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A B S T R A C T   

Response Surface Methodology (RSM) is a statistical method to design experiments and optimize the effect of 
process variables. RSM is based on the principles of design of experiments or DOE. Design of experiments or DOE 
is a field of applied statistics that plans, conducts, analyses, and interprets controlled tests to assess factors that 
affect parameter values. Response surface methodology or RSM uses a statistical method for designing experi
ments and optimization. Despite the potential of response surface methodology to predict and optimize engine 
performance and emissions characteristics, a comprehensive review on RSM for biofuels, particularly for internal 
combustion engines (ICEs), is difficult to find. The review of response surface methodology is sometimes included 
together with other machine learning approaches such as ANN. Therefore, a review article that is exclusively 
written to address the specific of RSM for biofuel and ICE is required. This review article offers a fresh perspective 
on the application of RSM for biofuel in ICE. This article aims to critically review the RSM to optimize engine 
performance and emissions using biofuel. The study concludes with several possible research gaps for future 
works of RSM biofuel application. Although response surface methodology or RSM has drawbacks such as 
extrapolation inaccuracy outside the investigational ranges and discrete variables error, RSM has numerous 
advantages to design, model, estimate, and optimize biofuel for ICE with satisfactory accuracy. With its pre
diction and optimization capability, response surface methodology has the potential to assist the development of 
ICE optimization powered by biofuel for sustainability energy transition.   

1. Introduction 

As the global community increasingly aims to achieve net zero 
emissions and meet the Sustainable Development Goals or SDGs, bio
fuels have emerged as a favorable substitute to fossil fuels. Biofuels are 
produced from renewable energy sources such as from animal waste or 
plant materials, thus having the capability to substantially decrease 
greenhouse gas emissions. The utilization of biofuels can assist many 
countries shift to a more sustainable and low-carbon society, whilst also 
offering economic and social advantages. Yet, it is important to 
cautiously take into account the effects of biofuels on many aspects 
including food security, land use, and water resources, and to ensure 

that biofuel production and utilization is sustainably managed. 
With all the pros and cons of biofuels, many modern and industri

alized societies still rely on the continuous supply of energy due to its 
vital role in many vital sectors, including manufacturing [1], trans
portation [2], and power generation [3]. Fossil fuels, such as natural gas, 
coal, gasoline, and diesel, are still currently the main resources to meet 
the world’s energy demand [4]. However, concern over its sustainability 
has led to the utilization of alternative fuels owing to their potential to 
decrease environmental pollution and reduce the reliance on depleting 
and non-renewable fossil fuels [5]. Numerous efforts have been 
attempted to explore alternative fuels such as liquefied petroleum gas 
(LPG) [6], dimethyl ether (DME) [7], biodiesel [8], and alcohol fuels 
[9]. Of all alternative fuels, biodiesel and bioalcohol have attracted 
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considerable attention [10,11]. 
Biodiesels provide several benefits compared to fossil fuels as they 

are non-toxic, renewable, and environmental-friendly [12]. Moreover, 
biodiesel can be mixed with conventional diesel fuels owing to their 
comparable physicochemical properties [13]. Numerous potential sub
strates have been identified for biodiesel production in the last ten years. 
Several traditional biodiesel crops are palm [14–16], soybean [15,17], 
jatropha [18,19], sunflower [20,21], rapeseed, karanja [22–25], mor
inga [26,27], and mahua oil [28]. Many of these feedstocks are 
first-generation biodiesel produced from edible oils, thus having the 
potential to compete with the human food supply. In order to solve this 
dilemma, the use of second-generation feedstocks from non-edible 
vegetable oils and fats has attracted substantial interest and is now 
considered an effective way to reduce well-to-wheels (WTW) green
house gas (GHG) emissions. The second-generation biodiesel encom
passes numerous biomass sources from agriculture to forestry and waste 
materials [29]. Note that the source of biodiesel feedstock should be 
produced locally to help the regional economy. 

It is essential, while analysing the sustainability of second-generation 
feedstocks, to include the resources necessary for their production, such 
as land and water consumption. Second-generation feedstocks, also 
known as non-food feedstocks or biomass, primarily consist of waste 
materials such as agricultural residues, forest residues, and algae. 
Because they do not compete with the human food supply for resources, 
it is commonly believed that these materials are more sustainable than 
food crops. Nonetheless, it is essential to consider the land and water 
required for their production and processing, as well as any potential 
environmental repercussions. Depending on the precise manufacturing 
techniques and feedstocks employed, some second-generation feed
stocks may demand more resources than others. It is essential to analyse 
a feedstock’s entire lifecycle in order to determine its overall 
sustainability. 

Alcohol can be blended with gasoline and diesel fuels. A number of 
studies have investigated the effects of alcohol fuel on both gasoline and 
diesel engines. The low cetane number of alcohol fuel is known to 
provide a homogeneous lean mixture that can reduce nitrogen oxide 
(NOx) and smoke emissions and achieve good thermal efficiency in an 
engine running at high loads [30,31]. However, the use of pure alcohol 
(very low cetane number) cannot be operated in diesel engines. There
fore, to be run without any modification in the compression ignition (CI) 
engine fuel system, alcohol should be mixed with diesel fuel. Short-chain 
alcohols, such as methanol and ethanol, can be blended with diesel fuel. 
However, longer-chain alcohols, like butanol, are more favorable due to 
their higher energy content, stability in the blend, low corrosiveness, 

and lower miscibility in water [32–34]. 
Note that although alcohol can be blended with gasoline and diesel 

fuels, the blending ratio is constrained by the phase stability of the 
blend. With gasoline, blending ratios are high for most alcohols, but with 
diesel, blending ratios are extremely limited, especially for methanol 
and ethanol. Furthermore, even a stable blend may not fulfill other re
quirements set by quality standards, such as EN 590 or EN 228. When 
blended with diesel, the alcohol content prolongs the ignition delay, 
which results in a more homogeneous mixture at the onset of combus
tion. However, it is important to note that this mixture is not entirely 
homogeneous throughout the combustion process. 

There are some internal combustion engine parameters that conflict 
with each other. For instance, an improvement in a brake thermal effi
ciency (BTE) will potentially increase NOx emissions [35]. BTE is a 
measure of the efficiency with which a heat-generating engine converts 
fuel energy into useable work. It is computed by dividing the engine’s 
work output by the fuel’s energy input. The resulting percentage shows 
the proportion of fuel energy that is turned into useable work, as 
opposed to being wasted as waste heat. Therefore, it is important to 
optimize engine characteristics so that ICE performance, such as BTE, 
can be increased while at the same time, harmful emissions, such as 
carbon monoxide (CO), hydrocarbon (HC), particulate matter (PM), and 
NOx, can be reduced. Furthermore, more specifically in diesel engines, a 
trade-off between PM and NOx exists [36,37]. Also, note that the opti
mum engine operating conditions are dependent on the biofuel type. 
This is where response surface methodology (RSM) can be beneficial in 
overcoming such problems. RSM can be a useful method for optimizing 
engine variables when multiple factors need to be improved simulta
neously, as well as for testing biofuels. However, it is important to note 
that RSM is just one of many methods that can be applied in these sit
uations, and its advantages should be carefully considered in the context 
of the specific research objectives and requirements. Some researchers 
have evaluated several combination method by using general or 
meta-heuristic optimization, such as particle swarm optimization 
(RPSO) and dragon fly algorithm (RMODA) to optimize the response of 
the RSM equations [38–40]. 

