This study successfully employed SSCP based methods and restriction
endonuclease fingerprinting (REF) to analyse sequence variation within
and among Giardia amplicons {Nolan et al., 2011). Isolates were char-
acterised by targeting common genetic markers (ipi, gdh and bg). Inter-
estingly, there were no disparities found when assigning G. intestinalis
assemblages unlike previous multi-locus genotyping studies.

5. Clinical differences associated with G. intestinalis assemblages
A and B

The clinical appearance of giardiasis is quite variable, and while some
patients will develop clinical symptoms, others will remain asymptom-
atic. Symptomatic cases mainly suffer from acute and/or chronic diar-
rhoea, stomach cramps, nausea, vomiting, flatulence, dehydration and
weight loss (Muhsen & Levine, 2012). Although symptoms are mainly
non-life threatening, individuals that are immunocompromised, infants
and young children can suffer from malabsorption, malnutrition and
debilitating fatigue often leading to subsequent growth retardation,
stunting and impaired cognitive development (Adam et al., 2013). It is
still unclear why G. intestinalis infections manifest such variable clinical
symptoms, although most studies hypothesise that host-parasite factors
and the genetic differences within a parasite play a major role in subse-
quent clinical presentation (Tungtrongchitr et al., 2010).

Complex interactions between co-infecting enteropathogens and host
molecular responses have also been suggested to influence Giardia dis-
ease manifestations. While co-infections with Vibrio cholerae (Mulkherjee
et al., 2014) and norovirus {Becker-Dreps et al., 2014) are particularly
common, some investigations have observed a synergistic relationship
between G. intestinalis and rotavirus (Bhavnani et al., 2012; Vasco et al.,
2014). An Ecuadorian study found that individuals living in rural settings
and co-infected with Giardie + rotavirus were associated with acute
diarrhoeal illness, as opposed to being infected with either pathogen
alone (OR = 24; 95% CIL: 1.9-302) (Vasco et al,, 2014). Interestingly, it
has been suggested that G. intestinalis may protect against diarrhoea by
competing with other enteric pathogens (Muhsen et al., 2014). However,
little is still known about the biological interactions between
G. intestinalis and co-infecting pathogens, and how these might influence
outward symptoms.

While there is evidence that G. intestinalis can disrupt and alter in-
testinal microbiota resulting in symptoms similar to irritable bowel dis-
ease (IBS) and increased pathogenicity, there is still limited information
regarding how G. intestinalis assemblages directly or indirectly influence
the gut microbiome (Barash et al., 2017; Beatty et al., 2017). Compara-
tive whole-genome sequence {(WGS) analyses have identified significant
genetic diversity between the two assemblages (Franzén et al., 2009),
and these differences may be associated with symptomology. In partic-
ular, the variant-specific surface proteins (VSP) genes which are associ-
ated with antigenic variation and immune evasion, were found to differ
between the two isolates (Ankarklev et al., 2010). There is speculation
that persistent infection and chronic disease is directly related to anti-
genic variation in VSP (Prucca et al., 2008). Additionally, assemblage A
was found to grow faster, encyst/excyst more efficiently in vitro and was
found to cause more tissue lesions and intestinal microbiota changes in
mice than assemblage B isolates (Bernander et al., 2001; Reiner et al.,
2008; Pavanelli et al., 2018). Whether assemblage A is truly associated
with severe clinical symptoms is yet undecided and while these studies
have increased our understanding of the parasitic mechanisms involved
in G. intestinalis, it remains difficult to determine whether these differ-
ences between assemblages is true for all G. intestinalis isolates. Inter-
estingly, there appears to be a correlation between symptomatic
giardiasis and the age of the host. Children aged less than 5 years and the
elderly appear to suffer from more severe symptoms, which islikely to be
the result of a weaker immune system (Sahagiin et al., 2008; Tung-
trongchitr et al., 2010). The virulence of assemblage A and B in humans
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may also be related to parasite factors including growth rates, metabolic
products or toxins produced and drug resistance.

Currently there is no clear correlation between assemblages and
symptoms with only limited studies on this topic. Assemblage A infection
has reportedly been affiliated with more serious clinical symptoms in
Australia, Bangladesh, Egypt, India, Iran, Turkey, Syria, and Great Britain
(Read et al., 2002; Aydin et al., 2004; Haque et al., 2005; Ajjampur et al.,
2009; Breathnach et al., 2010; Alam et al., 2011; Sarkari et al., 2012; El
Basha et al., 2016; Skhal et al., 2017). However, the complete opposite
has been suggested in other studies {(Homan & Mank, 2001; Gelanew et
al., 2007; Pelayo et al., 2008; Mohammed Mahdy et al., 2009; Al-Mo-
hammed, 2011; ElBakri et al,, 2014; Hussein et al., 2017; Wang et al.,
2019). Furthermore, there were no associations with either assemblage
in Brazil, Nicaragua, Iran and Thailand {Almeida et al., 2006; Kohli et al.,
2008; Lebbad et al., 2008; Tungtrongchitr et al., 2010; Rafiei et al., 2020)
(see Table 2). Whether these conflicting results can be made clear by
differences in study methodology or due to the frequent occurrence of
mixed-assemblage infections is an issue that needs further investigation.

6. Emerging interest in G. intestinalis sub-types

Allozyme analyses and recent genetic analyses at the gdh locus have
revealed the existence of sub-genetic structures located within
G. intestinalis assemblages A (AL All and AIIl) and B (BIII and BIV) (Feng
& Xiao, 2011; Ryan & Caccio, 2013). It is well documented that
sub-assemblage Al is mainly zoonotic, AIl has anthroponotic trans-
mission (Faria et al., 2017; Herndndez et al., 2019) and AIll is mainly
restricted to wild hoofed animals (Caceio et al., 2008; Feng & Xiao, 2011;
Iwashita et al., 2021). While sub-assemblage AIl is predominant in
humans, it has also been reported in animals suggesting zoonotic trans-
mission is possible (Ryan & Caccio, 2013). Sub-assemblages BIII and BIV
are commonly found in humans.

With the introduction of MLST analyses targeting the bg, gdh and tpi
loci, there has been a rapid discovery of several subtypes (Feng & Xiao,
2011; Xiao & Feng, 2017). Within assemblage A there are a total of six
subtypes (A1-A6), and these are further organised within sub-assemblage
Al (Al and A5), sub-assemblage AIl (A2-A4) and sub-assemblage AIIl
{A6) (Feng & Xiao, 2011; Xiao & Feng, 2017). These subtypes often differ
by a single point mutation, which makes subtyping assemblage B almost
impossible due to the presence of extensive genetic variability and ASH.

Currently, it has become increasingly important to standardise a
classification system to provide a better divison of assemblage A sub-
types. It has been suggested to use a multi-locus genotype (MLG) profile
as the naming scheme, which is a combination of three subtypes char-
acterised at each of the genetic loci targeted in MLG analysis {these being
the bg, gdh and tpi loci). Based on this system, Caccid & Ryan (2008)
suggested 10 different MLGs for assemblage A (AI-1, AI-2, AIl-1, AIL-2,
AlL-3, All-4, AIL-5, All-6, AIl-7 and AIII-1). More recent investigations
have identified novel MLGs—AII-8 and AII-9 (Minetti et al., 2015a; Faria
et al.,, 2017), and Chourabi et al. {2021) discovered a novel MLG AIl
(profile: A2/A2/novel A2) in two isolates. Humans can be infected with
an array of very diverse assemblage A subtypes, and the MLST approach
should be consistently used in all future molecular epidemiological
studies in other geographical regions. Additionally, the development of
new target regions of the genome with lower substitution rates is
necessary to successfully subtype assemblage B.

7. Conclusions and perspectives

Giardia intestinalis is one of the most common protozoan parasites
causing disease in developed countries. To properly manage, treat and
prevent cases of human giardiasis, it is essential that we fully under-
stand the molecular profile of this parasite. Studies have now confirmed
that G. intestinalis is categorised into eight assemblages, two of which
are established as human-infecting {A and B). There are vast genetic and
phenotypic differences between assemblages A and B which is reflected
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in the differences seen in assemblage prevalence and zoonotic potential.
Although various molecular studies have isolated these assemblages
from other mammals including wildlife, domestic pets, and livestock,
the zoonotic potential of G. intestinalis is still poorly understood
(Leonhard et al., 2007; Sroka et al., 2015; Adam et al., 2016). This is in
part due to alack of molecular epidemiological and comparative studies
that have been able to identify a direct transmission of giardiasis be-
tween animals and humans. It remains important to correctly identify
G. intestinalis assemblages, particularly in a zoonotic context as it allows
for better disease regulation and helps to identify sources of exposure in
giardiasis outbreaks, especially in areas where wildlife-human in-
teractions are common. There is a vital need for more multi-locus
genotyping and sub-genotyping studies to be done on human and ani-
mal G. intestinalis infections. Although most literature agrees that
assemblage B is more virulent and therefore more likely to manifest
severely (Mohammed Mahdy et al., 2009; Al-Mohammed, 2011; Jerez
Puebla et al., 2017), other studies have observed associations between
assemblage A and gastrointestinal symptoms {Breathnach et al., 2010;
Shahriari et al.,, 2012). These contrasting results can be a result of
different typing techniques, sample sizes and target populations used
during the studies. Likewise, results may be dependent on the differ-
ences in parasite populations and assemblage predominance across
varying geographical regions. Certainly, recent studies have noted that
using current molecular tools for genotyping G. intestinalis assemblages
are unrealistic, as they depend entirely on which loci are targeted and
how many markers are used in the analysis (Traub et al., 2004; Cooper
et al., 2007; Gelanew et al., 2007). Using only single locus typing can
often draw inconsistent conclusions depending on the interpretation of
the genotyping data. As such, studies aiming to genotype G. intestinalis
isolates must remain cautious when interpreting results obtained from
single locus typing. Moving forward, whole-genome analyses will play a
significant role in identifying appropriate, novel genetic markers to be
used for G. intestinalis typing. In the meantime, it is recommended that
genotyping analyses are undertaken based on a minimum of two loci to
allow for consistent results. Furthermore, loci that are not only poly-
morphic but maintain a high level of agreement should be used as
opposed to conservative markers. Ideally, the use of a MLST system that
includes the tpi and IGS loci is encouraged at least until a worthwhile
barcoding system can be developed.
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Abstract

Giardiasis is one of the most important non-viral causes of human diarrhoea. Yet, little is
known about the epidemiology of giardiasis in the context of developed countries such as
Australia and there is a limited information about local sources of exposure to inform preven-
tion strategies in New South Wales. This study aimed to (1) describe the epidemiology of giar-
diasis and (2) identify potential modifiable risk factors associated with giardiasis that are
unique to south-western Sydney, Australia. A 1:2 matched case-control study of 190 con-
firmed giardiasis cases notified to the South-Western Local Health District Public Health
Unit from January to December 2016 was employed to investigate the risk factors for giardia-
sis. Two groups of controls were selected to increase response rate; Pertussis cases and neigh-
bourhood (NBH) controls. A matched analysis was carried out for both control groups
separately. Variables with a significant odds ratio (OR) in the univariate analysis were placed
into a multivariable regression for each matched group, respectively. In the regression model
with the NBH controls, age and sex were controlled as potential confounders. Identified risk
factors included being under 5 years of age (aOR = 7.08; 95% confidence intervals (CI) 1.02—
49.36), having a household member diagnosed with a gastrointestinal illness (aOR = 15.89;
95% CI 1.53-164.60) and having contact with farm animals, domestic animals or wildlife
(aOR = 3.03; 95% CI 1.08-8.54). Cases that travelled overseas were at increased risk of infec-
tion (@OR=19.89%; 95% CI 2.00-197.37) when compared with Pertussis cases. This study
provides an update on the epidemiology and associated risk factors of a neglected tropical dis-
ease, which can inform enhanced surveillance and prevention strategies in the developed
metropolitan areas.

Intreduction

Giardia duodenalis (also known as Giardia lamblia or Giardia infestinalis) is one of the most
commion enteroparasites affecting humans with an estimated 280 million people being
infected each year, around the world [1]. It is a protozoan parasite that causes infection in
the bowel and dlinically manifests as a diarrhoeal illness. Additionally, giardiasis has been asso-
ciated with the development of chronic diarrhoea or irritable bowel syndrome, debilitating
fatigue and reactive arthritis [2]. Giardiasis is not a life-threatening disease, however, infections
may often go unnoticed due to many cases having a lack of symptoms. If left without treat-
ment, the infection can become serious; impairing the development of children and resulting
in a failure to thrive [3]. Certainly, giardiasis contributes negatively to public health develop-
ment of endemic countries and causes devastating socio-economic loss. In 2004, G. duodenalis
was officially included in the WHO Neglected Diseases Initiative [4]. Meanwhile, in Australia,
giardiasis is a notifiable disease in several states and territories including New South Wales
(NSW) [5].

Giardiasis is the most common notifiable parasitic infection in NSW. While the burden of
disease is greater in developing settings with poor access to water, sanitation and hygiene
(WASH) facilities, sporadic cases occur in developed countries including Australia and out-
breaks are not uncommon [6]. In 2014, nearly 3000 cases were notified by laboratories in
NSW [7] and 3434 cases reported in 2015 [7]. South Western Sydney (SWS) accounts for
approximately 6% of cases state-wide. Amongst hospitalised patients, giardiasis was the second
most commonly identified enteric protozoa, affecting mainly school age and young children
[8]. In Australia, giardiasis is frequently associated with waterborne infections, day care centre
disease outbreaks and travel-associated diarrhoea.

Few Australian studies have documented the prevalence of giardiasis; however, there are no
recent studies that have examined the risk factors that drive local transmission of giardiasis
[9, 10]. The aim of this study was to describe the epidemiology of giardiasis and to identify
the risk factors and sources of exposure associated with the disease in the SWS region of
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NSW. The study provides information on the impact of giardiasis
on human health in SWS$ and a better understanding of the epi-
demiology and associated risk factors that can inform public
health control strategies.

Materials and methods
Study site

The South-Western Sydney Local Health District (SWSLHD) was
the research site. The SWSLHD includes seven Local Government
Areas (LGA): Bankstown, Camden, Campbelltown, Fairfield,
Liverpool, Wingecarribee and Wollondilly (see Supplementary
Fig. SI).

The SWSLHD is the largest and fastest growing District in
metropolitan Sydney. It has a large population of approximately
900000, has a diverse geography, including significant popula-
tions in both rural and urban areas and approximately 46% of
the population speak a language other than English at home.
Public Health surveillance data can provide an example of what
could be occurring across the NSW state.

Study design and data collection

Case-control survey

A 1:2 case-control study of risk factors was designed with the pro-
spective recruitment of cases and controls. Cases were all con-
firmed cases of giardiasis notified to the SWSLHD Public
Health Unit (PHU) from 1 January 2016 to 31 Decemnber 2016,
A study questionnaire was developed based on a comprehensive
review of the literature and was used to collect data from all
cases and controls who agreed to participate in the study. Both
case and control questionnaires are accessible online as
Supplementary Material on the Cambridge Core website. The
questionnaire asked about various socio-demographic features,
self-reported clinical symptoms, information about care seeking
behaviour and treatment received, the number of household
members or other close contacts with similar symptoms and a
range of exposures experienced 3 weeks before illness onset (for
cases) or a similar time frame for controls. Enhanced data collec-
tion for this study alse included additional details on potential
confounders including country of birth, language spoken at
home, highest educational attainment and occupation of the par-
ents (for cases residing with their parents).

Recruitment and selection of participants

Laboratories are required under the NSW Public Health Act 2010
to notify PHUs of cases of giardiasis. As per the NSW Control
Guideline protocols for investigation, once a glardiasis case was
notified to the SWSLHD PHU, staff contacted the diagnosing
doctor of the giardiasis case to request permission to contact
the case or the parent or guardian (for persons under
16-years-old), to interview the case.

Cases

A ‘case’ was a person who had laboratory definitive evidence for
the detection of G. duodenalis cysts or trophozoites in stool sam-
ples or samples of duodenal contents. Informed consent was pro-
vided by the case or their parent (for persons under 16 years);
with parents/guardians asked to complete the responses on behalf
of children 12-years-old or younger and to provide consent for
children 13-15 years to answer their own questions.

P. Zajaczkowski et al.

Controls

A ‘control’ was defined as a person resident in SWSLHD and who
did not have a history of a positive Giardia test in the previous 3
months (due to the possibility of chronic infection with Giardia).
In order to improve the response rate and reduce selection bias,
three different sets of controls were identified for the study.

(1) Control group 1: Neighbourhood controls (NBH):

Confirmed giardiasis cases were grouped into (i) urban
and (ii) regional areas based on Australian Bureau of
Standards regional classification. The aim was to identify 10
controls for each case to increase the likelihood of at least
one household responding to the questionnaire. The follow-
ing sampling strategy was employed.

(i) Urban: A list of all addresses in SWSLHD geocoded to
latitude-longitude coordinates was obtained from the
Geocoded National Address File. This dataset is available
for free from “Public Sector Mapping Agencies’ Australia.
A 500 m radius buffer (due to the dense population in
urban areas) was drawn around each case’s address
using Geographic Information System tools (e.g. see
Supplementary Fig. 52). Ten houses were then randomly
selected from the list of addresses for each buffer.

(ii) Rural: The procedure followed was the same as for urban
areas, except that 5 km buffers were used to account for
population sparseness.

A letter with the Patient Information Statement and
control questionnaire were sent to the selected household,
with a request that the person with the next birthday in
the household complete the questionnaire. The com-
pleted questionnaire was to be returned by post in the
self-addressed envelope provided.

Control group 2: Pertussis case:

Confirmed Pertussis cases notifled in the same year,
within the same age range (£5 years), residing within the
same LGA but not on the same street as the corresponding
giardiasis case were identified. If there were two or more per-
sons meeting the criteria, one would be selected by simple
random sampling using a random sampling function in
Excel. Where no age match was available for the same
LGA, one was selected from the closest LGA. Each control
was contacted by telephone and once consent was obtained,
the individual was interviewed with the standardised control
questionnaire. If the person refused to participate in the study
or was uncontactable after three phone calls, then the person
was listed as a non-response.

(3) Control group 3: Friend Control:

This recruitment method yielded no controls and was not
considered further.

2

Sample size

Based on surveillance data, it was estimated that the SWSLHD
PHU received an average of 147 giardiasis notifications annually
between the years 2012 and 2015, In a 1:3 unmatched design
with a two-sided confidence level of 95% (z,,=196) with
power (zz=0.80) of 80% and an estimated prevalence of a risk
factor of 17% in controls and 40% in cases, at least 35 cases
and 105 controls were needed to detect a significant risk of expos-
ure (odds ratio (OR) »3.25) [11]. Oversampling of cases and con-
trols was performed to accommodate for any non-responses or
incompleteness in the data. As such, a total of 50 cases and
150 controls were needed.
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Matched case-control analysis
Survey data were entered into an outbreak questionnaire devel-
oped using the Notifiable Conditions Information Management
System (NCIMS) and analysed using IBM SPSS Statistics version
23.0 [12]. Pertussis cases were matched to cases by age (£5 years)
and location; NBH controls were matched to cases by location
(urban or rural). Univariate analysis was carried out to compare
cases with each control group separately and an adjusted estimate
of the OR and their 95% confidence intervals {CI) were calculated
from matched pairs of cases and controls for various risk factors.
For each case-control group, variables with a significant OR in
the univariate analysis were placed into a multivariable regression
for each matched group respectively. No potential confounders
were identified in the regression model with the Pertussis cases.
In the regression model with the NBH controls, age and sex
were controlled as potential confounders. A backward stepwise
elimination process was employed, using a likelihood ratio test
to produce the most parsimonious model [13]. All variables
with a Wald g7 statistically significant at the P-value of <0.05
were considered significant. OR and 95% CI for the association
were reported. Cases for whom we could not identify suitable
matching control subjects were excluded from the matched case-
control analysis.

Results

Of the 217 giardiasis cases invited to participate in the study, 68
(31.3%) consented to be interviewed for the study (see Fig. 1).
Letters were mailed to 1983 randomly selected households resid-
ing in the same neighbourhood as cases {Fig. 1). Of these, 113
controls (5.7%) returned a completed questionnaire and were
included in the study. A total of 75 Pertussis cases were selected
from NCIMS and contacted via telephone. Of these, 36 {48.0%)
agreed to be interviewed for the study and, 26 (34.7%) could
not be contacted after three telephone call attempts. To reduce
the risk of selection bias, two separate matched analyses were
done: one which combined 21 cases and 36 Pertussis cases and
the other matched 68 cases and 68 NBH controls.

Demographic characteristics

The distribution of the cases and controls by age and gender is
presented in Table 1. Cases and controls were similar with regard
to language spoken at home, highest level of education and indi-
genous status. Cases and controls mainly originated from urban
areas in SWS as opposed to rural. More than half of case-patients
(40 or 58.8%), compared with 27 {40.3%) NBH controls and 15
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(41.7%) Pertussis cases were males. The age distributions varied
between cases and controls with the median age being 8 (x19.4)
years for giardiasis cases, 58 (+20.8) years for NBH controls
and for Pertussis cases, 8 (+17.9) years (see Table 1).

In comparison with the cases, there were significantly fewer
NEH controls aged 0-4 years (36.8% vs 2.9%). Conversely, signifi-
cantly more Pertussis cases were aged 0-4 years (28.6% vs 41.7%).
There were also significantly more older females as NBH controls
in comparison with the Pertussis cases which had significantly
more children aged <5 years.

