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Abstract: Most of the existing metasurfaces are effective for the incident wave with the specific
circularly polarized (CP) or linearly polarized (LP) state, that is the polarization-sensitive metasurface.
This drawback dramatically hinders the practical use of the metasurface. Herein, this paper presents a
strategy of polarization-insensitive transmissive microwave metasurfaces to manipulate the incident
wave with arbitrary CP and LP states. The metasurface consists of polarization-insensitive unit cells.
For the left circularly polarized (LCP) and right circularly polarized (RCP) incident waves, the same
abrupt phase covering 0◦ to 360◦ can be realized by combining the Pancharatnam–Berry (PB) and
resonant phases. As the arbitrary LP wave can decompose into the LCP and RCP waves, metasurfaces
consisting of designed unit cells are valid for any polarization states. The polarization-insensitive
transmissive microwave metalens and orbital angular momentum multiplexing metasurface working
at 23 GHz are devised for verification. Simulation and measurement results verify the availability of
the approach. The proposed method is suitable for designing microwave-transmissive metasurfaces
capable of polarization insensitivity.

Keywords: metasurface; polarization insensitive; Pancharatnam–Berry phase; resonant phase; microwave

1. Introduction

Metasurfaces have attracted significant attention due to their ability to fully control
the electromagnetic wave’s phase, magnitude, and polarization [1]. The metasurface
is composed of periodic or quasi-periodic unit cells. The required function is realized
based on the specific abrupt phase distribution introduced by unit cells. Generally, there
are three categories of abrupt phases: the propagation phase, the resonant phase, and
the geometric phase, which is also called the Pancharatnam–Berry (PB) phase [2]. The
propagation phase based on the phase accumulation is mainly used for the all-dielectric
unit cell [3]. The resonant phase is introduced by the unit cell’s resonance [4,5]. The PB
phase is only related to the rotation angle of the unit cell and is effective for the circularly
polarized (CP) wave [6–8].

Much research on the metasurface has been made and various electromagnetic de-
vices are realized based on the metasurface [9], mainly including the metalens [10–14],
orbital angular momentum (OAM) generator and multiplexer [15–19], hologram [20], ab-
sorber [21], and beam splitter [22]. However, most of the existing metasurfaces are effective
for a particular CP [23–27] or linearly polarized (LP) [28–32] incident wave, that is the
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polarization-sensitive metasurface. This drawback dramatically hinders the practical use
of the metasurface. Recently, the polarization-insensitive metasurface has been widely
investigated and the research is focused on the optical metasurface. Most of the optical
metasurface consists of all-dielectric nanopillars with cylindrical structures. For the inci-
dent light wave with any polarization state, the same propagation phase can be obtained.
Therefore, the polarization insensitivity of metasurfaces can be achieved [33–35]. A few
research studies have implemented the polarization-insensitive metasurface combining the
PB phase and the propagation phase [36,37]. However, as the propagation phase is used, the
profile of these all-dielectric metasurfaces is high, making it difficult to integrate. Further,
for the microwave band, obtaining the abrupt phase based on the resonant phase is more
effective. Therefore, the polarization-insensitive metasurface working in the microwave
band deserves further study.

This paper presents a strategy for polarization-insensitive transmissive microwave
metasurfaces. For verification, microwave metalens and OAM multiplexing metasurface
with polarization insensitivity are proposed. The abrupt phase profile of the metasurface is
formed with the PB and resonant phases simultaneously. The unit cell consists of metal–
insulator–metal layers. For the left circularly polarized (LCP) and right circularly polarized
(RCP) incident waves, the same PB and resonant phases can be acquired by limiting the
orientation and designing specific structures, respectively. As the arbitrary LP wave can be
decomposed into the LCP and RCP waves, metasurfaces composed of the proposed unit
cells are valid for arbitrary polarization states. The corresponding unit cell parameter with
the required resonant phase can be easily calculated by the fitting curve method without
redesigning the unit cell, which greatly simplifies the design process. Simulation and
measurement results verify the availability of the approach. The proposed method can
guide the design of transmissive microwave metasurfaces with polarization insensitivity.

