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Abstract

This paper proposes a deep learning-based integrated framework for multiple cooperative households to achieve optimal energy distribution.
The corresponding energy generation and consumption problems are formulated by a long short-term memory algorithm is combined with an
optimization algorithm to produce an optimal solution. In this study, a PV-community energy storage system (CESS) integrated is considered
where the scheduling decision of the CESS and utility grid can be subsequently achieved through formulated constraints. The test results
demonstrate the efficacy and robustness of the proposed system that achieves superior performance on effective renewable energy usages of
maximum 31.74% in a home environment.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The need for electricity has risen significantly in various
areas because of the huge development of businesses, factories,
and population growth. As a result, the integration of electrical
components in a wide range of applications expand rising en-
ergy demands. According to the International Energy Agency,
global electric power consumption will increase at a rate of
2.1% per year through 2040 (IEA). Furthermore, global energy
consumption is expected to rise from 19% in 2018 to 24%
in 2040 [1]. The rise in energy demand over the last several
decades can also be attributed to consumers’ modernistic lives.

As more energy storage is installed throughout the world,
especially in household loads-renewable energy (RE) inte-
grated system, community energy storage system (CESS) has
increased in popularity. As a result, CESS has been installed
all over the world, particularly in Australia, the Netherlands,
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and the United States [2,3]. However, as the energy system’s
infrastructure improves, users can optimize their real-time
energy consumption by combining artificial intelligence with
home energy management systems (HEMS). If CESS is in-
cluded in the system, such an optimization process will be
more effective and reliable. CESS generates collective socioe-
conomic benefits based on its dependencies and constraints,
such as self-consumption and higher renewable resources inte-
gration, reduced reliance on fossil fuels, lower electricity bills,
revenue generation via various energy services, and increased
local economy [4].

1.1. Related work

Several researchers have proposed different methodologies
and schemes for controlling and evaluating shared energy
storage systems. Wang et al. [5] proposed an ESS operation
management approach that takes into account electricity pric-
ing and power demand thresholds, with customers and the
network regulating energy storage capacity. Sardi et al. [6]
developed a shared energy storage control mechanism based
on charging and discharging substation power thresholds by
considering some benefits such as energy arbitrage, peaking
power generation, and energy loss reduction. In [7], the authors
developed a charging envelope-based control strategy based
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/licenses/by-nc-nd/4.0/).
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n the state of charge (SOC), charging and discharging pe-
iod constraints, and distribution network operators. In shared
SS, an energy exchange scheme based on dynamic program-
ing is used to exchange energy between ESS operations

nd individual ESS units of residential users [8]. Moreover,
esidential consumers can purchase or sell their allotted shared
nergy storage capacity, charging–discharging timetable, and
he amount of charging and discharging power for the shared
SS [9,10]. In [11], Carli et al. proposed a method for de-

ermining the best charging and discharging profiles for a
hared battery energy storage system via energy exchanges
ith the grid and management of controlled loads. In an arti-

le [12], and energy sharing platform is created to effectively
xchange power between hybrid ESS and utility grid based
n the different sizes of thermal and gas systems, improving
ystem reliability and reducing the fluctuation of RE resources.
n [13], the authors proposed stochastic model predictive con-
rol based robust optimal scheduling algorithm for minimizing
he community electricity cost through controllable and non-
ontrollable loads in the grid-connected energy community.
n addition, two stages stochastic programming is used for
orecasting uncertainties and model predictive control strategy
ave been developed for micro-grid for reducing uncertainties
ssues by considering battery, distributed generation, PV, and
ind [14].