Although the application of artificial neural networks (ANNs) has 
been extensively studied for biofuel and ICE purposes [41–43], ANN 
needs a relatively huge number of data obtained from experiments to 
train the networks [44]. Training the network with a small number of 
data may result in poor prediction results. Alternatively, a set of engine 
experiments, such as the number of experiments and critical operating 
conditions, can be designed beforehand using a statistical design of ex
periments (DOE) tool. The results from experiment can then be used for 
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prediction and optimization. This is where a DOE method, such as RSM, 
can play a big role in biofuel research and development. 

RSM has the potential to maximize the engine performance and 
combustion characteristics fueled with biofuels, while significantly 
reducing their exhaust emissions. A sizeable number of works have been 
published on the application of RSM for biofuel [45–49]. Selemani & 
Kombe used RSM to model and optimize a CaO catalysed glycerolysis 
reaction under the influence variables [50]. Simbi et al. evaluated the 
characteristic of operation considerations on the yield of the produced 
biodiesel (sunflower) using RSM [51]. Etim et al. optimized trans
esterification using Taguchi design of RSM to investigate the impact of 
catalyst loading, methanol-to-oil ratio, reaction time and temperature 
[52]. 

However, there has been no detailed review on the use of RSM for 
alternative fuels, especially for the ICE purpose. The application of RSM 
is often addressed as part of the discussion of machine learning. 
Therefore, a review article dedicated to explaining the specific appli
cation of RSM for biofuel is required. This review article aims to discuss 
the application of RSM for biofuel in ICEs critically. A number of 
important aspects, such as the selection of RSM design and validation 
results, are compared. To conclude this review article, several points to 
consider and possible research gaps for future works are presented. Note 
that in this review article, the application of RSM for biofuel production 
optimization lies beyond the scope of this study. 

2. Points to consider in RSM 

RSM is a mathematical and statistical method for designing a set of 
experiments. The goal is to optimize the response that is affected by a 
number of independent variables. Eq. (1) shows a second-order poly
nomial equation used to predict the output response by taking the input 
factors into account. 

Here, S is a response, a0 is responses average, and ai, aii, and aij are 
response coefficients. 

S= a0 +
∑k

i
aixi +

∑k

i
aiix2

i +
∑k

i,j=1,j∕=i
aijxixj (1) 

Although it was initially developed for chemical applications, the 
application of RSM has now been expanded to other fields, such as 
mechanical engineering and automotive sector. In ICE, the RSM method 
is predominantly used to optimize the performance and emissions of 
gasoline and diesel engines. However, due to the increasing concern 
over diminishing fossil fuels and their environmental issues, the use of 
RSM to optimize engine performance and emissions is becoming a 
growing trend in biofuels research. 

2.1. Experimental data required to determine range for parameters in 
RSM 

Experimental design will determine the range of RSM parameters. It 
should be chosen based on the number of optimization variables and the 
required level of precision. For example, in a two-variable design, the 
quadratic model must be approximated by at least four runs. Minimum 
of seven runs are necessary for a three-variable design. For a more 
precise model and to account for any potential inaccuracy, it is 
customarily advised to conduct more simulations. Consequently, it is 
essential to meticulously arrange the range of the variables to guarantee 
that the ideal portion of the response surface is adequately tested. 

2.2. RSM software 

Numerous computer software packages are available that are either 
specifically dedicated to experimental design or are of a general statis
tical category. Design-Expert (State-Ease Inc.) and Minitab (Minitab 
Inc.) are the two commercial software packages commonly used to 
perform RSM. Alternatively, R studio is a free and open-source software 

for non-commercial purposes. Moreover, Chemoface and Develve are 
other alternative packages to perform RSM besides Statistica (Stat Soft) 
and MATLAB (Mathworks). 

2.3. Factors (input) and responses (output) in RSM 

The first and most important stage in any use of RSM is choosing the 
input or the independent factors, as these will significantly affect the 
whole process, including the desired responses as the outputs. By 
studying previous works on the use of RSM in ICEs fueled with alter
native fuels, it is clear that the inputs are usually the operating condi
tions, such as engine speed, load, compression ratio, and blending ratio. 
Note that the ranges of the selected factors should be chosen wisely. 
They are normally based on previous experiments. If the independent 
factors and their ranges are not reasonably selected, the results will be 
inaccurate and unhelpful. As for the outputs, it is critically important to 
select desirable responses that have profound impacts on the engine 
performance, combustion, and emission characteristics. Therefore, the 
first thing that should be carefully determined before applying the RSM 
method is selecting the independent factors and desired responses in a 
reasonable manner. 

2.4. Single vs. multiple responses in RSM 

RSM can be performed for single or multiple responses. It is worth 
noting that there may be some drawbacks for multiple responses as it 
will be more difficult to obtain a combination of factors and levels that 
suits the model’s optimization requirement. Convergence issues may 
arise if the response number is higher than that of the constraints. 
Therefore, it is necessary to compromise and ensure that the objectives 
are reasonable to obtain by prioritizing the most important responses. 
Generally, the factorial analysis should be initially performed before 
testing the effect of curvature. If all the examined data can be fitted to a 
linear model, the process will stop. However, if the model is nonlinear 
due to the presence of the curvature effect, the analysis then proceeds to 
RSM. 

In order to decrease the trial and experiment cost, RSM can be used 
directly as the linear and the second-order polynomial. To check 
whether the model is adequate, the lack of fit value should be evaluated 
to assess the significance of the model which describe the discrepancy 
between the experimental data and the fitted model. Lack of fit is sig
nificant when the pure error (measurement error) is considerably low 
compared to the residual error, thus indicating several issues in the 
model. In this case, a number of methods can be utilized, including 
repeating the central points (the experimental runs at the center of the 
design space in RSM), selecting higher-grade models, using the transfer 
function (mathematical representation of the relationship between the 
input variables and the response), removing the outliers, and using the 
limited range of input variables. 

In response surface approach, the selection of the model to fit the 
data depends on the number of variables and the complexity of the 
examined system. A second-order model, which is a polynomial equa
tion with terms up to the second degree, is usually adequate for the 
majority of two- or three-variable optimization problems. In certain 
instances, a higher-order model may be required to accurately charac
terise the system’s response. 

Comparing the fit of the second-order model with a higher-order 
model is one method for determining whether a higher-order model is 
required, as indicated above. This can be accomplished by comparing 
the two models’ goodness-of-fit statistics, such as the coefficient of 
determination (R2) or the adjusted R2. If the higher-order model fits the 
data far better than the second-order model, the higher-order model may 
need to be used. Plotting the response surface and examining the data for 
any curvature or nonlinear patterns is another method for determining 
the right model complexity. If the response surface looks to be very 
nonlinear and highly curved, a model of higher order may be required to 
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adequately characterise the system’s reaction. 
It is also essential to consider the practicability of implementing a 

higher-order model in the optimization process. Complexity and the 
need for additional experimental runs to estimate higher-order models 
can make the optimization process more time-consuming and expensive. 
Consequently, it is often recommended to begin with a second-order 
model and only expand the model’s complexity if necessary. 