2. Theoretical Basis

According to the PB phase principle [6–8], the transfer function T of the unit cell can
be expressed as Equation (1):

T = R(α)J(φ)R−1(α) =
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where R(α) is the coordinate rotation matrix and α is the local orientation of the axis. J(φ) is
the Jones matrix and φ is the phase delay. Since the arbitrary LP wave can be divided into
the LCP and RCP waves, its electric field vector Ein can be expressed as Equation (2):

Ein = 〈Ein|L〉+ 〈Ein|R〉 (2)

where |L〉 and |R〉 denote the LCP and RCP components of Ein, respectively. When the LP
wave incidents onto the unit cell, the electric field vector Et of the transmitted wave can be
expressed as Equation (3):

Et = TEin = cos
(

φ

2

)
Ein − i sin

(
φ

2

)[
〈Ein|R〉e−i2α|L〉 + 〈Ein|L〉ei2α|R〉

]
(3)

According to Equation (3), for the 〈Ein|R〉 or 〈Ein|L〉 incident wave, the cross-polarized
component e−i2α|L〉 or ei2α|R〉 of the transmitted wave with the additional phase −2α or 2α
will be generated, that is the PB phase. It can be seen that the PB phase is dependent on
the polarization state of the incident CP wave. To realize the polarization-insensitive unit
cell, α is limited to 0◦ and 90◦ and the values of e−i2α and ei2α are equal. Therefore, the
same 180◦ PB phase can be obtained under LCP and RCP waves. However, to design the
polarization-insensitive metasurface, the abrupt phase introduced by the unit cell should
cover 0◦ to 360◦. Therefore, the resonant phase is applied at the same time. The same
resonant phase covering the change from 0◦ to 180◦ can be obtained by varying parameters
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of the appropriately designed unit cell. To simplify the design, the fitting relation between
the resonant phase and the parameter is attained by the polynomial fitting curve method.

For verification, the metalens and OAM multiplexing metasurface are taken as exam-
ples. The abrupt phase profile of the metalens can be expressed as Equation (4):

Φlens(x, y) =
2π f

C

[(√
x2 + y2 + F2

)
− F

]
(4)

where f is the frequency of the incident wave, that is the working frequency of the metalens,
C is the propagation velocity, (x, y) denotes the arbitrary position on the metalens, and
F means the required focal length. The abrupt phase profile of the angle-multiplexed
metasurface for OAM multiplexing is expressed as Equation (5) [38]:

ΦOAM(x, y) = angle

(
M

∑
m=1

exp
(

j
(

lmarctan
y
x
+

2π f
C

sin(θm)(x cos(ϕm) + y sin(ϕm))

)))
(5)

where angle (·) is used to solve the phase angle of the expression in the bracket, l is the
topological charge of the generated OAM beam, (θ, ϕ) represents the azimuth and elevation
angles of the oblique incident wave, and m indicates the channel number. It is worth noting
that the OAM beam has a doughnut intensity profile and helical phase front, and the phase
front changes l·2π in the direction of rotation. The value of l theoretically is unlimited and
the OAM beams with different l are orthogonal (The topological charge of the plane wave is
0). The topological charge of the generated OAM beam can be calculated by the topological
charge purity [39]:

σ2 =
1
N

[(
φ1 − φN
ψ1 − ψN

− ls

)2
+

N

∑
n=2

(
φn − φn−1

ψn − ψn−1
− ls

)2
]

(6)

where σ2 is the variance with the standard topological charge ls. For the far-field phase
pattern of the OAM beam in the spherical coordinate system, the phase is sampled with the
elevation angle θs and the azimuth angle ϕs changing from 0 to 2π linearly. φn (n = 1, 2,. . .,
N) is the sampling phase of the OAM beam, while ψn changes from 0 to 2π linearly with
the step of 360◦/N. By dividing the calculated σ2 by the maximum value, the normalized
σ2 can be obtained. The higher the topological charge purity, the smaller the normalized
σ2, and the closer the topological charge of the generated OAM beam to ls.

The design process of the metalens and OAM metasurface: First, the metasurface
is set to be composed of K × K unit cells with a specific period P, and (x, y) is set to the
coordinates (xi, yi) (i = 1, 2, . . ., K) at the center position of unit cells. Second, for the unit cell
at (xi, yi), the required abrupt phase Φ(xi, yi) is calculated based on Equations (4) and (5).
Next, if Φ(xi, yi) is less than 180◦, the abrupt phase is directly introduced by the resonant
phase with α = 0◦. Otherwise, the abrupt phase is introduced by combining the 180◦ PB
phase with α = 90◦ and Φ(xi, yi) − 180◦ resonant phase. At last, the K × K unit cells with
the required abrupt phase are filled into the corresponding positions of the metasurface.

