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A B S T R A C T   

The response of berm breakwaters to wave forces has been examined with rebuild and cumulative experiments. 
In rebuild experiments, the breakwaters were reconstructed after each test, whereas in cumulative experiments 
the structural damages were examined at the end of the experiment. This study presents a new method to 
investigate the berm breakwaters recession considering datasets collected of both types of experiments. Cumu
lative experimental results were converted to their equivalent rebuild experimental results by modifying the 
number of waves for the reported damage. After homogenizing the data, the datasets were divided into the train, 
validation, and test subsets. The data were analyzed using the Multi-Objective Genetic Programming (MOGP) 
approach, and a prediction model was created to evaluate the berm breakwater recession. The results obtained 
from the MOGP model were compared to outcomes computed using implicit formulas available in the literature 
showing that the MOGP model is accurate (R2 = 0.911 and RMSE = 0.111) with a relatively broader applica
bility range. The impact of each input parameter on the berm breakwater recession was examined using para
metric and sensitivity analyses. The stability number was the most important parameter impacting the damage 
on the coastal structure. The results are in line with findings reported in previous studies.   

1. Introduction 

Berm breakwaters were first introduced four decades ago mainly to 
minimize the armor-stone quarry and construction equipment. Berm 
breakwaters have a bulkier cross-section compared to conventional and 
concrete block breakwaters. However, the possibility of using smaller 
rock materials for construction mostly outweighs the rock volume 
regarding the material supplies and construction costs (Juhl and Jensen, 
1995). An illustration of the berm breakwater recession and the involved 
parameters are presented in Fig. 1. 

The stability number, H0––Hs/ΔDn50, is the main contributing 
parameter in the design of berm breakwaters, which was first proposed 
by Van der Meer and Pilarczyk (van der Meer and Pilarczyk, 1984). The 
wave period was then added to the stability number to generalize its 
relation to wave parameters (van der Meer, 1988), (Moghim et al., 
2011). Although it was shown that using the wave period parameter, T0 
= T⋅(g/Dn50)0.5, can increase the scattering of the recession data (van der 
Meer and Sigurdarson, 2017), researchers (Moghim et al., 2011), 
(Tørum and Krogh, 2000)– (Shekari and Shafieefar, 2013) have 

incorporated this parameter in their post-analyses of the experimental 
studies and derived reliable formulations. Later (Moghim et al., 2011), It 
is shown that the order of wave height and wave period effectiveness on 
the reshaping of berm breakwaters is not the same (Moghim et al., 
2011). Therefore, a modified stability number, H0√T0, is introduced. 

Some variation of views, which have been put forward based on the 
experiments, stems from the difference in the experiment methods 
which lead to substantial differences in the data sources. Berm break
water experiments follow two major approaches: cumulative, in which 
cumulative damages are recorded in the experiments, and rebuild, 
wherein, breakwater sections are reconstructed after each test. Since this 
difference in the test method and their results significantly affects the 
data analysis, a general dataset consisting of these two sources must be 
homogenized before analysis can be carried out. This is one of the main 
parts of this paper and will be discussed in more detail. 

Thus far, researchers primarily aimed to establish experimental 
formulae for estimating the stability of berm breakwaters (Moghim 
et al., 2011), (Lykke Andersen and Burcharth, 2010), (Sigurdarson et al., 
2009a; Sigurdarson et al., 2009b; Sigurdarson and van der Meer, 2013; 
Sigurdarson and van der Meer, 2014; Moghim and Lykke Andersen, 
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2015). These research studies have led to a deeper understanding of the 
types of berm breakwaters (van der Meer and Sigurdarson, 2017). More 
recently, Lykke Andersen et al. (2014) modified an older formulation 
(Lykke Andersen and Burcharth, 2010) with a large application area on 
berm breakwaters using the modified dynamic stability number. More 
recently, Ehsani et al. (2020) performed an experimental study on 
Icelandic-type berm breakwaters and damage, presenting formulae for 
the eroded area of multi-layered berm breakwaters. Shafieefar et al. 
(2020) proposed the idea of using secondary toe berm to reduce bottom 
settlements and increase the geotechnical stability of berm breakwaters 
constructed in water depths less than 20 m. A considerable influence on 
recession reduction was observed when increasing the width and 
thickness of the toe berm. 

