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A B S T R A C T   

Although additive manufacturing has offered substantially new opportunities and flexibility for fabricating 3D 
complex lattice structures, effective design of such sophisticated structures with desired multifunctional char-
acteristics remains a demanding task. To tackle this challenge, we develop an inventive multiscale topology 
optimisation approach for additively manufactured lattices by leveraging a derivative-aware machine learning 
algorithm. Our objective is to optimise non-uniform unit cells for achieving an as uniform strain pattern as 
possible. The proposed approach exhibits great potential for biomedical applications, such as implantable devices 
mitigating strain and stress shielding. To validate the effectiveness of our framework, we present two illustrative 
examples through the dedicated digital image correlation (DIC) tests on the optimised samples fabricated using a 
powder bed fusion (PBF) technique. Furthermore, we demonstrate a practical application of our approach 
through developing bone tissue scaffolds composed of optimised non-uniform iso-truss lattices for two typical 
musculoskeletal reconstruction cases. These optimised lattice-based scaffolds present a more uniform strain field 
in complex anatomical and physiological condition, thereby creating a favourable biomechanical environment 
for maximising bone formation effectively. The proposed approach is anticipated to make a significant step 
forward in design for additively manufactured multiscale lattice structures with desirable mechanical charac-
teristics for a broad range of applications.   

1. Introduction 

Over the past two decades, topology optimisation has exhibited 
significant effectiveness and been found extensive applications in design 
of various lattice structures for a wide range of disciplines [1–5]. 
Nevertheless, the inherently high computational cost was ever a major 
bottleneck when handling complicated mono-scale models. To address 
this issue, a multiscale finite element (FE2)-based framework has been 
developed to divide mono-scale design into macroscopic and micro-
scopic optimisation problems [6]. Typically, a mono-scale lattice 
structure comprises periodically arranged unit cells, where homogeni-
sation analyses can be carried out at a microscopic unit-cell level. The 
homogenised material properties are then used for FE analyses at a 
macroscopic level. Recently, machine learning (ML)-based techniques 

have drawn growing attention and undergone rapid development in 
design of lattice structures, which have exhibited compelling benefits 
and great potential in various engineering fields [7–12]. 

One of the emerging applications of topology optimisation for lattice 
structures is design of implantable devices in biomedical engineering, 
which involves rationally tailoring structural configurations of unit cells 
for surgical treatments [13–15]. Tissue scaffolds, used for treating crit-
ical size bone defects, are a typical example of such implants which have 
sophisticated porous architecture to facilitate cell attachment and tissue 
regeneration. Since additive manufacturing techniques demonstrate 
enormous potential to overcome the limitations to traditional fabrica-
tion of sophisticated 3D geometries, significant research efforts have 
been devoted to seeking tissue scaffolds composed of various complex 
geometries with desired biomechanical properties and physiological 
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functionalities [16–21]. Design of tissue scaffolds using trial-and-error 
approaches could be rather demanding when a large number of unit 
cells with different geometries need to be investigated [22]. Therefore, a 
more systematic approach with computational modelling and design 
optimisation techniques becomes appealing for fabricating new and 
high-performance tissue scaffolds [23]. 

Several well-established topology optimisation methods, such as the 
Solid Isotropic Material with Penalisation (SIMP) model [24], level-set 
representation [25,26], and bidirectional evolutionary structural opti-
misation (BESO) [27], etc., have been employed to design tissue scaf-
folds with maximum stiffness for bearing external loads [28]. 
Nevertheless, maximising the overall stiffness of bone scaffolds may not 
be ideal for promoting bone regeneration and could lead to strain 
shielding issues [29]. For this reason, designs with targeted stiffness 
have been suggested to overcome the stress/strain shielding issues by 
matching scaffold stiffness to host bone properties [14,30–32]. Never-
theless, tissue scaffolds composed of uniform unit cells would suffer 
from non-uniform strain patterns in a specific anatomical site, leading to 
some areas not meeting the proper strain thresholds required to support 
bone growth [33]. A number of in-vivo studies have shown that such 
non-uniform strain patterns would result in non-uniform bone formation 
[34,35]. To address this issue, additive manufacturing coupled with 
design optimisation for tailoring each unit-cell signifies a viable 
approach to achieving an as-possible uniform bone growth. 

The integration of data-driven and ML-based techniques and additive 
manufacturing offers immense opportunities for design and fabrication 
of novel non-uniform lattices. Unfortunately, there is lack of study on 
such a design framework to develop novel lattice-based multiscale 

structures for potential applications in implantable devices. In order to 
fill this gap, we propose a derivative-aware ML optimisation approach 
here for design of lattice structures to achieve an as-possible uniform 
strain pattern toward a targeted strain. In this paper, two illustrative 
examples are first presented to demonstrate the effectiveness of the 
proposed design framework. The optimised lattice structures were 
fabricated by a powder bed fusion (PBF) technique, and the digital 
image correlation (DIC) tests were conducted to validate the as-possible 
strain patterns. Further, two musculoskeletal reconstruction cases were 
explored to optimise tissue scaffolds, thereby showing the ability of the 
proposed approach for real-life applications. The paper is anticipated to 
exhibit an effective framework to integrate ML in topology optimisation 
of functionally graded lattice structures for additive manufacturing. 

2. Materials and methods 

2.1. Problem definition 

The objective is to achieve an as-possible uniform strain pattern by 
optimising the geometry of each unit cell in a design domain, which can 
be mathematically expressed as, 
{

min (εV − εV)
2

subject to DL ≤ D ≤ DU , (1) 

where εV represents an equivalent strain, expressed as [36,37], 

Fig. 1. Geometric projection of iso-truss lattices. (a) Geometry of iso-truss lattice structure. (b) The shortest distance of point p to bar i with a diameter αi. Endpoints 
x(o)

i , x(f)
i and a, b, e, g are the vectors to determine the spatial location of p with respect to bar i. (c) A sphere to transform a discrete density to a continuous density 

ranging from 0 to 1. φi is a signed distance of p to bar i. The volume fraction of the sphere overlapped with bar i is defined as a continuous density of point p. (d) A FE 
model with an edge size of 2mm for homogenisation analyses, meshed with 80 × 80 × 80 brick elements. (e) A reduced FE model after geometric projection and its 
density distribution. Elements with density 0 are excluded. The dark blue denotes the minimum density of 0.35, and the red colour represents the maximum density 
of 1. (f) An iso-surface model with density ρ ≥ 0.5. (g) Design variables for the iso-truss lattice. D(x)

j ,D(y)
j ,D(z)

j and D(o)
j denote the diameters of bars towards x, y, z and 

diagonals directions, respectively. 
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εV =
2
3
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(εxx − εyy)
2
+ (εxx − εzz)

2
+(εyy − εzz)

2

2
+

3
(

γ2
xy + γ2

yz + γ2
xz

)

4

√
√
√
√

, (2)  

in which εxx,εyy and εzz are the engineering normal strains, and γxy,

γyz, γxz are the engineering shear strains in 3D cases. In biomedical field, 
the equivalent strain εV provides an overall measure of strain on 
musculoskeletal tissue governing its mechanobiological responses [34, 
35]. By minimising the square error between εV and a targeted strain εV , 
one can thus achieve an as-possible uniform equivalent strain pattern. D,

DL and DU denote the vectors of design variables and their lower and 
upper bounds to be depicted in the following section. 