Univariate analyses revealed that males were significantly more
likely to be cases when compared with NBH controls, hence sex
was controlled as a potential confounder in the multivariable ana-
lysis. When controlling for sex in the multivariable analysis, cases
aged under 5 years had a seven times greater risk of Giardia infec-
tion (aOR =7.08; 95% CI 1.02-49.36) when compared with NBH
controls. There was no difference between the ages and genders of
giardiasis cases and Pertussis cases.

Risk factors for giardiasis

Univariate analysis of the comparison between NBH controls and
cases revealed that cases who, (a) were males aged under 5 years,
(b) visited their/parent’s country of birth, (¢) had a child that
attends childeare, (d) had a household member diagnosed with
a gastrointestinal illness, (e¢) were individuals who swim in
pools, (f) had contact with domestic animals, wildlife or livestock
and (g) were individuals who visited a farm, zoo or wildlife park,
were at increased risk for giardiasis (P <0.05) (Table 2). Those
who temporarily stored their water in jars, bottles or cisterns at
home and for those who consumed green salad or lettuce on a
daily basis were at a decreased risk (P <0.05) (Table 2). When
age and location were controlled in the multivariable analysis,
all variables lost their significance except for having a member
of household diagnosed with a gastrointestinal fllness and having
contact with the farm, domestic or wild animals. Those who
reported swimming in pools had an elevated risk, but this was
not significant (P=0.06) (Table 2).

The univariate analysis matching cases with the second group
of controls (i.e. Pertussis cases) found that giardiasis cases were
more likely to have travelled overseas and had a household mem-
ber diagnosed with a gastrointestinal illness. Notably, there was a
negative association found between giardiasis cases and living in
close proximity to wildlife. All three variables except travelling
overseas and outside Australia lost their significance in the multi-
variable analysis (Table 2).

Discussion

This matched case-contral study represents the value of continu-
ing to monitor giardiasis in south-western Sydney and other parts
of NSW and recommends further studies to examine the geno-
types in circulation and their potential for zoonotic transmission.
The results from this study indicate that some common risk fac-
tors of Giardia infection seen in other developed countries were
not found to be significant risk factors in south-western Sydney.

Notably, the multivariable analyses among cases and NBH
controls and cases and Pertussis cases found no significant asso-
ciation between giardiasis and those using water sourced from
alternative supplies such as roof-harvested rainwater (RHRW),
tank water or bore wells. An overall low number of individuals
reporting drinking non-municipal water long-term may lead to

this lack of association [14]. However, the result is in keeping
with other Australian studies that could not identify untreated
RHRW tanks as sources of infection for giardiasis, which is likely
due to the fact that RHRW tanks are likely to be mainly used for
potable replacement for flushing toilets, washing clothes, or
watering gardens [14, 15].

Furthermore, while initial univariate analyses between cases
and NBH controls found a significant association between giar-
diasis and those who reported swimming in pools (chlorinated,
salt-water or non-chlorinated) 3 months prior to illness onset,
this significance was lost in the multivariable model that con-
trolled for age and sex. This suggests there may be a relationship
between age, sex and swimming that is confounding their associ-
ation with giardiasis infection in this setting, On the other hand,
there are multiple studies that have established the association
between swimming in pools and giardiasis infection [16-18].

Giardiasis cases were also more likely to have a household
member diagnosed with a gastrointestinal illness when compared
with NBH controls. A similar risk found in the univariate analysis
with Pertussis cases, may be due to a low response rate.
Notwithstanding, studies in Turkey and other countries have
reported an increased risk of infection amongst household mem-
bers infected with giardiasis [19, 20]. This indicates a potential for
person-to-person transmission of infection occurring within
households in SWS with infected family members (or household
members) serving as sources of infection. There is also the pro-
spect of transmission through food or water prepared by the
infected individual. This study emphasises the importance of
screening all household members for giardiasis once a case has
been diagnosed.

In this study, the multivariable analysis found a seven times
greater risk of infection for those aged under 5 years. However,
when compared with Pertussis cases, the risk was insignificant.
While other case-control studies have observed no significant
risk associated with age, it is more likely that this result is due
to the small participant numbers in the Pertussis cases group.
Individuals of all age groups can be infected by G. duodenalis
although the majority of literature maintains that giardiasis is
most prevalent in school-age and younger children [21, 22].
Children tend to have a higher exposure to contaminated faeces
particularly in close-contact facilities such as childcare centres
putting them at greater risk of infection [16, 23, 24].

While univariate analyses among cases and NBH controls
observed that males were at an increased risk of giardiasis, this
association lost its significance in the multivariable analysis
after being controlled for sex and age and was likely due to the
fact that there were overwhelmingly more females among NBH
controls [25, 26].

Cases coming in contact with domestic animals, farm animals
and even wildlife were at increased risk of infection when com-
pared with NBH controls, but not when compared with
Pertussis cases. The lack of significance, when compared with
the Pertussis cases, may be due to a lack of difference in exposure
between the two groups, hence diluting the risk. The possible role
of animals as a source of G. duodenalis infection to humans is still
unclear, although most studies agree that animals can play an
indirect role in transmission [6, 27]. Molecular investigations on
G. duodenalis and the potential for zoonotic transmission
observed that humans can only be infected with human-specific
assemblages (A or B) and not from animal-adapted genotypes
(C-H) [28]. A possible explanation for the present results is
that animals are carriers of assernblages A or B and act as vehicles
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for mechanical transmission to humans who come in contact with
animal’s faeces at parks or wildlife settings where hand-washing
facilities may not be available [29], or other environmental expo-
sures to cysts attached to the fur of domestic animals [30].

Interestingly, the vast majority (80.9%) of G. duodenalis cases
did not report travelling overseas within the 3 months prior to ill-
ness onset suggesting that most of the giardiasis cases were locally
acquired. This is the first case-control study to examine travel his-
tory amongst giardiasis cases in this setting and is consistent with
other case-control studies conducted in other developed countries
[16, 23, 31]. However, multivariable analyses found that when
compared with Pertussis cases, glardiasis cases were 20 times
more likely to have been travelling overseas. The most popular
countries visited were in South & South-East Asia, West Central
Asia/North Africa and Oceania. Overseas travel to endemic
regions is widely believed to be the principal risk factor for giar-
diasis in developed countries. However, due to detection bias
associated with physicians testing for giardiasis more commonly
among returning travellers, overseas acquired infection rate is
likely to be overestimated;, and consequently underestimating
locally acquired giardiasis [32].

There are some limitations to this study. Although care was
taken to recruit controls representative of the source population
of cases, some selection bias may exist among controls. There
was a larger response rate among older females residents in
urban areas in SWS, indicating that women were more likely to
respond to the NBH control questionnaire. There was also an
underrepresentation of children seen in the NBH controls when
compared with Pertussis cases. This selection bias emphasised
the sex and age differences between cases and NBH controls
and could explain why some exposures were also present
among the control group, thus diluting the exposure rates
amongst cases. A matched analysis was done to reduce selection
bias and improve internal validity, by controlling for the sex,
age and region of residence differences between cases and NBH
controls. The matched design reduced the risk of error from the
confounding effect of age, sex and location but due to the result-
ing close matching on these variables, their effects on giardiasis
risk could not be assessed. However, controlling for these well-
known confounders was valuable as it allowed the assessment
of other risk factors without their confounding influences.
Admission risk bias is a potential problem with Pertussis cases,
which were selected based on being a group of patients available
through NCIMS, did not have gastrointestinal symptoms or diag-
nosed with giardiasis and hence they may have a different expos-
are profile to the general population. Since giardiasis cases
matched to pertussis cases were quite similar in sex distribution,
there was no association and hence no further need for control-
ling this variable. Like most studies that utilises surveillance
data as a sampling frame, only symptomatic G. duodenalis cases
that sought medical attention and had a positive laboratory test
were included in the study. This means that this study represents
only a proportion of the overall burden of the disease in the com-
munity. Cases with undiagnosed and asymptomatic giardiasis
would not have been considered. Therefore, this study cannot
be generalised to all of Australia and must be interpreted in the
context of these limitations.

Conclusion

The study showed an increased risk of giardiasis in children aged
under 5 years, amongst individuals who have a household

P. Zajaczkowski et al.

member diagnosed with a gastrointestinal illness and have contact
with domestic animals, wildlife or livestock. The study also found
that cases who travelled overseas were at a greater risk of infection.
There is a need to educate residents living in urban areas in SWS
on the potential of person-to-person transmission of giardiasis;
particularly if a household member is ill with gastroenteritis.
Targeted intervention and health messages are needed for the par-
ents/carers of younger children especially during high-risk sea-
sons such as warmer months, with emphasis on potential risks
and appropriate hygiene practices when visiting farms and wild-
life parks or where contact with animals is to be expected.
Likewise, people travelling overseas to endemic countries should
be appropriately informed of the risks and possible control strat-
egies that can be implemented. This study illustrates the value of
continuing to monitor giardiasis in south-western Sydney and
other parts of NSW and recommends further studies to examine
the genotypes in circulation and their potential for zoonotic
transmission,

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/50950268818002637.
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3.1. Abstract

Giardiasis is the most common enteric protozoan infection notifiable in New South Wales (NSW),
Australia and surveillance by NSW Health had shown a steady increase (prior to the COVID-19
pandemic) in the number of cases reported since 2012. The reasons for this currently remain
unknown, and the epidemiological significance of the various Giardia assemblages is still unclear
in Sydney and more broadly NSW. Contradictory results have been published worldwide regarding
the geographical distribution and clinical manifestation of the assemblages. This study aimed to
evaluate the predominance of Giardia intestinalis assemblages causing human infection in NSW.
Individual faecal specimens (n = 169) were collected from participating hospitals and private
laboratories, and the presence of Giardia cysts and co-infections were confirmed by real-time
multiplex-PCR. Samples were genotyped by sequence analysis of the triosephosphate isomerase
(zpi) gene and the small subunit rRNA DNA (SSU-rRNA). Genotyping results showed that most
samples belong to only assemblage B (46.9%, n = 76), and a small percentage of cases were
infected with only assemblage A (9.3%, n = 15). Surprisingly, mixtures of assemblages A and B in
individuals were relatively common (43.8%, n = 71). Co-infections were observed in 49.1% (n =
83) of all G. intestinalis-positive faecal samples with the most common co-infection

being Blastocystis hominis (31.3%, n = 25), followed by Dientamoeba fragilis (15.0%, n =

12). Although giardiasis was more prevalent in males (55.2%, n = 85), the assemblage distribution
between the sexes appeared uniform. The age distribution was bimodal, with peaks in 0—15year-
olds and in adults in their 30s. The overall largest number of cases were collected from patients
aged 30-49 years (33.8%, n = 49). Interestingly, females aged 5 years-old and under had a greater
risk of assemblage B infection than their male counterparts (OR =2.61; 95% CI 1.12-6.07; p =
0.001), and females aged greater than 5 years-old were significantly more likely to have a mixed
assemblage A+B infection (OR =2.16; 95% CI 0.90-5.19; p = 0.012). No significant correlation
was demonstrated between a given assemblage and the occurrence of clinical symptoms. This study
provides new insights into the molecular diversity of giardiasis in NSW, Australia, and can help to

inform enhanced surveillance and prevention strategies in developed metropolitan areas.
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3.2. Introduction

Giardia intestinalis continues to be the most encountered parasitic disease around the world.
Although more frequently detected in developing countries with limited access to clean water,
sanitation, and hygiene facilities, ongoing disease surveillance in developed nations has observed a
sharp increase in the number of Giardia sp. associated-waterborne outbreaks of gastrointestinal
illness [1,2]. Sporadic cases are also on the rise in countries like Australia. In New South Wales
(NSW), Australia, giardiasis remains the most common notifiable parasitic infection in NSW with
an average (before the COVID-19 pandemic) of around 3000 cases notified by laboratories each
year. It may be that these case numbers are reflective of better diagnostic methodologies used in
pathology laboratories and the implementation of sensitive assays such as multiplex-PCR. Although
it should be noted that culture-independent DNA-based testing methods were only implemented in
Australian diagnostic laboratories in late 2013 and onwards, the complete impact of these testing
methods on Giardia case notifications remains unquantified. The increase of children attending
child-care centres across NSW may also play a part in larger case numbers. By state, NSW has the
largest share of children attending child-care centres, and use of these centres has increased by
27.8% just within the past ten years [3]. However, only a few Australian studies have examined the

risk factors that drive local transmission of giardiasis [4—6].

Annual notifications of G. intestinalis peak between January and April each year and are highest
among children aged 0 to 4 years, and adults aged 30 to 39 years [7]. Incidence rates (per 100,000
population) also vary across communities, ranging from 11.2 to 63.2; and high rates (~39.0) are
reported from both rural and urban health districts [8]. In NSW, it remains unclear if associations
exist between high-risk age groups. A recent epidemiological study found that among hospitalised
patients in NSW, giardiasis was the second most identified enteric protozoa (after Blastocystis spp.)
affecting mainly children at school age and younger [9]. Additionally, a more recent study based in
south-western Sydney (SWS) confirmed that children aged five-years of age and under were seven
times at greater risk of contracting giardiasis [6]. Despite this, it remains unclear whether there are
other factors at play, or even whether fluctuations across NSW communities are reflecting different
disease dynamics. Recent molecular studies have determined that G. intestinalis can be split into
eight morphologically identical genetic assemblages (assemblages A to H) which can only be
distinguished by molecular typing methods [10,11]. Both assemblages A and B are potentially
zoonotic; they are responsible for most human infections however they have also been successfully
isolated from other mammals. The remaining assemblages (C to H) are host-specific although in

some rare cases, have been detected in humans. Previous work has shown conflicting results
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regarding the relationship between G. intestinalis assemblages A and B and their clinical
presentation. Some studies have suggested that assemblage A is associated with more severe
clinical symptoms in Peru, Bangladesh, and Spain [12—14], however the opposite has also been
suggested by others [15]. Currently studies from Australia have yet to find a clear correlation
between assemblages and symptoms in humans despite several genotyping studies being reported
[16-20]. Two studies, however, did investigate a link between clinical symptoms and assemblage
type [21,22]. Both studies were based in Western Australia. Read et al. (2002) [22] observed a
strong association between assemblage A infection and diarrhoea, while Yang et al. (2010) did not
find similar correlations [21]. It is difficult to ascertain whether these conflicting results were the
result of differences in study methodology, however it is an issue that needs further investigation.
Clinical symptoms of G. intestinalis infection can differ according to each individual, and some
cases can even remain asymptomatic. Symptoms can include acute and/or chronic diarrhoea,
stomach cramps, nausea, vomiting, dehydration, and weight loss [23]. Although it is still unclear
why certain cases remain asymptomatic, it has been suggested that host-parasite factors and the
genotypic differences within a parasite can influence the subsequent clinical presentation of an

infected individual [24,25].

The aim of this study was to identify G. infestinalis assemblages contributing to human infections
in NSW, Australia, and to detect any significant associations between assemblages and the
demographic, clinical and geographical factors. This study provides information on the impact of
giardiasis on human health in NSW, and a better understanding of the continuing rise in cases. This
will increase the capacity of NSW to apply advanced analyses to disease surveillance and will

inform the application of similar methodologies to other intestinal protozoan diseases in NSW.
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3.3. Materials and methods

3.3.1. Faecal specimen collection

Faecal specimens were collected between June 2016 and December 2019 from individuals who had
tested positive for Giardia species. Samples were collected from two hospitals, the Centre for
Infectious Diseases and Microbiology (CIDM) at Westmead Hospital, NSW and SydPath at St.
Vincent’s Hospital, NSW. To mitigate potential geographical bias, samples were also collected
from two private pathology laboratories, namely Laverty Pathology and Douglass Hanly Moir
Pathology (DHM), both situated in NSW, Australia. These private laboratories cover a broader

geographical scope within NSW when compared to the hospital laboratories.

Diagnosis of Giardia in the hospital pathology laboratories involved a combination of multiplex-
PCR detection and immunoassays [26—28]. In both private pathology clinics, Giardia diagnosis was
made by visualising Giardia cysts and/ or trophozoites in faecal smears of prepared concentrates
using microscopy. Stool samples from DHM were initially prepared using the Mini-Parasep®
solvent-free (SF) (Apacor, England, UK) faecal parasite concentrator with a formalin and Triton
X/ethyl acetate solution. Both private laboratories also utilised commercial antigen tests such as the
Remel ProSpecT™ Giardia/ Cryptosporidium microplate immunoassay (Thermo Fisher Scientific)

to detect positive antigens.

For each positive stool sample collected, the corresponding patient’s gender, age and post-code
region of residence was obtained from the electronic Medical Records (eMR). To protect the
sensitive personal information of the patients, no identifiers were collected from the eMR, and ages
of the patients were replaced by age groups to further reduce the possibility of re-identification.
Ethics approval for the conduct of this study was received from the South-Western Sydney Local
Health District Human Research Ethics Committee (HREC) for each of the two hospitals and two
private pathology laboratories and ratified by HREC of the University of Technology Sydney
(UTS).

All patient ages were categorised into one of the six age groups: <5, 6-15, 16-29, 30-49, 50-69 and
70+ years. The history of the patient’s symptoms and potential risk factors were collected from the
clinical notes recorded on laboratory requests or medical records. All faecal samples were
transported to UTS, provided a unique identification number, and stored unpreserved at 4°C before
DNA extraction. Note that for individuals with multiple faecal samples collected at the same time,

only one sample was included in the analyses.
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3.3.2. Multiplex RT-PCR

To confirm the presence of G. intestinalis and to detect any co-infections within the collected
samples, the specimens were analysed by a multiplexed real-time PCR (RT-PCR) EasyScreen™
assay (Genetic Signatures, Newtown, Australia) at Sydpath at St. Vincent’s Hospital, Sydney,
Australia [26]. The EasyScreen™ kit tests for a variety of enteric pathogens including common
enteric protozoan parasites: (i) Dientamoeba fragilis, (ii) Cryptosporidium spp., (iii) Blastocystis
hominis, (iv) Entamoeba complex, (v) Giardia intestinalis; bacterial pathogens: (1) Salmonella spp.,
(i1) Campylobacter spp., (iii) Shigella spp., (iv) Yersinia enterocolitica, (v) toxigenic Clostridium
difficile and (v1) Listeria monocytogenes; and viruses: (i) Norovirus group I, (i1) Norovirus group II,
(ii1) Adenovirus hexon, (iv) Adenovirus 40/41, (v) Rotavirus A and B, (vi) Astrovirus (group 1-7)

and (vii) Sapovirus.

3.3.3. Genomic DNA extraction

DNA was extracted directly from 150mg of the faecal sample using an ISOLATE II Fecal DNA Kit
(Bioline, Sydney, Australia) following the manufacturer’s instructions with only minor
modifications: the DNA was washed three times with Fecal DNA Wash Buffer (rather than once as
per the manufacturer’s instructions). Elution was accomplished by adding 100ul elution buffer. The
eluted DNA was stored at -20°C until PCR amplification. Samples with sterile water were used as a
negative control to monitor contamination during nucleic acid extraction. Samples spiked with
Cryptosporidium spp. DNA templates were used as a positive control during the extraction process.
DNA concentration and purity was determined via 260/280 and 260/230 ratios measured on the
NanoDrop™ One microvolume UV-Vis Spectrophotometer (Thermo Fisher Scientific, United

States).

3.3.4. Nested PCR amplification of the G. intestinalis SSU-rRNA

Primers originally designed by Hopkins et al. (1997) amplify the SSU-rRNA gene of G. intestinalis
producing a 292 bp product from the primary PCR reaction, and a 130 bp product from the
secondary PCR reaction [29]. Due to the small product size and innate low genetic variation within
the SSU-rRNA gene, distinguishing between assemblage A and B sequences is entirely dependent
on identifying four single nucleotide polymorphisms (SNPs). To increase discriminatory power,
new primers were designed to capture an area with a greater distribution of polymorphisms between
assemblages A and B. The Clustal W multiple sequence alignment program was used to align SSU-
rDNA sequence reads of assemblages A and B, and a total of seven SNPs were identified between

the two assemblages [30].
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A 447 bp fragment of the SSU-rRNA gene was first amplified using the previously described
forward primer RH11 [29] and the newly designed reverse primer RH4.1:
TGGCACCAGACCTTGCCCT. This reaction was followed by a secondary amplification step,
which used the internal primer GiarF [22] and the newly designed reverse primer GiarR.1:
ACTCCCCGTCGCTGCCT. Both PCR amplifications were prepared in a final volume of 50ul and
carried out using conditions previously described [29]. Negative controls (no template added) and
positive controls (containing DNA from previously sequenced and confirmed G. intestinalis
samples) were included in each assay reaction. Reactions were performed on an Eppendorf

Mastercycler® Nexus (Sigma-Aldrich).

Specificity of the novel primers was tested using a panel of three protozoan parasite-positive and
two bacteria-positive clinical samples previously submitted to St Vincent’s Hospital (including
Cryptosporidium parvum, Dientamoeba fragilis, Blastocystis hominis, Campylobacter spp. and
Clostridium spp.). Sensitivity was estimated using a series of 10-fold dilutions of DNA from
extracted G. intestinalis DNA samples to assess the lowest detection threshold of each PCR assay.
Reaction templates corresponded to decreasing concentrations from 102 to 10~ ng/uL. DNA per

PCR tube.