Machine learning (ML) approaches and soft computing tools, such as 
Artificial Neural Network (ANN), Support Vector Machine (SVM), Model 
Trees (MT), Fuzzy Logic (FL), and Genetic Programming (GP), are 
powerful methodologies that have been used to solve many complex 
problems dealing with data points. These methods have had successful 
applications in marine engineering. For instance, an ANN model was 
developed by Van Gent et al. (van Gent et al., 2007) to estimate wave 
overtopping discharges for a wide range of coastal structures, including 
berm breakwaters. Formentin et al. (2017) introduced an ANN tool 
using an extensive experimental dataset consisting of nearly 18,000 tests 
to predict the main parameters describing the wave-structure interac
tion processes, such as mean wave overtopping discharge, wave trans
mission, and wave reflection coefficients. In addition, success has been 
achieved by using machine learning tools, such as SVM and hybrid GA 
with SVM models, for berm breakwaters, particularly to predict the 
damage level in non-reshaping berm breakwaters (Harish et al., 2014). 
In a similar study, Harish et al. (2015) developed an SVM tool and 
Particle Swarm Optimization (PSO) with SVM hybrid to predict the 
damage level of non-reshaping berm breakwaters. (MAST, 1997). An 
M5’ machine learning approach is used to formulating the berm 

recession (Hosseini and Shafieefar, 2016). A Bayesian probabilistic 
model was developed by Pontiki (2019) for berm breakwaters failures 
probability prediction and the corresponding uncertainties in the arctic 
regions. 

Looking at the history of research in the field of berm breakwaters, 
there have been invaluable experimental and analytical studies that 
resulted in some design formulas with their own inevitable limitations. 
Although efforts have been made on developing or modifying the 
existing formulations based (van Gent et al., 2007) on a larger database 
consisting of multiple data sources, the outputs were either hard to ac
cess (in form of an ANN) or too complicated (with a higher probability of 
user mistakes) to be utilized as a design tool. 

In this study, reliable experimental data on berm recession were 
collected from different sources. Based on the fundamental differences 
in the test data due to the different experimental approaches, it was not 
practically acceptable to use all data at once without any modifications. 
That is why researchers developed different formulas based on the 
experimental approach they adopted. Therefore, by developing a code, 
data homogenization considering the effect of important parameters 
such as the number of waves and damage parameters was conducted. 
Then, Multi-Objective Genetic Programming (MOGP) technique was 
used on the homogenized data to find a relationship between the inputs 
(sea state and structural) and the target parameter (berm recession). 
Since various experimental outputs from different sources were used, 
which is the main advantage of this study, the general model allowed 
more comprehensive predictions of recession in berm breakwaters for 
design purposes. The performance of the MOGP model was examined 
and compared with the existing formulas in the literature. Moreover, 
following the development of a MOGP model, both parametric and 
sensitivity analyses were conducted to examine its performance. Fig. 2 
summarizes the flow of work in the present study. 

Nomenclature 

Symbol Description Unit 
Hs Significant wave height m 
Δ Relative mass density 
Dn50 Nominal rock diameter m 
g Gravitational acceleration = 9.81 m/s2 

Tm Mean wave periods 
H0 Stability number (also known as Ns) = Hs/ΔDn50 
T0m Wave period parameter = Tm⋅(g/Dn50)0.5 

H0T0 Dynamic stability parameter 
H0√T0 Modified dynamic stability parameter 
h Water depth at the toe of the structure m 
hb Level of the berm in a berm breakwater below SWL, 

Negative values: submerged berm, Positive values: 
emerged berm m 

N Number of waves in a test = Test Duration/Tm 
B Berm width of berm breakwater m 
fg Rock gradation factor = D85/D15 
Gc Width of rock armored crest m 
D85 85 percent value of the sieve curve m 
D15 15 percent value of the sieve curve m 
αd Berm breakwater lower slope angle (◦) 
Rc Crest freeboard, level of crest relative to still water level m 
Rec Berm breakwater recession m 
k The regression line slope for predicted versus observed 

data 
k’ The regression line slope for observed versus predicted 

data 
Di Formula prediction domain when average values were 

substituted for all inputs except for the ith one var 
Si The sensitivity of the formula to its ith input parameter %  

Fig. 1. Schematic illustration of the important parameters in berm breakwaters recession.  
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2. Methodology 