2.2. Geometric projection technique for unit cells 

In this study, an iso-truss lattice (Fig. 1(a)) is chosen as a basic 
configuration of the unit cell for optimisation. The iso-truss lattice 
comprises 19 bars, with five bars towards each x, y, z directions and four 
bars towards diagonal directions, as illustrated in Fig. 1(a). The iso-truss 
lattice can be parameterised by a geometric projection technique [38, 
39], which is briefly depicted here. 

Considering an arbitrary bar i ∈ [1,19] in the iso-truss lattice, its 
geometry can be intrinsically defined by the two endpoints x(o)i , x(f)i and 
its diameter αi (Fig. 1(b)). A signed distance φi describes the location of 
an arbitrary point p (Fig. 1(b)) to bar i as, 

φi(ωi,αi) = ωi

(
x(o)

i , x(f )
i , p

)
−

αi

2
, (3)  

where ωi is the shortest distance from point p to bar i, calculated as, 

ωi

(
x(o)

i , x(f )
i , p

)
=

⎧
⎨

⎩

||b||, a•b ≤ 0
||g||, 0 < a • b≤ a • a
||e||, a • b > a • a

, (4)  

in which a,b, g, e are the vectors as illustrated in Fig. 1(b), defined as, 

a = x(f )
i − x(o)

i , (5)  

b = p − x(o)
i , (6)  

e = p − x(f )
i , (7)  

g =
(

I −
a ⊗ a
a • a

)
• b, (8)  

where I denotes the second-order identity, ⊗ is the outer product 
operator. 

According to the signed distance φi defined in Eq. (3), point p lies in 
bar i if φi ≤ 0, while point p is outside bar i if φi > 0. Therefore, a 
discrete density value χ = 1 or 0 can be employed to denote point p 
inside or outside bar i, respectively. As χ is discrete and non- 
differentiable, a spherical region (Fig. 1(c)) with radius r≪αi is 
employed to enable a continuous density ρi ranging from 0 to 1 [39], 
given as, 

ρi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1,φi < − r

(r − φi)
2
(2r + φi)

4r3 , − r ≤ φi ≤ r

0,φi > r

. (9)  

In order to consider the density ρp of point p corresponding to all the 19 
bars in the iso-truss lattice, a η-norm function is adopted to determine ρp, 
namely the maximum density of point p among {ρi| i = 1, 2, 3,…,19}, 
expressed as, 

ρp = (
∑19

i=1
ρi

η)
1
η. (10)  

When η→∞, Eq. (10) takes the maximum ρi for ρp. In this study, η is 
chosen as 30 to preserve the differentiability [38]. Using ρp, the material 
properties at point p can be interpolated as, 

Cp = ρpCbase, (11)  

where Cp is the elastic tensor at point p, Cbase denotes the elastic tensor 
of base materials with linear elastic isotropic properties. 

Without loss of generality, a cubic unit-cell with an edge size of 2 mm 
is considered here to model the parameterised iso-truss lattice. The unit- 
cell is meshed by 80 × 80 × 80 brick elements (Fig. 1(d)) with full 
integration. The centroids of brick elements are used to project the iso- 
truss lattice, in which the elements with densities ρp = 0 are excluded 
from the full FE model to lower the computational cost. Fig. 1(e) shows a 
reduced FE model and the density distribution, in which the diameters of 
the bars are 0.4 mm. Fig. 1(f) plots an iso-surface of ρp ≥ 0.5, demon-
strating the consistency of the geometric projection in the FE model. 

Intrinsically, the geometric projection method enables us to control 
the diameter of every single bar in an iso-truss lattice, as shown in 
Supplementary Movie 1. To simplify the optimisation problem, the di-
ameters of the bars towards x, y, z and diagonal directions are chosen as 

the design variables D =
{

D(x)
j ,D(y)

j ,D(z)
j ,D(o)

j

}
, respectively, as outlined 

in Fig. 1(g), where j ∈ [1, J] and J denotes the total number of iso-truss 
lattices in design domains. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.colsurfa.2023.132032. 

2.3. Sensitivity analysis 

A multiscale finite element (FE2) method is adopted here to reduce 
the computational cost of the design problem as defined in Eq. (1). At the 
macroscopic level, a design model is discretised by macro brick elements 
without the geometrical details of the iso-truss lattices. At the micro-
scopic level, the elastic tensors of each macro brick element are calcu-
lated using an asymptotic homogenisation technique [40]. First, we 
need to derive the sensitivity at the macroscopic level. Eq. (1) can be 
rewritten in its FE form as, 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min L =
∑J

j=1

∑ℵ

ξ=1

(
ϵ(ξ,j)V − ϵV

)2

subject to KU = F

DL ≤ Dj ≤ DU

(12)  

where each macro brick element j corresponds to an iso-truss lattice 
unit-cell j with the design variables (Dj = D(x)

j ,D(y)
j ,D(z)

j , D(o)
j ) as defined 

previously. ξ and ℵ denote the integration points and the total number of 
integration points in macro element j, respectively. K, U, and F are the 
global stiffness matrix, global displacement vector, and global force 
vector at the macroscopic level, respectively. 