Additionally, RSM can definitely be applied to optimize multiple 
responses simultaneously. When dealing with multiple responses, the 
goal is to find a combination of factor settings that optimize all responses 
simultaneously or achieve a trade-off among them. The experimental 
design is carefully planned to gather data points covering the entire 
design space. The design matrix includes different factor settings, and 
the corresponding responses are measured. By fitting a regression model 
to the experimental data, relationships between the factors and the re
sponses can be established. To address multiple responses, different 
approaches can be employed, such as multi-objective or response opti
mization and Pareto optimization. It is important to note that when 
optimizing multiple responses, the objectives should be prioritized 
based on their importance and relevance to the problem. 

2.5. Response surface design for RSM 

A response surface design is a series of advanced DOE methods to 
optimize the response. After the factors and the responses have been 
determined, the next critical stage is designing the experiments by 
choosing the points in which the desired responses could be successfully 
predicted and evaluated. Once the number of factors has been identified, 
several DOEs can be developed to achieve a response surface. These 
response surface designs are designated based on their key attributes (e. 
g., variance and number of experiments). For that reason, selecting a 
suitable design strategy has an important role in the overall process. 
However, note that in most previous published papers, reasons for 
choosing response surface design are not properly addressed, but with 
only a brief explanation. Three major classes of response surface design 
are full factorial design (FFD), central composite design (CCD), and Box- 
Behnken design (BBD). 

In experimental design, a factor represents a variable that can in
fluence the response of a system or process. The levels of a factor refer to 
the different values or settings at which the factor is set during the 
experiment. The concept of levels is important because it allows re
searchers to systematically explore the relationship between factors and 
responses across a range of conditions. The choice of levels for a factor 
depends on the specific goals of the experiment and the range over 
which the factor is expected to have an effect on the response. By 
choosing these specific levels, the experiment can investigate the effect 
of temperature on the response variable at different points within the 
range of interest. It is important to select appropriate levels for each 
factor to ensure that the experiment captures the relevant information 
and provides meaningful insights. The levels should span a range that is 
representative of the practical operating conditions or the region of in
terest. Additionally, the number of levels chosen for each factor can 
impact the precision and accuracy of the experimental results. A suffi
cient number of levels should be selected to adequately capture the 
behavior of the response variable across the range of the factors. 

2.5.1. Full factorial design (FFD) RSM 
An experiment with FFD considers each potential level combination 

of all factors. This response surface design results in experimental work 
in which at least one trial should be included for the entire potential 
combinations of factors and levels. Such a comprehensive method en
sures that every interaction is included with all factor interactions being 
counted in. 

The quantity of trials or repetitions is a critical consideration. The 
number of repetitions depends on a number of factors, including the 
desired precision of results, variability, and available resources, such as 

time and resources. Increasing the number of repetitions reduces the 
influence of random variation and yields a more precise estimate of the 
actual effects of the factors. It is essential to include the number of 
repetitions used in the study to indicate the reliability and robustness of 
the experimental results. It may not be possible to conduct a huge 
number of repetitions due to practical constraints. In such circum
stances, it is essential to recognise the limitations and potential effects 
on the precision and generalizability of the findings. 

As a result, FFD is relatively expensive and time-consuming for 
multi-factor experimental work. It increases exponentially as the num
ber of factors and levels increases. Concise notes on FFD are given in 
Fig. 1. 

A more common FFD is the three-level FFD, where the factors can 
handle three values: low, center, and high. Therefore, the total number 
of experiments for examining k factors at 3-levels will be 3k. However, 
one major drawback of three-level FFD is the requirement for numerous 
experimental runs that often generate unnecessary high-order in
teractions [53]. Sakkas et al. [54] reported that the three-level FFD is 
more advantageous when the number of factors is not more than five. 
Furthermore, note that the second-order models can substantially 
enhance the optimization process, particularly in the three-level FFD. 
Nevertheless, to avoid the difficulties in fitting the model of second or 
higher-order polynomial in conventional FFD, Box and Wilson [55] 
introduced CCD in 1951.. 

2.5.2. Central composite design (CCD) RSM 
A CCD is the most frequently utilized response surface design. CCD is 

particularly useful in chronological experimental work as it can be used 
to build on earlier factorial experiments with the addition of axial and 
center points. A CCD can be used to (i) effectively approximate first- and 
second-order terms; and (ii) to model a response variable using curva
ture with the addition of center and axial points to a factorial design, as 
shown in Fig. 3. 

The response surface curvature can be estimated due to the points at 
the midpoint of the experiment domain and the “star” located outside 
such domain. The points levels of a factorial design are ±1, while those 
on a “star” design are ±α in which |α| ≥1 [57]. CCD can be divided into 
three categories, as illustrated in Fig. 4. The α parameter value is 
established based on the calculation possibilities and the required pre
cision of the surface response estimation. The prediction performance 
depends on the points’ position. It is important to note that the α value 
setting and the trial number located at the center of the domain affect 
the estimation precision. 

2.5.3. Box-Behnken design (BBD) RSM 
Another type of response surface design is known as BBD. A BBD is a 

category of response surface design that does not encompass a factorial 
design. Therefore, BBD is not established on full or fractional factorial 
designs. However, Box-Behnken facilitates an efficient prediction of the 
first- and second-order coefficients as it frequently has a smaller number 
of design points. As a result, BBD can be less time-consuming and more 
affordable. However, since BBD does not possess an embedded factorial 
design like CCD, a BBD is not appropriate for chronological experi
mental work. 

Although BBD has poor coverage of the nonlinear design space 
corner, BBD is believed to be more capable and effective than other 
response surface designs, such as the three-level FFD and CCD. BBD is 
used to produce a higher-order response with fewer runs than a typical 
factorial method. BBD, along with CCD, represses chosen runs in order to 
sustain the higher-order surface. 

BBD is rotatable and requires three levels per factor. Similar to CCD, 
the BBD can adapt to the full quadratic model of the response surface 
design [58]. In the BBD, the treatment combinations are located at the 
cube edges midpoints and the center, as shown in Fig. 5. This response 
surface design should be taken into account for experimental works 
having more than two factors and when the optimum is expected to be in 

I. Veza et al.                                                                                                                                                                                                                                     



Results in Engineering 18 (2023) 101213

5

the middle of the factor ranges. 
Sharma et al. [59] used machine learning and BBD to optimize 

dual-fuel engine fueled with algal biodiesel as well as waste-derived 
biogas. The ANN model was developed to predict engine characteris
tics. It was found that the proposed equations was able to predict engine 
characteristics with a high-level of accuracy. Uludamar and Özgür [60] 
also used BBD to forecast and optimize exhaust emissions, noise and 
vibration of diesel engine fueled with diesel-biodiesel-hydrogen. The 
flow rate of hydrogen, ratio of biodiesel, and the engine speed were 

counted as the input factors. The optimum desirability was reported as 
0.862 with H2 addition of around 4.60 L/min using fuel blend of 26% 
with engine speed of 1500 rpm. Said et al. [61] also used Box-Behnken 
design combined with desirability technique for ternary blends in a 
diesel engine. The desirability showed the optimum engine operating 
parameters was at 76% engine load, 22.92◦ crank angles (CA) advance, 
and 0.92 L/min oxyhydrogen. 

2.5.4. Validation criteria in RSM 
Designed experiments are normally performed in four steps: plan

ning, screening (process characterization), optimization, and verifica
tion, as shown in Fig. 6. To validate the results, validation tests need to 
be conducted. One issue with the application of RSM in ICE is that no 
studies have confidently explained why the errors are within the 
permissible range and considered the acceptable values. Most studies 
claim that their predicted results show good agreement with the 
confirmatory tests without giving proper references on how much per
centage error is actually acceptable. 