To confirm successful amplification, 4 pL of the PCR product was subjected to electrophoresis on a
2.0% agarose gel containing GelRed® Nucleic Acid Gel Stain (Sigma-Aldrich). PCR products of
the correct band length (363 bp) were purified by using a PCR purification kit (Qiagen, GmbH.
Germany) and sequenced (Macrogen, Seoul, Korea) on both strands using the PCR primers.
Sequence data was trimmed and analysed using SeqTrace and for each PCR product, a consensus
contig was generated from the sequence data [31]. The final sequences were then compared to
sequences (>99% similarity) contained in GenBank using the nucleotide-BLAST tool (nBLAST).
The identification of homologous sequences allowed determination of the G. intestinalis

assemblage.

3.3.5. Assemblage-specific nested PCR amplification of the tpi gene

Two G. intestinalis assemblage-specific nested PCR assays were used to amplify the triose
phosphate isomerase (TPI) gene. A 605 bp fragment of the gene was first amplified using
previously described primers AL3543 and AL3546 [32]. The secondary PCR reaction involved two
separate assays using assemblage-specific primers: the assemblage A-specific primers Af and Ar
amplifying a 332 bp PCR product [33] and the assemblage B-specific primers Bf and Br amplifying

a 400 bp product [34]. Both PCR amplifications were prepared in a final volume of 50ul and carried
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out using conditions previously described [34]. Negative controls (no template added) and positive
controls (containing DNA from previously sequenced and confirmed G. intestinalis samples) were
included in each assay reaction. Reactions were performed on an Eppendorf Mastercycler® Nexus
(Sigma-Aldrich) and PCR products were separated by electrophoresis in a 2.0% agarose gel
containing GelRed® Nucleic Acid Gel Stain (Sigma-Aldrich).

3.3.6. Statistical analyses and mapping of spatial data

Statistical analysis was performed using SPSS® Statistics 27 (IBM, USA). Categorical variables are
reported in terms of percentages, with corresponding Confidence Intervals (CI) at 95%. The
existence of association between categorical variables was evaluated using Pearson’s Chi-Square
test (or Fisher’s Exact test for sparse data). Statistical significance was set as a p-value <0.05.
Positive human cases of giardiasis in NSW were also geographically mapped using ArcGIS. Case
postcode data was initially geocoded using ArcGIS, then spatially joined to two polygon layers:
NSW Local Government Area boundaries (2019) [33] and Local Health District boundaries (2014)
[34]. New South Wales is divided into eight metropolitan Local Health Districts (LHDs) and seven
rural/regional LHDs [35]. The LHDs are further split into 128 Local Government Areas (LGAs).
Cases were then aggregated according to the postcode-matched LGA and LHD, to calculate the

total number of G. intestinalis cases and G. intestinalis assemblages for each region in NSW.
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3.4. Results

3.4.1. Detection and identification of G. intestinalis assemblages

During the study period, a total of 410 G. intestinalis-positive faecal samples were collected,
although 107 had missing data and were excluded from the study. From the total 303, a little over
half of the G. intestinalis-positive samples, were chosen to be genotyped in the current study
(55.8%; n =169). To prevent selection bias, this subset of samples (n = 169) was deliberately
selected to accurately reflect the demographic characteristics (i.e. age, sex, and location) of the
broader population diagnosed with G. infestinalis during the study period. The subset of samples
primarily originated from private pathology laboratories (87.0%) as opposed to hospital laboratories
(13.0%). The tpi assemblage A/B-specific PCR amplified in 147/169 (87.0%) of these samples;
18.4% (n = 27) were only assemblage A, 54.4% (n = 80) were only assemblage B and 27.2% (n =
40) were classified as mixed assemblages. The SSU-rRNA PCR amplified 136/169 (80.0%) of the
specimens; of which 18.4% (n = 25) were only assemblage A, 73.5% (n = 100) were only

assemblage B and 8.1% (n = 11) were mixed assemblages A+B.

Further genetic characterisation of G. intestinalis involved combining the results of both the
assemblage-specific PCR (¢pi) and the nested PCR (SSU-rRNA). Characterising a sample as a
single assemblage (either assemblage A or B) would require both PCR assays to have an identical
result. A mixed assemblage was defined by either an identical A+B result for both PCR assays or
discordant results from each assay. Among the subset of G. intestinalis-positive samples that were
collected, 162 (95.9%) were successfully amplified at one or more loci; of which 9.3% (n = 15)
were only assemblage A, 46.9% (n = 76) were only assemblage B and 43.8% (n = 71) were mixed

infections of assemblage A+B.

Co-infecting pathogens were detected in 49.1% (n = 83) of all G. intestinalis-positive faecal
samples. Of these co-infections, 56.6% (n = 47) were parasitic, 12.0% (n = 10) were bacterial, and
8.4% (n = T) were viral. Joint parasitic/viral coinfections were also identified in 14.5% (n = 12),
followed by parasitic/bacterial coinfections (4.8%, n = 4), bacterial/viral coinfections (2.4%, n = 2)
and parasitic/bacterial/viral coinfections (1.2%, n = 1). Overall, the most common pathogens
detected were the enteric protozoa Blastocystis hominis (31.3%, n = 25) and Dientamoeba fragilis
(15.0%, n = 12), followed by the pathogens Campylobacter spp. (5.0%, n = 4) and Enterovirus
(5.0%, n = 4). Other coinfections are reported in Supplementary Table S3. 1.
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3.4.2. Socio-demographics of G. intestinalis assemblage cases

Age and gender information were obtained for 145 of the G. intestinalis positive cases and are
presented in Figure 3. 1. Those infected with G. intestinalis were aged between 0 years to over 70
years. A bimodal distribution is seen in Figure 3. 1, and the peaks coincided with children aged <5
years, and adults in their 30s. Cases aged 30-49 (33.8%, n = 49) and 50-69 years (20.7%, n = 30)
made up the largest age groups, followed closely by those <5 years (20.0%, n = 29).
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Figure 3. 1. Distribution of G. intestinalis assemblages A, B and A+B (n = 145) by age and sex
(%). Assemblage A, Blue; assemblage B, Red; mixed-assemblage A+B, Green.
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Overall, Giardiasis was observed in more males (55.2%, n = 85) than females (44.8%, n = 69),
although there was no significant difference between these two groups (Table 3. 1). Within male
and female groups, the assemblage distribution appeared uniform. For males, single infections with
assemblages A or B were identified in 54% and 58% cases respectively. Among females, 46% cases
were assemblage A only infections, whilst 43% cases were only B. Mixed assemblage A+B cases
were identified in 53% males and 47% females. Assemblages were distributed across all age
groups; however, single assemblage A infections were mostly seen in children aged 6-15 years, and
adults aged 50 years and greater. In comparison, single assemblage B infections were more
common among middle-aged individuals aged 30-49 years old, and children aged 5 years and
under. When categorising the cases into two age categories (<5 and >5 years), it was found that
children <5 years-old were more commonly infected by assemblage B only (OR = 2.74; 95% CI
1.15-6.51; p = 0.020) than assemblage A only (Table 3. 1). Additionally, females aged <5 years-old
had a greater risk of assemblage B-only infection than their male counterparts (OR =2.61; 95% CI
1.12-6.07; p = 0.001).
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Table 3. 1. Distribution of G. intestinalis assemblages based on age and sex.

Assemblage A Assemblage B Assemblage A+B
Demographics Total, %
% (n) p- OR 95%CI | % (n) p- OR 95%CI % (n) p- OR 95% CI (n)
value value value

Sex

Male 53.8% 0919 0942  0.30- 57.5% 0.579 1.197  0.63- 52.9% 0.617 0.85 0.45- | 55.2% (85)
(7) 2.95 (42) 2.26 (36) 1.61

Female 46.2% - - - 42.5% - - - 47.1% - - - 44.8% (69)
(0) (31) (32)

Age (years)

<5 83% (1) 0.275 - - 27.8% 0.104 - - 13.1% (8) 0.299 - - 20.0% (29)

(20)

6-15 33.3% - - - 11.1% (8) - - - 9.8% (6) - - - 12.4% (18)
4

16-29 8.3% (1) - - - 6.9% (5) - - - 11.5% (7) - - - 9.0% (13)

30-49 17.0% - - - 36.1% - - - 34.4% - - - 33.8% (49)
() (26) @2y
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Table 3. 1. Continued.

Assemblage A Assemblage B Assemblage A+B
Demographics Total, %
% (n) p- OR  95% % (n) p- OR  95% % (n) p- OR 95% (n)
value Cl value Cl value Cl
Age (years)
50-69 25.0% - - - 16.7% - - - 24.6% - - - 20.7%
3) (12) (15) (30)
70+ 8.3% (1) - - - 1.4% (1) - - - 6.6% (4) - - - 4.1% (6)
Age (vears — 2
categories)
<5 83% (1) 0.263 0.341 0.04- 27.8%  0.020% 2.74 1.15- 13.1%  0.077 0.45 0.19- 20.0%
2.75 (20) 6.51 (8) 1.11 (29)
>5 91.7% - - - 72.2% - - - 86.9% - - - 80.0%
(11) (52) (53) (116)

*p-value <0.05 is significant
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3.4.3. Clinical and travel history of G. intestinalis cases

Common clinical symptoms identified from the G. intestinalis cases included diarrhoea (79.0%, n =
49), abdominal pain (21.0%, n = 13) and bloating (19.4%, n = 12) (Table 3. 2). Vomiting and/or
nausea, weight loss and fatigue were also reported, albeit rarely (8.1%, 1.6% and 1.6%
respectively). A few individuals positive for G. intestinalis also reported being asymptomatic
(14.5% (n =9)) at the time of sampling. These included cases who had recently travelled overseas
and/or arrived in the country as a refugee (n = 3), as well as family members, friends, and
household members of confirmed giardiasis cases (n = 5). The remaining asymptomatic case (1.6%)
had reported having a lowered immunity. Sixty-two cases whose isolates were successfully
genotyped (and who did not have coinfections with other entero-pathogens) had clinical data
available (Table 3. 2). More cases from whom assemblage B and mixed assemblages A+B were
identified reported symptoms (n = 32 and n = 27, respectively), however comparisons could not be
made with assemblage A as clinical data was only available for three individuals. Of the nine
asymptomatic cases, five had mixed assemblages A+B, three had assemblage B, and one had
assemblage A. Overall, no significant association was found between symptoms and infection with

specific G. intestinalis assemblages.

Regarding the travel history of cases, 7.8% (n = 10/129) of cases reported travelling overseas prior
to illness onset. Out of the 10 cases, none were infected with assemblage A only, 20.0% had
assemblage B and the remaining 80.0% were found to have mixed A+B infection. Additionally,
those who had travelled overseas were six times more likely to be infected with mixed assemblages

A+B (OR =5.917; 95% CI 1.20-29.08, p = 0.02) as opposed to single infections.
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Table 3. 2. G. intestinalis assemblages and recorded clinical symptoms.

Clinical data?

Asymptomatic

Diarrhoea

Bloating
Abdominal pain
Vomiting

and/or nausea

Weight loss

% (n)

33.3%
(1)

33.3%
(1)

0.0%
(0)

33.3%
(1)

0.0%
(0)

0.0%
(0)

p_
value
0.381

0.109

0.518

0.513

0.774

0.952

Assemblage A (n =3)

OR

3.188

0.115

1.958

95%
Cl
0.258-
39.360

0.010-
1.380

0.164-
23.449

% (n)

9.4%
3)

84.4%
27)

12.5%
(4)

15.6%
()

6.3%
(2)

0.0%
(0)

p_
value
0.205

0.286

0.158

0.286

0.469

0.484

2Excluding clinical data for samples with coinfections with other entero-pathogens

Assemblage B (n = 32)

OR

0.414

1. 964

0.393

0.509

0.600

95%
Cl
0.093-
1.832

0.562-
6.862

0.105-
1.476

0.146-
1.780

0.093-
3.867

Assemblage A+B (n =27)

% (n)

18.5%
(5)

77.8%
21)

29.6%
(&)

25.9%
(7)

11.1%
3)

3.7%
(1)

p_
value
0.334

0.831

0.072

0.400

0.376

0.435

OR

1.761

0.875

3.263

1.692

2.063

95%
CI
0.424-
7315

0.256-
2.989

0.864-
12.328

0.494-
5.789

0.320-
13.313

Total,
% (n)

14.5%
)

79.0%
(49)

19.4%
(12)

21.0%
(13)

8.1%
(5)

1.6%
(1)
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Table 3. 2. Continued.

Assemblage A (n =3)

Clinical data?

% (m)  p-

value

Fatigue 0.0%  0.952
(0)

Immunocompromised | 0.0%  0.952
(0)

Other symptoms 0.0%  0.733
(0)

OR

95%
Cl

Assemblage B (n = 32)

% (n) p-value OR 95%
CI
3.1% 0.516 - -
(1)
0.0% 0.484 - -
(0)
12.5%  0.367 2.000  0.339-
4) 11.817

*Excluding clinical data for samples with coinfections with other entero-pathogens

Assemblage A+B (n = 27)

Total,
% (n) - OR 95% | o (n)
value CI

0.0%  0.565 - - 1.6%
(0) (1)

3.7%  0.435 - - 1.6%
(1) (1)

74% 0468 0.620 0.105- | 9.7%
(2) 3.666 (6)
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3.4.4. Spatial and seasonal distribution of G. intestinalis assemblages across NSW LHDs
Giardiasis cases (n = 141) collected between 2016 and 2019 were aggregated into assemblage
groups and geographically mapped across NSW (Figure 3. 2). Cases appeared in metropolitan areas
of Sydney, the Blue Mountains (west of Sydney), and regional inland and coastal centres of NSW.
Most cases, however, were from metropolitan areas, in particular the Northern Sydney district. The
surrounding areas of inner-west Sydney also showed a high frequency of giardiasis infection
(Figure 3. 2). In the regional/rural areas, cases were often seen in the Newcastle and lower Hunter
region as well as mid-western regional locations including Dubbo, Orange, and Bathurst. Allocation
of postcode data to Local Health Districts supported this: a total of 66.0% (n = 95) samples were
from metropolitan LHDs (see Table 3. 3). The Northern Sydney LHD accounted for over a quarter
(29.5%, n = 28) of all metropolitan samples, and of these 35.7% (n = 10) were from the Northern
Beaches LGA. A total of 34.0% (n = 49) of cases were from rural/regional LHDs, including
Western NSW (38.8%, n = 19), Hunter New England (24.5%, n = 12) and the Far West (16.3%, n =
8). A smaller number of regional cases were from Southern NSW (n = 4), Murrumbidgee (n = 3),

and Mid North Coast (n = 3).

Using ArcGIS, the G. intestinalis assemblages (n = 141) were mapped to Local Government Area
(LGAs) boundaries. The maps (Figure 3. 2) showed that the assemblages were distributed across the
entirety of NSW and did not show obvious geographic clustering. There were no correlations found
between region of residence and specific assemblage type, and most infections were commonly
reported in metropolitan regions of Sydney and the eastern coast of NSW. There were, however,
significant associations found between seasons and assemblage B only infections (p = 0.004) as
well as mixed assemblage infections (p = 0.005). In metropolitan NSW, single assemblage A
infections were not observed in Autumn, and were only detected in Summer, Spring and Winter (p
=0.048) (Figure 3. 3). Additionally, mixed assemblage infections were most often found in Spring
(p = 0.004), whilst single assemblage B infections made up most cases in Summer, Autumn, and
Winter. In rural/regional areas of NSW (Figure 3. 3), single assemblage B infections made up

31.0% of all cases, and peaked in Autumn and Winter.
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Figure 3. 2. Geospatial distribution of G. intestinalis assemblages A, B and A+B across NSW

LHDs. This figure shows the geospatial distribution of (a) G. intestinalis assemblage A (Blue), (b)

G. intestinalis assemblage B (Red) and (c¢) G. intestinalis mixed-assemblage A+B (Green) across

NSW LHDs.
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Table 3. 3. Distribution of G. intestinalis assemblages based on region of residence in NSW.

Local Health District Assemblage A Assemblage B Assemblage A+B
(LHD)
of residence Total, %
% (n) p- OR 95% % (n) p- OR 95% % (n) p- OR 95% (n)
value CI value CI value CI
Central Coast 7.7% (1)  0.568 - - 12.7% (9)  0.833 - - 5.0% (3) 0.350 - - 9.0% (13)
Hunter New England 7.7% (1) - - - 7.0% (5) - - - 10.0% (6) - - - 8.3% (12)
Nepean Blue Mountains 0.0% (0) - - - 4.2% (3) - - - 5.0% (3) - - - 4.2% (6)
Northern Sydney 7.7% (1) - - - 16.9% - - - 25.0% - - - 19.4% (28)
(12) (15)
South-Eastern Sydney 15.4% - - - 11.3% (8) - - - 10.0% (6) - - - 11.1% (16)
2
South-Western Sydney 7.7% (1) - - - 2.8% (2) - - - 1.7% (1) - - - 2.8% (4)
Sydney 0.0% (0) - - - 9.9% (7) - - - 5.0% (3) - - - 6.9% (10)
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Table 3. 3. Continued.

Local Health District Assemblage A Assemblage B Assemblage A+B

(LHD)

of residence Total, %

% (1) p-  OR  95% | % (n) p- OR  95% | % (n) p-  OR  95% (m)
value CI value CI value CI

Western Sydney 23.1% - - - 8.5% (6) - - - 6.7% (4) - - - 9.0% (13)
3)

Far West 7.7% (1) - - - 7.0% (5) - - - 3.3% (2) - - - 5.6% (8)

Illawarra Shoalhaven 0.0% (0) - - - 1.4% (1) - - - 6.7% (4) - - - 3.5% (5)

Mid-North Coast 0.0% (0) - - - 1.4% (1) - - - 3.3% (2) - - - 2.1% (3)

Murrumbidgee 7.7% (1) - - - 2.8% (2) - - - 0.0% (0) - - - 2.1% (3)

Southern NSW 0.0% (0) - - - 2.8% (2) - - - 3.3% (2) - - - 2.8% (4)

Western NSW 15.4% - - ) 11.3% - - - 15.0% - - - 13.2% (19)
2 ®) 9
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Table 3. 3. Continued.

Local Health District Assemblage A Assemblage B Assemblage A+B

(LHD)

of residence Total, %

% (n) D- OR 95% CI % (n) D- OR 95% CI % (n) D- OR 95% CI (n)
value value value

Residence (2 categories)

Metropolitan 61.5% 0.597 1.06 0.31- 67.6% 0.808 1.091  0.54- 65.0% 0.763 0.897 0.44- | 66.0% (95)
®) 3.65 (48) 2.20 (39) 1.82

Regional/Rural 38.5% - - - 32.4% - - - 35.0% - - - 34.0% (49)
&) (23) 21
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Figure 3. 3. Distributions of G. intestinalis assemblages and seasonal dispersal across metropolitan
and rural/ regional LHDs. This figure shows the seasonal distribution of genotyped cases occurring
in (a) metropolitan LHDs (n = 94) and (b) regional/ rural LHDs (n = 46) in NSW between 2016 and
2019. Assemblage A, Blue; assemblage B, Red; mixed-assemblage A+B, Green.
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3.5. Discussion

The present study aimed to identify the genetic diversity of G. intestinalis in humans across
metropolitan and rural/regional areas of NSW, Australia during 2016-2019. Faecal samples that
were positive for G. intestinalis were collected (n = 410) from participating hospital and private
pathology laboratories participating in the study. From this pool, a representative subset of samples
was chosen for genotyping (n = 169) and 95.9% (n = 162) were successfully amplified using PCR.
The genotyping results indicate the presence of both assemblages A and B in NSW. Assemblage B
infections were predominant, accounting for 46.9%, followed by mixed infections of assemblages A
and B at 43.8%, and single assemblage A infections at 9.3%. There is still a lot of controversy
surrounding the distribution of assemblages around the world mainly because the results are
difficult to compare. Studies in Australia, Austria and Sweden determined that assemblage B was
the most dominant [22,35,36]. Assemblage B infections are not only more virulent than assemblage
A but have been reported more commonly in giardiasis outbreaks [37]. The higher virulence of
assemblage B infections suggests that those infected are more likely to seek medical assistance,
which in turn could account for the higher detection rates. High re-infection rates have also been
attributed to assemblage B infections, wherein poor hygiene and environmental contamination

allows this assemblage to recirculate within a community [38].

Of note, is the high number of mixed-assemblage infections identified (43.8%). In other studies,
mixed-assemblage infections are rarely identified accurately, and most studies report only a 3—10%
prevalence [39]. PCR-based studies that use assemblage-specific primers targeting the ¢pi locus are
often more likely to observe mixed-assemblage infections in comparison to other PCR
methodologies [40,41]. In part this is due to the polymorphic nature of the #pi markers that allow
them to reliably distinguish between assemblage A and B isolates. While standard primer sets may
overlook mixed assemblage cases due to the variable proportions of assemblage A and B DNA,
assemblage-specific primers excel in this regard [42]. This was confirmed in the present study,
where the #pi-PCR successfully genotyped 27.2% mixed assemblage A+B infections, in comparison
to the 8.1% obtained by the SSU-rRNA-PCR assay.

In the present study, cases of G. intestinalis infection were found across all age groups ranging from
0 years to over 70 years. Data shows that the number of cases peaked at ages <5 years and 30-49
years regardless of gender (Figure 3. 1). Similar bimodal age distributions have been observed in G.
intestinalis surveillance reports from the United States [43,44], and England [45]. Although the

distribution of G. intestinalis assemblages was found across all age groups in NSW; adults aged in
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their 30s and 40s, and children under five years of age maintained a higher prevalence of
assemblage B. In fact, children under five years-old were more commonly infected by assemblage
B (OR =2.74; 95% CI 1.15-6.51; p = 0.020) than assemblage A. This strong association between
assemblage B infection and children under 5 years might be indicative of age-specific risk factors
and transmission routes. The exposure of assemblage B infections to children can occur either
through high-risk activities such as day-care attendance or schooling, as well as poor hygiene
behaviours [46,47]. Children with assemblage B infections have also demonstrated a higher level of
cyst shedding, which would facilitate a faster spread within institutional settings and areas where
children frequent [39]. In Spain, G. intestinalis-positive children were 10 times more likely to be
infected with assemblage B in comparison to adults [48]. Additionally, a Brazilian study observed a
predominance of assemblage B infection in middle-aged adults aged 30 to 39 years old [49], and
this was echoed in a similar study in England [14]. Children are likely to be playing a critical role in
an ongoing transmission cycle of assemblage B infection, aiding the spread of infection by

contaminating family members, day-care centre staff and other attendees.