.2. Contributions

In [15], the energy management scheme for ESS by two-
tages management (i.e., hourly and minute-level operation
trategies) and predictable model have been proposed while
he scheduling and optimization of CESS along with multiple
ouseholds are not taken into consideration. In [16,17], the
uthors investigate energy management schemes under un-
ertain environments and promote curtailing of energy usage
nd proposes a scheduling scheme for minimizing the cost of
icrogrid framework. Moreover, a PV-ESS (i.e., PV system

onnected with energy storage system) integrated system has
dopted an effective scheduling technique in a domestic res-
dence for minimizing energy expense [18–20]. The authors
f those publications concentrate on charging and discharging
imes without taking into account expected PV power output
nd home energy consumption. As a result, rather than charg-
ng, the ESS releases stored energy during PV production.
urthermore, because of a lack of charge in the ESS, the
ppliances draw electricity from the grid at times of high
emand. Although the previous research is comparable to this
esearch, the goal of this paper is to design a control scheme
or the shared ESS by compromising maximum PV generation
nd ESS stored energy usage within constraints. In contrast to
revious studies, the optimal energy management methodol-
gy proposed in this article takes into account forecasted daily
nergy consumption as well as a PV generation profile that
eflects the use of renewable resources. Multiple households
onnected with PV integrated CESS are contemplated, which
eans that the CESS will distribute power among them by

nfluencing their requirement as well as PV generation profile.

Therefore, the contributions of this include the following:

334
Fig. 1. Proposed shared energy management system framework. Black and
gray arrows represent the flow of energy and information, respectively.

• We propose a novel HEM model based on a predic-
tive machine learning algorithm combined with an en-
ergy sharing optimization algorithm within a data-driven
framework. The test results indicate a promising perfor-
mance in terms of PV generation and demand daily.
• The conventional schemes are only based on an opti-

mization algorithm with a certain number of constraints.
However, these assumptions are inconsistent and less
effective since the ahead generation and consumption are
vague. In contrast, our proposed data-driven HEM model
can predict future uncertainties using an LSTM-based
predictive model and make the best scheduling decision
using an optimization algorithm.
• In dealing with different types of consumption profiles

in the residential house, a multi-objective-based opti-
mization algorithm is designed to tackle the scheduling
problem involved with CESS.

The remainder of this paper is structured as follows. Section 2
describes the mathematical model for energy consumption,
PV generation, and CESS. Section 3 presents test results to
demonstrate the efficacy of our proposed scheme. Section 4
brings the manuscript to a conclusion.

2. Methodology

This study considers a scenario where a PV-equipped en-
ergy storage system is shared by multiple households for
utilizing the stored energy. The framework of the proposed
system is shown in Fig. 1. In this case, the consumer’s energy
demand is met through the utility grid and stored energy sup-
ply together. The CESS is charged during PV power generation
and discharged based on the needs of the user for the rest of
the time. In [21], the authors focus on the scheduling periods
of CESS for an optimum solution where multiple households
are considered. In this study, the system is used to design and
analyze a data-driven optimal energy sharing algorithm.

2.1. System modeling

The process of data-driven optimal energy sharing algo-
rithm is described briefly below:

Step 1: Firstly, collect the required data of households and

PV system according to the prediction target. Then clean and
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Table 1
Hyper-parameters for LSTM model.

Hyper-parameter Value

Model nodes 64
Optimizer, Loss function adam, MSE
Number of epochs, Batch size 50, 16
Train, Validation, and Test data size 66%, 16%, 18%

prepare the data for the predictive model. In addition, scaling
the data for better accuracy.

Step 2: Split the dataset into train and test by adjusting the
prediction objectives. Then, create data set according to the
model requirements.

Step 3: Create the LSTM model and define all parameters
inside the model. Evaluate the performance parameters.

Step 4: Use the forecasted result and required constraints
in scheduling algorithm for determining the charging and
discharging periods of the CESS.

Step 5: Finally, minimize the objective function by considering
scheduling periods and necessary constraints.

2.2. Long short term memory

A long short-term memory (LSTM) cell unit is a modified
version of a recurrent neural network that consists of an input,
a forget, and an output gate [22]. Eqs. (1)–(6) present the
operations of the LSTM network, where W and b are weight

atrix and bias vectors, respectively. The three gates operate
sing the mechanism of a sigmoid function σ , which regulates
he cell state (Ct ). The forget gate ft controls the cell state via
n output number ranging from 0 (discard information) to 1
keep information). By combining with the hidden state ht ,

the input gate it decides to keep the information in the cell
state. The old cell state Ct−1 gets updated into Ct by Eq. (3).
Eq. (4) presents potential vector C̄t ranging from 0 to 1 which
is used for determining cell state, where tanh is the hyperbolic
tangent function. Finally, the output ot of the output gate is
formulated in Eq. (5).