Fig. 1. A brief summary of FFD. Note that the entire 
input factors in an FFD are arranged at two or three 
levels. For example, the total number of experiments 
for examining k factors at 2-levels is 2k, in which k is 
the number of factors. The two-level FFD is beneficial 
in the initial phase of the experiment, particularly 
when the number of factors is ≤ 4. One assumption 
for 2-levels factors is that the response is almost linear 
with low and one high value for each factor. A 
graphical representation of FFD is shown in Fig. 2.   

Fig. 2. FFD graphical representation, reproduced from Ref. [56].  

Fig. 3. CCD graphical representation, reproduced from Ref. [56].  

Fig. 4. Three types of CCD, adapted from Ref. [57].  
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When comparing Response Surface Methodology (RSM) results to 
actual data, it is critical to assess the model’s precision, accuracy, and 
reliability using a variety of statistical indicators. Mean Absolute Error 
(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
Coefficient of Determination (R-squared), Adjusted R-squared, and Re
sidual Analysis are some of the most significant metrics to evaluate. 

The MAE calculates the average absolute difference between the 
RSM’s predicted and actual values, with lower values suggesting a better 
model fit. MSE, on the other hand, calculates the average squared dif
ference between anticipated and actual values, with higher mistakes 
being prioritized and demonstrating sensitivity to deviations. Lower 
MSE values indicate a better model fit. The square root of MSE, RMSE, 
gives a measurement of prediction error in the same units as the 
response variable, making it easier to read. Lower RMSE values indicate 
better model fit. 

R-squared represents the proportion of the variance in the dependent 
variable that the RSM model explains, with values ranging from 0 to 1. 
Greater R-squared values indicate a better model fit. Adjusted R-squared 
takes the sample size and amount of predictors in the RSM model into 
account, penalising the R-squared value when unneeded predictors are 
included. A better model fit is indicated by higher adjusted R-squared 
values. 

Residual Analysis is another useful approach for assessing the per
formance of the RSM model. The residuals (the disparities between the 
anticipated and actual values) can be analysed to provide insight into 
the model’s effectiveness. In an ideal world, residuals would be 
randomly distributed around zero, with no discernible pattern. 
Furthermore, model validation, which entails testing the RSM model’s 
performance on a second dataset that was not used to develop the model, 
can provide a more accurate assessment of its generalizability and pre
dictive potential. Note that several statistical measures must be 
considered to acquire a thorough knowledge of the RSM model’s per
formance. Metrics should be chosen with the study’s specific aims and 
context in mind. 

Despite the limitations mentioned above, RSM can provide a valu
able approximation. In the RSM application to optimize the output of 
ICEs fueled with alternative fuels, it can be seen that there are two types 
of biofuels that are frequently investigated by numerous researchers 

throughout the world. They are bioalcohol and biodiesel. It is important 
to compare the optimized values obtained from bioalcohol and biodiesel 
with the baseline fuel (gasoline or diesel fuel). The idea of any addition 
of biofuel is to replace the petroleum-based fuel; thus, how much 
improvement the biofuel can obtain should be presented in comparison 
with the fossil fuel as the benchmark [62–65]. 

3. RSM for ICE-powered with biofuel 

Biodiesel is arguably the most well-known biofuel in the world. 
Biodiesel research has a long story [66]. Compared to bioalcohol, bio
diesel has a relatively higher cetane number, viscosity, flash point, and 
lubricity, making it more suitable for CI engines [67]. Simsek and Uslu 
[68] used RSM to optimize diesel engine parameters fueled with a 
combination of canola, safflower, and waste vegetable oil biodiesel. 
Results revealed that 1484.85 kW engine load and 215.56 bar injection 
pressure operated with 25.79% biodiesel ratio gave the optimum re
sponses, which were 20.54% for BTE, 199.88 ◦C for EGT, 0.26% for 
smoke, 558.44 ppm for NOx, and 4.52% for CO2. Other recent studies 
employing RSM for biodiesel in ICEs can be found in Refs. [69–73]. 

Biodiesel may have been considered the most promising biofuel, but 
its application is limited to diesel engines. Alcohol fuels, such as ethanol 
and n-butanol, are more versatile and offer significant emission reduc
tion in real driving conditions [74]. Giakoumis et al. [63] reported that 
alcohol-diesel blends could reduce the exhaust smokiness than biodiesel 
during transient operation even with the same oxygen concentration. 
Note that in order to be used in CI engines, cetane improvers or glow 
plugs are sometimes required, along with the increase in compression 
ratio to promote ignition. 

Compared to shorter-chain alcohols, such as methanol and ethanol, 
longer-chain alcohol fuels have better calorific values, flash points, lu
bricity, cetane number, and solubility in diesel fuel. Yet, their relatively 
lower cetane number compared to diesel fuels requires the fuels to be 
blended with the fuel having a comparable cetane number of diesel fuel. 
Adding hydrotreated vegetable oil (HVO) [75,76] or di-tertiary-butyl 
peroxide (DTBP) could be, therefore, one promising approach. 

Unlike n-butanol, the use of iso-butanol is rarely investigated in 
diesel engines. Saravanan et al. [77] used RSM to optimize diesel engine 
parameters fueled with iso-butanol-diesel blends. Such a study aimed to 
minimize NOx and smoke emissions with the highest possible BTE and 
minimum brake-specific fuel consumption (BSFC). Fig. 7 shows the in
fluence of injection timing and exhaust gas recirculation on NOx emis
sions for three different injection pressures. The RSM results suggested 
that iso-butanol-diesel blends injected at 240 bar pressure, 23◦CA before 
top dead center (TDC) with 30% exhaust gas circulation (EGR) were 
found to be the optimum engine parameters. The results were validated 
by an experimental test. The prediction error was within 4%. 

However, Fig. 7 (a), (b) and (c) show the effect of EGR and injection 
timing are really close and NOx emissions are more or less the same in 
the three graphs. Even little changes in injection pressure can affect 
engine combustion parameters and, as a result, emissions. While the 
NOx emissions in the three graphs may appear comparable, it is critical 
to thoroughly analyse the numerical numbers and determine any po
tential trends or patterns. Although the differences may not be visible, 
there may be minor variations in NOx emissions that are important from 
a quantitative perspective. 

In addition, the experimental limitation and sensitivity of measuring 
shall be considered. The precision and accuracy of the measurement 
instrumentation used to quantify NOx emissions may cause un
certainties, and slight changes in emissions may not be caught with 
enough resolution. 

Furthermore, it is important to note that focusing solely on NOx 
emissions could lead to overlooking other crucial performance or 
emission characteristics. To obtain an understanding of engine’s 
behaviour comprehensively, it should be examined the complete emis
sions profile, such as PM, CO, and HC. So, considering potential 

Fig. 5. BBD graphical representation, reproduced from Ref. [56].  

Fig. 6. Four steps in designing an experiment.  
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measurement uncertainties, exploring a broader range of injection 
pressures, and examining the complete emissions profile will contribute 
to a more comprehensive and robust analysis. 

Overall, the intersection plots that indicate the optimum regions of 
engine performance and emission characteristics are illustrated in Fig. 8. 