3. Numerical Demonstration
3.1. Unit Cell

To verify, a transmissive metallic unit cell working at 23 GHz is proposed. The
schematic diagram of the unit cell is shown in Figure 1. The unit cell consists of metal–
insulator–metal layers. The upper and lower resonators are the same split-ring resonator
(SRR) metal slots. The SRR is one of the most common and practical resonant structures.
The metal is lossy copper (Cu) and the electrical conductivity equals 5.8 × 107 S/m. The
insulator is F4B265 [40] and the relative dielectric constant and loss tangent are set to
2.65 and 0.001, respectively. In Figure 1 the green and yellow colors represent F4B265
and Cu respectively. The thicknesses of the metal and insulator are tm = 0.035 mm and
td = 2.93 mm, respectively. Note that the metal layers are rescaled (thicker) in the schematic
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for better visualization of the structure [Figure 1a,c]. The period P of the unit cell is 3 mm,
the width w of the slot is 0.62 mm, and r = 0.78 mm. According to the design principle,
the rotation angle α is set to 0◦ or 90◦. To make the resonant phase covering 0◦ to 180◦, the
open angle β of the SRR slot varies between 14◦ and 139◦. The unit cell is simulated by the
CST STUDIO SUITE 2022. The unit cell has periodic boundary conditions in the x- and
y-axis. Two Floquet ports are employed along the z-axis. The LCP and RCP excitations
incident vertically to the unit cell.
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Figure 1. The schematic diagram of the proposed transmissive unit cell. (a) Three-dimensional view.
(b) Top view. (c) Side view. P = 3 mm, w = 0.62 mm, r = 0.78 mm, α = 0◦ or 90◦, β varies between
14◦ and 139◦, tm = 0.035 mm, and td = 2.93 mm. The green and yellow colors represent F4B265 and
Cu respectively.

First, to prove that the same PB phase responses can be acquired under cross-circularly
polarized waves, α is set to 0◦ and 90◦, and β linearly varying from 14◦ to 139◦ with a step
of 5◦ is taken as an example. When CP wave incidents vertically to the unit cell, Figure 2
shows the simulated PB phase response with various β at 23 GHz. It can be seen that phase
responses of the cross-polarized transmitted waves are almost the same, and about 180◦

abrupt phases are obtained when α changes from 0◦ to 90◦. Therefore, the same 180◦ PB
phase is achieved by the proposed unit cell under cross-circularly polarized waves.
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Then, to prove that the same resonant phase responses can be realized under cross-
circularly polarized waves, β linearly varies from 14◦ to 139◦ with a step of 1◦. For the
LCP and RCP waves, α = 0◦ and 90◦are taken as examples, respectively. When CP waves
incident vertically to the unit cell, the simulated normalized magnitude and resonant phase
of the cross-polarized transmitted wave at 23 GHz are shown in Figure 3a,b. The differences
between the LCP and RCP waves are shown in Figure 3c. It can be seen that the simulation
results are almost the same. The normalized amplitude is not less than 0.4, and the phase
shift can vary between 0◦ and 180◦ with β changing from 14◦ to 139◦. Therefore, the same
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resonant phase is realized by the proposed unit cell and the phase shift can cover 0◦ to 180◦.
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Next, to make the design method more flexible, the fitting relation between the reso-
nant phase and β is attained by the polynomial fitting curve method in MATLAB R2017a.
According to Figure 3, resonant phase responses are almost the same for the different
polarization states of the incident wave and α. Therefore, in this paper, the fitting curve is
calculated based on the resonant phase curve in Figure 3a. Because a simple polynomial
is incapable of achieving good fitting, according to the slope change in the curve, the
0~180◦ resonant phase is divided into 0~55◦, 55~120◦, and 120~180◦ three sections. The
corresponding β ranges are 14~32◦, 32~117◦, and 117~139◦, respectively. Figure 4 shows the
three polynomial fitting curves and the corresponding coefficient. According to Figure 4a–c,
the simulation data and the polynomial curve fit well. The corresponding β can be easily
calculated by the three polynomial fitting curves.