2.1. Experimental data 

Since the recession of berm breakwaters is a progressive damage 
phenomenon, normally, the experiments were categorized into two 
different groups, cumulative and rebuild. The former group considers 
the effect of a cycle of test conditions by the method of cumulative 
damage, in which the breakwater section experiences a test sequence 
without rebuilding the structure. Obviously, at each stage of the 
experiment, a few rocks may be detached from the breakwater berm and 
fall to the toe of the structure. As each wave collides with the structure, 
the interlocking of stable stones increases (gaining more interlocking), 
not only due to the separation of the unstable stones from their original 
location but also because the reshaped profile has a milder frontal slope 
and is more stable than the initial slope. Therefore, when the maximum 
wave in a spectrum hits the structure in the final test, the initial relative 
stability that the breakwater section gained from the previous tests leads 
to lower values of berm recession. This methodology can contain de
viations from possible events in reality. In real cases, the structure can be 
prone to waves close to the maximum or design wave of a breakwater 
section right after its construction. This can cause the cumulative 
method to result in lower values than the probable environmental 
conditions. 

The second group of experiments, so-called the rebuild method, 
considers an undamaged section of berm breakwaters being exposed to 

the sea states in the physical modeling of the structure. Since a spectral 
wave is composed of a range of small waves to the high ones, the first 
wave train that strikes the structure is not necessarily a destructive wave 
for that breakwater section, but in any case, the structure experiences 
the highest wave of the spectrum during the test. This test condition 
gives more reliable and confident values for engineering design and 
judgment. Therefore, generally, the results of rebuild test measurements 
are of higher values than those extracted from cumulative tests, which 
explains the difference in the recession prediction results using the 
formulae of Hall and Kao (1991) and Tørum et al. (2003) in comparison 
with those presented by Lykke Andersen and Burcharth (Lykke Andersen 
and Burcharth, 2010), Moghim et al. (2011) and Shekari and Shafieefar 
(2013). 

Table 1 presents the datasets used in the analyses (van der Meer and 
Sigurdarson, 2017) (Sadat Hosseini and Shafieefar, 2014) (van der Meer 
and Sigurdarson, 2017) (Moghim et al., 2011) (Research and Associa
tion, 2007) (Koza, 1992).Overall, a total of 805 data points were 
considered for developing the Genetic Programming by dividing the 
data into Train, Validation, and Test subsets after the homogenization. 

Berm breakwaters recession depends on the wave height and period, 
number of waves or storm duration, as well as geometrical parameters, 
such as rock relative density and gradation, berm elevation and width, 
and the initial slope ((Moghim et al., 2011), (Tørum et al., 2003), 
(Shekari and Shafieefar, 2013), (Ehsani et al., 2020), (Hosseini and 
Shafieefar, 2016)). There are a few non-dimensional parameters that 
have been used by researchers and presented in Eq. (1). H0√T0p was 
selected as the representative of the stability against a particular sea 
state. h/Dn50 is owed to the representation of the average number of 
rocks in-depth, hb is divided by Hs to represent the relative berm 
elevation with respect to wave height. This parameter is generally used 
as a design parameter in berm breakwaters. The number of waves was 
used in a logarithmic form (Hall and Kao, 1991). The rock gradation 
factor and the lower front slope of the berm breakwater were also used 
as the input parameters. Some researchers (Shekari and Shafieefar, 
2013), (Sadat Hosseini and Shafieefar, 2014) used the berm width as an 
input parameter in their studies which means that a recursive process is 
needed to find the berm recession through convergence in the formulas. 
However, this methodology for design is tedious and more importantly, 
some researchers avoided the use of this parameter because it was not 
found an effective parameter on berm recession (Moghim et al., 2011). 
Therefore, this parameter was not introduced to the MOGP model. 
Rec/Dn50 represents the average number of rocks displaced from the 
berm breakwater. 

Rec
Dn50

= f
(

H0
̅̅̅̅̅̅̅
T0p

√
,

h
Dn50

,
hb

Hs
,LnN, fg, cot αd

)

(1)  

2.2. Data homogenization 

Each of the datasets in Table 2 contains several test series, and each 
test series contains several tests. Tests are performed under different 
conditions and are divided into two categories: rebuild and cumulative. 
The results of the rebuild tests will be used directly in the MOGP model. 
But the results of cumulative tests must first be converted to the 
equivalent of their rebuild tests. The general flowchart of this process is 
shown in Fig. 3. 