Fusel alcohols (fuselol), known as fusel oils in Europe, are mixtures of 
alcohols (mainly amyl alcohol) that are formed as a by-product during 
alcoholic fermentation. Around 2.5 L of fusel oil can be produced per 
1000 L. In Brazil, given its massive bioethanol industry, the annual fusel 
oil production can reach 80,000,000 L [78]. Therefore, the use of fusel 
oil as a gasoline additive has attracted attention [79], but the optimum 
responses are rarely determined to achieve maximum engine perfor
mance and minimum emissions. Abdalla et al. [80] applied the RSM 
method to investigate the fusel oil-gasoline blends at different engine 
loads and speeds. Results revealed that 4500 rpm and 60% of the 
wide-open throttle engine load was the optimum condition to operate 
F20. Moreover, the maximum percentage of absolute error was 5.6%. 
The error percentage was relatively higher for emissions (>4%) than 
that of performance characteristics (<4%). A possible explanation for 
these results may be the lack of combined desirability values due to a 
lack of experimental measurements. However, good agreement was 
found when comparing the confirmatory test results against the 

experimental data, as the maximum error percentage was less than 6%. 
All in all, alcohol, which is identified by a hydroxyl group attached to 

the atom carbon, has been extensively used as biofuel not only in gas
oline (due to their high-octane number) but also in diesel engines. 
Numerous alcohols have been investigated, but ethanol and n-butanol, 
in particular, are the two most investigated alcohol fuels. It is interesting 
to see the use of bioalcohol that is developed using cheaper substrates, 
such as agricultural and industrial wastes. 

Pyrolysis oil (PO) is an attractive biofuel for diesel engines. In order 
to be used in the compression-ignition engine, modifications are some
times needed due to its low energy density, high acidity, high viscosity, 
high water content, and low cetane number. One solution to compensate 
for those drawbacks is blending PO with other fuels that possess high 
cetane numbers. PO, however, has poor miscibility with light petrol fuel. 
Since butanol has better miscibility properties, the butanol/PO blend is 
considered one of the most suitable candidate mixtures in order to be 
used in diesel engines without modifications, thus improving the storage 
and handling properties of the PO. In other words, the properties of PO 
could be improved by blending butanol. Having said that, studies on 
RSM application for pyrolysis oil can be found in Refs. [81–83]. 

Trash or garbage, technically known as municipal solid waste 
(MSW), is a major problem all over the world. A waste management 

Fig. 7. Influence of injection timing and EGR on NOx for three different injection pressure:(a) 200 bar; (b) 220 bar; and (c) 240 bar, reused with permission 
from Ref. [77]. 
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strategy needs to be implemented to minimize and recycle the waste. 
However, such a strategy alone cannot manage to process the whole 
MSW cycle. This leaves a huge amount of urban waste in several regions. 
As the main components in MSW, plastics can be used as an alternative 
fuel. The conversion of plastic waste into fuel can be realized using 
several processes, such as gasification [84], hydrocracking [85], cata
lytic cracking [86], and pyrolysis [87]. Of all the aforementioned pro
cesses, pyrolysis is more favorable as it can break down plastic waste 
into smaller molecules without causing harmful effects on the environ
ment. In addition to that, waste plastic pyrolysis oil (WPPO) consists of 
70% of carbon chains varying from C10–C15. This characteristic re
sembles diesel fuel, thus making it applicable to be used in compression 

ignition engines. Several studies have used WPPO in diesel engines 
[88–90]. Although there is a potential slight reduction in engine per
formance and a distinct increase in NOx and smoke emissions compared 
to diesel fuel, the application of RSM for waste plastic pyrolysis oil in ICE 
is still scarce. 

Note that a typical conventional diesel engine suffers from the trade- 
offs of thermal efficiency with energy loss and exhaust emissions [91, 
92]. The NOx-BSFC [93] and NOx-PM trade-offs [94], for instance, are 
still prevalent in many diesel engines. This is where RSM can be bene
ficial in overcoming such problems. However, the application of RSM for 
ICEs is predominantly used for simple optimization methods. In most 
studies, emission characteristics are sometimes not reported in full, 
whereas some emissions such as CO and soot are sometimes excluded. 

In view of all studies that have been discussed thus far, it is clear that 
the utilization of RSM could result in exceptional design and optimiza
tion of biofuel for ICE application. The results of the present review 
article provide important insights into the role of RSM for both re
searchers and engineers working on the use of biofuel for ICE. Fig. 9 
shows the flowchart of RSM for ICE-powered with biofuels. Summing 
up, Table 1 summarizes the application of RSM for biofuels in ICEs. 
Among them, bioalcohol and biodiesel have received increased atten
tion due to their potential to be produced from inexpensive resources 
and their ability to reduce harmful emissions significantly. 

4. Limitation of RSM 

Extensive research has revealed the effectiveness of RSM as a pre
diction and optimization method. However, it is important to remember 
that RSM is a black-box approach in which the approximation accuracy 
is difficult to estimate. Although it can detect the effects of independent 
input variables, RSM is unable to justify why an interaction occurs as 
there is no definite knowledge of the true relationship between an input 
variable and the response. However, it is worth noting that the effect of 
variable input combinations on the responses can be understood since 
the model equation will be generated to describe the behavior of the 
system. 

A detailed explanation of the difference between black-box, grey- 
box, and white-box models is illustrated in Fig. 10. In statistics or 
mathematical modelling, a grey box model is a combination between 
data and a partial theoretical structure. Different from the black box 

Fig. 8. Intersection plot indicating regions of optimum engine performance and 
emission; BTE (in %), BSFC (in kg/kWh), smoke opacity (in %) and NOx (cg/ 
kWh), reused with permission from Ref. [77]. 

Fig. 9. RSM flowchart for ICE-powered with biofuels.  
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Table 1 
Summary of significant recent studies of RSM for biofuel in ICE.  

Fuel Engine RSM design Software Input/factor Output/ 
response 

R2 Validation 
results 

Authors [Ref.] 

Iso-butanol-diesel blends Single cylinder, 
17.5:1 CR, 661 cc 
N/A DI CI engine 

3 × 3 full 
factorial 
design 

Design 
Expert 

3 - Injection pressure, 
injection timing, and 
EGR rate 

5 - NOx, 
smoke 
opacity, CO2, 
BSFC, BTE 

– Error 
≤3.41% 

Saravanan et al. 
[77] 

n-octanol-diesel blends Single cylinder, 
water cooled 
17.5:1 CR, 661 cc 
DI CI engine 

3 × 3 full 
factorial 
design 

Design 
Expert 

3 - Blend 
composition, 
injection timing, EGR 

4 - NOx, 
smoke BSFC, 
BTE 

R2 ≥ 0.9258 Error 
≤3.59% 

Gopal et al. [95] 

n-propanol-diesel, n- 
butanol-diesel and n- 
pentanol-diesel blends 

Single cylinder, 
water cooled, 
17.5:1 CR, 661 
cc, N/A DI CI 
engine 

3 × 3 full 
factorial 
design 

Design 
Expert 

3 - Injection timing, 
EGR rate, alcohol 
type 

6 - NOx, 
smoke 
opacity, 
BSFC, BTE, 
HC, and CO 

– Error 
≤6.01% 

Krishnamoorthy 
et al. [96] 

Fusel oil-gasoline blends Four cylinders, 
9.5:1 CR, 1.834 
L, SOHC N/A PFI 
SI engine 

– Design 
Expert 

3 - Load, speed, fuel 
% 

4 - brake 
power, BSFC, 
CO, NOx 

R2 ≥ 0.7261 Error 
≤5.60% 

Abdalla et al. [80] 

Fusel oil-gasoline blends Four cylinders, 
9.5:1 CR, 1.834 
L, SOHC N/A PFI 
SI engine 

– Design 
Expert 

3 - Load, speed, fuel 
% 

6 - BP, BSFC, 
TE, NOx, HC, 
and CO 

– Error 
≤5.00% 

Awad et al. [97] 

Sunflower, soybean 
biodiesel blends 

Single cylinder, 
N/A, DI water- 
cooled CI engine. 