The sensitivity of the design objective L with respect to Dj can be 
calculated as, 

dL

dDj
=

∑J

j=1

∑ℵ

ξ
2
(

ε(ξ,j)V − εV

) dε(ξ,j)V

dDj
, (13)  

where the sensitivity of ε(ξ,j)V with respect to Dj is deduced as, 

dε(ξ,j)V

dDj
=

dε(ξ,j)V

dε(ξ,j)
dε(ξ,j)
dDj

, (14)  

where ε(ξ,j) denotes the Cauchy strain tensor at integration point ξ in 
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macro element j. ε(ξ,j)V can be expressed in terms of ε(ξ,j) as, 

ε(ξ,j)V =

[
4
9
(
ε(ξ,j)

)TVε(ξ,j)
]1

2

, (15)  

V =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − 0.5 − 0.5 0 0 0
− 0.5 1 − 0.5 0 0 0
− 0.5 − 0.5 1 0 0 0

0 0 0 0.75 0 0
0 0 0 0 0.75 0
0 0 0 0 0 0.75

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (16)  

By substituting Eq. (15) into Eq. (14), one can have, 

dε(ξ,j)V

dDj
=

2
3

1
2

[(
ε(ξ,j)

)TVε(ξ,j)
]− 1

2 2
(
ε(ξ,j)

)TV dε(ξ,j)
dDj

, (17)  

which can be simplified as, 

dε(ξ,j)V

dDj
=

4
9

(
ε(ξ,j)

)TV
ε(ξ,j)V

dε(ξ,j)
dDj

. (18)  

By substituting (18) into Eq. (13), one can obtain, 

dL

dDj
=

∑J

j=1

∑ℵ

ξ

8
9

(
ε(ξ,j)V − εV

) (
ε(ξ,j)

)TV
ε(ξ,j)V

dε(ξ,j)
dDj

. (19)  

Note that in the finite element formulation, ε(ξ,j) can be calculated as, 

ε(ξ,j) = B(ξ,j)uj, (20)  

where B(ξ,j) denotes the strain-displacement matrix at integration 
point ξ, and uj stands for the displacement vector of macro element j. 
Therefore, Eq. (19) can be rewritten as, 

dL

dDj
=

∑J

j=1

∑ℵ

ξ

8
9

(
ε(ξ,j)V − εV

) (
ε(ξ,j)

)TV
ε(ξ,j)V

B(ξ,j)duj

dDj
. (21)  

Here, one can introduce a unit index vector Lj for macro element j that 
relates its elemental displacement vector uj to global displacement 
vector U, expressed as, 

uj = LjU. (22)  

Thereby, Eq. (21) is changed as, 

dL

dDj
=

∑J

j=1

∑ℵ

ξ

8
9

(
ε(ξ,j)V − εV

) (
ε(ξ,j)

)TV
ε(ξ,j)V

B(ξ,j)Lj
dU
dDj

. (23)  

By calculating the derivative of global equilibrium equation KU = F 
with respect to Dj, one can have, 

dK
dDj

U+K dU
dDj

= 0. (24)  

Thus, Eq. (23) can be further formulated as, 

dL

dDj
= −

⎡

⎣
∑J

j=1

∑ℵ

ξ=1

8
(

ε(ξ,j)V − εV

)

9ε(ξ,j)V

(
ε(ξ,j)

)TVB(ξ,j)

⎤

⎦LjK− 1 dK
dDj

U. (25)  

Note that Eq. (25) can be difficult to calculate numerically due to the 
inverse of global stiffness matrix K. Therefore, an adjoint vector λ is 
introduced here, which can be calculated as, 

Kλ =
∑J

j=1

∑ℵ

ξ=1

8
9

(
ε(ξ,j)V − εV

)

ε(ξ,j)V

(
B(ξ,j)Lj

)TVε(ξ,j). (26)  

Eq. (25) is then expressed as, 

dL

dDj
= − λT dK

dDj
U. (27)  

The sensitivity of K with respect to Dj is dependent on elemental stiff-
ness matrix kj with respect to Dj. Thereby, Eq. (27) can be further 
calculated as, 

dL

dDj
= − μT

j
dkj

dDj
uj = − μT

j

∑ℵ

ξ=1

(
B(ξ,j) )T dНj

dDj
B(ξ,j)uj. (28)  

where μj = Ljλ denotes the elemental adjoint vector, Нj is the material 
constitutive matrix of macro element j, which can be calculated using 
the asymptotic homogenisation technique at the microscopic level. 

Second, we derive the sensitivity at the microscopic level. The par-
ameterised iso-truss lattice can be projected into the micro-FE model 
using the geometric projection technique as detailed in Section 2.2. A 
micro element m in the micro-FE model is then associated with a pro-
jected density ρm as defined in Eq. (10). According to the asymptotic 
homogenisation technique, a homogenised tensor component Hpqsz can 
be calculated as [1,41], 

Hpqsz =
1
Y

∑M

m=1
(ν(pq)

m )
T
ρmkmν(sz)

m . (29)  

where Y is the volume of the whole micro-FE model, M is the total 
number of micro elements in the micro-FE model of the lattice unit-cell, 
ν(pq)

m is the elemental displacement vector of micro element m induced 
by unit test strain fields [1,41]. km is the micro elemental stiffness matrix 
with solid base materials. p, q, s and z are the indices varying from 1 to 3 
for 3D cases. If we adopt notation of ( )11→( )1, ( )22→( )2, 
( )33→( )3, ( )23→( )4, ( )13→( )5, ( )12→( )6, this will allow 
us to concisely express Hpqsz in a matrix form Нj as, 

Нj =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

H11 H12 H13 H14 H15 H16
H22 H23 H24 H25 H26

H33 H34 H35 H36
H44 H45 H46

symm H55 H56
H66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (30)  

The sensitivity of Нj with respect to Dj can be calculated as, 

dНj

dDj
=

∑M

m=1

dНj

dρm

dρm,

dDj
. (31)  

where the sensitivity of each component (Hpqsz) in Нj with respect to ρm 
can be calculated using Eq. (29) as, 

dHpqsz

dρm
=

1
Y
∑M

m=1
(ν(pq)

m )
T
kmν(sz)

m . (32)  

From Eq. (31), one can notice that the sensitivity calculation relies on 
the derivative of ρm with respect to Dj. By using Eq. (10), one can have, 

dρm

dDj
=

∑19

i=1

(
ρi

(m)

ρm

)η− 1dρi
(m)

dDj
. (33)  

where ρi
(m) denotes the projected density of micro element m to bar i as 

defined in Eq. (9). The details of the sensitivity analysis of ρi
(m) with 

respect to αi can be found in [38,39]. Here, we directly use the deduced 
results, expressed as, 
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dρi
(m)

dαi
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0,φi < − r

−
3
(
φ2

i − r2)

8r3 , − r ≤ φi ≤ r

0,φi > r

, (34)  