Co-infecting pathogens were detected in nearly half (49.1%, n = 83) of all-G. intestinalis-positive
faecal samples. Infection of G. intestinalis with concomitant infections with a variety of gut
bacteria, viruses and parasites are incredibly common in most countries. Most co-infections were
parasitic (56.6%, n = 47), and bacterial (12.0%, n = 10). Overall, the most common pathogens
detected were the enteric protozoa Blastocystis hominis (31.3%, n = 25) and Dientamoeba fragilis
(15.0%, n = 12), followed by Campylobacter spp. (5.0%, n =4) and Enterovirus (5.0%, n = 4).
Infection of G. intestinalis with concomitant infections with a variety of gut bacteria, viruses and
parasites are incredibly common in most countries. In India, Giardia infections with Vibrio
cholerae and rotavirus were commonly identified in children aged under ten years old [50] while in
Nicaragua, the majority of G. intestinalis cases (70.4%) were co-infected with either Norovirus,
Sapovirus or enteropathogenic Escherichia coli (EPEC) [51]. In the United States, multiple
parasites including G. intestinalis, Cryptosporidium spp., and Entamoeba spp. were responsible for
drinking water outbreaks [52]. Interestingly, a study in Uganda observed a link between Giardia
assemblage B and Helicobacter pylori infection [53]. There are limited studies on the associations
between G. intestinalis assemblages and coinfecting pathogens, so comparisons remain difficult to
make. In the present study, no associations were found between assemblage type and co-infecting
pathogen. The high level of co-infections can be explained as most enteric pathogens are
transmitted via the same route of infection: the faecal-oral route. This underscores the value of

continued examination of faecal specimen from symptomatic persons for multiple pathogens in
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developed settings such as Australia, where the practice appears to be diminishing in clinical

settings.

In the present study, it was found that clinical symptoms were not associated with assemblage type.
This was consistent with previous studies in Brazil [39], Iran [54—-56], Thailand [57] and China
[58]. Despite this, there have been other studies that have reported a close association between
assemblages and clinical symptoms [59-61]. Assemblage B has been associated with severe
diarrhoea, vomiting, abdominal pain, and bloating [48,60,62,63], although it is equally plausible
that since younger children and their middle-aged parents appear to be predominantly affected with
this assemblage and are more likely to seek care, these assemblages become overrepresented among
notified cases. In other studies, assemblage A has been affiliated with more serious clinical
symptoms [12,22,45,64,65]. It remains difficult to determine a true correlation between
assemblages and symptoms. It may be that the virulence of assemblages A and B in humans relies
on a variety of factors, including human host age and gender, parasite growth rates, metabolic

products, or toxins and even drug resistance.

Another interesting finding was that only 8.0% of G. intestinalis positive cases reported travelling
overseas prior to illness onset, suggesting that most giardiasis cases in NSW are a result of endemic
transmission. There is a misconception that G. intestinalis infection in industrialised countries is
mainly associated with international travel to developing nations. Several studies have observed that
most giardiasis cases in industrialised countries are in fact a result of endemic transmission and
local risk factors [66—68]. In the present study, individuals with a history of overseas travel were six
times more likely to be infected with mixed assemblages A and B (OR = 5.917; 95% CI 1.20-29.08,
p =0.02) as opposed to being infected with a single assemblage infection. This is a novel finding
which has not been observed elsewhere, and it remains important to investigate this further.
However, a recent study [69] noted that the occurrence of mixed-assemblage infections is higher in
developing countries as opposed to developed regions of the world. Exposure to conditions where
environments are contaminated with human faeces, have poorer access to or less well-maintained
hygiene facilities may be more common in developing settings, which increases the risk of both

assemblages co-circulating in communities and being picked up by travellers.

Analyses of 141 cases of sporadic human giardiasis showed that infections were widely dispersed
across eastern regions of Sydney and NSW, where the majority of the NSW population resides [70]
(Figure 3. 2). Among the NSW LHDs, most (66.0%) sporadic cases occurred in metropolitan

LHDs. These findings are consistent with historical state-wide surveillance trends, that identified
51



significant positive associations between area-level advantage and an increased likelihood of
giardiasis notifications [71]. However, it cannot be ignored that the high incidence rates of
giardiasis detected in urban Sydney may also be artifactual, particularly as these locations often
have highly transient populations. It must also be considered that individuals residing in
metropolitan areas have better access to primary health care facilities and greater access or
inclination to submitting stool samples for testing when compared with those living in rural areas.
In addition to this, densely populated cities such as Sydney have a higher risk of exposure to an
infected individual, whether that be through contaminated environment, wastewater, sewage or
recreational waters or transmission through day-care centres, schools, and other institutional
settings. The plausibility of this was confirmed by a study in the US that found a positive

correlation between giardiasis prevalence and population density and population size [72].

Seasonal trends in the dispersal patterns of G. intestinalis assemblages were also observed (Figure
3.3.a and Figure 3.3.b). Single assemblage A cases were not detected in metropolitan LHDs during
autumn (p = 0.048). Alternatively, single assemblage A cases were also missing in regional areas
across summer and winter. This finding may be artefactual and is likely due to the lower numbers of
assemblage A cases identified throughout the study. Overall, the giardiasis infection rates peaked in
spring and dropped in early autumn and winter. This is consistent with other reports of seasonality
[73,74]. A peak incidence of giardiasis in NSW during October through to December coincides with

high prevalence of outdoor and higher risk activities in these warmer months.
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3.6. Conclusions

This study provides new insights into the molecular diversity of G. intestinalis in NSW, Australia,
and helps to inform enhanced surveillance and prevention strategies in developed metropolitan
areas. During the study period, a higher prevalence of assemblage B was observed among human
cases in NSW. Factors which possibly influence this higher incidence in NSW may be behavioral,
climatic, environmental, or related to the virulence or assemblage of the parasite. Higher numbers
of mixed assemblage infections were also identified, which is a novel finding for a developed
country like Australia. The distribution of assemblages A and B remained relatively uniform across
genders and no clear differences were observed in clinical presentation between assemblages;
however, assemblage B was more commonly observed among children. Further high-powered
studies are needed to investigate the prevalence and clinical manifestations of assemblage B in
children. While most giardiasis cases were transmitted locally, those individuals that had reported
travelling overseas prior to illness onset were six times more likely to be infected with mixed
assemblages A and B as opposed to single assemblages. This novel discovery underscores the
importance of additional investigation into ‘travel’ as a risk factor for Australians, particularly
delving into the differences observed in giardiasis transmission dynamics between endemic and
international cases. Among metropolitan LHDs, G. intestinalis cases were consistently identified in
the Nepean Blue Mountains, Northern Sydney, Western Sydney, South-eastern Sydney, Sydney
CBD, and Central Coast regions, which persisted throughout all seasons, and has highlighted these
locations as potential disease hotspots in NSW. It remains essential to improve our knowledge of
giardiasis and its molecular epidemiology among host populations; to help better inform
surveillance strategies and response actions aimed at preventing further spread of infection. Further
studies involving the geospatial and spatiotemporal distribution of G. intestinalis assemblages is

recommended, and in particular targeting the metropolitan and urban areas of NSW.
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3.7. Supplementary data

Supplementary Table S3. 1. Co-infecting pathogens identified in G. intestinalis positive faecal

samples.

Assemblage type, % (n)

Co-infecting pathogen(s)* A B A+B Total, %
(n)
Adenovirus & Dientamoeba fragilis 0.0% (0) 5.0%((2) 0.0% (0) 2.5% (2)
Adenovirus & Enterovirus 0.0% (0) 2.5% (1) 0.0% (0) 1.3% (1)
Adenovirus, Blastocystis hominis & Dientamoeba 0.0% (0) 2.5% (1) 0.0% (0) 1.3% (1)
fragilis
Astrovirus & Blastocystis hominis 0.0% (0) 0.0% (0) 3.2%(1) 1.3% (1)
Astrovirus & Sapovirus 0.0% (0) 2.5% (1) 0.0% (0) 1.3% (1)
Astrovirus, Blastocystis hominis, Sapovirus & 0.0% (0) 2.5% (1) 0.0% (0) 1.3% (1)
Shigella spp.
Blastocystis hominis 22.2% 32.5% 32.3% 31.3% (25)
2 (13) (10)
Blastocystis hominis & Bocavirus 0.0% (0) 2.5% (1) 0.0% (0) 1.3% (1)
Blastocystis hominis & Campylobacter spp. 0.0% (0) 0.0% (0) 3.2% (1) 1.3% (1)
Blastocystis hominis & Dientamoeba fragilis 11.1% 10.0%(4) 9.7%(3) 10.0% (8)
e)

As reported by the real-time PCR (RT-PCR) EasyScreen™ assay
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Supplementary Table S3. 1. Continued.

Assemblage type, % (n)

Co-infecting pathogen(s)* A B A+B Total, %
(n)
Blastocystis hominis & Enterovirus 0.0%(0) 2.5% (1) 0.0% (0) 1.3% (1)
Blastocystis hominis & Shigella spp. 0.0%(0) 0.0%(0) 3.2% (1) 1.3% (1)
Blastocystis hominis, Dientamoeba fragilis, 0.0%(0) 2.5% (1) 0.0%(0) 1.3% (1)
Enterovirus & Sapovirus
Campylobacter spp. 11.1% (1)  0.0% (0)  9.7% (3) 5.0% (4)
Campylobacter spp., Enterovirus & Shigella spp. 0.0%(0) 25% (1) 3.2%() 2.5% (2)
Clostridium difficile 0.0% (0) 7.5%(3) 0.0% (0) 3.8% (3)
Cryptosporidium spp. 111% (rn  0.0%(m= 32%@H= 25%@Hm=
=1) 0) 1) 2)
Dientamoeba fragilis 222%(m  125%(m  16.1%((n 15.0% (n=
=2) =5) =5) 12)
Dientamoeba fragilis & Enterovirus 11.1% (n  0.0%m= 00%MH= 13%@H=
=1) 0) 0) 1)
Dientamoeba fragilis & Norovirus GII 0.0% (= 25%m= 00%m= 13% A=
0) 1) 0) 1)
Enterovirus 111% (n  5.0% (m= 32%@Hm= 5.0%Hn=
=1) 2) 1) 4)

2As reported by the real-time PCR (RT-PCR) EasyScreen™ assay
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Supplementary Table S3. 1. Continued.

Assemblage type, % (n)

Co-infecting pathogen(s)* A B A+B Total, % (n)
Norovirus GI1 0.0% (n=0) 25%@m=1) 0.0% (n=0) 1.3% (n=1)
Salmonella spp. 0.0% (n=0) 0.0% (n=0) 32% (n=1) 1.3% (n=1)
Sapovirus 0.0% (n=0) 0.0% (n =0) 6.5% (n=2) 2.5% (n=2)
Yersinia enterocolitica 0.0% (n=0) 2.5% (n=1) 32% (n=1) 2.5% (n=2)

Total

100.0% (1 =9)

100.0% (n = 40)

100.0% (n = 31)

100.0% (1 = 80)

As reported by the real-time PCR (RT-PCR) EasyScreen™ assay
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4.1. Abstract

Giardia intestinalis is a leading cause of diarrhoeal disease in Australia and remains a substantial
health burden to human populations in New South Wales (NSW). For appropriate disease control
interventions to be developed for diseases like giardiasis, it becomes necessary to not only
understand the spatial distribution of this parasite but to identify those areas at a higher (or lower)
risk of infection. The aim of this study was to identify and investigate high-risk spatial clustering of
giardiasis across Local Government Areas (LGAs) in NSW, Australia. Separate spatial models were
also designed for age categories (0-4yrs, 5-14yrs, 15-64yrs and 65yrs and older), sex (male, female)
and G. intestinalis molecular assemblage type (A and B) to identify any clusters specific to those
variables. Cases of giardiasis were analysed at the post-code level. Global and local clustering of
infections were evaluated using the Moran’s / autocorrelation method in ArcGIS Pro 2.9.0. The Hot
Spot analysis (Getis-Ord Gi* statistic) tool was also employed to locally identify statistically
significant hotspots of giardiasis. Purely spatial and space-time clusters were investigated using
Poisson scan statistic models on SaTScan™. Space-time scan statistics were applied to identify
seasonal, yearly, and monthly patterns in respect to space and time. Geographical clusters of high
G. intestinalis incidence were identified in Northern Sydney and South-Eastern Sydney (RR = 1.83;
p <0.01) as well as Western NSW and Hunter New England (RR = 2.55; p <0.05). The space-time
analyses also detected three significant clusters of G. intestinalis during spring, summer, and early
autumn. These clusters aggregated in metropolitan Sydney and regional NSW. Additionally, a large
cluster (130.18 km in radius) of primarily male Giardia-positive cases in regional Western NSW
(RR =13.28; p <0.01) and a smaller cluster (7.15 km in radius) of female Giardia-positive cases
along the north-eastern Sydney coastline (RR = 5.23; p <0.05) were identified in the separate spatial
model for sex categories. Clustering in the Central Coast and Northern Beaches LGAs was also
seen for those aged 15-64 years old (RR =4.39; p <0.05). No significant clusters were identified for
G. intestinalis assemblages A or B. Based on the findings of this study, there is a clear rationale for
where future giardiasis prevention efforts in NSW should be prioritised. In addition, factors such as
biological sex appear to correlate strongly with one’s geospatial environment, and this in turn helps

public health systems to target vulnerable communities at risk.
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4.2. Introduction

Giardia intestinalis is a protozoan parasite recognised as a major contributor to sporadic and
epidemic diarrhoeal disease in humans. There are an estimated annual total of 280 million clinical
cases of giardiasis worldwide, and consequently this disease was included in the WHO Neglected
Diseases Initiative since 2004 [1]. The G. intestinalis parasite is primarily spread by the faecal oral
route from person-to-person or via ingestion of faecal-contaminated untreated water. As such,
giardiasis is often seen in countries with poor sanitation, hygiene practices and a lack of access to
adequate drinking water and water-treatment facilities. Symptoms of giardiasis might include short-
term diarrhoea, abdominal pain, fatigue, nausea, vomiting, dehydration, and weight loss [2]. Long
term consequences of G. intestinalis infection have also been reported including extra-intestinal
manifestations (such as reactive arthritis [3—5]), a failure to thrive and growth stunting due to

nutritional deficiencies [6,7], as well as post-infectious irritable bowel syndrome (IBS) [8].

Giardia intestinalis is considered a species complex and can be classified into eight molecularly
distinguishable assemblages A through to H. Only assemblages A and B have been previously
identified in both human and animal hosts suggesting potential zoonotic transmission. The other
assemblages (C to H) have been found purely in animal hosts. G. intestinalis assemblages A and B
have been identified worldwide, although most studies generally agree that assemblage B is the
most prevalent in human infections [9—11]. Consistent with this, a recent genotyping study
conducted in New South Wales (NSW), Australia, revealed that the majority of G. intestinalis
infections were attributed to assemblage B (46.9%), with mixed A+B assemblages following
closely at 43.8%. Additionally, the study highlighted the widespread distribution of sporadic human
giardiasis cases across metropolitan NSW, particularly in the greater Sydney region (Zajaczkowski
et al., see Chapter 3). However, there are no studies that have applied Geographic Information
Systems (GIS) epidemiological methods to identify geospatial and temporal clusters of G.

intestinalis assemblages in Australia, including NSW.

In NSW, Australia the Public Health Act 2010 [12] requires laboratories, hospitals, doctors, and
institutional facilities at risk to routinely report cases and outbreaks of G. infestinalis infection to
public health units (PHUs). Most giardiasis outbreaks in NSW are related to institutional outbreaks
and are common in aged-care facilities, early education, and child-care facilities. Giardiasis is also
often associated with drinking water outbreaks linked to small tank or bore water supplies rather
than municipal drinking water [13]. Overall, in NSW, giardiasis is responsible for an annual

estimate of 37.8 cases per 100,000 [14] and over the last twenty years, giardiasis cases have more
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than doubled, peaking at 3,455 cases in 2016 [15]. Notification data has found that the highest rates
of giardiasis are consistently located in the urbanised Northern Sydney and South-Eastern Sydney
regions. Despite this, there is epidemiological evidence suggesting that wildlife, cattle, and
livestock may play a role in transmitting giardiasis in regional areas of Australia and NSW [16—18].
The state of NSW is incredibly vast and varied in socioeconomic grounds, demographics, climate,
and environmental risk factors. It consists of urban coastal strips, the metropolitan Sydney region,
and regional and rural agricultural plains. Identifying hotspots where there is a higher density of
giardiasis occurrences in comparison to the surrounding areas is necessary to understand the spatial
distribution of this disease and to help identify disease sources, as well as to design prevention

strategies.

The aim of this study was to provide a better picture of the distribution of giardiasis in NSW,
Australia through the years from mid-2016 to 2019. This was done by utilising spatial
autocorrelation tools, hotspot analyses, purely spatial and temporal, as well as space-time analyses
to identify clusters and trends in the collected data. Additionally, purely spatial Poisson analyses for
clustering using G. intestinalis case data adjusted for age, sex and assemblage type was developed
to evaluate the distribution of these variables across NSW, Australia. GIS are powerful tools that
not only assist in spatially modelling health surveillance data but provide researchers with a clearer
picture of the trends of disease transmission. This in turn can inform decision-makers and public

health systems to implement management policies and targeted disease control programs.
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4.3. Materials and methods

4.3.1. Study area

This study was carried out in NSW, which is situated on the south-eastern coast of Australia. NSW
has an area of 801,150 km?, with a total approximate population of 8,186,800 people in 2021 [19]
making it Australia’s most populous state. NSW is divided into 15 local health districts (LHDs);
eight cover the Sydney metropolitan region and seven cover rural and regional NSW
(Supplementary Figure S4. 1). Within the LHDs are a further 128 local government areas (LGAs),
each of which encompass multiple suburbs or localities. Climate varies substantially across NSW.
The eastern-most coastal regions of the state are temperate, the subtropical north-eastern regions are
humid, and the inland regions are semi-arid often with minimal rainfall during the hotter months.
Seasons are as follows; summer (December — February), autumn (March — May), winter (June —

August) and spring (September — November).

4.3.2. Data collection

In NSW, Giardiasis has been listed as a notifiable disease since August 1998 [20] and all
laboratory-confirmed Giardia cases are legally required to be notified to public health authorities in
NSW [12]. For this study, Giardia-positive specimens were acquired during June 2016 to
December 2019 from two public hospitals: the Centre for Infectious Diseases and Microbiology
(CIDM) at Westmead Hospital, NSW and SydPath at St. Vincent’s Hospital, NSW. To mitigate
potential geographical bias, specimens were also provided by two pathology clinics: Laverty
Pathology and Douglass Hanly Moir Pathology (DHM). These pathology providers are two of the
largest in NSW, having established a widespread network of laboratories across regional and
metropolitan areas of the state. For each Giardia sample collected, the corresponding patient’s
gender, age, disease onset date and post-code of residence was obtained from the electronic Medical
Records (eMR). In addition to this, a previous genotyping study (Zajaczkowski et al., see Chapter
3) provided the molecular assemblage type (assemblage A or B, or a mixed A+B) for a portion (n =
129) of the collected G. intestinalis samples. In this study, the mixed assemblages A+B were
counted as one assemblage A and one assemblage B. All data were fully anonymised, and no direct
identifiers were collected from the eMR. Cases were coded with unique case IDs; the case ages
were aggregated into four age categories (0-4yrs, 5-14yrs, 15-64yrs and 65yrs and older). This age-
categorisation has been used in a previous spatial analysis study [21]. Dates of disease onset were

classified as months and years to further reduce the possibility of re-identification.
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All G. intestinalis positive cases that had postcode data and were collected between June 2016 to
December 2019 were geocoded using ArcGIS Pro 2.9.0 [22]. This involved matching case postcode
data to its central latitude and longitude coordinates. Each G. intestinalis case was then spatially
attributed to specific LGAs in which they were located. To reduce spatial distortion, the ‘GDA2020
New South Wales Lambert’ projected coordinate system was selected when mapping in ArcGIS Pro

2.9.0 [23].

A subset of Giardia-positive specimens acquired during June 2016 to December 2019 were
genotyped in an earlier study (Zajaczkowski ef al., see Chapter 3), and a molecular assemblage type
(assemblage A or B, or a mixed A+B) was assigned to each case (n = 129). In the current study, the

mixed assemblages A+B were counted as one assemblage A and one assemblage B.

Ethical approval for this study was received from the South-Western Sydney Local Health District
Human Research Ethics Committee (HREC) which is accredited by the NSW Ministry of Health
(HREC approval number: HE18/059 LNR), and the University of Technology Sydney (UTS
approval number: ETH21-5951).