Box-Behnken 
and Central 
composite 
design 

Minitab 
17 

2 - Engine load and 
blend % 

3 - BTE, UHC, 
NOx 

– Error 
≤3.34% 

Elkelawy et al. [98] 

Canola, safflower, and 
waste vegetable 
biodiesel blends 

Single cylinder, 
296 cc, N/A DI 
air-cooled CI 
engine 

Central 
composite 
design 

Minitab 3 - Biodiesel ratio, 
injection pressure, 
engine load 

5 - EGT, BTE, 
CO2, NOx, 
smoke 

R2 ≥ 98.31 Error 
≤7.26% 

Simsek and Uslu 
[68] 

2-ethylhexyl nitrate 
(EHN)-biodiesel 
(canola, safflower, and 
waste vegetable) 
blends 

Single cylinder, 
296 cc, N/A DI 
air-cooled CI 
engine 

Box-Behnken 
design 

Minitab 3 - Biodiesel ratio, 
EHN ratio, load 

6 - BTE, 
BSFC, CO, 
HC, NOx and 
smoke 

R2 ≥ 92.36 Error 
≤4.57% 

Simsek and Uslu 
[99] 

Iamyl alcohol 
(isopentanol)-gasoline 
blends 

Single cylinder, 
8.5:1 CR, 196 cc, 
air-cooled SI 
engine 

– Minitab 3 - CR, fuel ratio, 
engine speed 

6 - BMEP, 
BTE, BSFC, 
NOx, CO, HC 

R2 ≥ 0.906 Error 
≤7.58% 

Uslu and Celik 
[100] 

Hydrogen and Lemon 
Grass Oil (LGO) 
biodiesel blends 

Single cylinder, 
16.5:1 CR, 553 
cc, water-cooled 
CI engine 

Factorial 
design with 
13 × 6 tests 

Minitab 3 - Load, LGO, 
hydrogen % 

6 - BTE, 
BSFC, CO, 
NOx, HC, 
opacity 

R2 ≥ 95.72 
with an 
exception of 
46.39 for BSFC 

Error 
≤4.69% 

Hariharan et al. 
[101] 

Cassia tora biodiesel- 
diesel blends 

Single cylinder, 
17.5:1 CR, 0.661 
L DI CI engine 

Central 
composite 
rotating 
design (CCRD) 

Minitab 4 - Blends, load, 
injection timing, 
injection pressure 

3 - BTE, UHC, 
NOx 

– Error 
≤4.65% 

Singh et al. [102] 

Pongamia biodiesel 
blends 

Single cylinder, 
17.5:1 CR, 0.661 
cc DI CI engine 

Central 
composite 
rotating 
design (CCRD) 

Minitab 5 - Blends, load, 
injection timing, 
injection pressure 

4 - BTE, UHC, 
NOx 

– Error 
≤4.95% 

Singh et al. [103] 

Honge biodiesel-diesel 
blends 

Single cylinder, 
water cooled, CI 
engine 

Central 
composite 
design 

Minitab 4 - Engine load, 
Honge methyl ester 
blend %, CR, 
injection timing 

2 - BTE and 
NOx 

– Error 
≤3.50% 

Kumar et al. [35] 

Waste biomass pyrolysis 
biodiesel (Calophyllum 
inophyllum) blends 

Single cylinder, 
17.5:1 CR, water- 
cooled DI CI 
engine 

3 × 3 full 
factorial 
design 

Minitab 3 - CR, fuel 
concentration, load 

7 - BTE, 
BSFC, CO 
CO2, HC, 
NOx, smoke 

R2 ≥ 0.90 Error 
≤1.58% 

Sakthivel et al. 
[104] 

Karanja biodiesel–diesel 
blends 

Single cylinder, 
12:1–18:1 CR 
(VCR), water- 
cooled CI engine 

3 level factor 
design 

Design 
Expert 

2 - CR, fuel fraction 6 - BTE, 
BSFC, CO, 
CO2, HC, 
NOx 

– Error 
≤9.00% 

Sivaramakrishnan 
[105] 

Polanga-ethanol-biogas 
blends 

Single cylinder, 
17.5:1 CR, 661 
cc, DI CI engine 

– Minitab 4 - Fuel mode, engine 
load, engine speed, 
air flow rate 

6 - BTE, VE, 
EGT, NOx, 
CO and HC 

– Error 
≤9.50% 

Sharma et al. [106] 

Nicotiana Tabaccum 
biodiesel blends 

Single cylinder, 
17.5:1 CR, 661 
cc, DI CI engine 

Central 
composite 
rotating 
design 

Minitab 4 - Blends, load, 
injection timing, 
injection pressure 

4 - BTE, HC, 
EGT, Pmax 

– Error 
≤5.70% 

Sharma et al. [106] 

Diesel, waste plastic oil 
(WPO), WPO-n- 
pentanol, WPO-n- 

Single cylinder, 
17.5:1 CR, 661 
cc, water cooled 
DI CI engine 

3 × 3 full 
factorial 
design 

Design 
Expert 

3 - Injection timing, 
EGR rate, alcohol 
type 

3 - NOx, 
smoke 
opacity, 
BSFC 

– Error 
≤5.58% 

Damodharan et al. 
[107] 

(continued on next page) 
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model, a grey box model is correlated with several physical attributes of 
the systems. Note that nearly all models are grey box contrasted with a 
black-box model in which no model form is presumed or white box 
models that are totally theoretical. 

One major limitation of RSM is its local analysis, meaning that the 
studied response surface cannot be applied to other regions outside the 
developed ranges of factors. RSM may give poor results in predicting the 
outcome of a system other than the investigated range of study. Cur
vature is another issue. If a system contains curvature that cannot be 
fitted to a second-order polynomial, the RSM will give poor results. In 
this case, the range of independent input variables must be reduced to 
improve the accuracy of the model. It is also important to remember that 
RSM cannot be applied to the data obtained from experiments that have 
been conducted before, as the regression model will not give significant 
results. Data point selection is, therefore, an essential stage in the RSM. 
Different data points will give a different approximation. Thus, in order 
to develop the RSM model, the experimental data need to be collected 
according to the DOE methods. 

As far as the selection of response surface design is concerned, the 
majority of previously published studies did not clearly explain why 
certain response surface design is selected. FFD is relatively expensive 
and time-consuming. Therefore, in many cases, FFD is not preferable as 
it has numerous unnecessary runs in order to fit the model. For that 
reason, a fractional design could be the option. It is a design where only 

a certain subset (fraction of the runs) is selected from the FFD. With 
fewer runs, a fractional factorial design is a good option especially when 
resources are limited or when there are too many numbers of factors in 
the design. However, bear in mind that a number of important effects 
and two-way interactions can be confounded, thus making it impossible 
to be detached from the influences of other higher-order interactions. To 
solve this issue, higher-order effects are often assumed to be negligible, 
so that the information about the important effects and low-order in
teractions using fewer runs can be achieved. 