Conversion of cumulative tests begins with the detection of separate 
sets of tests from each other. Each cumulative collection is divided into 
separate sets by comparing some parameters related to the physical 
characteristics of the tests. These parameters are Hs, Dn50, D85/D15, Rc, 
B, hb, and Gc. If the values of these parameters are the same in some 
tests, those tests will be classified into one test series. 

In the initial classification based on physical characteristics, it is 
realized that in some test series only the breakwater was reconstructed, 
and the physical characteristics remained the same. To identify and 
separate these special cases, their recession value was compared. In each 

Fig. 2. Workflow of this study.  
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set, the number of waves is constant. So, it is evident that in these cases, 
the recession of the first test in a set will be less than the overall recession 
after the last test of its previous set. As a result, these cases can also be 
identified and distinguished from each other. 

Once the separate sets were detected in a dataset, the equivalent 
rebuild tests of each cumulative test can be achieved using the method 
described by Van der Meer (van der Meer and Sigurdarson, 2017). This 
method is briefly explained in the following paragraph. 

There are two or more sea states in each set of cumulative data 
(Table 2). For each sea state, the Sd - Nw (damage-Number of waves) 
curve will be found using the original formula, given in Eq. (2) (van der 
Meer, 1988): 

Hs

ΔDn50
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

6.2P0.18
(

Sd
̅̅̅̅̅̅
Nw

√

)0.2

ξ− .05
m ξm < ξcr (Plunging waves)

Hs

ΔDn50
= 1.0P− 0.13

(
Sd
̅̅̅̅̅̅
Nw

√

)0.2 ̅̅̅̅̅̅̅̅̅̅
cot α

√
ξP

mξm ≥ ξcr (Surging waves)

(2)  

Wherein, 

ξcr =
[
6.2P0.31 ̅̅̅̅̅̅̅̅̅̅̅

tan α
√ ] 1

p+0.5, ξm = tan α
/[

2πHs

gT2
m

]0.5

(3) 

By using this formula, if Sd is specified, Nw can be calculated and vice 
versa. The following conditions should also be considered to using this 
formula (Research and Association, 2007).  

• This formula only covers deep water conditions at the toe (h > 3Hs).  

• According to equation (2), Sd is a function of the square root of Nw. 
But when the number of waves is less than 1000 (Nw < 1000) the 
equivalent number of waves should be used in the original formula, 
which is Neq = N2

w/1000. Therefore, there is a linear relationship 
between the damage parameter, Sd, and the number of waves, Nw, for 
Nw < 1000.  

• Regardless of ξcr and ξm, only the plunging waves equation should be 
used if cot α ≥ 4. 

The conversion of a cumulative test into its equivalent rebuild test 
begins with specifying the number of waves in the first sea state (Nw1). 
Next, the damage (Sd1) is calculated for Nw1 and the first sea state. 

Then, the number of waves that caused Sd1 damage in the second sea 
state is calculated (Nw12). Finally, by adding the calculated number of 
waves (Nw12) and the number of Sea state 2 waves (Nw2), the final 
damage of Sea state 2 (Sd2) can be calculated. The number of waves and 
the damage of subsequent sea states are calculated in the same way, so 
that a set of cumulative data are converted to several rebuild data. Fig. 4 
shows an example of converting three consecutive cumulative tests to 
their equivalent rebuild tests. The breakwater and sea state specifica
tions are presented in Table 2. 

2.3. Model development 

2.3.1. The genetic programming methodology 
Based on the principle of Darwinian Natural Selection theory, Gene 

Programming (GP) was introduced by Koza (1992) as a useful and 
powerful prediction algorithm to establish meaningful relationships 
between the input and output parameters involved in a problem. GP 
creates a population of random compositions of the functions (such as 
algebraic functions) and terminals (the variables or constants used in a 
problem) (Sadat Hosseini et al., 2021) for the first generation. After 
preparing the population of the first generation, genetic operations such 
as crossover (also known as recombination) and mutation are used to 
create new generations. Crossover generates new offspring by 
combining the parental genetic information (exchanging the sub-trees 

Table 1 
Datasets corresponding to cumulative and rebuild test conditions used in this study.  