4.3.3. Data analysis
4.3.3.1. Spatial Autocorrelation (Global and local Moran’s I)

Global clustering of G. intestinalis cases was evaluated using spatial autocorrelation (Global
Moran’s /) statistical toolsets in ArcGIS Pro 2.9.0 [22,24]. The Global Moran’s / statistic compares
the values of neighbouring locations and assesses whether the values stored on the geographic
features are clustered, random, or dispersed. The Moran’s / Index value, which ranges from -1 to 1
measures the overall spatial autocorrelation of the dataset [25]. The null hypothesis is that the
pattern is random (Moran’s / = 0), or that no spatial autocorrelation is present. A positive Moran’s /
(+1) signifies clustering, which suggests that neighbouring features tend to have similar values.
Alternatively, a negative Moran’s / (-1) signifies a dispersal pattern, which suggests that
neighbouring features tend to have different values. The Global Moran’s / tool also calculates a z-

score and p-value which are used to assess the significance of the Index.

Local Moran’s [ statistics were also employed to detect local spatial clusters and outliers of
giardiasis between LGAs and their neighbours. This Local Moran’s 7 calculates a z-score and a p-
value which are then used to determine the statistical significance of the computed local Moran’s /
Index values. A statistically significant positive local Moran’s / value suggests there is spatial

clustering classified as either a hotspot (high-high) or a coldspot (low-low). Alternatively, a
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statistically significant negative local Moran’s / value implies there is a spatial outlier (high-low and

low-high) [26].

The Incremental Spatial Autocorrelation (ISA) tool was implemented to identify the scale or
geographic distance at which G. intestinalis cases are most clustered across NSW. The ISA analysis
runs the Global Moran’s 7 tool at multiple increasing distances and measures the strength of spatial
clustering between each distance. Output data displays the z-score and p-value associated with each
distance. The largest statistically significant z-score was selected as the optimal cut-off distance
band for further Global and local Moran’s 7 analyses, and for the detection of hotspots using the
Getis-Ord* tool.

As the LGAs in NSW are not uniform in area size, the ‘zone of indifference’ was selected as the
conceptualisation of spatial relationships parameter in both spatial autocorrelation analyses. This
parameter avoids forming strict neighbourhood boundaries and forms a more accurate

representation of the data [27,28]. Euclidean distance method was used for all three analyses.

4.3.3.2. Detection of hotspot areas of G. intestinalis infection in NSW

The Hot Spot Analysis (Getis-Ord Gi* statistic) tool was employed in ArcGIS Pro 2.9.0 [22] to
locally identify statistically significant hotspots (clusters of G. intestinalis cases with high values)
and coldspots (clusters of G. intestinalis cases with low values). Statistical significance is indicated
by the test statistic (z-score) and p-value. A positive z-score implies there is clustering of high
values (hotspot) and the larger the z-score, the greater the clustering is. The opposite is true for
negative z-scores. The Hot Spot Analysis also provides a confidence level bin value (G; Bin)
ranging from -3 to 3. Values of -3 to -1 indicate a coldspot with 99% confidence while 1 to 3
indicates a hotspot with 99% confidence. Any values of -1 to 1 are non-significant [29]. Both
hotspots and coldspots are further classified as 99%, 95% and 90% confidence levels which

indicates the strength of the clustering.

The Getis-Ord Gi* was adjusted similarly to the parameters used in the spatial autocorrelation
analyses. As before, the ‘zone of indifference’ was selected as the conceptualisation of spatial
relationships. The Euclidean distance method was chosen to calculate the straight-line distances
between the geographic points of G. intestinalis cases. As previously mentioned, the distance with
the largest statistically significant z-score from the ISA analysis was selected as the optimal

distance band when detecting hotspots in NSW.
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4.3.3.3. Purely spatial clusters

Purely spatial clusters were analysed using the SaTScan™ spatial statistic developed by Kulldorff
[30]. This scan-statistic analysis required three sets of data (1) the case file which reports the
numbers of G. intestinalis cases for each postcode area (2) the population file which includes the
populations estimates for each postcode area obtained from the 2016 General Community Profile
(GCP) of Postal Areas (POA) in NSW [31] (3) and the coordinates file which provides the latitude
and longitude-coordinates for each postcode centroid as previously calculated by ArcGIS Pro 2.9.0.
Spatial scan statistics identify clusters by scanning the study area with an overlapping circular
window. The size of the window is initially set in the parameters. In this case, the maximum spatial

cluster size was set to 20% of the population at risk [32] and a circle radius of 200km or less.

Separate spatial models were also designed for all variables to identify any significant clustering. In
total, there were four spatial models for each age category (1) 0-4yrs, (2) 5-14yrs, (3) 15-64yrs and
(4) 65yrs and older; two spatial models for sex (1) male, (2) female; and two for G. intestinalis
molecular assemblage type (1) A and (2) B. The estimated population counts for every postcode in
NSW were modified for each of the four age groups, as well as males and females [31]. The
population counts for G. intestinalis assemblage types were obtained for each LHD from the
Communicable Diseases Branch of NSW Health [33]. These models were run using a maximum

spatial cluster size set as 3% of the population at risk and a circle radius of 200km or less.

4.3.3.4. Space-time and purely temporal clusters

When using the SaTScan™ spatial statistic, the space-time scan statistic and purely temporal cluster
scans required a case file, population file and coordinates file. In the case of temporal and space-
time analyses, the case file also required that the G. intestinalis cases be stratified by the time of

diagnosis by month and year.

The space-time scan statistic was employed to identify the most likely clusters of both high and
low-rate areas, as well as detect these clusters through space and time. This space-time permutation
model uses a cylindrical window wherein the circular base of the cylinder represents the space or
geography of the cases, and the height of the cylinder represents the time period of possible clusters.
In this way, when the cylindrical window scans and overlaps across the study region (NSW), it is
moving in both space and time. The maximum spatial cluster size was 20% of the population at risk

with a circle radius of 200km. The maximum temporal window was set at 20% of the study period.
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The purely temporal scan statistic was used to observe any high or low rates of clustering in the data
regarding time. As this tool does not identify spatial clusters, it does not use a circular window, but
rather uses a cylindrical window of differing heights (time) that scans across the study area. In this
study, two temporal scans were run; (1) one had time aggregation set to month (2) and the other had
time aggregation set to year. Regarding the temporal scanning window, the parameters were set to

include 20% or less of the study period or one year of the study period respectively.

SaTScan™ can identify secondary clusters in addition to the initial cluster in both the purely spatial
and space-time scan statistic analyses. In this study, the cluster with the maximum likelihood ratio
test statistic was the most likely cluster (or the primary cluster), and the clusters with lower
likelihood ratios were regarded as secondary clusters. Additionally, the criteria for reporting
hierarchical clusters were set to the restrictive option of no geographical overlap. This would
disregard any secondary clusters if they intersected with a previous cluster. Note that no secondary

clusters are reported for purely temporal analyses.

Each of the SaTScan™ cluster analyses were tested through the assumption of a discrete Poisson
model [30]. Additionally, the p-value was obtained by Monte Carlo hypothesis testing and the
number of replications was limited to 999. Statistically significant results were considered as p <

0.05. Results from the cluster analyses were imported and visualised in ArcGIS Pro 2.9.0.
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4.4. Results

Of the total of 128 local government areas (LGAs) in the study area, data were obtained from 64
LGAs; 56% (36/64) of which covered metropolitan regions of NSW, and 44% (28/64) of which
spanned across rural and regional areas of NSW. Overall, a total of 410 laboratory-confirmed G.
intestinalis cases were reported by the participating laboratories in this study across NSW during
the 2016 - 2019 study period. Most of the cases were provided by the community pathology
laboratories (92.0%, 377/410), as opposed to the hospitals (8.0%, 33/410). A total of 99 cases were
excluded from the study due to data incompleteness (e.g., missing post-code data) and an additional
8 cases were excluded as the postcodes originated from outside NSW, leaving 303 G. intestinalis
cases in total. Both males (54.5%, 165/303) and females (45.5%, 138/303) were represented in the
total cases. The 15—-64-year-old age category made up most G. intestinalis cases (55.1%, 167/303),
followed by children aged 0-4 years (20.1%, 61/303) and 5-14 years (17.2%, 52/303). The smallest
age group were individuals aged 65 years and older (7.6%, 23/303). Out of the 303 Giardia-positive
cases included in the study, a total of 129 were previously genotyped by Zajaczkowski et al.,
(Zajaczkowski et al., see Chapter 3). These cases were made up of assemblages A (n =12), B (n =
62) and a combination of A+B (n = 55). To increase the number of individual assemblages in each
analysis group, the combined A+B assemblages were counted twice, as one assemblage A and one
assemblage B. This led to a new total of 184 individual assemblages made up of assemblages A (n

= 67) and assemblages B (n =117).

4.4.1. Global and Local Moran’s I autocorrelation

Spatial autocorrelation was tested at 20 km distance intervals and beginning at 50 km, using the ISA
tool. This tool identified 21 statistically significant z-scores (ranging from 1.93 to 3.43) between
150 km and 550 km. The z-scores peaked at a distance band of 290 km (Z = 3.43, global Moran’s /
=0.08, p <0.01). The peak distance value (290 km) was used as the cut-off distance band for
Global and local Moran’s / analyses and the Getis-Ord* tool. The Global Moran’s I analysis was
used to identify significant spatial autocorrelation in the total number of giardiasis cases collected
during the study period (n = 303). This analysis found that G. intestinalis infections were clustered

in NSW (Z = 3.55, global Moran’s /= 0.09, p <0.01) (see Supplementary Figure S4. 2).
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As there was a significant spatial pattern identified in the data, the Local Moran’s [ analysis was

employed to identify clusters. Overall, there were 33 clusters identified: 22 High-High clusters and

11 Low-Low clusters. High-High clusters were predominantly located in metropolitan LGAs, as
opposed to Low-Low clusters which were exclusively found in regional NSW. Additionally, 26
Low-High outliers were identified across both metropolitan and regional LGAs (Figure 4. 1). The
High-High and Low-Low clusters are indicative of neighbouring features in the study area with
equally high or low attribute values, respectively. The outliers (Low-High and High-Low) are
defined by neighbouring features with dissimilar values. For example, the Low-High outlier is

categorised by high-risk neighbours surrounding a lower risk area [22,25].

Cluster and Outlier Analysis
(Anselin Local Moran's 1)

Il High-High cluster
N Bl [ow-High outlier

Il Low-Low cluster
(I) 125 2?0 5(I)O Kilometers = Not Significant
[ L1 1

Figure 4. 1. Mapping of giardiasis local spatial clusters (Local Moran’s /) in NSW between June

2016 and December 2019. A Euclidean distance band of 290 km was used, and the type of cluster
identified is colour coded according to the scale provided. This analysis shows that G. intestinalis
infections are significantly clustered in NSW.
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4.4.2. Hotspot Analysis (Getis-Ord*)

Hotspot identification of giardiasis cases using the Getis-Ord G;* statistic is shown in Figure 4. 2.
Hotspots for G. intestinalis cases were seen across both metropolitan and regional areas of NSW
although hotspots with 99% confidence levels were located almost exclusively in urban localities.
The regional areas included Hunter New England (LGAs: Cessnock, Lake Macquarie and
Newcastle), Southern NSW (LGA: Goulburn Mulwaree) and Western NSW (LGA: Cowra). In
comparison, hotspots with 95% confidence levels were concentrated in the western-most regional
parts of the state including Bathurst, Dubbo, Mid-Western Regional, and Orange. These hotspots
were also identified in Hunter New England, Dungog, and Singleton in particular, and Hawkesbury
in the Nepean Blue Mountains. Hotspots with 90% confidence levels were not identified by the
Getis-Ord* analysis. Coldspots with 90% confidence were also noted in six LGAs in Western
NSW, as well as Armidale Regional in the far north-east of the state. One coldspot with 95%

confidence levels was detected in Gilgandra, a regional LGA found in the central west of NSW.

Legend
Hot Spot Analysis (Getis-Ord G*)

G Bin
Il Hot Spot with 99% Confidence
N % Hot Spot with 95% Confidence
mm Cold Spot with 95% Confidence
A (I) ' 1?5 ' 25;0 o 5?0 Kilometers Cold Spot with 90% Confidence

I Not Significant

Figure 4. 2. Mapping of giardiasis hotspots in NSW between June 2016 and December 2019 using
the Hotspot Analysis (Getis-Ord*) statistical tool. Hotspots and coldspots are colour coded
according to the scale provided.
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4.4.3. Purely spatial clusters analysis

The purely spatial clusters were analysed by spatial scan statistics using a discrete Poisson model.
There were three significant clusters found in the study period, all with a p-value equalling or less
than 0.05 (Table 4. 1, Figure 4. 3). The first cluster was the smallest (14.04 km radius) and was
observed in Western Sydney, South-Western Sydney and on the western outskirts of the Sydney
district. This cluster included 11 LGAs (RR = 0.41) with an approximate total population of 2
million individuals. The second cluster was larger (16.25 km in radius) and covered 10 LGAs (RR
= 1.83). These LGAs included, Hunters Hill, Ku-ring-gai, Lane Cove, Mosman, North Sydney, the
Northern Beaches, the city of Sydney, Waverley, Willoughby, and Woollahra. The final cluster was
the largest (192.00 km in radius), and unlike the previous two clusters, covered only regional/ rural
LGAs. There were 16 LGAs included in cluster 3 (RR = 2.55), which were predominantly located
in Western NSW, and partially crossed into Hunter New England.

To observe any clustering consistent with sex (male, female), age category (0-4yrs, 5-14yrs, 15-
64yrs and 65>yrs) and/or molecular G. intestinalis assemblage type (A, B), separate purely spatial
analyses were run for each categorical variable. As seen in Table 4. 1 and Figure 4. 4, three
significant clusters were identified. A large cluster (130.18 km in radius) of male Giardia-positive
cases was found in regional Western NSW (RR = 13.28; p <0.01). The spatial analyses were also
run for the female category and identified a primary cluster (7.15 km in radius) of female Giardia-
positive cases along the state coastline (Central Coast and Northern Sydney) (RR = 5.23; p <0.05).
Finally, a separate spatial scan was run for all four age categories and detected one primary cluster
(12.78 km) of individuals aged 15-64 years old spanning from the Central Coast to the Northern
Beaches in Sydney (RR =4.39; p <0.05). No significant clusters were identified for the G.

intestinalis assemblage types A or B.
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Table 4. 1. Significant clusters of G. intestinalis incidence in NSW at the LGA level as identified by the purely spatial scan statistic.

Variable SaTScan cluster Radius (km)/ LGA (n) Observed cases Expected cases RR LLR p-value
1 14.04 (10) 28.0 59.73 0.41 12.50 <0.01
- 2 16.25 (11) 76.0 46.76 1.83 941 <0.01
3 192.00 (9) 27.0 11.19 2.55 841 <0.05
Gender (Female) 1 7.15(1) 8.0 1.61 523 6.61 <0.05
Gender (Male) 1 130.18 (5) 6.0 0.47 13.28 9.87 <0.01
Age (15-64yrs) 1 12.78 (1) 10.0 2.39 439 6.89 <0.05

RR: Relative risk; LLR: Log-Likelihood ratio



I

>4
.
-

Legend
Cluster, RR

Il Cluster 1, 0.41
[0 Cluster 2, 1.83
A 0 125 250 500 Kilometers [0 Cluster 3, 2.55

I T T N N S (N M |

N

Figure 4. 3. Mapping of purely spatial clusters of giardiasis in NSW between June 2016 and
December 2019. Three statistically significant clusters were identified. These included Cluster 1
(Western Sydney and South-Western Sydney), Cluster 2 (Northern Sydney and South-Eastern
Sydney) and Cluster 3 (Western NSW and Hunter New England).
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Figure 4. 4. Mapping of purely spatial clusters of giardiasis (sex and age category) in NSW
between June 2016 and December 2019. Separate analyses were run for each sex and age category,
and three main clusters were identified. These included (1) Cluster 1 identified relating to males in
regional NSW (Western NSW), (2) Cluster 1 identified to females (Northern Sydney and the
Central Coast) and (3) Cluster 1 identified relating to 15-64 age group (Northern Sydney and the
Central Coast).
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4.4.4. Temporal and Space-time clusters analysis

Space-time analysis detected three significant clusters (Table 4. 2). The first cluster included
Northern and South-Eastern Sydney districts. The time frame for this cluster encompassed the
warmer months in Australia (October 2017 — February 2018) and continued into the cooler autumn
months (March 2018 — May 2018) (RR = 5.89; p <0.01). A second, larger cluster was detected
spanning across regional Western NSW and Hunter New England, as well as the semi-urban district
of Nepean Blue Mountains. The time frame for this cluster was also from October 2017 to May
2018, with a RR = 8.57; p <0.01. The third cluster was recorded only in the summer month of
December 2017 and was in regional Hunter New England and the Mid-North Coast areas (RR =
5.50; p <0.01).

Additional scan-statistic analyses found purely temporal clustering in the year 2019 (RR = 0.09; p
<0.01), and from October 2017 to May 2018 (RR =5.62; p <0.01) (Table 4. 2). Additionally, the
seasonal analysis found that the risk of giardiasis was significantly reduced between the winter

months of June and July across all years (RR = 0.48; p <0.01).
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Table 4. 2. Significant temporal and spatiotemporal clusters of giardiasis in NSW between 2016 and 2019.

Method

Purely
temporal (year)
Purely
temporal
(month)

Seasonal

Space-time

RR: Relative risk

SaTScan
cluster

1

Timeframe

2019/01 to 2019/12

2017/10 to 2018/05

Jun - Jul

2017/10 to 2018/05

Cluster LHD Observed
location cases
(LGA)
All All 10.0
All All 169.0
All All 30.0
Hunters Hill, South Eastern 53.0
Inner West, Sydney,
Ku-ring-gai, Northern
Lane Cove, Sydney,
Mosman, North Sydney
Sydney,
Northern
Beaches,
Randwick,
Ryde, Sydney,
Waverley,
Willoughby,
Woollahra

Expected
cases

83.93

55.88

56.11

10.53

RR

0.09

5.62

0.48

5.89

p-value

<0.01

<0.01

<0.01

<0.01
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Table 4. 2. Continued.

Method SaTScan
cluster
Space-time 2
Space-time 3

RR: Relative risk

Cluster
location
(LGA)
Bathurst
Regional, Blue
Mountains,
Cowra, Dubbo
Regional,
Gilgandra,
Lachlan, Mid-
Western
Regional,
Narromine,
Orange, Parkes,
Singleton
Armidale
Regional,
Dungog,

Timeframe

2017/10 to 2018/05

2017/12

Kempsey, Lake

Macquarie,
Maitland,

Newcastle, Port

Macquarie-
Hastings,
Tamworth
Regional,

Uralla

Observed
cases

LHD

Hunter New 25.0
England,
Nepean Blue
Mountains,
Western NSW

Hunter New 9.0
England, Mid
North Coast

Expected
cases

3.15

0.66

8.57

14.10

p-value

<0.01

<0.01
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4.5. Discussion

This study sought to utilise GIS tools including ArcGIS Pro 2.9.0 [22] and the SaTScan™ spatial
statistic [30] to explore the spatial and temporal epidemiology of G. intestinalis infection in humans
across metropolitan and rural/ regional NSW, in Australia. Geospatial analyses were also utilised to
distinguish potential clusters of G. intestinalis assemblages A and B. Differences between these
molecular assemblages have been described before regarding host demographics and clinical
symptoms (Zajaczkowski et al., see Chapter 3). However, it has yet to be seen if these genetic
assemblages are specific to certain regions in NSW, and ultimately are influenced by environmental
risk factors. The results from this study not only identified priority regions in NSW but identified

where preventative interventions can be targeted to have the greatest public health impact.

Spatial clustering analyses using the SaTScan™ spatial statistic [30] found no significant
aggregation of G. intestinalis assemblages A and B in NSW. While this might suggest that the
geospatial distribution of both assemblages in NSW is random, it must be considered that other risk
factors and population demographics can directly influence disease incidence. It is difficult to
compare these results with previous studies, as there continues to be little research done that has
aimed to search for spatial trends in G. intestinalis assemblage distribution. The potentially zoonotic
assemblage A has been identified in schoolchildren, their family members and household pets
(dogs) residing in urban Mexico [34]. Similarly, dogs living in urban environments of Australia
have been found with assemblage A infections [35]. The studies do suggest that contact with
domestic dogs living in urban households is a risk factor for giardiasis. Whether the transmission of
this assemblage is directly zoonotic, or an indirect form of transmission is yet to be identified. In
contrast, an Argentinian study observed that children from rural households were more likely to be
identified with G. intestinalis assemblage B [36]. The study also noted that the children who used
wells as their source of drinking water were also more likely to be infected with assemblage B than
those who drank from piped water. This predominance of one assemblage over another in a specific

region reflects the complex circulation of G. infestinalis in the environment.