In this study, bar i belongs to collections as, 

i ∈ Ix ∪ Iy ∪ Iz ∪ Io, (35)  

where Ix, Iy, Iz and Io denote the bar collections towards x, y, z and di-
agonals directions, respectively, and Ix ∩ Iy ∩ Iz ∩ Io = ∅. Therefore, 
one can calculate Eq. (33) as, 

dρm

dDj
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρm

dD(x)
j

= −
∑19

i=1

(
ρi

(m)

ρm

)η− 1∑

i∈Ix

3
(
φ2

i − r2)

8r3

dρm

dD(y)
j

= −
∑19

i=1

(
ρi

(m)

ρm

)η− 1∑

i∈Iy

3
(
φ2

i − r2)

8r3

dρm

dD(z)
j

= −
∑19

i=1

(
ρi

(m)

ρm

)η− 1∑

i∈Iz

3
(
φ2

i − r2)

8r3

dρm

dD(o)
j

= −
∑19

i=1

(
ρi

(m)

ρm

)η− 1∑

i∈Io

3
(
φ2

i − r2)

8r3

, − r ≤ φi ≤ r, (36)  

Thus, by combining Eqs. (28), (31), (33), and (36), one can obtain the 
sensitivity of L with respect to Dj analytically. 

2.4. Derivative-aware neural network (DANN) 

As the design domain is infilled with non-uniform iso-truss lattices 
j ∈ [1, J], micro-FE analyses and sensitivity analyses are required to be 
performed repeatedly on every lattice j. Apparently, the computational 
burden of this FE2 method can be prohibitive, especially for the design 
optimisation intrinsically associated with multi-iterations. 

In order to tackle this issue, we adopt a derivative-aware neural 
network (DANN) to output the homogenised elastic tensor Hpqsz and its 
sensitivity with respect to design variables Dj. Fig. 2 illustrates the 
structure of the DANN, which comprises an input layer, a hidden layer 
(neurons) and an output layer. The input layer is composed of 4 inputs 
(D1,D2,D3 and D4) representing design variables corresponding to D(x),

D(y), D(z), D(o), respectively. As the parameterised iso-truss lattice has 
orthotropic properties, the DANN output 9 independent elastic tensor 
components as demonstrated in Fig. 2, where 
H̃1, H̃2, H̃3, H̃4, H̃5, H̃6, H̃7, H̃8, H̃9 are the elastic tensors obtained from 
the DANN corresponding to H11,H12,H13,H22,H23,H33,H44,H55 and 
H66 in Hj. The hidden layer with neurons is used to calculate the 
response from the input layer and approximate the response to the 
output layer. 

In Fig. 2, ψζk is the weight factor of input variable ζ to neuron k for 
calculating response ϱk, ϑk is a bias parameter associated with neuron k. 
For instance, ψ11 denotes the weight factor of input variable D1 to 
neuron 1. And ϑ1 is the bias parameter associated with neuron 1. Ψ 
represents an activation function with the input value of ϱk. 

In order to obtain accurate outputs, one needs to train the neural 
networks using a ground-truth dataset. In other words, the training 
process enables to find the optimal weight factors ψζk, Pkl and bias pa-

Fig. 2. The structure of the derivative-aware neural network (DANN).  

Fig. 3. A flowchart of the proposed multiscale optimisation based on a derivative-aware neural network (DANN).  
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rameters ϑk, Θl to satisfy the following loss function for a conventional 
neural network (NN) as, 

argmin
ψζk ,Pkl ,ϑk ,Θl

∑9

l=1

[
H̃l(Dζ ,ψζk ,Pkl,ϑk,Θl) − Hl

]2
, (37)  

where l ∈ [1,9] is the number of outputs,Pkl denotes the weight factor of 
neuron k to output H̃l. Θl denotes the bias parameter associated with 
output H̃l, Hl stands for the components of actual elastic tensors calcu-
lated by the FE-based homogenisation as defined by Eq. (29). 

Although Eq. (37) can ensure accurate outputs, derivative ∂H̃l
∂Dζ 

may 

not align with the actual derivative ∂Hl
∂Dζ

. Note that the derivative, namely 

the sensitivity defined in Eq. (31), is necessary for solving the optimi-
sation problem. For this purpose, we propose the DANN trained by both 
actual response Hl and the actual sensitivity ∂Hl

∂Dζ
. In other words, the 

DANN’s training process incorporates the actual sensitivity information. 
This means that the DANN is guided by the underlying sensitivity in-
formation obtained from the FE-based homogenisation analysis, making 
it truly derivative-aware. Thus, a modified loss function by adding the 
error of derivatives between the DANN and FE-derived is expressed as, 

argmin
ψζk ,Pkl ,ϑk ,Θl

∑9

l=1

[

(H̃l(Dζ,ψζk ,Pkl, ϑk,Θl) − Hl)
2
+

∑4

ζ=1
(
∂H̃l

∂Dζ
−

∂Hl

∂Dζ
)

2

]

. (38)  

Consequently, the derivative of the trained DANN satisfying Eq. (38) can 

Table 1 
Algorithm of the DANN-based multiscale optimisation framework for design of non-uniform lattice structures.  
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directly approximate the sensitivity, which can be employed to provide 
gradient information in iteration processes. 

In this study, three different activation functions Ψ1, Ψ2 and Ψ3 are 
investigated. The first activation function, Ψ1, is a so-called sigmoid or 
logistic activation function, expressed as, 

Ψ1(ϱk) =
1

1 + e− ϱk
, (39)  

And its derivate is calculated as, 

Ψ′
1(ϱk) = Ψ1(ϱk)[1 − Ψ1(ϱk) ]. (40)  

The second activation function, Ψ2, is based on a hyperbolic tangent 
activation function, expressed as, 

Ψ2(ϱk) =
2

1 + e− 2ϱk
− 1, (41)  

and its derivative is calculated as, 

Ψ′
2(ϱk) = 1 − [Ψ2(ϱk)]

2
, (42)  

The third, Ψ3, is chosen to be a Gaussian function, expressed as, 

Ψ3(ϱk) = e− ϱk
2
. (43)  

And its derivative is calculated as, 

Ψ′
3(ϱk) = − 2ϱkΨ3(ϱk), (44) 

As the number of neurons can affect the performance of the trained 
DANN, five different hidden layers with the number of neurons 30, 50, 
100, 150, and 200 were also tested in our study. The training of the 
DANN was based on a backpropagation scheme [42], in which the 

sensitivity ∂H̃l
∂Dζ 

with respect to ψζk,Pkl,ϑk,Θl were used as the gradient 
information for a limited-memory Broyden–Fletcher–Goldfarb–Shanno 
(L-BFGS) optimisation algorithm [43] to solve Eq. (38). 