Cumulative 

Dataset Number of 
tests 

H0 T0m h/Dn50 hb/Hs N/3000 B/Dn50 fg cotαd Rec/Dn50 

Keilisnes (van der Meer 
and Sigurdarson, 2017) 

3 2.11–2.40 29.12–38.82 27.65–28.26 − 0.44 ~ 
− 0.25 

2.67–5.80 12.96 1.28 1.3 2.59–8.21 

MAST II (1997) (MAST, 
1997) 

15 1.95–2.95 23.65–33.79 11.36 − 1.37 ~ 
− 0.46 

0.67 15.91–18.18 1.8 1.25 1.45–10.91 

Project 1 (3 series) (van der 
Meer and Sigurdarson, 
2017) 

32 1.76–2.94 21.87–34.98 10.17–13.36 − 2.13–0 0.28–0.82 9.53–15.89 1.52–1.72 1.10–1.50 1.18–10.77 

Project 2 (van der Meer 
and Sigurdarson, 2017) 

7 2.39–3.00 22.57–37.70 7.28 − 0.37 ~ 
− 0.30 

0.55–0.91 13.97 1.43 1.5 2.62–11.64 

Project 3 (van der Meer 
and Sigurdarson, 2017) 

11 2.11–2.67 33.49–34.71 10.96–12.80 − 0.58 ~ 
− 0.46 

0.22–0.33 6.61–8.74 1.65 1.5 1.04–5.01 

Project 4 (van der Meer 
and Sigurdarson, 2017) 

16 1.72–2.95 20.39–32.29 10.53–14.32 − 1.18 ~ 
− 0.41 

0.28–1.43 10.98–13.89 1.10–1.58 1.25 0.74–7.78 

Project 5 (van der Meer 
and Sigurdarson, 2017) 

12 2.58–2.71 21.86–28.51 17.20–19.67 − 1.33 ~ 
− 0.73 

0.84–1.09 13.27–17.76 1.6 1.33 4.05–15.85 

Lykke Andersen (2006) ( 
Lykke Andersen, 2006) 

446 1.70–3.00 20.22–40.12 8.76–22.33 − 0.62–1.48 1 7.73–33.01 1.35–1.45 1.25 0.36–19.22 

Lykke Andersen (2008) ( 
Lykke Andersen, 2006) 

11 1.71–2.96 20.37–32.16 11.56 − 0.83 ~ 
− 0.48 

0.4 7.14 1.3 1.3 0.29–6.65 

Rebuild 
Moghim (2009), NTNU ( 

Moghim et al., 2011) 
10 1.87–2.89 22.35–27.02 26.17 − 0.75 ~ 

− 0.49 
0.67 9.5 1.1 1.3 0.83–6.90 

Moghim (2009), TMU ( 
Moghim et al., 2011) 

125 1.80–3.00 24.07–37.45 14.12–26.47 − 1.17 ~ 
− 0.21 

0.17–2.00 17.65–26.47 1.5 1.25 2.65–17.35 

Motalebi (2010), TMU ( 
Motalebi, 2010) 

117 1.87–2.96 19.61–25.94 8.00–16.47 − 1.24 ~ 
− 0.44 

1 9.52–17.65 1.82 1.25 1.04–8.59  

Table 2 
Breakwater and sea states specifications.  

Sea state Δ Dn50 Cot(a) Tm Hs P M50 Nw 

1 1.63 0.0323 1.25 1.17 0.096 0.55 10t 3000 
2 1.63 0.0323 1.25 1.23 0.106 0.55 10t 3000 
3 1.63 0.0323 1.25 1.27 0.112 0.55 10t 3000  
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under a selected node). Mutation increases the population variation by 
creating new individuals from an existing tree in the population (Fig. 5). 
The higher the fitness value, the greater the chance of remaining in the 
population of successive generations. 

In the standard GP, a symbolic regression technique can be imple
mented. In this method, the nodes of a tree (gene) contain functions or 
terminals. In this case, a new language was developed by Karva (Sal
gotra et al., 2020) that makes it possible to read the chromosomes’ in
formation. Genes exhibiting K-expressions are intelligible computer 
programs in the Karva language. These extremely compact expressions 
simply consist of letters that represent the variables, and the constant 
numbers correspond to a specific problem (Ferreira, 2001). Therefore, 
according to Fig. 6, symbolic mathematical expressions are directly 
encoded by genes. This model consists of two genes that can predict the 
output value using linear and nonlinear functions on three inputs A, B 
and C. Although nonlinear functions such as exp and Ln was used in the 
structure of these genes, a weighted linear combination of the genes 
produces the overall model based on the following general formulation 
for Multi Gene Genetic Programming (MGGP): 