BBD and CCD are the other two major response surface designs. CCD 
can incorporate data from a properly prepared factorial experiment, 
while Box-Behnken cannot include runs from a factorial experiment. 
BBD is not based on full or fractional factorial designs and needs three 
levels for each factor. On the other hand, the CCD can possess up to five 
levels per factor, unlike Box-Behnken, which always has three. 

Note that the design selection relies both on the factors and the factor 
levels considered in the experimental design. In general, CCD has more 
features than BBD. However, for three or fewer input variables (factors), 
the BBD is more beneficial than the CCD method because fewer exper
iment runs are needed. However, for four or more input variables, this 
advantage disappears. In CCD, the values of factor levels are low and 
high settings for the cube portion of the design, not the design’s mini
mum and maximum values. The axial points are typically out of the 
cube. If an α is not specified ≤1, this could cause axial points to be 
outside the region of concern or may be unfeasible to do. 

Almost every published article that has been written on the appli
cation of RSM for biofuel includes a section relating to validation or 
confirmatory tests. However, some studies seem to forget to include the 
errors analysis indicating a discrepancy between the predicted opti
mized values and the real validated experimental results. Also, in view of 
all studies that have been mentioned, it seems that the application of 
RSM for biofuels and ICE application is mostly undertaken in Asian 
countries, such as India, Malaysia, and Turkey. To date, there has been 
very little published research on its application in European or American 
countries. 

Thus far, much of the RSM research for ICEs has been repetitive. 
Although many reports have been published on the use of RSM, most are 
restricted to optimizing the same output response again and again, such 
as BTE, BSFC, CO, CO2, HC, and NOx. Most of the previous studies of 
RSM have also suffered from a paucity of standardized measures to set 
the acceptable error values. Within what range the errors can be 
accepted is not well defined and standardized. 

In the application of RSM to ICEs, it is essential to recognise the 
potential occurrence of incomplete or insufficient data. There are a 
number of reasons that cause such limitation, namely empirical limita
tion, inaccessible or unmeasurable parameters, instrumentation errors, 
and safety issues. The process of conducting experiments on ICEs can 
incur significant expenses, require a substantial amount of time, and 

Table 1 (continued ) 

Fuel Engine RSM design Software Input/factor Output/ 
response 

R2 Validation 
results 

Authors [Ref.] 

hexanol, WPO-n- 
octanol blends 

Plastic and castor oil 
biodiesel blends 

Single cylinder 
water cooled N/A 
VCR engine 

Box-Behnken 
design 

Minitab 3 - Blend, CR, load 5 - BSFC, 
BTE, HC, CO, 
NOx 

R2 ≥ 99.26% Error 
≤4.40% 

Mohamed et al. 
[108] 

Hevea brasiliensis 
biodiesel blends 

Single cylinder, 
18:1–22:1 CR 
(VCR) DI CI 
engine 

Full factorial 
design 

– 4 - CR, load, biodiesel 
blends %, injection 
pressure 

6 - CO, HC, 
CO2, NOx, 
BTE, BSFC 

R2 ≥ 0.9873 Error 
≤16.24% 

Murugapoopathi 
et al. [109] 

Argemone Mexicana 
biodiesel-diesel blends 

Single cylinder, 
multi-fuel VCR 
engine 

D-optimal Minitab 3 - Load, CR, blend 5 - BSFC, 
BTE, CO, HC, 
NOx 

R2 ≥ 0.952 Error ≤5% Parida et al. [110] 

Jatropha curcas shell 
biodiesel blends 

Single cylinder, 
661 cc, VCR 
engine 

Central 
composite 
design 

Design 
Expert 

3 - CR, load, blend 5 - BTE, 
BSFC, UHC, 
CO and CO2 

R2 ≥ 0.6904 – Patel et al. [111]  

Fig. 10. Difference between black-box, grey-box, and white-box models, 
reproduced from Ref. [56]. 
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demand a considerable allocation of resources. The empirical limitations 
have the potential to constrain the quantity of experiments that can be 
conducted or the extent of operating conditions that can be investigated. 
Consequently, the experimental dataset may lack specific data points or 
combinations of variables. 

Certain parameters or variables that are pertinent to the functioning 
and emissions of internal combustion engines (ICEs) may pose chal
lenges in terms of direct measurement or accessibility, causing them 
either inaccessible or unmeasurable. Internal parameters such as cylin
der pressure or combustion characteristics may pose difficulties in terms 
of precise and non-invasive measurement. The aforementioned 
circumstance may result in the absence of data pertaining to said vari
ables within the experimental dataset. Experimental measurements are 
susceptible to a range of errors, uncertainties, and limitations associated 
with instrumentation. Occasionally, technical difficulties or equipment 
malfunctions may result in the absence or questionable validity of 
certain data points. In instances of this nature, it is necessary to metic
ulously evaluate the calibre and authenticity of the accessible data. 

It is important to consider safety when conducting ICE experiments 
because of the use of high-pressure, high-temperature, and hazardous 
settings. The exploration of operating conditions may be limited by 
safety protocols and constraints, resulting in the absence of data points 
in specific areas of the parameter space. The management of absent or 
deficient data in response surface methodology (RSM) necessitates 
meticulous deliberation. A potential methodology involves the utiliza
tion of statistical methodologies, such as imputation or regression, to 
approximate the absent data points by leveraging the information pre
sent within the accessible dataset. An alternative approach involves 
formulating supplementary experiments aimed at addressing the de
ficiencies in the dataset, with emphasis on the areas or parameters that 
are absent but deemed significant. 

It is essential to acknowledge that the existence of incomplete data 
may give rise to probable partialities or ambiguities in the RSM exam
ination and enhancement procedure. It is imperative for researchers to 
exhibit transparency regarding the constraints of the dataset and the 
plausible ramifications of absent data on the inferences derived from the 
investigation. The implementation of sensitivity analyses and robustness 
checks can facilitate the evaluation of the impact of incomplete data on 
the outcomes of Response Surface Methodology (RSM). In order to 
effectively address the matter of absent or deficient data in ICEs for RSM, 
it is imperative to engage in meticulous experimental preparation, data 
acquisition, and analysis methodologies to guarantee dependable and 
precise modelling of the response surface and optimization results. 

5. Concluding remarks for RSM 

There are numerous factors influencing engine performance, com
bustion, and emission characteristics. These include fuel percentage, 
engine load, speed, injection timing, and pressure. Therefore, it is 
essential to optimize those factors in order to minimize the cost of the 
experimental process.  

• Compared to conventional experimental methods where only a 
variable is examined at a time, thus requiring a huge number of 
experimental data and costly experimental runs, RSM can generate 
considerable information from a smaller number of experiments to 
lower the experimentation cost.  

• Instead of searching for the optimum response within a sizable 
number of randomly generated possible solutions, RSM simplifies the 
experimental designs and reduces the experimental runs to obtain a 
comprehensive interpretation of the system and achieve the best 
possible solution with the least combinations of input variables. The 
effect of variable input combinations on the responses can be un
derstood since the model equation will be generated to describe the 
behavior of the system.  

• It is common in the literature to present the optimized operating 
conditions as a set of inputs (factors) and verify these values with a 
set of experiments. Modern engines aim to achieve higher engine 
performance and more efficient combustion with near-zero emission 
without expensive additional equipment such as after-treatment 
systems. Therefore, optimization methods, such as RSM, have 
become more important in automotive technology.  