Based on the above results, for cross-circularly polarized incident waves, the same PB
and resonant phase responses can be achieved. The abrupt phase introduced by the unit cell
can cover 360◦ by combining PB and resonant phases. According to the required resonant
phase, the corresponding unit cell parameter can be easily calculated by the polynomial
fitting curves shown in Figure 4. As the arbitrary LP wave can be divided into LCP and
RCP waves, the proposed unit cell is polarization insensitive.

3.2. Metalens

A polarization-insensitive transmissive microwave metalens operating at 23 GHz is
devised for verification. The metalens is composed of 34 × 34 unit cells and the focal length
F is 50 mm. According to the design principle, the required abrupt phase Φ(xi, yi), the
rotation angle α, and the parameter β at different positions can be obtained. Figure 5 shows
the structure, abrupt phase profile, α and β distributions, and working principle schematic
diagram of the designed metalens. Figure 5b shows that the incident plane wave with an
arbitrary polarization state would converge at the focal point.
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To show the polarization insensitivity achieved by the designed metalens, without
loss of generality, we chose incident waves having LCP, RCP, x-polarized, y-polarized,
and 45◦-polarized with f = 23 GHz. Figures 6 and 7 show the average absolute value of
the electric field amplitude in the near field for the CP and LP incident waves, respec-
tively. Figures 6a,c and 7a,c,e show the amplitude distribution of the XY plane with
x = −51 mm to 51 mm and z = 0 mm to 80 mm, and XY planes with x = −17 mm
to 17 mm, y = −17 mm to 17 mm, and z = 40 mm, 50 mm, and 60 mm, respectively.
Figures 6b,d and 7b,d,f show the amplitude distribution of the metalens centerline with
x = 0 mm, y = 0 mm, and z = 0 mm to 80 mm. According to simulation results, the LCP, RCP,
x-polarized, y-polarized, and 45◦-polarized normal incident waves are focused around
the focal point. The focal lengths are 46.2 mm, 46.2 mm, 47 mm, 47 mm, and 47 mm,
respectively. The maximum deviation is 7.6% to the designed focal length F = 50 mm. Thus,
the designed metalens working at 23 GHz is polarization insensitive.
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represent three XY planes.
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the electric field amplitude. The numbers 1, 2, and 3 represent three XY planes.
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3.3. Orbital Angular Momentum (OAM) Multiplexing Metasurface

The OAM multiplexing metasurface is composed of 34 × 34 unit cells. M = 2, (θ1, ϕ1)
= (30◦, 0◦), (θ2, ϕ2) = (30◦, 180◦), l1 = 0, and l2 = 2. According to the design principle, the re-
quired abrupt phase Φ(xi, yi), the rotation angle α and the parameter β at different positions
can be obtained. Figure 8 shows the structure, abrupt phase profile, α and β distributions,
and working principle schematic diagrams of the designed OAM multiplexing metasurface.
As shown in Figure 8b, when the m-channel plane wave with arbitrary polarization state
incidents obliquely to the polarization-insensitive multiplexing metasurface at the angle
(θm, ϕm), in the direction perpendicular to the metasurface, an OAM beam with lm would
be generated. As OAM beams with different l are orthogonal to each other, M-channel
orthogonal coaxial beams would be realized, that is M-channel multiplexing.
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Figure 8. The schematic diagram of the angle-multiplexed metasurface for OAM multiplexing.
(a) The structure, abrupt phase profile, and α and β distributions. (b) Working principle. The blue
and red arrows represent the incident waves of the channels 1 and 2 respectively.

To show the polarization insensitivity achieved by the designed OAM multiplexing
metasurface, without loss of generality, we chose incident waves having LCP, RCP, TM-
polarized, TE-polarized, and 45◦-polarized with f = 23 GHz. Figure 9 shows the far-field
magnitude and phase of the cross-polarized transmitted wave for the CP incident wave.
Figure 10 shows the far-field magnitude and phase of the cross-polarized or co-polarized
transmitted wave for the TM-polarized and TE-polarized incident wave, respectively,
and the cross-polarized and co-polarized transmitted wave for the 45◦-polarized incident
wave. The magnitude and phase have the same scaling of −34 dB to 6 dB and 0◦ to 360◦,
respectively. Figure 11 shows the OAM purity of the generated beam for the LCP and
TE-polarized waves, θs is 5◦, ϕs linearly varies from 0◦ to 360◦ with a step of 1◦, and ls
linearly varies from −2 to +6 with a step of +1.