In this study, we used 2000 sampling points generated by the Latin 
hypercube sampling method [44] ranging from 0.3 to 0.7 and computed 
from the micro-FE analyses as the ground-truth data for the training 
process. 400 additional sampling points ranging from 0.3 to 0.7 
randomly generated and calculated from micro-FE analyses were 
employed as a test dataset. The training epoch defining the times that 

L-BFGS works through the entire training data was set as 10,000. To 
prevent the L-BFGS from being stuck in a local minimum, a different 
weight initialisation technique [45] was employed, in which the weight 
factors ψζk, Pkl and bias parameters ϑk, Θl were randomly generated 
ranging from − 0.01–0.2. 

After the training process, the DANN is integrated with macro-FE 
analyses for optimisation. Fig. 3 illustrates the flowchart of the pro-
posed optimisation procedure on the basis of the DANN. A globally 
convergent version of the method of moving asymptotes (GCMMA) [46] 
was employed to update design variables Dj. A detailed pseudo-code is 
also provided in Table 1 to clarify the proposed framework. 

2.5. 3D fabrication by powder bed fusion (PBF) 

Ti6Al4V was used as the feedstock powder which has a Young’s 
modulus of 105 GPa and a Poisson’s ratio of 0.3. The optimised designs 
were fabricated by powder bed fusion (PBF) using a commercial EOS 
M300 system (EOS GmbH, Germany). Process parameters for the 
fabrication were set as follows: layer thickness 30 μm, scanning speed 
1200 mm/s, laser power 280 W, and hatch distance 0.14 μm. After 
fabrication, all the samples were carefully cleaned with compressed air 
to remove residual powders. After removing the samples from the 
building plate, a proper heat treatment process was followed with a 
heating rate of 10 ℃/min in a nitrogen environment. The temperature 
was maintained at 800 ℃ for 2 h. The samples were removed from the 
furnace and cooled naturally at a rate of 6 ℃/min to the environment 
temperature. 

2.6. Mechanical tests with digital image correlation (DIC) 

The compressive and cantilever tests were conducted in the universal 
testing machine Zwick Z010 (Zwick GmbH of Germany), with a load cell 
capacity of 10 kN in the ambient temperature and humidity (25 ◦C, 33% 
RH). To observe the strain distribution in the sample, digital image 
correlation (DIC) technique was employed here. Before the speckle 
patterns were sprayed on the front surface of the specimen, soft paint 
was placed to fill the pores of cells on the front surface. The setup of the 
experiments is shown in Fig. 4. 

For the quasi-static compressive tests, the bottom and top of the plate 
(fully dense structure) were respectively clamped and loaded to 3000 N 
with a speed of 0.1 mm/min (Fig. 4(b)). For the cantilever bending tests, 

Fig. 4. The experimental setups for the cantilever and compressive tests respectively. (a) The set-up of the experimental tests. (b) The quasi-static compressive tests. 
(c) The cantilever bending tests. 
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the right-hand side of the specimen (fully dense structure) was fully 
fixed, and the top surface of the left-hand side was loaded to 750 N by a 
5 mm diameter round head with a speed of 0.1 mm/min (Fig. 4(c)). 

A 6000 × 4000 pixels CCD camera with a lens of 150 mm focal 
length was used to acquire one image per second. The postprocessing of 
the digital images was performed in the DIC professional software VIC- 

2D (CSI, USA) [47]. To ensure computational accuracy, the facet size 
and facet step were respectively set to be 61 × 61 pixels and 15 × 15 
pixels to calculate the displacement and strain fields of the front face of 
these samples. 

Fig. 5. Learning curves of different derivative-aware neural network (DANN) models calculated on the training dataset and testing dataset. (a) – (e) DANNs with the 
30, 50, 100, 150, 200 neurons. 
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3. Results 

3.1. DANN performances in general 

The trained DANNs with different numbers of neurons and activation 
functions were compared herein to investigate their performances for 
predicting the homogenised elastic tensors and the corresponding 
gradient information. To visualise the training process, Fig. 5 plots the 
learning curves of the 15 different DANNs calculated on the training 
dataset and testing dataset, which demonstrates that the training pro-
cesses converged very well and all DANNs were not overfitted [12]. In 
addition, Fig. 6(a) evaluates the mean square errors (MSEs) of the 15 
different DANNs based on the training dataset, which exhibits fairly 
good performances of the trained DANNs with a single hidden layer. For 
sake of trade-off on training time, multi-hidden layers were not tested 
here as it would dramatically increase the computational cost for 
calculation of the first derivate and second derivate in training processes 
[12]. 

In Fig. 6(a), the 15 DANNs were divided into five main groups ac-
cording to the number of neurons (i.e. 30, 50, 100, 150, and 200). The 

DANNs using the different activation functions Ψ1, Ψ2 and Ψ3, as defined 
in Section 2.6, were compared in each group. It was found that all five 
groups achieved fairly low MSEs, all less than 0.002. The DANN using 
the Gaussian activation function in each group has the minimum MSE, 
whereas that using the Sigmoid activation function has a higher MSE 
than those using the hyperbolic tangent activation function. 

The MSEs slightly decreased when the number of neurons increased 
from 30 to 100 and then marginally went up with the further increase of 
neurons from 100 to 200. The DANN using 100 neurons and the 
Gaussian activation function achieved the minimum MSE (0.00154) of 
all the 15 DANNs here. A similar trend can be also found in terms of the 
MSEs calculated on the testing dataset (Fig. 6(b)), where the DANN 
using 100 neurons and the Gaussian activation function dominates the 
others with a minimum MSE (0.00165). Fig. 6(c) compares the MSEs on 
the training and testing datasets for the DANNs with the Gaussian 
activation function, in which all the MSEs calculated on the testing 
dataset are slightly higher than those on the training dataset. Never-
theless, the DANNs demonstrate excellent predictive capability with the 
fairly low MSEs calculated on the testing dataset. After comparing 
DANNs with the different neurons and activation functions, the DANN 

Fig. 6. Comparison of mean square errors (MSEs) for the different derivative-aware neural networks (DANNs). (a) MSEs on training dataset; (b) MSEs on the testing 
dataset. DANNs with 30, 50, 100, 150, and 200 neurons in the hidden layer are compared; DANNs with the three different activation functions, including Gaussian, 
Sigmoid, and tansig, are compared. (c) MSEs on the training and testing datasets are compared for the DANN using 30, 50, 100, 150, and 200 neurons in the hidden 
layer and the Gaussian activation function. 