ŷ(x,w, r)=w0 +
∑i=n

i=1
wiGi(r, x) (4)  

Wherein, n is the number of genes, and y is the output, which is a 
function of inputs, x. The ith gene weight is wi, and bias term is w0. The 

vector of unknown parameters for each gene is r, and the vector of 
outputs is G. One of the major differences of MGGP with the standard GP 
is its higher accuracy and efficiency in modeling nonlinear complex 
problems (Gandomi et al., 2021) like the problem at hand. Having the 
input variables, different functions and a range of random constant 
values, the initial population of MGGP can be constructed with 
maximum diversity in order not to have duplicate genes. 

The tree-based GP and MGGP generally optimize the single objective 
of a problem according to a fitness function which is mostly the 
goodness-of-fit in symbolic regression problems. This single objective 
approach can lead to very complex and non-robust models by incorpo
rating less important and ineffective terms in the model. Although less 
complicated genes can be developed using MGGP in comparison with 
traditional GP, the tendency of MGGP to produce genes that have a 
negligible effect on the overall performance causes over-complexity 
problems (Searson, 2015). To restrict the model from overexpansion a 
multi-objective strategy is implemented into the regression genes. This 
method, which is called Multi-Objective Genetic Programming (MOGP) 
can optimize the development complexity and the goodness-of-fit 
simultaneously. Amongst the different techniques of MOGP, in this 
paper, the GPTIPS 2 toolbox (Searson, 2015) was used in MATLAB. In 
this method, the generated models from the MGGP algorithm are sorted 
based on their complexity and accuracy. The top 50% of the population 
survive to the next generation, while the rest are omitted. For more 

Fig. 3. Process of data homogenization.  
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information on the details of the MOGP approach and its applications, 
references are made to Searson (2015) and Gandomi et al. (2021). 

2.3.2. Preparation of datasets 
Based on the data homogenization approach, a unified and homo

geneous data package was developed. Consequently, the data points 
whose H0 is smaller than 1.7 or greater than 3.0 were omitted from the 
dataset based on the practical range of H0 (van der Meer and Sigur
darson, 2017). Moreover, the data points corresponding to Rec/Dn50 >
15 were omitted to be in the practical range of the Berm Breakwaters 
design. 

These data are randomly divided into Training, Validation, and Test 
subsets for the analysis. The Training subset (75% of data) was used to 
develop the MOGP algorithm, while the Validation data (15% of data) 
were used to examine the generalization of the predictions of the model 
on data that was not used in the model Training. Based on the number of 
terminals, functions, genes, the depth of the trees, fitness termination 
value and other influencing parameters in modeling, and through the 

optimization process in MOGP, the best model on the data were ob
tained. The remaining 10% of data were finally used for model perfor
mance assessment against other formulae reported in the literature. 

2.3.3. MOGP formulation 
Six input parameters, including H0√T0p, h/Dn50, hb/Hs, N/3000, fg 

and cotαd, substantially contributed to the generation of the MOGP 
model. The stability number, H0√T0p is the most determining parameter 
in the stability and/or reshaping of berm breakwaters. The other non- 
dimensional parameters were selected in accordance with previous 
studies (Moghim et al., 2011), (Lykke Andersen and Burcharth, 2010), 
(Hosseini and Shafieefar, 2016) and physical logics. To devise a correct 
and valid MOGP model for the prediction of the target parameter, 
Rec/Dn50, several runs were conducted, the model variables were 
changed, and the accuracy of the models was controlled using the se
lection criteria explained here. 

On the one hand, the model should be simple enough to be easily 
used for practical estimations, but on the other hand, it has to be flexible 

Fig. 4. Methodology of converting cumulative tests to the equivalent rebuild tests (van der Meer and Sigurdarson, 2017).  
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Fig. 5. Example scheme of a) Mutation and b) Crossover in a population.  

Fig. 6. Example of an MGGP model consisting of two genes and three inputs.  
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enough to provide good approximations of the berm recession. How
ever, the latter was of greater importance for the authors in developing 
the MOGP model. The following three objectives were considered in the 
process of Validation control and Training performance check:  

1) The model on the Training subset has the best fitness value and the 
least error among all derived GP models.  