ft = σ
(
W f [ht−1, xt ]+ b f

)
(1)

t = σ (Wi [ht−1, xt ]+ bi ) (2)

t = ft ∗ Ct−1 + (1− ft ) ∗ C̄t (3)

¯t = tanh (Wc [ht−1, xt ]+ bC) (4)

t = σ (Wo [Ct , ht−1, xt ]+ bo) (5)

ht = ot .tanh(Ct ) (6)

Consider the input data and output data of the LSTM model
are X̄ and Ȳ . Therefore, the input and output relation of the

roposed model can be expressed as follows:

Ȳt
]
= L ST M

([
X̄ t−St , . . . , X̄ t−2, X̄ t−1

])
,

(7)

∀t ∈ [tst , ted ]
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where St is defined as the window size. In the proposed model,
we have used window size = 96 (i.e., a single day) due to
having 15 min time intervals data. The train, validation, and
test data size are 66%, 16%, and 18%, respectively. Accord-
ingly, the train and test input data shapes are (11404, 96, 1) and
(3110, 1). Therefore, the LSTM model is designed through the
adjustment of the parameters of the networks. In the model,
the “adam” optimizer and “mean squared error (MSE)” loss
function is used while the learning rate of the optimizer is
.001. The mean The parameters of the model are presented
in Table 1. The forecasting of energy consumption and PV
generation data is discussed in Sections 2.3 and 2.4.

2.3. Scenario of household demand

The mathematical model is formulated to determine each
individual consumer’s constraints and dependencies based on
their daily electricity demand profile. Because the constraints
and assumptions are derived from the predicted model, a
household’s actual demands (D) are defined as E H

D,t (t). If the
house (H ) has N ∈ Z appliances (Ai ), the total energy (E) at
time t can be expressed as follows:

E H
D,t (t) =

N∑
i=1

E H,Ai
D,t (t) (8)

Similarly, for house no. 1 (H1), house no. 2 (H2), and house
no. 3 (H3), we may determine E H2

D,t (t), E H2
D,t (t), and E H3

D,t (t).
et’s consider the household’s predicted demands at time t is

E H
F D,t (t). The input (E H

D,t ) and output (E H
F D,t ) of the predictive

odel can be presented as follows:

E H
F D,t

]
= L ST M

([
E H

D,t−St
, . . . , E H

D,t−2, E H
D,t−1

])
(9)

According to the above equation, the forecasted demand of
two consecutive days for H1, H2, and H3 are determined. The
total energy usage from t to the current day (ted ) is calculated
as follows:

E H
F D,[t,tend ](t) =

e∑
j=1

N∑
i=1

E H,Ai
F D,τ ( jτ )−

k∑
j=1

N∑
i=1

E H,Ai
D,t (t − jτ ))

(10)

∈ [0, 24], e =
24
τ

, and k = (
t
τ
− 1) where, t = hour

t ∈ [0, 1440], e =
1440

τ
, and, k = (

t
τ
− 1) where t = minute

The static and dynamic forecasted average power usage during
24-hours can be formulated as follows:

E H,Avg
F D,[tst ,ted ] =

∑n
i=1
∑e

j=1 E H,Ai
τ,d ( jτ )

e
(11)

E H,Avg
F D,[t,ted ](t) =

E H
F D,[t,ted ](t)

e − k
(12)

Similarly, the average power of single day for three households
can be defined as E H1,Avg

F D,[tst ,ted ], E H2,Avg
F D,[tst ,ted ], and E H3,Avg

F D,[tst ,ted ].
Therefore, the dynamic average power for three households
can be expressed as E H1,Avg

F D,[t,ted ](t), E H2,Avg
F D,[t,ted ](t), and E H3,Avg

F D,[t,ted ]
(t). The minimum and maximum demand of the households
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re being determined from the historic data of the particular
ousehold. The minimum and maximum allowance of demand
f any house can be expressed as E H,min

D,t and E H,max
D,t . The

ower consumption allowance can be expressed as follows:

E H1,min
D,t ⩽ E H1

D,t (t) ⩽ E H1,max
D,t (13)

E H2,min
D,t ⩽ E H2

D,t (t) ⩽ E H2,max
D,t (14)

E H3,min
D,t ⩽ E H3

D,t (t) ⩽ E H3,max
D,t (15)

.4. Scenario of PV power

The proposed scheme includes a single PV-generating sys-
em, several houses, and CESS integration. PV power genera-
ion and forecasted PV power generation, denoted as P PV

Gen,t (t)
nd P PV

FGen,t (t), can be used to represent PV power limitations
nd dependencies. The total energy production at time t can
e expressed as follows:

P PV
Gen,t (t) =

N∑
i=1

P PV,Mi
Gen,t (t) ∗ ξ

Mi
PV (t) (16)

here ξ
Mi
PV (t) ∈ [1, 0] specifies the PV module’s operational

tate at time t . The duration between starting and ending
eneration time describes as t ∈ [tst , ted ], where j = 0 at

the starting period and p = ted/τ and q = (t−tst )
τ

at the ending
period. Let us consider the forecasted generation at time t is
P PV

FGen,t , it can be formulated as follows:[
P PV

FGen,t

]
= L ST M

([
P PV

Gen,t−St
, . . . , P PV

Gen,t−2, P PV
Gen,t−1

])
(17)

According to the above equation, the forecasted generation of
two consecutive days is determined.

P PV
FGen,[tst ,ted ](t) =

p∑
j=0

N∑
i=1

P PV,Mi
FGen,t+τ (tst + jτ ) ∗ ξ

Mi
PV (t) (18)

P PV,Avg
FGen,[tst ,ted ](t) =

P PV
FGen,[tst ,ted ](t)

p
(19)

P PV
FGen,[t,ted ](t) =

p∑
j=0

N∑
i=1

P PV,Mi
FGen,τ (tst + jτ ) ∗ ξ PV

Mi
(t)

−

q∑
j=0

N∑
i=1

P PV,Mi
Gen,t+τ (t − jτ ) ∗ ξ PV

Mi
(t)

(20)

P PV,Avg
FGen,[t,ted ](t) =

P PV
FGen,[t,ted ](t)

p − q
(21)

Eq. (18) describes the amount of power generated in a single
day. Eq. (19) calculates the PV panel’s expected average gener-
ation. Eqs. (20) and (21) can be used to calculate the total and
average forecasted power from t to ted periods, respectively.

2.5. Scenario of CESS power

The following mathematical model is formulated for finding
constraints and dependencies of CESS by which the optimal
charging and discharging operations can be designed. The
constraints used for charging and discharging of the ESS must
336
be governed by PV power generation and electricity demand
characteristics.

P PV
Gen,th ⩽ P PV

Gen,t (t), SC E SS
t,c , t ∈ [tst , ted ], (22)

SOCC E SS
t,max > SOCC E SS

t (t), SC E SS
t,c , t ∈ [tst , ted ] (23)

SOCC E SS
t,min < SOCC E SS

t (t) ⩽ SOCC E SS
t,max , SC E SS

t,d (24)

here SC E SS
t,c are binary variables that represent the ESS’s

harging/discharging status. The ESS’s minimal and maximum
tates of charge were represented by the variables SOCC E SS

t,min (t)
nd SOCC E SS

t,max . Constraint Eq. (22) permits the CESS to charge
tself, while constraint Eq. (23) prevents it from overcharging.
he threshold value of PV power generated that allows stor-
ge to be charged is defined as PGen,th . Constraint Eq. (24)
epresents the CESS discharging allowance to households.