• Moving forward, the use of RSM in automotive technology can be 
improved by combining it with other optimization approaches, using 
the power of sophisticated computing, and exploring new experi
mental designs customised for RSM. This would allow researchers to 
overcome some of RSM’s limitations while relying on its virtues. 
Finally, the continuing usage and improvement of RSM will lead to 
the creation of more efficient, ecologically friendly, and cost- 
effective engines and cars, assisting in addressing the automotive 
industry’s critical difficulties. 

Compared to other DOE approaches, RSM has been systematically 
employed for ICE fueled with biofuels in the last two decades. The 
present article reviews the important work on the design and optimi
zation of biofuel in ICE using RSM. Although it has drawbacks such as 
extrapolation inaccuracy outside the investigational ranges and discrete 
variables error, RSM has numerous advantages to offer. Previous studies 
discussed above have shown that RSM can be utilized successfully to 
design, model, estimate, and optimize biofuel for ICE applications with 
satisfactory accuracy. 

6. Challenges and opportunities of RSM 

In the context of internal combustion engines (ICE) and biofuels, the 
application of Response Surface Methodology (RSM) presents both 
challenges and opportunities. The complexity of ICE and their in
teractions with biofuels, which may contribute to inaccuracies in the 
generated response surfaces, is one of the obstacles. In addition, RSM is 
sensitive to the experimental range within which the input variables are 
examined, and extrapolation beyond this range can lead to inaccurate 
predictions. In addition, RSM is better adapted for continuous variables, 
and its performance may suffer when dealing with discrete or limited- 
value variables. Nonlinear relationships between input variables and 
system responses, which are prevalent in ICE and biofuel systems, can be 
challenging for RSM to effectively capture. 

There are numerous opportunities for RSM in ICE and biofuel ap
plications despite these obstacles. Integration of RSM with other opti
mization techniques, such as genetic algorithms, particle swarm 
optimization, or machine learning approaches, can enhance the opti
mization process’ precision and robustness. In addition to biofuels, RSM 
can be applied to a wide variety of engine types and fuels, allowing for 
more thorough investigations into engine performance and emissions 
optimization. The development of novel experimental designs tailored 
specifically for RSM in ICE and biofuel applications can aid in over
coming its limitations, such as discrete variable and nonlinearity issues. 

Implementing RSM for real-time optimization of engine performance 
and emissions may become more feasible as computing power continues 
to increase, providing significant benefits for vehicle efficiency and 
emissions control. In addition, the use of RSM to optimize the perfor
mance of ICE and biofuels can contribute to the development of more 
environmentally favorable and sustainable transportation solutions. 

While the use of RSM in ICE and biofuel applications presents chal
lenges, the opportunities presented by this methodology, especially 
when combined with other optimization techniques and advances in 
experimental design, can significantly contribute to the comprehension 
and optimization of engine performance, emissions, and fuel efficiency. 

7. Research gap for RSM future studies 

Generally, three aspects should be evaluated comprehensively in 
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ICEs. They are engine performance, combustion, and emissions char
acteristics. However, it is not easy to find the application of RSM to 
optimize engine combustion parameters. Most studies tend to focus on 
engine performance and emission only. Several engine combustion be
haviors need further investigation, such as maximum in-cylinder pres
sure, start of combustion, combustion noise level, knock, and misfire 
events. It is possible to quantify numerous characteristics utilising 
response surface methodology for optimization. 

In RSM, variables are typically selected based on their ability to in
fluence the system’s response. The number of variables that can be 
incorporated in the optimization process is limited only by the examined 
system’s complexity and the number of experimental runs that can be 
conducted. To quantify the variables, it is required to measure them 
using appropriate experimental methodologies and record the results of 
each experiment. The experimental runs’ data are then utilized to fit the 
polynomial equation to the response data and determine the optimal 
combination of variable values. To guarantee that the ideal portion of 
the response surface is appropriately sampled, it is necessary to metic
ulously prepare the experimental design and the range of variables. This 
will ensure that the optimization process identifies the optimal combi
nation of variable values in an efficient and effective manner. 

Regarding engine performance, fuel economy is one of the most 
important engine performance parameters that need to optimize. A 
number of approaches have been proposed, such as engine downsizing, 
variable compression ratio, and lean-burn engines. However, only the 
optimization of the VCR engine can be found in the literature using RSM. 
The use of RSM tends to exploit conventional engines such as naturally 
aspirated SI and CI engines. Modern engines equipped with a turbo
charger or advanced lean-burn combustion technology such as HCCI, 
PCCI, and RCCI that suffers from performance-emission trade-off are 
rarely investigated. This is where the RSM can play an important role in 
solving such a problem. 

As for the emission characteristics, PM or soot emission is the major 
concern of CI engines. The use of bioalcohol and biodiesel, due to their 
oxygen content, can significantly reduce such emissions. However, PM is 
sometimes not reported and not taken into account as the output 
response. Considering the NOx-PM trade-off in diesel engines, both 
emissions should be given high priority to be optimized. It is problematic 
to decrease NOx and PM emissions simultaneously due to the diffusion 
combustion in diesel engines. In addition to regulated emissions, the 
effects of several other compounds, such as carbonyl compounds 
(formaldehyde, propionaldehyde, acetaldehyde, and acetone) or known 
as the unregulated emission, are worth investigating. 

Author contributions 

Conceptualization, I.V., and M.S.; methodology, I.M.R.F.; formal 
analysis, I.V.; investigation, M.I., I.M.R.F. and M.S.; resources, I.V. and 
M.S.; data curation, I.M.R.F. and M.I.; writing—original draft prepara
tion, I.V., and M.I.; writing—review and editing, M.S. and M.I.; visual
ization, I.V., I.M.R.F. and M.I.; supervision, I.V. , and M.S.; project 
administration, M.I. All authors have read and agreed to the published 
version of the manuscript. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The authors are unable or have chosen not to specify which data has 
been used. 

References 

[1] H. Golpîra, Smart energy-aware manufacturing plant scheduling under 
uncertainty: a risk-based multi-objective robust optimization approach, Energy 
209 (2020), 118385. 

[2] G. Kou, S. Yüksel, H. Dinçer, Inventive problem-solving map of innovative carbon 
emission strategies for solar energy-based transportation investment projects, 
Appl. Energy 311 (2022), 118680. 

[3] Y. Zhu, et al., Optimal design of multi-energy complementary power generation 
system considering fossil energy scarcity coefficient under uncertainty, J. Clean. 
Prod. 274 (2020), 122732. 

[4] K.S. Prasad, S.S. Rao, V. Raju, Effect of compression ratio and fuel injection 
pressure on the characteristics of a CI engine operating with butanol/diesel 
blends, Alex. Eng. J. 60 (1) (2021) 1183–1197. 

[5] M. Setiyo, D. Yuvenda, O.D. Samue, The Concise latest report on the advantages 
and disadvantages of pure biodiesel (B100) on engine performance: literature 
review and bibliometric analysis, Indonesian Journal of Science and Technology 
6 (3) (2021) 469–490. 

[6] S. Baek, S. Lee, M. Shin, J. Lee, K. Lee, Analysis of combustion and exhaust 
characteristics according to changes in the propane content of LPG, Energy 
(2021), 122297. 

[7] H. Xing, C. Stuart, S. Spence, H. Chen, Alternative fuel options for low carbon 
maritime transportation: pathways to 2050, J. Clean. Prod. 297 (2021), 126651. 
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