In this study, the Moran’s 7 and Getis-Ord* statistical tools revealed that the spatial structure of G.
intestinalis case distribution was statistically significant and highly clustered in NSW, Australia.
Hotspots with 99% confidence levels were identified in all eight metropolitan LHDs and almost all
the metropolitan LGAs excluding the City of Lithgow and Hawkesbury (Figure 4. 2). Further

analyses using the SaTScan™ spatial statistic [30] confirmed purely spatial clusters of G.
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intestinalis cases (Table 4. 1, Figure 4. 3). The primary cluster was classified as having a low trend,
in which the rate of giardiasis was decreasing inside the cluster as opposed to the increasing rates
outside the cluster. This low-rate cluster was observed in the suburban regions of Western Sydney
and South-Western Sydney (RR = 0.41; p <0.01). While this low risk for G. intestinalis infection
may be the effect of a small population size, it is still important to note that a previous geospatial
study found that those residing in South-Western Sydney had significantly lower giardiasis
notification rates in comparison to other LHDs [21]. This might be due to potential issues of
affordability and a lack of access to local general practitioners (GPs) for disadvantaged patients
[37,38]. Indeed, the Australian Bureau of Statistics (ABS) Socio-economic Indexes for Areas
(SEIFA) has identified communities of socioeconomic disadvantage in parts of South-Western
Sydney [39]. It is also worth mentioning that South-Western Sydney and Western Sydney are two
of the most culturally and linguistically diverse LHDs in NSW. Almost half of the population in
Western Sydney (49.8%) and South-Western Sydney (45.2%) were born overseas, and over 33,000
migrants settled in these areas in 2017 alone [40,41]. Ultimately it can be difficult for migrants from
non-English speaking backgrounds to navigate Australia’s public health care system and receive the
proper treatment. Moreover, South-Western Sydney and Western Sydney are geographically located
inland (see Supplementary Figure S4. 1), and as such have fewer opportunities for outdoor
recreational water exposure in comparison to the coastal cities on the eastern border of NSW. It is
well documented that Giardia intestinalis cysts spread easily to humans through ingesting
contaminated water sources and recreational water-borne outbreaks are particularly common in

Australia [13,42,43].

The SaTScan™ spatial statistic further identified two significant clusters of positive correlation to
giardiasis in NSW; (1) one cluster was in metropolitan Northern Sydney and South-Eastern Sydney
and saw individuals with an almost two times greater risk of G. intestinalis infection (RR =1.83; p
<0.01) and (2) the other cluster was identified in regional Western NSW and Hunter New England
(RR =2.55; p <0.05) (Table 4. 1). The cluster identified in metropolitan Sydney was not surprising,
as annual surveillance data collated by the Communicable Diseases Branch of NSW reports both
Northern Sydney and South Eastern Sydney as the LHDs with the highest incidence rates (IR) of
giardiasis (~78.9 and ~64.8 IR per 100,000 respectively) [14,44]. A similar trend was seen in New
Zealand, which reported the highest rates of giardiasis from the populous urban area of Auckland
[45]. A more recent case-study based in the USA also indicated a significant relationship between
urbanity, population density and incidence of G. infestinalis infection [46]. These increased
notification rates in urban locations might be a result of better local GP access as opposed to those

living in rural areas. In addition to this, urban areas are more likely to be serviced by GPs with
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advanced training, greater diagnostic proficiency, and spatial access to surgeries [38]. Individuals
living in coastal urban towns and cities also have greater access to outdoor recreation, especially
with potentially contaminated water sources such as beaches, ocean pools, water parks/ playgrounds
and estuaries where fishing remains a popular activity. Northern Sydney and South-Eastern Sydney
are also popular locations for tourism (both domestic and international), so it is possible that the
high number of visitors to these LHDs could be responsible for importing giardiasis. In fact, a
previous epidemiological case-control study in Sydney found that giardiasis cases were 20 times

more likely to have been travelling overseas in comparison to the control cases [42].

Overall, there is strong evidence that human activity is the primary source of G. intestinalis
infection in urban areas. Swimming at beaches and public recreational water sources that are
contaminated with G. intestinalis cysts may in fact be contributing to high infection rates. This is
particularly true as G. intestinalis cysts are highly resilient in water and have shown resistance to
chlorine treatments [47]. Attending day-care centres and schools in densely populated communities
can also lead to a higher chance of exposure to an infected individual [48—50]. Likewise, parents or
caregivers of toddlers are often at risk of infection due to nappy handling [51,52]. Women of
reproductive age (i.e., 15-49 years) [53] in particular have been found to be at risk of giardiasis as
they tend to play a greater active role in nursing younger children [54-56] than males. The
Australian workforce of early childhood teachers and educators is also largely dominated by women
aged in their 30’s [57]. This is reflected in the purely spatial Poisson analyses which found
significant clustering of female giardiasis cases in the Central Coast and Northern Sydney regions,

and an overlapping cluster of cases aged 15-64 years (Figure 4. 4).

In comparison, a significant cluster of male cases was identified in regional western NSW near the
Bogan, Cobar, and Gilgandra government areas (Figure 4. 4). As the cases of G. intestinalis tended
to be spread out in these regional LGAs due to large surface areas and low population counts, this
cluster had a larger radius of 130.18 km. A radius restriction of 200 km was implemented to avoid
any overly large clusters. The cluster of male cases appeared a logical outcome of this study;
regional NSW is made up of livestock and crop farmland, and males are more likely to work in the
Australian agricultural workforce in comparison to females [58]. While this could suggest potential
occupational exposure of males to giardiasis in NSW, it is difficult to determine precisely whether
the exposure occurred through contact with livestock or wildlife, via the application of agricultural
manure or even by drinking contaminated water sourced from local rainwater tanks or bore wells.
Data on these variables were not available for analysis during the study. No further clusters were

identified in Western NSW for any age category. This might suggest that not only working-aged
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men are at a higher risk of giardiasis in regional NSW, but potentially male children and the elderly.
If true, there are other risk factors that must be considered including drinking contaminated bore
water or rainwater from tanks, or even having contact with domestic pets. In the United States,
county-level giardiasis incidence rates were directly related to the use of private wells [59] and in
rural Western Australia, the majority of G. intestinalis human cases shared the same assemblage
type as that identified previously in marsupials and wild foxes, indicating a potential for zoonotic
transmission [60]. Although in the present study significant clustering was identified in both urban
and rural LGAs, it is likely that risk factors associated with rural NSW are not the same as those in
city environments. Utilising GIS as a tool to distinguish and identify common risk factors specific
to rural and metropolitan localities can be beneficial to public health units in preventing and

minimising health risks to the relevant communities.

Purely temporal results saw G. intestinalis infection outbreaks between October 2017 to May 2018
(Table 4. 2). Climate data from the Bureau of Meteorology recorded that the year 2017 was one of
the warmest and driest years on record for NSW, although the months of October and December
saw above average rainfall across the state [61]. These heavy rains continued into 2018 until the end
of March. Overall, the year of 2018 was substantially warmer for both mean and daytime
temperatures [62]. Previous studies have reported positive correlations between heavy rainfall
conditions, high humidity, and an increase of G. intestinalis infections [55,63—65]. More
specifically, anthroponotic transmission of G. intestinalis cysts is possible when high levels of
rainfall overflow onto manure contaminated soil and causes runoff into surface water [66].
Likewise, heavy rainfall can often lead to sewage overflow and contamination of drinking and
recreational waters. It is suggested that the constant cycle of wet weather conditions and hot/ dry
temperatures in 2017 and 2018 will have facilitated an increased use of these contaminated
recreational water sources by people, leading to the higher rates of giardiasis. Interestingly, there
was a negative yearly seasonal occurrence of sporadic G. intestinalis infection in the year 2019 (RR
=0.09; p <0.01), although this may have been a result from the lower number of cases collected
from participating hospitals and laboratories (Table 4. 2). The negative association may also be due
to 2019 being the driest and warmest year on record for NSW, with state-wide rainfall being 55%
below the average [67]. The year of 2019 was also heavily affected by heatwaves and bushfires in

the northeast, which may have prevented individuals from travelling to high-risk areas.
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Space-time analyses identified clusters of giardiasis during the warmer seasons (spring and
summer) and continuing into the autumn months. These clusters were identified across NSW, in
South-Eastern Sydney, Northern Sydney, Central Sydney, Hunter New England and Western NSW
(Table 4. 2). A similar seasonal trend with G. intestinalis incidence peaking in the summer and
early autumn months has been observed in Canada [68], the USA [69,70] and in previous research
from NSW, Australia (Zajaczkowski ef al., see Chapter 3). Additionally, a meta-analysis of
surveillance studies has concluded that rising temperatures are significantly linked with increases in
bacterial and protozoal infections [71]. As both urban and rural LHDs showed this summer/autumn
seasonal trend, it can be assumed that risk factors for G. intestinalis transmission in NSW are
associated with seasonal patterns. An additional significant space-time cluster was identified in the
summer month of December (RR = 14.10; p <0.01) spanning across two regional LHDs; Hunter
New England and the Mid North Coast (Table 4. 2). These regions are popular destinations for
recreational water-based activities for interstate tourists. Increased human exposure to this pathogen
through contaminated recreational waters, and increased travelling/ tourism activities to rural

recreational areas during the summer holiday period is feasible.

With the use of geospatial analyses, epidemiologists and policy makers can effectively target high-
risk areas with prevention/ intervention programs and make the relevant changes to public health
policy. In the case of this study, local interventions are recommended for males in Western NSW;
particularly those who own agricultural farmland and live or work near water and/or wildlife.
Similarly, targeted prevention programs should be aimed towards working-age females residing in
the Central Coast and Northern Sydney. To raise awareness about the disease, local health
authorities must disseminate information packages about G. intestinalis infection to these high-risk
areas including day-care centres, schools, and public swimming pools. Additional factsheets aimed
towards households with children should promote correct hand-washing techniques for children.
While NSW has an incident response protocol regarding public swimming pools and spa pools [72],
it remains difficult to police every indoor and outdoor pool establishment. Ultimately, swimming
pool water-quality and control measures are left to the discretion of the pool operator. It is
recommended that additional infection control practices are provided to individuals wanting to
swim in public/ private pool venues, rivers, lakes, estuaries, beaches, and ocean pools. These
individuals should be encouraged to avoid swimming while ill, including the two weeks after illness
onset. Geospatial and GIS analysis techniques are powerful exploratory tools that can identify and
help visualise high (or low) occurrences of disease infection amongst selected study areas. When

used alongside geocoded health surveillance data these geospatial tools not only have the potential
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to identify the locations most at risk, but also inform public health services of the socio-

demographic characteristics and associated risk factors that influence the disease cluster.

However, this study does have some limitations. Other than the age, gender, post-code data and
assemblage type provided for this study, other additional information on each G. intestinalis case
was not available and therefore were not included in the analysis. Risk factors such as whether the
case travelled overseas prior to illness onset, had contact with non-potable water sources and/ or
potential contact with livestock, wildlife, or domestic animals would have provided greater insight
into whether these risks are associated with certain areas of NSW and whether they influence the
intensity of the clustering in SaTScan. Additionally, no outbreak data of G. infestinalis infection
was initially recorded, so it was not feasible to remove this data from the spatial analyses. Including
data of potential giardiasis outbreaks in the SaTScan statistical analyses could affect the overall
results. A group of giardiasis cases limited in the same area and timeframe could lead to false
clusters being reported. In this study, the quality of the data was limited as hospital and laboratory
notified cases of G. intestinalis will under-represent the actual numbers of cases in NSW. Though it
is worth mentioning that the two community pathology laboratories (Laverty and DHM) operate
across NSW, and as a result collected the majority of data in this study. It is assumed that greater
notifications of G. intestinalis infection would stem from advantaged LGAs with easier access to
local GPs. Additionally, individuals with higher socioeconomic status typically benefit from better
healthcare services than their counterparts [37,38]. While a circular scan statistic was utilised in the
purely spatial and space-time analyses in SaTScan, it does have limitations in detecting irregularly
shaped clusters. An alternative would be to use the elliptic scan statistic which has a long and
narrow shape to identify non-circular clusters [73]. Although due to the large surface area of NSW,

it was more logical to use a circular scan statistic to cover more of the study region.
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4.6. Conclusion

This study provides a first attempt to visually identify and describe the geospatial and temporal
characteristics of G. intestinalis cases as well as the molecular assemblages A and B. In utilising
SaTScan to analyse spatial, temporal and space-time data, and ArcGIS to help build maps and
manipulate data with several available GIS tools, we succeeded in identifying geographical clusters
and trends representing high rates of giardiasis in Northern Sydney, South-Eastern Sydney, Western
NSW, and Hunter New England. Spatiotemporal analyses also detected four significant clusters
during the warmer seasons and leading into early autumn months. These clusters were observed in
metropolitan Sydney and rural Western and Southern NSW, indicating that there are common
seasonal risk factors between these regions that are of public health importance. Males residing in
regional NSW and adult females in urban Sydney also appeared to be at higher risk of infection.
This implies that there are gender specific risk factors that need to be addressed for public health
intervention. Further investigations need to be performed regarding occupation risks for day-care
and childcare workers as well as agricultural farmers. Interestingly, G. intestinalis assemblage
distribution was found to be randomly dispersed in NSW. This study will assist policy makers in
implementing targeted interventions in specific geographic areas of NSW, thereby ensuring that

limited resources are used to the utmost efficiency.
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4.7. Supplementary figures
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Supplementary Figure S4. 1 NSW local health districts (LHDs). A map overview of NSW,

showing the 15 local health districts (LHDs). The Sydney metropolitan region is made up of eight

LHDs: Central Coast, Illawarra Shoalhaven, Nepean Blue Mountains, Northern Sydney, South-
Eastern Sydney, South-Western Sydney, Sydney, and Western Sydney. The rural and regional NSW
LHDs include the Far West, Hunter New England, Mid North Coast, Murrumbidgee, Northern

NSW, and Western NSW.
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5.1. Abstract

Giardia intestinalis is a protozoan parasite that causes mild to severe diarrhoeal illness in humans.
Although more frequently detected in developing countries, giardiasis has received considerable
attention across the developed world due to a steady rise in prevalence, even as improved health
care and disease surveillance systems have been implemented. The re-emergence of G. intestinalis
is concerning, as it suggests there are unique risk factors and disease reservoirs present that are
contributing to this rise in case numbers. It must also be considered that recent global changes
including rapid urbanisation and climate change are major determinants for the increased risk of
giardiasis in developed countries. However, reliably identifying, and characterising sporadic cases
and outbreaks of giardiasis remains difficult. This is partly because current molecular diagnostic
tools for typing G. intestinalis require at least two genetic markers for reliable PCR amplification.
This review investigates the current body of knowledge on genetic sub-structuring within this
‘species complex’. It further explores the important developments made in understanding of the
molecular epidemiology of giardiasis in recent years and addresses the long-standing question of

why giardiasis cases are continuously rising in number across human populations within Australia.
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5.2. Introduction

Diarrhoeal diseases are a leading cause of child mortality and morbidity worldwide. Annually, there
are an estimated 1.7 billion cases of diarrhoeal disease in children under five, of which 525,000 lead
to death [1]. While there are several viral and bacterial pathogens that cause severe diarrhoeal
illness in humans, a substantial number of cases are caused by protozoan parasites such as Giardia
intestinalis (syn. Giardia lamblia and Giardia duodenalis). Owing to an estimated 280 million
infections annually [2], this parasite is often associated with poverty, poor sanitation, and hygiene,
as well as a lack of access to safe drinking water [3—5]. As low-income countries are most at risk,

G. intestinalis has been included in the WHO Neglected Diseases Initiative to control the

transmission of this parasite and improve global awareness of this disease [6].

In Australia, the infection rate of human giardiasis cases is estimated between 2 — 8% [7-9], and
approximately 600,000 sporadic cases are reported each year [10]. While it is not regarded as a
nationally notifiable disease, most government states and territories of Australia require that cases
of G. intestinalis infection be recorded to each relevant public health unit (PHU). Australia’s most
populous state, New South Wales (NSW), reports an average of 3000 cases of giardiasis each year
[11], making it one of the most common notifiable gastrointestinal diseases of humans
(Supplementary Figure S5. 1). In comparison, surveillance reporting in Western Australia (WA)
often detects more than 700 cases of giardiasis annually [12], suggesting that communities within
Australia may also differ in agent, host and environmental determinants. In the context of developed
countries, giardiasis is increasingly considered a re-emerging disease. Prior to the COVID-19
pandemic, rates of this disease have been increasing across northern Europe, the British Isles [13] as
well as New Zealand [14] and Australia [11]. The success of this parasite can be attributed to its
low infectious dose and the hardiness of its inactive cyst form — this allows for the easy spread of
cysts between person to person, as well as contaminated food and water sources. Therefore, it is not
surprising that giardiasis is closely associated with clustered outbreaks of diarrhoea within child-
care settings and similar institutional facilities (Zajaczkowski et al., Chapter 3). Waterborne
outbreaks of G. intestinalis infection are also consistently reported in developed countries
suggesting that contaminated water sources, whether that be for drinking or recreational purposes,
are a major factor in the re-emergence of giardiasis [15]. Recent global changes must also be
considered as a reason for the increased risk of giardiasis. Rapid urbanisation, mass migrations and
climate change may affect the dynamics and spread of diseases within endemic and global

populations.
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Molecular advances in DNA amplification, sequence-based technologies and genotyping
capabilities have the potential to revolutionise our understanding of the molecular profile of G.
intestinalis. When used in combination with epidemiological data, it becomes possible to not only
describe the distribution of genetically characterised cases within human populations, but to explore
the potential of zoonotic transmission and point-source outbreaks endemic to Australia. Currently, it
is accepted that G. intestinalis is a species complex; an assemblage of species that are genetically
related albeit morphologically identical. There are a total of eight assemblages documented, and
these are referred to as assemblages A to H. Further genetic typing of these assemblages has
revealed the presence of sub-assemblages [16,17] and sub-types [18], all which exhibit adaptation
to different hosts. Here, we review the current diagnostic and molecular epidemiologic tools used
for characterising G. intestinalis assemblages, explore the molecular epidemiology of human
giardiasis with a strong focus on current and future global challenges, and address the barriers
preventing the proper diagnosis and treatment of giardiasis in individuals residing in disadvantaged

communities within Australia.

5.3. Diagnosis of Giardia intestinalis in clinical samples

In Australia, routine diagnosis of G. intestinalis infections relies on a multitude of assays, tools, and
techniques. Traditional light microscopy to detect G. intestinalis cysts or trophozoites in duodenal
or faecal samples remains the standard in most clinical laboratories [19,20]. The stool specimens
may be examined as fresh smears to detect living, motile trophozoites or as concentrated samples
using formalin-ethyl acetate, formalin, or polyvinyl alcohol [21]. Samples may also be stained with
iodine, trichrome, iron-haematoxylin or Giemsa to enhance detection of G. intestinalis cysts and
trophozoites, and to help differentiate from other microorganisms, protists, or debris [19,21]. As
microscopic diagnosis often lacks sensitivity and/ or specificity, commercial immunological
methods are additionally employed for the detection of G. intestinalis antigens in biological samples
[22]. The two most common techniques include the enzyme-linked immunosorbent assay (ELISA)
and direct fluorescent-antibody (DFA) tests [21,23,24]. These methods are found to be
advantageous over light microscopy, having the ability to perform mass screening of multiple stool

samples in a rapid, inexpensive, and labour-effective manner [23,25].

In recent years, several molecular methods based on polymerase chain reaction (PCR) for protozoan
parasites have been developed. In Australia, a number of diagnostic and hospital pathology
laboratories have transitioned to using real-time PCR (RT-PCR) and multiplex real-time PCR (MT-

PCR) in combination with commercially available assays to diagnose a variety of enteric pathogens
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[26,27]. These tools are the gold-standards for protozoan parasite detection and in comparison to
conventional methods, allow for rapid identification from clinical samples and can achieve
sensitivity and specificity levels of 100% [26,28—-30]. The high sensitivity of PCR allows detection
of G. intestinalis in mixed infections with other enteric protozoa, bacteria, and viruses. Since most
enteric pathogens are transmitted via the faecal-oral route, and thus often share exposure sources,
concomitant infections with G. intestinalis infection are well documented globally [31-33]. A
recent study in Australia found that nearly half (49.1%) of all G. intestinalis infections in humans
had co-infecting pathogens, of which majority were other protozoan parasites such as Blastocystis
hominis, Dientamoeba fragilis and Campylobacter spp. (Zajaczkowski et al., Chapter 3). This was
echoed in an earlier investigation into waterborne outbreaks in the United States, which documented
multiple co-infecting parasites including G. intestinalis, Cryptosporidium spp., and Entamoeba spp.

[34].

5.4. Giardia intestinalis: a “species complex”

Previous allozyme and DNA sequence analyses have classified G. intestinalis as a species complex
that comprises of eight, genetically unique lineages referred to as assemblage A to H. While
humans are primarily infected by assemblages A and B, the remaining assemblages C to H are
specific to canids (C, D), domestic and wild hoofed animals (E), cats (F), rodents (G) and marine
vertebrates (H) (Table 5. 1). Isolates from assemblages A and B have been successfully cultured in
vitro, and whole genome sequencing (WGS) analyses support the theory that both assemblages
should be regarded as two separate species of Giardia [35-37]. More recently, an alternative
naming system has also been proposed by Wielinga et al. (2023) who performed a taxonomic
review of the G. intestinalis species complex. Most notably, the study proposes renaming
assemblage Al as G. duodenalis; All as G. intestinalis and assemblage B as G. enterica [35,38—40]
(Table 5. 1).

Table 5. 1. Summary of Giardia species complex assemblages A to H, the major host species, and
proposed species naming system.