2) The trained model shows the best fitness value and the least error on 
the Validation subset. 

Models were controlled regarding the first and second criteria to 
examine the accuracy of the predictions, using root mean squared error 
(RMSE) as follows: 

RMSE =

[
1
n
∑

(O − P)2
]0.5

(5)  

where O and P are the objective (experimental output) and predicted 
output by MOGP model, respectively; O and P are the average values of 
O and P data points, respectively; and n is the sample number. The 
predicted model with a specific range of parameters (Table 2) was 
evaluated using the correlation of coefficients: 

R=

∑
(O − O)(P − P)

[∑
(O − O)

2
(P − P)2]0.5 (6) 

A model prediction with a higher R value, a lower RMSE, and a lower 
model complexity is more likely to be selected.  

3) The final model is as simple as possible based on the complexity of 
the problem for practical use. 

Selecting optimum values for the model parameters not only de
creases the run time but also results in less complicated models with 
relatively higher accuracy. By employing a trial-and-error approach, the 
parameters of the MOGP model on the recession data are obtained. 
Population size, or the number of chromosomes, serves as the critical 
parameter that determines the number of evolved programs in the 
modeling. The complexity of a certain problem and the number of 
possible solutions determine the appropriate functions and population 
size. In the analyses, ten well-known mathematical functions and 
arithmetic operators such as +, -, × ,/, √, exp, Ln, power, add3, mult3, 
wherein add3(a,b,c) = a+b + c and mult3(a,b,c) = a × b × c, were 
selected based on the literature on berm breakwaters. The number of 
functions was limited to hinder the model overgrowing. Six sets for the 
population size (i.e., 500, 1000, 3000, 5000, 10000 and 15000) were 
considered. The complexity of the model terms is determined by the 
maximum number of genes allowed and the maximum tree depth. 

3. Results 

By employing the trial-and-error approach, the hyperparameters of 
the MOGP model on the recession data are as presented in Table 3. 

Among the six sets for the population size, the best model was obtained 
using the population size of 10,000. Increasing the population size had a 
negligible effect on the model precision. The complexity of the model 
terms is determined by the maximum number of genes allowed and the 
maximum tree depth. 

The best-of-run model was the one with the highest R and the lowest 
RMSE and complexity. The final formulation for the prediction of the 
recession in berm breakwaters is as follows: 

Gene 1 and bias term: 

− 81.74 × 10− 5 × 1.378x3 x1
3 x2x3

2 − 1.245 (7)   

Gene 2: 

21133x1
2.094 x3x4 × Ln(x5)

7.187x5 (8)   

Gene 3: 

0.02067x1
1.971x4

− 0.1087 Ln(x2x4) (9)  

Wherein, x1 = H0√T0p, x2 = N/3000, x3 = hb/Hs, x4 = h/Dn50, x5 = fg. 
For the range of data used in the modeling process, cotα was not as 
influencing as the other parameters since it could not stand out in any of 
the genes after 5000 generations. However, it should be noted that the 
driven formula is only valid for the range of parameters in the input 
data. The overall formula for the prediction of berm recession is the 
summation of the above genes: 

Rec
Dn50

=0.02067
(
H0

̅̅̅̅̅̅̅
T0p

√ )1.971
(

h
Dn50

)− 0.1087

Ln
(

N
3000

×
h

Dn50

)

+21133
(
H0

̅̅̅̅̅̅̅
T0p

√ )2.094
(

hb

Hs

)(
h

Dn50

)

×Ln
(
fg
)7.187fg

− 81.74×10− 5×1.378

(
hb
Hs

)

(
H0

̅̅̅̅̅̅̅
T0p

√ )3
(

N
3000

)(
hb

Hs

)2

− 1.245

(10) 

To evaluate the acceptability of the MOGP model, the Frank and 
Todeschini (1994) criterion was used, in which the ratio of the amount 

Table 3 
Hyperparameters of the MOGP model on berm breakwaters recession.  