Fig. 7. Histogram of the errors based on the derivative-aware neural network (DANN) and the conventional neural network (NN). The conventional NN and the 
DANN have the same structure but are trained with the loss function without and with the sensitivity information, respectively. (a) Comparison of the histograms of 
the output errors based on the DANN and NN, respectively; (b) Comparison of the histograms of the gradient errors based on the DANN and the NN. Both errors are 
calculated from the testing dataset. The DANN and NN are composed of one hidden layer through the 100 neurons with the Gaussian activation function. 
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with 100 neurons and the Gaussian activation was thus chosen as the 
model for the design optimisation in this study. 

Fig. 7(a) compares the histogram of errors for the output of homo-
genised elastic tensor calculated on the testing dataset to explore the 
advantages of the DANN over the conventional NN. The conventional 
NN and DANN both employed the same number of neurons (100 

neurons) in the hidden layer with four design variables in the input layer 
to predict the homogenised elastic tensor and sensitivity. However, the 
training of the conventional NN was distinctly based on the loss function 
as defined in Eq. (37). Note that while the majority of the errors of the 
DANN and the conventional NN are less than 0.01, with mean values 
near 0, the DANN evidently exhibits a more minor standard deviation 

Fig. 8. Comparison of the optimised and the initial designs of the squared plate with a centre hole. (a) The macro FE model and boundary conditions; (b) The 
iteration history of the design objective; (c) Histograms of equivalent strains obtained from the initial and optimal designs respectively. (d) The contour of the 
equivalent strain in the design domain of the initial design. (e) The contour of the equivalent strain in the design domain of the optimal design. (f) The contour of 
design variables D(x),D(y),D(z),D(o); (g) The full lattice model of the initial design and its micro-unit-cell. (h) The full lattice models of the optimal design and its micro 
unit-cells at different locations. 
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than the conventional NN. 
Fig. 7(b) plots the histogram of gradient errors from the DANN and 

the conventional NN. It is found that the standard deviation of the DANN 
is much less than that of the conventional NN, demonstrating the 
advantage of the DANN for predicting the gradient information. 

3.2. Centre hole plate 

The first example is a squared plate with a hole in its central region, 
as shown in Fig. 8(a). The dimension of the plate is 40 × 40 mm with a 
thickness of 6 mm. The macro model of the plate was meshed by brick 
elements with an edge size of 2 mm. The bottom surface of the macro 
model was fully fixed and an evenly distributed in-plane load was 
applied on the top surface of the macro model with a total magnitude of 
500 N. 

In the design domain (Fig. 8(a)), each macro element j represents an 
iso-truss lattice unit-cell associated with the four design variables D(x)

j ,

D(y)
j ,D(z)

j ,D(o)
j at the microscopic level. The targeted strain εV was set to 

be 0.0014, which was obtained from the initial design filled by uniform 
iso-truss lattices with a struct size of 0.35 mm. The lower and upper 
bounds (DL and DU) of the design variable vector were respectively set 
to be 0.3 mm and 0.7 mm for the consideration of PBF printing. 

Fig. 8(b) illustrates the iteration history of the objective function as 
defined in Eq. (12) during the optimisation process. The objective 
function started from 1.64 × 10− 3 and was significantly decreased to 
1.04× 10− 4. Fig. 8(c) compares the density distribution of the equiva-
lent strains calculated at the Gaussian integration points from the initial 
and optimised designs. The histogram of equivalent strain from the 
optimal design has a mean value close to the targeted strain εV (1.4×

10− 3) and substantially lower standard deviation than that of the initial 
design. Fig. 8(d) and (e) display the equivalent strain contours in the 
initial and optimised designs, respectively. Evidently, the optimal design 
achieved a more uniform equivalent strain distribution, demonstrating 
the effectiveness of the proposed framework. 

Fig. 8(f) illustrates the distribution of the optimised D(x), D(y), D(z),

and D(o) in the design domain. It can be observed that the bars toward x 
and z directions play more significant role than those in y and diagonal 
directions in achieving the as-possible uniform strain pattern. Moreover, 
the lattices around the hole were much reinforced in order to reduce the 
high strain concentration presented in the initial design, as shown in 
Fig. 8(d). Fig. 8(g) and (h) illustrate the full lattice models based on the 
initial and optimised designs as well as the representative unit-cells at 
different locations, respectively, which were prepared in a STL format 
and ready for PBF printing. It is noted that the full lattice models 
comprise an upper and lower solid edge to be the clamped areas for the 
quasi-static compressive tests. 

The DIC tests were conducted on the lattice specimens fabricated by 
PBF to validate the optimal results. Fig. 9(a) and (c) show the fabricated 
lattice specimens based on the initial design and optimal design, 
respectively. Fig. 9(b) and (d) present the equivalent strain distributions 
within the 3D printed initial design and optimal design, respectively. 
The equivalent strain contour was measured by the DIC system with the 
same load (F = 500 N) as used in the design optimisation. From the DIC 
results, apparently, the optimised design exhibits a more uniform dis-
tribution of equivalent strain compared to the initial counterpart, 
further demonstrating that the proposed design framework can improve 
the uniformity of strain distribution in an effective fashion. 

Fig. 9. The 3D printed lattices and experimental tests. (a) The 3D-printed lattice structure based on the initial design with the objective function L = 1.64× 10− 3. 
(b) The equivalent strain contour on the 3D printed initial design from the DIC measurement. (c) The 3D-printed lattice structure based on the optimal design with 
the objective function L = 0.10× 10− 3. (d) The equivalent strain contour on the 3D printed optimal design from the DIC measurement. 
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3.3. Cantilever beam 

The second example is a cantilever beam structure, as shown in 
Fig. 10(a). The dimension of the cantilever structure is 60 × 40 mm with 
a thickness of 6 mm. The cantilever beam was meshed by cubic elements 
with a size of 2 mm. The right-hand side surface was fully fixed. An 
evenly distributed in-plane line force of 500 N was applied at the top-left 
edge of 4 mm from the corner. The initial design variables and their 
lower and upper bounds were set to be the same as those in Section 3.2. 
The target strain εV was set to be 0.00108 obtained from the average of 
equivalent strain in the initial design. 