.6. Mathematical formulation for optimal solution

The following constraints and mathematical formulation
re developed for obtaining optimal solution for each house-
old by considering the principle of CESS. According to
he principle, the CESS can supply energy to two different
ouseholds simultaneously based on demanded load and dis-
harging allowance. We consider the charging period during
V generation and the rest of the period will be treated as
ischarging period depends on the stored energy because the
harging and discharging processes in energy storage are not
easible at the same time. Let’s consider the initial charge
mount of the battery is EC E SS

t (t − 1) = EC E SS
ini , the amount

f the stored energy in the ESS can be expressed as follows:

EC E SS
t (t) = P PV

Gen,t (t)+ EC E SS
t−1 (t − 1) (25)

Because of the frequent changes in demand of the con-
umer, the requirements of receiving energy will be changed.
onsequently, there is a possibility of mismatching discharg-

ng time. The forecasted dynamic average value of the load
rofile was taken into account for formulating the period of
ach consumer as well as to avoid the uncertainty of the
cheduling period. The scheduling constraints for discharging
ESS are as follows:

E H1,Avg
F D,[t,ted ](t) ⩾ E H2,Avg

F D,[t,ted ](t) (26)

E H1,Avg
F D,[t,ted ](t) < E H2,Avg

F D,[t,ted ](t) (27)

E H1,Avg
F D,[t,ted ](t) ⩾ E H3,Avg

F D,[t,ted ](t) (28)

E H1,Avg
F D,[t,ted ](t) < E H3,Avg

F D,[t,ted ](t) (29)

E H2,Avg
F D,[t,ted ](t) ⩾ E H1,Avg

F D,[t,ted ](t) (30)

E H2,Avg
F D,[t,ted ](t) < E H1,Avg

F D,[t,ted ](t) (31)

E H2,Avg
F D,[t,ted ](t) ⩾ E H3,Avg

F D,[t,ted ](t) (32)

E H2,Avg
F D,[t,ted ](t) < E H3,Avg

F D,[t,ted ](t) (33)

E H3,Avg
F D,[t,ted ](t) ⩾ E H1,Avg

F D,[t,ted ](t) (34)

E H3,Avg (t) < E H1,Avg (t) (35)
F D,[tst ,ted ] F D,[tst ,ted ]
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Algorithm 1 Optimal energy sharing algorithm
Input:

Forecasted data, charging, and discharging constraints

Output:

Scheduling period and discharge allowance volume

1: begin
2: ask E PV

G,th , SOCC E SS
t,min and SOCC E SS

t,max of ESS
3: Determine SOCC E SS

t (t) at the beginning
4: for every household and PV system do
5: for every certain interval do
6: Compute Eq. (8), Eqs. (10)–(12) and Eqs. (18)–(21)
7: end for
8: end for
9: go to Algorithm 2

10: while every certain interval do
11: for every household do
12: for every certain interval do
13: Compute Eq. (41) and Eq. (43)
14: end for
15: end for
16: for every certain interval do
17: Determine sum of discharge amount
18: end for
19: Minimize Eq. (42)
20: end while
21: end

E H3,Avg
F D,[t,ted ](t) ⩾ E H2,Avg

F D,[t,ted ](t) (36)

E H3,Avg
F D,[t,ted ](t) < E H2,Avg

F D,[t,ted ](t) (37)

A combination of constraint Eqs. (26)–(37) allows each
consumer to receive energy from the CESS. The maximum
discharging allowance of each consumer differs because of
the different profiles of load. Constraint Eqs. (38)–(40) allow
the maximum limits of taking power from the CESS. We
considered each consumer’s maximum limit to be its maxi-
mum demand. The set of discharged energy for households is
defined as

{
E H1

Dis,t (t), E H2
Dis,t (t), E H3

Dis,t (t)
}
∈ E Hh

Dis,t (t), h ∈ N .
The following is a description of the maximum discharging
allowance:

0 ⩽ E Dis,H1
t (t) ⩽ E H1,max

D,t (38)

0 ⩽ E Dis,H2
t (t) ⩽ E H2,max

D,t (39)

0 ⩽ E Dis,H3
t (t) ⩽ E H3,max

D,t (40)

The total discharged energy of individual consumer will be
varied after taking into consideration the level state of charge
(SOC) of CESS. The discharging amount will be varied con-
cerning w = 1

α
, where iteration number is defined by α.