Assemblage Proposed Major Host(s) References
nomenclature?®
Al G. duodenalis Humans, cats, dogs, horses, marsupials, non- [41-52]

human primates, pigs, wild and domestic
ruminants, wolves
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All G. intestinalis Humans, cats, ruminants [17,53-55]

AIll G. cervus Ruminants [16,41,56]

B G. enterica Humans, non-human primates, rabbits, horses,  [41—
ruminants, pigs, captive rodents, dogs, wolves,  43,47,50,51,57—
marsupials 59]

C G. canis Coyotes, dogs, raccoon dogs [16,43,60-62]

D G. lupus Coyotes, dogs, raccoon dogs [16,60—64]

E G. bovis Humans, horses, pigs, wild and domestic [64-66,53,67,68]
ruminants

F G. cati Cats [16,44,62,64]

G G. simoni Domestic and wild rodents [16,43,64]

H G. pinnipedis Seals, gull [69]

*An alternative naming system proposed [35,38-40]
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5.4.1. Common molecular epidemiologic tools

While the use of PCR-based methods is gaining prevalence in clinical laboratories, most methods
involving genotyping G. intestinalis are limited to research laboratories. There are several
molecular markers that have been developed for use in genotyping G. intestinalis by PCR, although
the most common are the f-giardin (bg), glutamate dehydrogenase (gdh) and the triosephosphate
isomerase (zpi) genes [70-74]. Other studies also partially sequence the small subunit ribosomal
DNA (SSU-rDNA) which is a particularly sensitive marker due to its multicopy nature, and highly
specific due to strong sequence conservation [74]. However, genotyping G. intestinalis isolates at a
single locus has proven to be unreliable. Several studies have reported inconsistent results in data
generated from analysis using a single marker [17,75], and erratic assignment of assemblages by
different markers. This is in part due to the test sensitivity and specificity of targeted loci, as well as
potential mismatches in the binding regions of the primer sets used [67,76,77]. To combat this
issue, a multi-locus sequence typing (MLST) methodology is recommended to type G. intestinalis

isolates at three or more genetic markers (bg, gdh, tpi and SSU rRNA) [9].

Mixed-assemblage infections are also known. These infections are difficult to discriminate with a
single-locus PCR, often leading to the preferential amplification of an assemblage depending on the
marker being used, and the quantity of the assemblage present [74,78]. In a previous review,
Zajaczkowski et al. noted that the use of assemblage-specific #pi primers allowed for the detection
of more mixed-assemblage infections in comparison to the standard primers for PCR [45,74,79].
This was confirmed in a genotyping study based in Australia that found almost 30.0% of cases had
mixed-assemblage infections after typing at the #pi locus (Zajaczkowski et al., Chapter 3). In
contrast, the same study identified only 8.0% mixed-assemblage infections when typing the same

isolates using SSU-rDNA.

Analyses of nucleotide sequences have further identified genetic variation within G. intestinalis
assemblages and differentiated them into phylogenetic clusters known as ‘sub-assemblages’
(Supplementary Table S5. 1). These sub-assemblages have been reported in assemblage A (Al, AIl
and AIIl) and assemblage B (BIII and BIV) and appear to differ in host preference [16]. Sub-
assemblages All, BIII and BIV are regarded as anthroponotic whereas Al is predominant in
humans, livestock, and companion animals [18]. Sub-assemblage AIIl was identified from wild

ruminants such as deer [80].

To further confuse matters, sequence heterogeneity was also documented within each sub-

assemblage [18]. These genetic variants are referred to as ‘sub-types’ and often differ from one
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another by a single point mutation [16]. A number of these sub-types have been identified with the
use of multi-locus sequence typing (MLST) analyses targeting the beta-giardin (bg), glutamate
dehydrogenase (gdh) and triose-phosphate isomerase (¢pi) loci [18]. Within sub-assemblage Al
there are a total of four sub-types (A1, A5, A8 and A9), and within sub-assemblage All there are six
sub-types reported (A2 — A4, A7, A1l and A12). Sub-assemblage AIII currently has one sub-type
documented (A6) (Supplementary Table S5. 1). Assigning sub-types to assemblage B isolates
remains difficult due to its considerably higher sequence diversity and lower phylogenetic

resolution at commonly used loci [74].

5.4.2. Spectrum of clinical manifestations

It was suggested that a large proportion of G. intestinalis infections represent asymptomatic cases
[81,82]. However, those without symptoms are difficult to detect as they are also less likely to
attend their general practitioner for a diagnosis. A recent genotyping study by Zajaczkowski et al.
Chapter 3 noted that asymptomatic G. intestinalis cases were often identified inadvertently during
routine health screening for immunocompromised individuals and recently arrived refugees, as well
as for household members residing with an already confirmed G. intestinalis positive case.
Although often asymptomatic, G. intestinalis infections can lead to a variety of self-limiting
symptoms, the most common being acute or chronic diarrhoea, abdominal pain, bloating, nausea,
vomiting, weight loss and fatigue (Zajaczkowski ef al., Chapter 3). Despite not being a life-
threatening disease, some cases of G. intestinalis infection can become chronic and persistent. If not
treated adequately, reinfections can occur, and symptoms can have long-term complications
including reactive arthritis, irritable bowel syndrome (IBS), malnutrition and a slowing of physical
and mental development in children [83—87]. Immunocompromised or immunosuppressed
individuals such as those with human immunodeficiency virus and/ or acquired immunodeficiency
syndrome (HIV/AIDS) can not only develop life-threatening symptoms, but are also at a greater

risk of refractory giardiasis and chronic gastrointestinal complications [88—90].

In developed countries, first-line treatment options include the commonly prescribed drugs:
metronidazole, tinidazole and furazolidone (5-nitroimidazoles) as well as albendazole
(benzimidazole). These drugs are highly effective against G. intestinalis and readily available as
prescription-only medicine, however negative side effects and clinical relapses do occur and can
result in treatment failures. Children are more susceptible to treatment failure and subsequent
reinfections, as they are more likely to be less compliant in completing the whole course of drugs
[91]. Drug resistant isolates of G. intestinalis have also been reported and specifically for

metronidazole which is the most frequently used drug [92]. To combat this resistance, alternative
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anti-parasitic drugs are employed including albendazole, mebendazole, nitazoxanide, and
paromomycin. Fumagillin, an antimicrosporidiosis drug, has also shown promise as an anti-Giardia
drug although clinical trials have yet to be completed before it can be introduced as an alternative

option for treatment [93].

5.4.3. Molecular pathogenesis

The broad spectrum of symptoms exhibited by G. intestinalis infection may be attributed to a
variety of mechanisms including infection dose, host-parasite factors, host immune and nutritional
status, as well as host age and gender [94]. The pathogenesis of G. intestinalis infection is still not
well understood; however, several studies have employed in vitro and in vivo models to identify the
processes involved in triggering specific symptoms [95,96]. Currently it is recognised that G.
intestinalis trophozoites cause damage to the human duodenum surface, as well as atrophy of the
microvillus brush-border of the intestinal epithelial cells [94,97]. This can explain the typical
symptoms of malabsorption and maldigestion. It has also been suggested that clinical symptoms are
determined by the variable genetics of the parasite and the impact G. intestinalis assemblages have
on the host’s small intestine [74]. This is not surprising, as assemblages A and B have been found to

differ in growth rates, generation time and drug sensitivity [94].

Studies that have attempted to identify links between clinical symptoms of G. intestinalis infection
and assemblage type are incredibly limited. Pavanelli et al. compared the effects of infection caused
by sub-assemblage AIl and BIV on the response of the small intestine, and behavioural parameters
in mice [98]. Overall, sub-assemblage AIl was found to be more aggressive than BIV, not only
causing a greater number of tissue lesions but inducing changes in the intestinal microbiota. These
results were confirmed by a number of epidemiological studies that have identified significant
associations between assemblage A infection and serious clinical symptoms [8,73,99-102]. Despite
this, assemblage B has been implicated as the cause of persistent and chronic infection, as well as
more serious symptoms [71,103—107]. In addition, a recent study in Australia identified no
associations between either assemblage type and severity of symptoms (Zajaczkowski et al.,
Chapter 3). This result echoed previous studies reported globally [5,70,108,109]. Although there are
various reports from around the world that have attempted to correlate G. intestinalis assemblages

with symptomatology, the observations remain largely conflicting.
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5.5. Prevalence and disease burden of G. intestinalis in the global population

Globally, more than 200 million people are at risk of G. intestinalis infection [2] although
prevalence of human giardiasis is higher in developing countries and regions of low socio-economic
status [18]. Studies have reported infection rates between 0.9% to 22.9% in Asian and Pacific
countries [4,43,55,67,99,109-112], 0.4% to 48.7% in European nations [76,113-115], 5.5% to
24.2% in the Middle-east [5,77,116,117], 14.9% to 27.6% in South America [84,118-123] and
2.1% to 67.2% in African nations [71,124—133] (Figure 5. 1). Most of these studies focused on
children under the age of 15 years who attended municipal day-care centres or primary schools
[84,113,115,116,118,130]. Other studies enrolled symptomatic adults presenting at local hospitals
and health care centres, as well as livestock farmers in rural or remote regions [43,55,99,124,125].
The incidence of G. intestinalis infection is lower in developed countries, and this can be attributed
to better access to water, sanitation, and hygiene infrastructure. Instead, the risk factors of giardiasis
in developed countries appear to be related to socioeconomic, lifestyle and behavioural
determinants. Recent studies in industrialised nations show infection rates of 4.0% in Belgium
[134], 2.9% to 4.6% in Canada [135,136], 4.3% in Germany [49], 1.8% in Italy [137], 0.6% in
Japan [138], 4.3% in the Netherlands [139], 7.6% in New Zealand [140], 3.7% to 6.8% in Portugal
[70,141], 15.6% in Spain [142], 0.5% in South Korea [143], 1.3% to 2.3% in the United Kingdom
[144,145], 1.4% in the United States [146] and 1.9% to 7.6% in Australia [7-9] (Figure 5. 1).
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Figure 5. 1. Global mean infection rates (%) of human G. intestinalis infection. The mean infection
rates (%) of G. intestinalis infection across the developed and developing world. For developed
countries, the infection rates ranged from 0.5% to 15.6%. Spain reported the highest infection rate
in comparison to other developed countries. For developing countries, the infection rates ranged
from 0.4% to 67.2%. Algeria reported the highest infection rate in comparison to other developing
countries.
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The prevalence of G. intestinalis infections also varies within Australian states and territories,
suggesting that differences in population characteristics and socioeconomic determinants are
directly linked to the incidence rates of giardiasis. While rates of infection were similar in
Queensland (2.0%) [7] and Victoria (2.5%) [9], there was an almost three times higher rate seen in
children living in Western Australia (7.6%) [8]. This is not a surprising result as children are often
implicated as the main source of person-to-person transmission of giardiasis [147]. Indeed, children
residing in remote Indigenous communities in the Northern Territory were reported as having a
prevalence of G. intestinalis infection at almost 70.0% [148]. However, care should be taken when
comparing prevalence rates between regions, as the study population, sampling strategies and
diagnostic methods used can vary between studies. Molecular studies based in these states and
territories also found a predominance of assemblage B infections as opposed to assemblage A
[7,8,148] (Table 5. 2). A more recent genotyping study in Australia’s most populous state, NSW,
similarly identified a higher prevalence of assemblage B, however they also detected a high number
of mixed-assemblage A and B infections, and only a small number of assemblage A cases
(Zajaczkowski et al., Chapter 3). It was suggested that the increased rate of cyst shedding seen in
assemblage B infections in comparison to assemblage A would account for its increased incidence
[108]. Indeed, meta-analyses of several molecular typing studies have reported a higher prevalence

of assemblage B infections in developed and developing countries worldwide [72,107,135,149].

111



Table 5. 2. Occurrence of G. intestinalis assemblages and/or sub-assemblages in humans in Australia.

State/
Territory

New
South
Wales

New
South
Wales

New
South
Wales

Study
population
and sample

size

Giardia-
positive
samples were
collected from
various private
pathology
clinics and
public hospitals
(n= 169)
Clinical
samples
positive for
Giardia were
collected from
pathology
laboratories (n
=243)
Clinical
samples
positive for
Giardia were
collected from
pathology
laboratories (n
=173)

Age
group
(years)

All ages

All ages

Not
reported

Giardia-
positive
samples

(n)

169

243

73

Total
number of
samples
successfully
genotyped
()

147

136

165

72

Methodology

Assemblage-
specific PCR

PCR sequence
analysis

PCR-RFLP

T-RFLP

Genetic  G. intestinalis assemblage Sub- Reference
locus n (%) assemblage(s)
targeted (n)
A B A+B E
tpi 27 80 40 - - (Zajaczkowski
(18.4) (544) (27.2) et al., Chapter
3)
SSU- 25 100 11 - -
rDNA  (18.4) (73.5) (8.1)
gdh 21 142 2 - - [150]
(12.7) (86.1) (1.2)
gdh - - - - Al (1/72); [151]
Al (10/72);
BIII (3/72);
BIV (54/72);
BIII/BIV
(4/72)

REF analysis: restriction endonuclease fingerprinting analysis; T-RFLP: terminal-restriction fragment length polymorphism
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Table 5. 2. Continued.

State/
Territory

Study
population and
sample size

Age
group
(years)

Northern <15

Territory

Faecal samples
were collected as
part of a separate
ivermectin study
from children
living in a remote
community (n =
87)

Faecal samples
positive for

All
ages

Queensland

Giardia were
collected from
patients in rural
and urban
communities (7 =
88)

Human All

ages

Queensland
outpatients with
clinical histories
of
gastrointestinal
symptoms (n =
695)

Giardia-
positive
samples

(n)

54

88

13

Total Methodology
number of
samples
successfully
genotyped
(n)
45 PCR sequence
analysis
32 T-RFLP
88 Assemblage-
specific PCR
30 PCR sequence
analysis
13 PCR sequence
analysis; REF
analysis

Genetic
locus
targeted

SSU-
rDNA

gdh

tpi

gdh

tpi

G. intestinalis assemblage Sub-
n (%) assemblage(s)
A B A+B E ()
11 34 - - -
(24.4) (75.6)
- - - - All (8/32)
BIII (3/32)
BIV (12/32)
BIII/BIV
(9/32)
44 34 4 6 -
(50.0) (38.6) (4.6) (6.8)
- - - 6 All (11/30)
(20.0)  BIV (13/30)

4 9 _ - -
(30.8) (69.2)

REF analysis: restriction endonuclease fingerprinting analysis; T-RFLP: terminal-restriction fragment length polymorphism

Reference

[148]
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Table 5. 2. Continued.

State/ Study Age Giardia-
Territory population and  group positive
sample size (years) samples

()

Western Sporadic human 0-70 124

Australia  cases collected
from a diagnostic
pathology
laboratory (n =
124)

Western  Stool samples <5 27
Australia  were collected

from children

attending day-

care centres (n =

353)

REF analysis: restriction endonuclease fingerprinting analysis; T-RFLP: terminal-restriction fragment length polymorphism

Total number Methodology
of samples

successfully
genotyped (n)
124 PCR sequence
analysis
23 PCR sequence
analysis

Genetic
locus
targeted

SSU-
rDNA

SSU-
rDNA

G. intestinalis

assemblage
n (%)
A B A+B
31 93 -

(25.0) (75.0)

7 16
(30.4) (69.6)

Sub-
assemblage(s)

(n)

Reference

[152]

[8]
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5.6. Giardia intestinalis in Australia: current and future challenges

Giardia cysts are not only highly infectious but incredibly resilient to environmental exposures. As
a result, infection with G. intestinalis is commonly associated with ingesting contaminated food or
water sources, as well as through direct person-to-person transmission [11,153]. Sexual
transmission of G. intestinalis cysts has also been reported albeit rarely [154,155]. In the developed
world, G. intestinalis infection is increasingly regarded as a re-emerging disease due to its
contribution to outbreaks of diarrhoeal diseases within day-care and aged-care facilities [156]. It
also accounts for the majority of reported waterborne outbreaks in industrialised nations [157,158]
and has been implicated as one of the most important parasitic causes of ‘traveller’s diarrhoea’
[159]. As cases of endemic giardiasis continue to rise in Australia, it is essential that we consider
the extent to which current and future global changes will have on risk factors associated with G.
intestinalis infection. Although most developed countries have implemented surveillance systems
and preventative strategies to control the spread of giardiasis, it is speculated that issues of over-
population, rapid urbanisation, and climate change will introduce new sources of infection and

bolster current transmission pathways.

5.6.1. Population growth and overcrowding

Rapid rates of urbanisation in Australia and the increase in populations residing in crowded, urban
dwellings have created new opportunities for the re-emergence of enteric protozoan diseases.
Increasing fertility and longevity rates, as well as the rise of Australia’s net overseas migration are
the main factors driving this growth in population numbers. More than 70.0% of Australia’s current
population is concentrated in major cities, with the remainder residing in inner and outer regional
areas [160]. It is therefore no surprise that recent geospatial studies have found metropolitan areas

are a high risk for giardiasis (Zajaczkowski et al., Chapter 4).

It is largely suggested by Zajaczkowski et al. that the dissemination of G. intestinalis in Australian
urban areas is facilitated by children aged 5 years old or under attending child-care facilities and
preschools. In Australia, there is an increasing demand for child-care centres which is in part due to
rapid population growth, as well as changing workforce trends. Indeed, the Australian Bureau of
Statistics (ABS) reported that nearly half (46.4%) of children aged 0-5 years old attended formal
child-care in 2021 [161], an increase of 20.3% since 2011 [162]. As transmission of G. intestinalis
in humans is mainly driven by faecal-oral contamination, young children are at a greater risk of

acquiring the infection through poor hygiene and sanitation behaviours [163]. A molecular analysis
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conducted by Zajaczkowski et al. reported that children aged under 5 and adults at parental age
maintained a higher prevalence of G. intestinalis assemblage B in comparison to assemblage A,
suggesting that child-care workers, caregivers, and family members are at risk of exposure to
giardiasis via infected toddlers (Zajaczkowski ef al., Chapter 3). A previous longitudinal study of
child-care centres in Western Australia also found that children infected with isolates of G.
intestinalis were more likely to be infected with assemblage B [8]. Assemblage B infections have
previously demonstrated a higher level of cyst shedding, which would facilitate a faster spread
within institutional settings and areas where children frequent [108]. Likewise, there is a potential
for reinfection with the same assemblage type, particularly in facilities where there is a greater risk

of person-to-person transmission between children.

5.6.2. Giardiasis in a developed world — is it endemic or imported?

In the past two decades, rapid changes in international travel have led to a surge in low-cost carriers
and an increased demand for international travel. This increased global connectivity has provided
the means for infectious diseases to spread across international populations. Indeed, international
travel has long been implicated as a significant factor in the acquisition and dissemination of
giardiasis in developed countries, and has often been referred to as a ‘traveller’s disease’ [164].
Zajaczkowski et al. designed the first case-control study in Australia to examine travel history
amongst giardiasis cases [11]. It reported that international travel was a significant factor for
infection in both univariate and multivariable analyses [11]. Additionally, the study found that those
travelling to South and Southeast Asia, Central Asia, North Africa, and Oceania had a 20 times
greater risk of G. intestinalis infection [11]. This result echoed a previous global study that had
observed a total of 25,867 returned travellers and concluded that the rates of giardiasis were highest
in individuals travelling to African, Asian and South Pacific regions of the world [165].
Nevertheless, these studies had not investigated further the potential transmission pathways and
sources of infection within the countries visited, and so it is difficult to ascertain how travellers are
initially infected. There is a consensus that inadequate sanitation and hygiene, and poor drinking
water systems are major risk factors for G. intestinalis infections in developing regions [3,4]. It is
speculated that person-to-person contact and ingesting contaminated water are the greatest risks to

international travellers frequenting developing countries.

In recent years, it has become apparent that cases of domestic G. intestinalis are being
underreported in industrialised countries [74]. This is particularly true as patients with travel
histories are more likely to be routinely screened for G. infestinalis infection [166]. Indeed, an audit

of Scottish diagnostic microbiology laboratories determined that less than 20.0% of stools tested for
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G. intestinalis would originate from domestic cases [166]. Moreover, a study in Australia found that
more than 90.0% of G. intestinalis-positive individuals did not travel overseas prior to illness onset,
suggesting that most of the cases were acquired through endemic transmission and domestic risk
factors (Zajaczkowski et al., Chapter 3). Studies based in Germany [167] and Spain [168] also
determined that the vast majority of individuals with giardiasis were domestic citizens with no

record of travelling abroad.

Very few studies have molecularly characterised G. intestinalis in travel associated cases. A study
based in London observed that the majority of international travellers were infected with
assemblage B, although those who visited the Far East were predominantly infected with
assemblage A [100]. This is not a surprising result, as assemblage B tends to have the highest
prevalence rates worldwide. Interestingly, molecular typing analyses in Australia found that that
individuals with a history of overseas travel were six times more likely to be infected with mixed
assemblages A and B (Zajaczkowski et al., Chapter 3). As the occurrence of mixed-assemblage
infections appears to be higher in developing countries as opposed to developed regions of the
world [169], it may be that these mixed infections are being picked up by travellers and directly
imported into Australia. Although not statistically significant, Zajaczkowski et al. determined that
travel-associated infections did not harbour any single assemblage A (Zajaczkowski et al., Chapter
3). While this does suggest that assemblage A infections are autochthonous in Australia, more
studies are needed to confirm if G. intestinalis assemblages differ in their transmission pathways

and infectious sources.

5.6.3. Zoonotic risk

Giardia intestinalis is often observed in domesticated and wild animals as well as livestock,
although the majority of global prevalence studies focus on the cattle industry [18]. Overall, the
global, pooled prevalence of G. intestinalis in cattle is estimated to be 16.0% to 24.0% depending
on the methodology used for detection [170] Reported prevalence rates in livestock are often higher
in younger animals, whilst older livestock animals demonstrate lower and persistent prevalence
rates [74]. These notable differences in the reported infection rates are also related to variances in
study design, sampling size, techniques employed for diagnosis as well as farming practices

regarding the animals.