For Channel 1, the three-dimensional and two-dimensional far-field magnitude and
phase distribution are shown in Figures 9a,c and 10a,c,e,g. For Channel 2, the simulation
results are shown in Figures 9b,d and 10b,d,f,h. According to the simulation results, for the
LCP, RCP, TM-polarized, TE-polarized, and 45◦-polarized oblique incident waves, in the
direction perpendicular to the metasurface, two-channel coaxial beams are generated. For
Channel 1, the magnitude is solid and the phase is unchanged. Therefore, the topological
charge of the generated beam is 0. For Channel 2, the magnitude is hollow and the phase
changes 4π counterclockwise. Therefore, the topological charge of the generated beam is 2.
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The LCP and TE-polarized waves are taken as examples, the topological charge can also be
judged according to Figure 11. For Channel 1, the normalized σ2 is approximately 1 with
different ls, while for Channel 2, the normalized σ2 is the smallest with ls = +2.

Based on the above results, it can be seen that the designed metalens and OAM
multiplexing metasurface working at 23 GHz are polarization insensitive.
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Figure 9. The magnitude and phase of the far field RCS. The cross-polarized transmitted wave for
the LCP incident wave: (a) Channel 1; (b) Channel 2. The cross-polarized transmitted wave for the
RCP incident wave: (c) Channel 1; (d) Channel 2.
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Figure 10. The magnitude and phase of the far field RCS. The cross-polarized transmitted wave for
the TM-polarized incident wave: (a) Channel 1; (b) Channel 2. The co-polarized transmitted wave for
the TE-polarized incident wave: (c) Channel 1; (d) Channel 2. The cross-polarized and co-polarized
transmitted waves for the 45◦-polarized incident wave: (e,g) Channel 1; (f,h) Channel 2.
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4. Experimental Demonstration

At last, the polarization-insensitive metalens prototype was fabricated by the printed
circuit board (PCB) technology for experimental verification. A 2.93 mm-thick F4B265
substrate was adopted over which 0.035 mm-thick copper unit cells were etched. The
near-field characteristics were performed in an anechoic chamber. Figure 12 shows the
measurement platform. The metalens prototype is set at the far-field position of the
feed horn. Therefore, for the metalens, the field generated by the horn is approximately
a 23 GHz plane wave. The distance between the probe and the prototype is d.
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Figure 12. The measurement platform setup.

For the y-polarized incident wave, the measured normalized near-field amplitude
distribution of the XY plane with x = −40 mm to 40 mm and d = 40 mm, 50 mm, and
60 mm are shown in Figure 13. For the 45◦-polarized incident wave, Figure 14a shows the
measured normalized near-field amplitude distribution of the XY plane with x = −40 mm
to 40 mm and d = 50 mm. Figure 14b shows the simulated and measured normalized
near-field amplitude distributions of the metalens centerline with d = 13 mm to 73 mm.
It is thus clear that the y-polarized and 45◦-polarized waves converge around the de-
signed focal length F = 50 mm. Therefore, the designed metalens working at 23 GHz is
polarization insensitive.
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5. Conclusions

In this paper, a design method for achieving a microwave transmission metasurface
with polarization insensitivity is proposed. First, a unit cell is designed, and for LCP
and RCP incident waves, the same abrupt phase combining PB and resonant phases
can be obtained. As the arbitrarily polarized wave can be decomposed into the LCP
and RCP waves, for the metasurface composed of the unit cell, the same phase profile
can be realized. Therefore, the metasurface is insensitive to any polarization states at
working frequency. For verification, the metalens and OAM multiplexing metasurface
are designed. According to the fitting curve, the parameter of the unit cell with the
required resonant phase can be easily obtained without redesigning the unit cell which
greatly simplifies the design process. Simulation and measurement results verify the
designed metasurface is effective for various polarization states at 23 GHz. The proposed
method can guide the realization of the polarization-insensitive microwave metasurface
with the required functions. The designed polarization-insensitive metalens and OAM
multiplexing metasurface have potential applications in high-gain antenna and high-speed
wireless communication.
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