Therefore, the discharging allowance can be expressed as
follows:

E Dis,Hh (t) = E Hh (t)− w ∗ E Hh ,min(t) (41)
t D,t D,t
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Algorithm 2 Scheduling algorithm

1: for every certain interval do
2: if Eq. (22) and Eq.(23) then
3: Only charging period is available
4: Compute EC E SS

t (t) by Eq. (25)
5: else if Eq. (24) then
6: if Eq. (26) & Eq. (28) then
7: H1 ← 1 {1 means discharge period}
8: if Eq. (33) then
9: H3 ← 1 and H2 ← 0 {1 means non-discharge

period}
10: else if Eq. (37) then
11: H2 ← 1 and H1 ← 0
12: end if
13: else if Eq. (30) & Eq. (32) then
14: H2 ← 1
15: if Eq. (29) then
16: H3 ← 1 and H1 ← 0
17: else if Eq. (35) then
18: H1 ← 1 and H3 ← 0
19: end if
20: else if Eq. (34) & Eq. (37) then
21: H3 ← 1
22: if Eq. (27) then
23: H2 ← 1 and H1 ← 0
24: else if Eq. (31) then
25: H1 ← 1 and H2 ← 0
26: end if
27: else
28: H1 ← 0, H2 ← 0, and H3 ← 0
29: end if
30: end if
31: end for

min
ted∑

t=tst

(
EC E SS

t (t)−
N∑

h=1

E Dis,Hh
t (t)

)
(42)

EGrid,Hh
t (t) = E Hh

D,t (t)− E Dis,Hh
t (t) (43)

SOCC E SS
t (t) =

(
EC E SS

t (t)
EC E SS

Cap

)
(44)

where EGrid,Hh
t and EC E SS

Cap present the energy supplied by the
grid and maximum energy stored capacity of CESS. The ob-
jective function Eq. (42) is designed to minimize the expected
energy from the grid for the entire community while maxi-
mizing the use of renewable resources. Algorithm 1 shows the
step-by-step procedure for the optimal energy sharing scheme.
Moreover, Algorithm 2 illustrates the charging and discharging
periods of CESS.

3. Simulation result

In this section, a single simulation is run to demonstrate
and qualify the effectiveness of the proposed data-driven and
dynamic energy sharing algorithm, as well as to demonstrate
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Table 2
Performance analysis of forecasting model.

Performance indicators H1 H2 H3 PV

MSE (kW) 0.3743 0.4822 0.2135 0.00024
MAE (kW) 0.0131 0.0141 0.0096 0.0086
MAPE (%) 15.882 17.802 15.724 19.783

and qualify the benefits of deploying CESS. The forecasting
and optimization algorithm for three homes are simulated on
Dell A06 Workstation with 128 GB of memory and Intel(R)
Xeon(R) Silver 4210R CPU @ 2.4 GHz processors. The
computational time for the optimization algorithm is 5.77s. In
the test system, we have considered a grid-connected system
where numerous households are taking power from the utility
grid and sharing their load with the CESS-integrated PV
system. We used energy usage data collected from three homes
over 6 months to forecast the energy usage profile of each
household. Similarly, forecasted PV generation is calculated
using real-time data. For understanding the effectiveness and
robustness of the designed data-driven optimization algorithm,
the PV power generation and electricity demand for two con-
secutive days are organized and discretized into 192 15-min
intervals.

Table 2 summarizes the performance analysis results of the
LSTM model. The prediction results of the model are evalu-
ated by mean square error (MSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE). Experimental
results show that the error for H3 is comparatively less than

thers households. The error value in terms of MSE, MAE,
APE for the H3 are .2135 kW, .0096 kW, and 15.724%.

imilarly, the prediction errors for PV generation are 2.4 ×
0−4 kW, .0086 kW, and 19.783%. Fig. 2 presents the actual
nd forecasted PV generation and energy consumption profile
or two consecutive days. It also shows the results of the data-
riven optimization algorithm for the scheduling period of
harging and discharging allowance. As shown in the figures,
he simulation results cover the days of electricity generation
nd consumption from November 8, 2020, to November 10,
020. From Fig. 2, it is observed that the CESS is charged
nly during the period of power generation while the dis-
harging occurs during the rest of the periods. According to
he optimization scheme, two of the houses can draw energy
rom the battery at the same time because their demand is
igher than the rest. As a result, the household with the highest
emand can use energy for longer periods. Because of the
igher demand, household 3 has been connected to the CESS
or a longer period than the others, as shown in Fig. 2(b),
c), and (d). Moreover, household 1 has been allowed for
he shortest periods. The allocation of discharging periods
as been designed based on the forecasted demand of the
ndividual households.