Fig. 10(c) shows the iteration history of the design objective during 
the optimisation process, which started from 2.8 × 10− 3 in the initial 
design and then notably dropped to 4.5 × 10− 4 in the optimal design 
after around 300 iterations. Fig. 10(d) compares the histogram of 
equivalent strain obtained from the initial and optimised designs. It is 
noted that the initial design has a substantially higher standard devia-
tion than the optimal design, exhibiting the effectiveness of the proposed 
optimisation framework. The achieved uniform strain pattern can also 
be observed by comparing the strain contours, as shown in Fig. 10(b). 

Fig. 10(e) illustrates the distributions of the optimised design 

variables in the cantilever structure. It can be noted that D(x) plays a 
significant role in achieving the uniform strain pattern, where the right 
upper and bottom corners were reinforced to reduce the equivalent 
strain. The bottom surface was also strengthened to mitigate the 
deflection. 

Fig. 10(f) and (g) show the full lattice models prepared in a STL 
format based on the initial and optimised designs with the details of 
their micro unit-cells. Fig. 11(a) and (c) exhibit the fabricated specimens 
based on the initial design and optimal design using the PBF technique, 
respectively. Fig. 11 (b) and (d) illustrate the distributions of equivalent 
strains in the initial and optimised designs obtained from the DIC 
measurements. It can be observed that the optimal design shows a more 
uniform strain pattern than that of the initial counterpart. 

3.4. Mandibular reconstruction 

The third example is a mandibular reconstruction case, as shown in 
Fig. 12(a). The mandibular model was constructed based on the CT data 
from a specific patient [48]. The mandibular bone at the left side region 
was sectioned to simulate a serve bone defect treated by a bone scaffold 
(Fig. 12(a)). The mandibular scaffold was positioned by a fixation plate 

Fig. 10. The optimal and initial design results of the cantilever structure. (a) The macro finite element model and its boundary condition; (b) The equivalent strain 
distribution within the initial and optimal designs; (c) The iteration history of the objective function; (d) Comparison of the histogram of equivalent strain density in 
the initial and optimal designs. (e) The distributions of the optimised design variables in the design domain. (f) The full lattice model of the initial design with the 
uniform iso-truss lattices. (g) The full lattice model of the optimal design with the representative non-uniform iso-truss lattices in different regions. 
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and discretised into 400 brick elements (2 mm in size) for the design 
optimisation. The bony tissue was featured with CT-based heteroge-
neous distribution by interpolating the lowest and highest densities in 
terms of the Hounsfield units [49]. The loading and boundary conditions 
are illustrated in Fig. 12(a). The upper regions of the condyle were fully 
fixed, and two bitting forces (F1 = 60 N and F2 = 110 N) measured from 
a clinical experiments were applied at the front tooth region [48]. The 
target equivalent strain εV was set to be 0.001, which was recommended 
by several clinical studies for promoting bone growth [50–53]. The 
initial design of the scaffold is composed of uniform iso-truss lattices 
with a bar size of 0.35 mm. 

Fig. 12(b) shows the iteration history in the course of the optimiza-
tion, in which the objective function dropped from 0.741 to 0.445 over 
300 iterations. The effectiveness of the optimised design can also be 
noted by comparing the histograms of equivalent strain from the initial 
and optimised designs, as shown in Fig. 12(c). Apparently, the optimal 
design achieved the equivalent strain distribution with a mean value of 
0.001 and less standard deviation than the initial design. Fig. 12(e) also 
compares the strain contours obtained from the initial and optimised 
designs, further exhibiting the effectiveness of the proposed method for 
achieving a as-possible uniform strain pattern. Fig. 12(d) illustrates the 
distributions of the optimised design variables and the details of non- 
uniform unit-cells. It can be seen that the surface areas of the scaffold 
were reinforced in terms of a large struct size in x, y, and z directions. 

3.5. Femur bone reconstruction 

The fourth example is a femur bone reconstruction case, as shown in 
Fig. 13(a). A 3-cm-long segmental defect was modelled in the femur 
bone, which is treated by a bone scaffold and stabilised using a fixation 
plate. The distal end of the femur was fully constrained, and a force was 
applied on the femur head to simulate gait loading equivalent to 1.6 
times human body weight [13]. The scaffold has a hollow channel 
miming the medullary cavity and was discretised by 8-node cubic ele-
ments with 2800 elements. 

In this design example, the objective function dropped from 7.4×10-3 

to 2.2×10-3 during the optimisation process, as illustrated in Fig. 13(b). 
Fig. 13(c) compares the histograms of equivalent strains in the initial 
and optimised designs. The optimised scaffold achieved a lower stan-
dard deviation with a mean value of 1×10-3 in comparison with that of 
the initial design, indicating a notable uniform strain pattern achieved 
by the proposed method. Fig. 13(f) also compares the strain contours in 
the initial and optimal designs, further exhibiting the uniformity of the 
strain pattern. 

Fig. 13(e) illustrates the distributions of optimised design variables 
and the details of non-uniform unit-cells. It can be observed that the side 
away from the bone fixation plate was reinforced with a large struct size; 
whereas the side nearby the bone fixation plate was structured with a 
smaller struct size to achieve an as-possible uniform strain pattern 
around the targeted value. 

4. Discussion 

ML methods have been extensively studied in design optimisation, 
particularly for the design of metamaterials with exotic behaviours 
[7–11]. Nevertheless, further investigations are required to explore 
design optimisation of lattice structures using artificial intelligence. The 
proposed DANN-based framework exhibits a notable advantage over 
conventional FE2 optimisation approaches in terms of computational 
efficiency in design of non-uniform lattice structures. Although the same 
optimisation problems can also be performed by conventional FE2 ap-
proaches, micro-FE analyses must be conducted on each unit-cell 
repeatedly, which will result in a prohibitively high computational 
burden. In contrast, by leveraging the DANN-based approach, one can 
directly undertake an optimal design solely with a macro finite element 
(FE) model, rendering the process more efficient than conventional FE2 

approaches. For example, in the case of the cantilever beam, the tests 
were also carried out by employing the conventional FE2 approach on a 
desktop computer (CPU: Intel i7–7820X, RAM: 128 GB). For a single 
loop, the FE-based homogenisation and sensitivity analyses were 

Fig. 11. The printed cantilever structures and the results of DIC tests. (a) The 3D-printed samples based on the initial design with the objective function value L =

2.68× 10− 3. (b) The equivalent strain distributions in the initial design obtained from DIC measurement. (c) The 3D-printed samples based on the initial design with 
the objective function value L = 0.45× 10− 3. (d) The equivalent strain distributions in the optimal design obtained from the DIC test. 
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performed on all 1764 lattice unit cells, necessitating a total of 
2646 min. Furthermore, the macro-FE analysis and the adjoint FE 
analysis used for calculating macro sensitivity required an additional 
minute. If we adopted the conventional FE2 approach for the design 
optimisation with 300 iterations, it could command a total of 794, 
100 min (around 551 days), implying its impractice due to the prohib-
itive computational cost. Whereas in this study, the presented four cases 
(centre hole plate, cantilever beam, mandibular reconstruction, and 
femur bone reconstruction) only demanded 250, 300, 565, and 
2380 min respectively, when utilizing the proposed method. These 
drastically reduced computational costs underline the superior effi-
ciency of the proposed DANN-based approach. 