There are emerging concerns that livestock animals may operate as reservoirs for sporadic
giardiasis in humans [74]. Grazing animals have the potential to cause widespread environmental

contamination with infectious cysts, and particularly in countries with traditional animal husbandry
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systems where cattle are free-roaming and have direct access to rivers, streams, or other water
supplies. Younger animals, such as calves, have been reported to excrete significant quantities of
cysts into the environment, posing a greater risk of infection to humans, wildlife, and other grazing
livestock [171]. On a global scale, livestock animals are predominantly infected with G. intestinalis
assemblage E — a genotype commonly isolated from cloven-hoofed, grazing animals [170,172].
Multiple studies in Australia agree that assemblage E is the dominant assemblage in infected
livestock (Table 5. 3)., and this is echoed in reports from Europe and North America [16,18,79].
While this may indicate that the public health risk of zoonotic giardiasis is minimal, it cannot be

ignored that the human-specific assemblage A is increasingly isolated from livestock animals [172].

In New South Wales, Australia, 32.0% of cattle grazing close to drinking water catchments were
found to be infected with assemblage A using assemblage-specific primers that targeted the #pi
locus [173]. Subtyping a subset of these G. intestinalis assemblage A sequences identified the
zoonotic sub-assemblage Al and the human-specific sub-assemblage AII [173]. Likewise, a
longitudinal study by Yang et al. across four states in Australia, reported that sheep were
predominantly infected with assemblage E and sub-assemblage AIl — a sub-assemblage that has

been identified in humans in Australia previously [54,152].

In Australia, G. intestinalis has been reported in domestic dogs and cats with prevalence rates of
9.4% and 2.0%, respectively [174]. Molecular epidemiological studies of G. intestinalis in dogs
have determined that they are almost exclusively infected with the host specific assemblages C and
D, while cats are predominantly reported with assemblage F (Table 5. 1). Domestic animals in
Australia have also been reported with human-specific assemblages A and B albeit with low
prevalence rates (Table 5. 3). Interestingly, it has been proposed that the spread of potentially
zoonotic assemblages between humans and their pets is favoured in domestic households where
there is a greater chance of interaction between both hosts [74]. Read et al. utilised PCR-RFLP and
characterised nine samples originating from dogs living alongside humans in a Western Australian
community [75]. One sample was identified as the zoonotic sub-assemblage Al, whilst two dogs
were found to harbour the anthroponotic sub-assemblage BIV [75], overall suggesting that domestic
pets might pose a higher zoonotic risk depending on if there is an established transmission source
between owner and pet. However, the discovery that similar assemblages and sub-assemblages exist
in many host species, is not, by itself, proof that zoonotic transmission is occurring [74]. Rather, the
circulation of potentially zoonotic G. intestinalis cysts in the environment can lead to indirect
infections reported in animals. Humans may be considered as major reservoirs of giardiasis for

animals living on the outskirts, or in, urban areas. Indeed, this calls for further investigations into
118



the dynamics of reverse zoonotic transmission or ‘zooanthroponosis’ across hosts that share living

spaces and environments.
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Table 5. 3. Occurrence of G. intestinalis assemblages in wildlife, livestock, and domestic pets in Australia.

State/
Territory

New South
Wales

New South
Wales

New South
Wales

New South
Wales

New South
Wales
New South
Wales

2 Further sub-typing at the gdh locus identified sub-assemblage Al; n =2

Host origin

Rabbit

Kangaroo

Sheep

Cattle

Cattle

Wallaby

Total number

of samples

genotyped (n)

16

47

39

78

29

12

Methodology

PCR sequence
analysis

PCR sequence
analysis

PCR sequence
analysis

PCR sequence
analysis

PCR-RFLP

PCR sequence
analysis

Genetic

locus

targeted

ipi

ipi

ipi

ipi

gdh

SSU-
rDNA

A

33
(70.2)

8&
(20.5)

25P
(32.0)

7
(58.3)

16
(100.0)

13
(27.7)

2 (2.6)

9 (31.0)

5(41.7)

® Further sub-typing at the gdh locus identified sub-assemblage All; » = 5 and sub-assemblage BIV; n =2

G.

intestinalis assemblage (%)

C

D

E

1(2.1)

31
(79.5)

51
(65.4)

20
(69.0)

F

A+E  Other

[173]

[173]

[173]

[173]

[150]

[175]

Reference
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Table 5. 3. Continued.

State/
Territory

New South
Wales

Northern

Territory

Queensland

Queensland

South
Australia

South
Australia

Host origin

Sheep (weaning,
post-weaning,
and pre-
slaughter)
Water Buffalo
(wild)

Deer (wild)

Cattle

Alpaca

Sheep (weaning,
post-weaning,
and pre-
slaughter)

Total number
of samples
genotyped (n)

73

147

88

Methodology

PCR sequence
analysis

PCR sequence
analysis

PCR sequence
analysis

PCR sequence
analysis

PCR sequence
analysis

PCR sequence
analysis

Genetic
locus
targeted

1pi

gdh; bg

1pi

tpi

1pi

tpi

¢ Further sub-typing at both the gdh and bg loci identified sub-assemblage AIl; n =2

4 Further sub-typing at the gdh locus identified sub-assemblage Al; n =2, All; n =5, BIll; n =4 and BIV; n =3

¢ Further sub-typing at the #pi locus identified sub-assemblage Al; n =1
f Further sub-typing at both the gdh and bg loci identified sub-assemblage All; n = 4

32¢ (43.8)

2 (66.7)

349 (23.1)

1°(100.0)

26 (29.5)

35
(23.8)

C

D

. intestinalis assemblage (%)

41
(56.2)

6
(100.0)
1(33.3)

78
(53.1)

62
(70.5)

A+E  Other

[54]

[176]

[173]

[173]

[177]

Reference
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Table 5. 3. Continued.

State/

Territory

Victoria

Victoria

Victoria

Victoria

Western
Australia

Western
Australial

Host origin

Alpaca

Wombat

Deer (wild)

Sheep (weaning,
post-weaning,
and pre-
slaughter)

Marsupiall

Cattle (pre-
weaned)

Total number
of samples
genotyped (n)

10

98

75

Methodology

PCR sequence
analysis

PCR sequence
analysis

PCR sequence
analysis

PCR sequence
analysis

PCR sequence
analysis

PCR sequence
analysis

¢ Further sub-typing at the #pi locus identified sub-assemblage Al; n =1
" Further sub-typing at both the gdh and bg loci identified sub-assemblage All; n =4
" Marsupials included the quenda and common planigale (or “marsupial mouse™)

iSamples collected from five different farms in Western Australia and one farm from New South Wales
kSix samples were identified as the novel G. peramelis species (originally referred to as the ‘quenda’ genotype)
'One sample was a mixed A, B and E infection; the other sample was the novel Giardia peramelis species (originally referred to as the ‘quenda’ genotype)

Genetic
locus
targeted

1pi

1pi

1pi

tpi

bg,; SSU-
rDNA

SSU-
rDNA

18
(100.0)

1
(100.0)

10
(100.0)

32h
(32.7)

2(16.7)

1(1.3)

G. intestinalis assemblage (%)

C

(25.0)

D

66
(67.3)

1(8.3)

71
(94.7)

A+E Other
. 6k
(50.0)
1 2(2.7)
(1.3)

Reference

[177]

[178]

[179]

[180]
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Table 5. 3. Continued.

State/
Territory

Western
Australia
Western
Australia
Western
Australia

Western
Australia

Host origin

Dog
Cat

Cat

Sheep
(weaning, post-
weaning, and
pre-slaughter)

Total
number of
samples
genotyped
(n)

9

18

214

Methodology

PCR-RFLP
PCR-RFLP

PCR sequence
analysis

PCR sequence
analysis

Genetic
locus
targeted

gdh
gdh

SSU-
rDNA

tpi

A

1
(11.1)
6
(33.3)
1
(14.3)

16
(7.5)

2
(22.2)
2
(11.1)

G. intestinalis assemblage (%)

C D

4 2
(44.5) (22.2)

2 7

(11.1) (38.9)

E

1 (5.6)

190
(88.8)

(85.7)

Reference
A+E Other
- - [75]
- - [75]
- - [181]
8 - [54]
3.7

123



5.6.4. Waterborne giardiasis

The cysts of G. intestinalis are not only resistant to environmental conditions but may remain
viable for months in surface water. In addition, they are well known to have mild resistance
to chlorine which poses serious challenges for water treatment authorities. These factors have
established giardiasis as one of the most common causes of waterborne transmission across
the globe. In the United States, water exposure made up almost 30.0% of all recorded
outbreaks from 2012 to 2017 [181]. Tap water systems were the main source of infection in
these outbreaks, followed by contact with contaminated outdoor freshwater and recreational
pools. In Australia, G. intestinalis only gained notoriety as a waterborne pathogen during the
1998 Sydney water crisis [182]. During this incident, low levels of Cryptosporidium and
Giardia were detected in the Greater Metropolitan Sydney water supply, and notices to boil
tap-water were issued across the state of NSW. Although no symptomatic cases of
cryptosporidiosis and giardiasis were reported during this incident, the event amassed strong

media attention and generated major public alarm.

As water is a common vehicle for the transmission of G. intestinalis cysts, drinking water
infrastructure such as rainwater harvesting (RWH) systems, bore water and wells have been
implicated as major risk factors of giardiasis in Australia. RHW systems have become
popular in both rural and urban regions in Australia, and it has been reported that more than
one million households currently own a rainwater system [183]. Quantitative microbial risk
assessment analyses based on RWH systems in urban Queensland, Australia found that
compared to households with municipal water supply, the users of RWH had a higher risk of
giardiasis [184]. This is not surprising as most studies agree that roof-collected rainwater may
easily become contaminated following rainfall events, where bird and animal faecal matter
found on the roof can be washed into the rainwater tank via runoff [184,185]. However, this
was only true for those drinking rainwater contaminated with G. intestinalis cysts, and
ultimately those using the tank water as non-potable water had a lower risk of infection [184].
Likewise, an epidemiological study in NSW, Australia found no significant association
between giardiasis and those using water sourced from alternative supplies such as roof-
harvested rainwater systems, tank water or bore wells [11]. It has been reported that only a
small number of Australians (10.0%) will use RWH systems as a major source of their
drinking water [186]. It is also suggested that the addition of filtration systems to alternative

water supplies has contributed to the lower risks of infection seen in Australians.
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In Australia, recreational exposure to pools, rivers, lakes, streams, and other bodies of water
have long been implicated as major sources of waterborne outbreaks of gastrointestinal
disease [158]. A recent epidemiological study on sporadic G. infestinalis cases in Australia
had initially found that those who reported swimming were significantly associated with
giardiasis [11]. However, when including confounding variables (i.e., age and sex) in the
multivariable model, this significance was lost. This was not a surprising result as
recreational swimming in Australia is a popular and frequent pastime and particularly
amongst school-aged children who may take part in standard school swimming activities and
educational swimming classes. While public pool waters are commonly disinfected with low
doses of chlorine, G. intestinalis cysts have shown resistance to chemical disinfection [187].
Rather it is suggested that a combination of coagulation and high-rate sand filtering is best
used to remove G. intestinalis cysts from pool water, however the majority of backyard pools

do not employ these tactics putting pool-owners at risk [188].

5.6.5. Potential impact of climate change on G. intestinalis infection

Seasonal peaks of giardiasis in late summer and early autumn have been reported in Australia
(Zajaczkowski et al., Chapter 3), Canada [189], and the United States [190]. These seasonal
incidences of giardiasis are often reflective of underlying human behaviours and activities.
For example, Australian agricultural practices such as calving and lambing will
predominantly take place between spring through to autumn, suggesting that young livestock
are significant facilitators of G. intestinalis infection in cattle farmers. Such a proposal
requires that young livestock shed zoonotic Giardia assemblages. Warmer months also lead
to an increased use of recreational water sources, particularly in urban areas as suggested in a
recent spatio-temporal analysis in Australia (Zajaczkowski et al., Chapter 4). There is further
evidence indicating that G. intestinalis infection rates are related to climatic factors such as
heavy rainfall events and subsequent flooding disasters [191-193]. Although G. intestinalis
cysts are incredibly hardy and can survive for prolonged periods of time in the environment,
the viability and infectivity of these cysts is temperature dependent [18]. Hot and arid
conditions are known to reduce the survivability of G. intestinalis cysts, particularly in soil
[194]. However prolonged dry periods followed by intense rainfall is likely to flush cyst-
contaminated soil into local waterways, reservoirs, or water supplies (Zajaczkowski et al.,

Chapter 4).
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This seasonal variability of giardiasis suggests that global climate changes will have a direct
impact on the frequency and intensity of cases in Australia. Current climate change
observations have seen temperatures in Australia increase by each decade since 1950, and
trends of record-breaking heatwaves and severe droughts are growing [195]. As a result,
water shortage supplies for commercial, domestic, and agricultural purposes are common in
across Australia, and this is particularly true for regional and remote areas which have no
access to municipal piped-water supplies. To combat this growing water shortage crisis, the
use of RWH systems and bore water wells have become a significant source of drinking
water throughout regional Australia. However, this approach has led to an increased risk of
human exposure to waterborne bacterial and protozoal pathogens [185]. Rising global
temperatures have also been suggested to adversely impact climatic phenomena such as the
El Nirio-Southern Oscillation (ENSO), which often drives precipitation and drought events
over Australia [196,197]. The impact of global warming is expected to cause strong and
prolonged weather events such as severe droughts, bushfires and megafires during the drier
El Nifio years, and excessive rainfall, damaging storms, and catastrophic flooding events
during the wetter La Nifia years [198]. These shifting weather events are a threat to existing
water infrastructure and water sources in Australia by indirectly influencing disease
transmission pathways and facilitating exposure to these contaminated sources. Indeed, with
greater climate variability and ongoing weather events, the frequency of enteric diseases will

likely grow, and the burden of giardiasis may increase not only within Australia, but globally.

5.7. Addressing barriers to the diagnosis, treatment, and prevention of G. intestinalis

infection in humans

As with most enteric pathogens, there are several surveillance steps that must occur before a
laboratory-confirmed case can be ascertained. In Australia, a diagnosis requires an initial
clinical appraisal of the patient followed by stool sample collection, testing and subsequent
reporting and registration of the positive G. intestinalis case to a state-wide surveillance
system. However, this sequence of events is entirely dependent upon the experience of the
healthcare provider and upon whether a laboratory diagnostic of a stool specimen is requested
[199]. In the United States, paediatricians in general practices lacked an overall awareness of
giardiasis and were more likely to suspect viral causes in patients with diarrhoeal illness
[200]. In addition, a survey of 455 clinical laboratories in the United States found that nearly

90% of laboratories did not routinely test faecal samples for enteric parasites, suggesting that
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parasitic diseases such as giardiasis are likely to be underdiagnosed [201]. In Australia, the
true burden of giardiasis is also underrepresented across low-socioeconomic urban
communities and remote and/or rural regions where there is increased difficulty accessing
primary healthcare services. This was confirmed by a recent geospatial analysis, wherein
Zajaczkowski et al. observed significantly lower rates of G. intestinalis cases in the suburban
regions of Western Sydney and South-Western Sydney; these being two of the most
disadvantaged local government areas in NSW, Australia (Zajaczkowski et al., Chapter 4).

It remains important to address the cost barriers that may affect individuals living in areas of
socio-economic disadvantage. For example, it has been previously noted that general
practitioners (GPs) working with socioeconomically disadvantaged patients are more likely to
prescribe medications to cases of suspected disease rather than ordering diagnostic tests
[202]. Additionally, GPs with strong clinical experience are more likely to be recruited in
metropolitan health-care practices that are financially lucrative than a comparative practice in
a disadvantaged, remote community (Zajaczkowski et al., Chapter 4). To establish a well-
balanced system of affordable health care, there is an urgent need for affordable GPs and
diagnostic laboratories to be employed within disadvantaged areas. However, until this issue
can be addressed, the proportion of individuals unable to access health care will continue to

grow along with the ever-increasing Australian population.

With the combined use of molecular typing and geospatial analyses, epidemiologists and
policy makers can effectively target areas of high-risk and effectively control giardiasis by
applying infection control principles, preventative practices, and public health policy
management. Health education and training must be aimed towards members of the
community most at risk of direct or indirect contact with infected individuals. Child-care
workers, nursing home attendees, workers in diagnostic laboratories and GPs should be made
aware of how G. intestinalis infection spreads, what the common symptoms and risk factors
are, as well as the reporting requirements for their relevant public health unit. Likewise,
healthcare workers should be notified that they cannot attend work while suffering from
gastrointestinal symptoms, and must wait a minimum of 24 hours after symptoms have
resolved before attending their workplace [203]. There is a pressing need to introduce and
standardise newer molecular techniques such as MT-PCR in Australian diagnostic
laboratories. In fact, the application of epidemiological research combined with novel PCR-
based laboratory tools for G. intestinalis typing can facilitate a better understanding of the

transmission pathways of this parasite as well as help to detect endemic outbreaks,
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particularly those that have no obvious point source. Ultimately these tools not only simplify
the process of routine screening for G. intestinalis infection, but aid in developing future

prevention strategies and clinical guidelines for managing giardiasis in human populations.

The safety of drinking water in Australia is maintained as part of the Australian Drinking
Water Guidelines (ADWG), and via separate state and territory legislation that enforces water
suppliers to comply with the ADWG framework [204]. As G. intestinalis cysts can remain
viable in moist environments and most water sources, there are several recommended
standards for water supply systems. The combined use of chlorination, chloramination and

ultraviolet irradiation is highly effective in inactivating protozoa such as G. intestinalis [204].

Basic hygiene, such as hand washing, must be promoted for all high-risk individuals,
particularly as G. intestinalis is often transmitted between humans via the faecal-oral route.
Recent behavioural studies undertaken in England during the first 6 months of the COVID-19
outbreak suggest that improved hygiene practises and social distancing measures coincided
with a decreasing trend of gastrointestinal infections [205]. Similarly, the Australian
Government introduced several public health measures to contain and control transmission of
the COVID-19 virus [206]. These measures included a nationwide lockdown, social
distancing, improved hand hygiene, closures of most community premises, and travel
restrictions for international visitors. As a result, there was a drastic reduction in the number
of human cases of giardiasis between 2020 to 2021 (Supplementary Figure S5. 1.), suggesting
that the popular person-to-person transmission routes for G. intestinalis infection were

disrupted during this period.
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5.8. Concluding remarks

Over the last 20 years, public health reporting systems have seen a marked resurgence of G.
intestinalis infections across Australia. Indeed, a broad consensus is that current and future
global changes are promoting the emergence and spread of infectious diseases. In Australia,
endemic outbreaks of giardiasis have been increasingly identified in child-care centres, pre-
schools, and kindergartens, further aided by changing workforce trends and rapid population
growths in urban city centres. Increased global interconnectivity and mass migrations to
Australia have also been considered as major facilitators for imported G. intestinalis cases.
Further concerns have been raised regarding global climate changes and the ongoing
emission of greenhouse gases that will not only continue to intensify climatic hazards but

may exacerbate the frequency of protozoan diseases such as giardiasis.

Data from molecular epidemiological studies of human giardiasis have significantly
improved our understanding of the distribution, transmission, and host dynamics of G.
intestinalis assemblages. The introduction of WGS comparative analyses and the
development of alternative PCR-based tools has further provided evidence that G. intestinalis
exists as a ‘species complex.” Genetic diversity has been observed at the sub-assemblage and
sub-type levels, and these findings have allowed for greater differentiation between the host-
specific assemblages of G. intestinalis. Reliable classification of G. infestinalis from human
infections is essential for public health as it helps to answer fundamental questions
concerning parasite transmission and host dynamics. Effectively combining molecular
epidemiological techniques with geospatial analyses and geographic information system
(GIS) mapping also provides the means for developing proper disease control programs. Such
tools have been utilised to generate information on the geographical distribution of G.
intestinalis assemblages across populations, determine disease progression and changing
frequencies of infection rates over a set period, and identify high-risk areas of disease

clustering.
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5.9. Supplementary data

Supplementary Table S5. 1. Overview of G. intestinalis sub-assemblages, sub-types, MLG type and the major host species.

Assemblage® Sub-assemblage Sub-type MLG type®
Al - Al; A5; A8; A9 Al-1-AI-8
All - A2; A3; A4; A7; All-1 - All-11
All; Al12
AIll - A6 Alll-1
B BIII - -
BIV - -

2 An alternative naming system proposed [35,38—40]
P MLG; a multi-locus typing scheme defined by Caccio ef al. [17]
“Bolded text represents the predominant host(s) for each sub-assemblage

Major host(s)*
Humans, cats, dogs, marsupials,
non-human primates, pigs, rodents,
wild and domestic ruminants
Humans, cats, ruminants

Humans, cats, ruminants

Humans, non-human primates,
rabbits, rodents, ruminants

Humans, marsupials, non-human
primates, rabbits, wild and domestic
rodents

References
[17,45,53,58,175,207]

[17,53,54,208]

[16,41,50,56,68,80]

[16,17,53,64]

[16,62,175,207]
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Supplementary Figure S5. 1. Notification rates (per 100,000 population) of Giardiasis,
Cryptosporidiosis, Botulism, Salmonellosis, Listeriosis and Shigellosis reported in humans in
NSW, Australia from January 1999 — December 2022. Note that notification data for
Shigellosis cases was only available from January 2021 — December 2022. An increasing
trend of Giardia cases is noticeable, with an overall average of 2,000 cases annually. Cases in
NSW peaked in 2016 with 3,455 cases (46.2 cases/100,000). COVID-19 restrictions in 2020
to 2021 led to a decline in cases, which followed into 2022.

*An additional private laboratory was included in the notification data from January 2014 [209]
TCOVID-19 restrictions were put in place from March 2020 — October 2022
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