The battery’s SOC is displayed in Fig. 3(a). In this figure,
e show the SOC of the battery after the operational periods

or each iteration has ended. According to the graph, the
ischarging allowance at normal conditions keeps the battery

rom charging during PV power generation. On the contrary,
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Fig. 2. (a) CESS charging period and CESS discharging periods and energy
demand for (b) H1, (c) H2, and (d) H3.

the data-driven optimization algorithm provides a balanced
condition between charging and discharging allowance on
daily basis. The convergence curve of the proposed scheme
is depicted in Fig. 3(b). With the increased use of renew-
able resources, the proposed optimization process provides
an improved method in terms of energy management. The
outcome of the proposed objective function is demonstrated
in Fig. 4. The volume and the time of utilization of energy,
which is stored during PV power generation, are presented
in this figure. These diagrams show the energy flow from
the grid and energy storage to households under normal and
optimized conditions. It has been observed that the battery
has supplied less energy to the households under normal
conditions, although it contains more energy. Consequently,
the households need to take more power from the grid which
is responsible for the high electricity bill. However, the use
of optimal operation results in greater utilization of energy

storage for all households. The figure shows that the battery
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Fig. 3. (a) SOC status of the CESS with iterations and (b) Convergence
curve for the proposed optimization algorithm.

Fig. 4. Grid and CESS energy scenario for (a) H1, (b) H2, and (c) H3.

provides enough energy to each household while remaining
within the discharging constraints.

The comparison of the total supplied energy by the grid
and battery at normal and optimized condition is presented
in Fig. 5. For better perception, the total demand of each
household is also included in this figure. Tables 3 and 4 show

a summary of energy consumption for each household under

339
Fig. 5. Energy demand-supply for households.

Table 3
Analysis of the grid and CESS power utilization.

Condition Normal Optimal

House No. E H
d,t EGrid,H

t E Dis,H
t E H

d,t EGrid,H
t E Dis,H

t

H1 (kWh) 11.81 9.18 2.62 11.81 8.04 3.76
H2 (kWh) 12.09 10.24 1.85 12.09 7.36 4.72
H3 (kWh) 13.11 10.07 3.03 13.11 5.91 7.19

Table 4
Analysis of the grid and CESS power utilization.

House No. H1 H2 H3

Condition Nor Opt Nor Opt Nor Opt

E H
d,t (kWh) 11.81 12.09 13.11

EGrid,H
t (%) 77.81 68.13 84.69 60.94 76.83 45.09

E Dis,H
t (%) 22.19 31.86 15.31 39.05 23.16 54.90

normal and optimal conditions. Total electricity demand and
percentage of receiving energy from the grid and CESS for
each household are also analyzed in this table. Households
with a higher and lower energy demand use more and less
storage energy, respectively. However, the H1 and H3 in-
crease the amount of receiving storage energy approximately
to 9.67% and 31.74%. Similarly, the reverse process occurs,
while drawing power from the grid.

4. Conclusion

In this study, we generated a structured community energy
storage control algorithm based on a predictive model that
includes the maximum discharging allowance for each con-
sumer. The proposed predictive model has been achieved lower
forecasting error in terms of MAPE of 15.724%. The efficacy
of the optimization algorithm is evaluated by the charging–
discharging scheduling pattern and the amount of supplying
energy of CESS. The proposed system effectively reduces
grid energy volume while increasing the use of renewable
resources. The greatest improvement is seen in the case of H3.
Grid energy usage has decreased by 76.83% to 45.09%, while
ESS energy usage has increased by 23.16% to 54.90%. Based
on the numerical results, it is possible to conclude that the
proposed optimization system achieves a reasonable level of
performance in the face of the uncertainty and the complexity
inherent in community energy storage operations. In the future,
a research will be conducted to augment the current approach
for comprehensive application through the clustering technique
which includes a large number of users and multiple CESS.
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