The trained DANN models offer the advantage of reusability in 
design of non-uniform lattice structures, making them applicable across 
diverse engineering fields, including, but not limited to, aerospace, 
automotive, and mechanical engineering. Particularly, the DANN 

models allow to accommodate various emerging applications, such as 
design of non-uniform tissue scaffolds as well as various implantable 
medical devices, which promises significant benefits in personalised 
medicine with a potentially improved longevity of treatment outcome. 

The FE-based homogenisation, as defined in Eq. (29), was developed 
for materials with linear elastic properties. In the situations where iso- 
truss lattices comprise materials with a constant Poisson’s ratio (0.3 as 
used in this study) but varying Young’s modulus values, the trained 
DANN can still be employed to predict their effective elastic tensors 
through a direct scaling procedure, thereby circumventing the necessity 
for additional training processes. Moreover, the dimensionless nature of 
the micro-FE models allows iso-truss lattices with different unit-cell sizes 
to directly benefit the trained DANN. 

The proposed approach can be extended to consider other types of 
lattices as the base configuration. To achieve this, nevertheless, new 
ground-truth data using the geometric projection technique and FE- 

Fig. 12. A patient-specific design of the bone scaffold for mandibular reconstruction. (a) The patient-specific geometry model constructed from the CT data. The 
upper regions of the condyle are fully fixed, and the two point loads are applied to the front tooth region to simulate biting forces. The scaffold is meshed by 400 cubic 
elements with a size of 2 mm. (b) The iteration history of the objective function. (c) The histogram comparison of equivalent strains from the initial and optimal 
designs. (d) The distributions of the optimised design variables. (e) Comparison of equivalent strain contours in the initial and optimal designs. 
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based homogenisation must be prepared for re-training the DANN 
models intended for the new base structural configuration. Even though, 
the same framework presented in this study can be utilised for design of 
other functionally graded lattice structures. 

This study demonstrates two real-life bone reconstruction cases to 
optimise the bone scaffolds for biomedical applications. By determining 
the targeted strain level for a specific anatomy and defect site, the 
optimised design enables to achieve as-possible uniform strain, hypo-
thetically leading to better bone regeneration outcomes with uniformly 
distributed bony tissue inside scaffolds. In addition, the proposed 
DANN-based optimisation framework is expected to apply to other or-
thopaedic devices, such as dental implants, hip implants, bone fixation 
plates, and spinal cages which are commonly of strong strain and stress 
shielding, preventing from a proper osseointegration and bone remod-
elling process. 

Further studies can extend the proposed DANN optimisation frame-
work to design of other lattice structures with a focus on better pro-
moting bone growth in different mechanobiological contexts [54]. For 
example, stress, strain energy or their revised form have been widely 
employed as mechanical stimuli for bone formation in literature [13,55, 
56,61]. The proposed DANN framework can easily consider these stress 
or strain energy-related objectives by simply modifying the macro 
sensitivity analysis. Looking forward, the proposed DANN optimisation 
framework can be also extend into time/path-dependent design prob-
lems by considering the dynamic change of mechanical conditions in the 
course of bone regeneration. 

Nevertheless, there are several issues that warrant further investi-
gation. First, the optimised results exhibit non-smooth transitions in 

diameters between adjacent lattices. These uneven changes may give 
rise to heightened geometrical deviations between the as-designed and 
as-built samples due to the manufacturing limits, thereby enlarging the 
disparities between simulated and experimental outcomes [57]. One 
potential resolution lies in adoption of a density-based approach that has 
been employed in topology optimization methods [58,59]. Such an 
approach seeks to minimise variations in the design variables between 
neighbouring elements, consequently promoting smoother and more 
gradual transitions. 

Second, a discernible disparity in strain patterns emerges when 
comparing the simulation results with those obtained through DIC tests 
in the presented cases. The intrinsic nature of PBF often induces residual 
stress, geometric deviations, and possible microcracks in the 3D fabri-
cated specimens. Although we undertook heat treatment processes to 
mitigate residual stress, it is inevitable that certain geometrical de-
viations and microcracks might have persisted. These factors would 
likely contribute on the observed inconsistencies of the strain patterns 
obtained from the simulation and DIC tests. 

Finally, it is essential to account for manufacturing uncertainties in 
the proposed approach for designing more robust additive- 
manufactured functionally graded lattice structures. By incorporating 
such uncertainties into the design process, a more comprehensive un-
derstanding of the potential deviations and discrepancies arising from 
the fabrication process can be obtained, thus aiding in the improvement 
of the overall design robustness [60]. 

Fig. 13. The optimisation for a femur bone reconstruction case. (a) The bone-scaffold system includes a femur bone, a bone fixation plate, screws and a scaffold. (b) 
The iteration history of the objective function for scaffold design during the optimisation process. (c) The histogram comparison of the equivalent strains obtained 
from the initial and optimal designs. (e) The distributions of design variables in the optimised scaffold. (f) The comparison of the equivalent strain contours in the 
initial and optimal designs. 
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5. Conclusions 

This study developed a new optimisation framework for design of 
additively manufactured lattice structures by incorporating a derivative- 
aware neural network (DANN). The DANN enables to predict not only 
the homogenised material properties of unit-cells but also the sensitivity 
of the material properties with respect to design variables for topology 
optimisation. An as-possible uniform strain pattern with a prescribed 
magnitude can be achieved by efficiently tailoring the geometries of 
each single unit-cell. The two illustrative examples were first studied to 
validate the effectiveness of the proposed optimisation framework 
through the experimental tests on the 3D printed prototypes and digital 
image correlation (DIC) analysis. Following this, design of the two pa-
tient and/or site-specific bone scaffolds were further explored, which 
demonstrated considerable potential for real-world case scenarios. The 
proposed optimisation framework is expected to provide a computa-
tional tool for design of other porous structures in aerospace, biomed-
ical, mechanical and civil engineering. 
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