Hyperparameter Value or setting 

Population size 10000 
Number of generations 5000 
Maximum number of genes allowed 3 
Maximum tree depth 3 
Training set 0.75 
Validation set 0.15 
Crossover events 0.85 
High-level crossover 0.20 
Low-level crossover 0.80 
Sub-tree mutation 0.90  Fig. 7. Scatter diagram of the MOGP model predictions.  
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of data to the number of inputs should be greater than five. This ratio for 
the model on the berm recession data were 60, which indicates that a 
valid number of data were used in the analyses. According to Smith 
(1986), the error value (e.g., RMSE) must be at a minimum, while the 
correlation of coefficients (i.e. R) must be higher than 0.8. These sta
tistical parameters were checked for the Training, Validation and Test 
subsets in the MOGP model. Fig. 7 depicts the predictions of the MOGP 
model versus the experimental data, in which a good correlation can be 
seen. 

Table 4 presents the calculated statistical indices (i.e., RMSE and R2) 
for the proposed formula. Accordingly, it is apparent that the results of 
Training and Testing are very close, indicating that the models did not 
overfit.where O values are the output values from the experiments; and 
P represents the MOGP prediction values. The calculated values of the 
validation criteria are k = 0.959 and k’ = 1.019. These values show that 
the MOGP formula meets the external validation criteria. 

Table 4 
Results of the statistical indices for the Training and Validation subsets in the 
MOGP formula. 

k=
1

O2

∑
O × P (11)  

k′

=
1

P2

∑
O × P (12)   

Train (75% data) Validation (15% data) 

R2 RMSE R2 RMSE 
0.911 0.111 0.906 0.134 

For the external validation of the proposed formula, at least one of the regression 
line slopes (i.e. k and k’), passing through the origin, should be close to one (i.e. 
0.85 < k, k’<1.15) (Golbraikh and Tropsha, 2002). 

Fig. 8. Scatter diagram of predictions versus the experimental data for comparing the available empirical models with MOGP predictions on the Test dataset (10% of 
total data). 
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4. Discussion 

4.1. Comparison with the literature formulas 

A direct comparison was made between the predictions of the model 
and the available implicit formulas in the literature on the Test data 
(10% of the total data). Six empirical formulae were selected, and the 
scatter diagrams of the predictions by these models in comparison with 
the predictions of the MOGP model are presented in Fig. 8. The corre
lation of coefficients and Root Mean Square Error were calculated 
(Table 5). According to the table, some models showed lower perfor
mance than the reported results in the corresponding studies. This can 
be attributed either to the modification of the cumulative dataset carried 
on in this study or to some differences in the structural and hydraulic 
properties of the tests conducted in different labs that do not exactly 
match. For instance, the formula of Hall and Kao (1991) were applicable 
to 66.8% of the Testing data due to its range of applicability (2 < H0 < 5 
and cotαd = 1:1.25). This can be seen for the Tørum et al. (2003) for
mula and Sadat Hosseini and Shafieefar (2016) with 51.6 and 32.1 
percent of data coverage, respectively. The accuracy of predictions by 
Moghim et al. (2011) (Shekari and Shafieefar, 2013) formula is rela
tively high. However, they used relatively large berm widths in their 
experiments, and the proposed equations have a relatively limited range 
of applicability compared with the MOGP model, Lykke Andersen et al. 
(2014) and Van der Meer and Sigurdarson (van der Meer and Sigur
darson, 2017). By comparing these scatter diagrams, another interesting 
point that stands out is that the formulas which were developed on 

rebuild data such as Moghim et al. (2011) and Sadat Hosseini and 
Shafieefar (2016) yield relatively overestimated values while those that 
were originally developed on cumulative sets such as Hall and Kao 
(1991) and Tørum et al. (2003) result in lower recession values 
comparing with that of the MOGP model. The scattering of the results 
tends to increase for Rec/Dn50>10 for Hall and Kao (1991) and Van der 
Meer and Sigurdarson (van der Meer and Sigurdarson, 2017), which is 
mainly due to the fact that Rec/Dn50>10 is considered impractical in 
their research. 

4.2. Parametric study 

To examine the pattern of the target parameter (non-dimensional 
recession) regarding the changes in the corresponding input parameters 
and the robustness of the prediction model, a parametric study was 
conducted. The general trends of model predictions against the inputs 
are illustrated in Fig. 9 for the presented formula. As seen in this figure, 
there is a relatively good agreement between the trends and the struc
ture of the MOGP formula, and the rising effects of the stability 
parameter were captured. According to the literature, the stability 
number affects the recession values exponentially. The other interesting 
trend belongs to the number of waves, in which the berm recession rose 
dramatically up to around the corresponding value for N = 3000 waves 
and then the slope of the diagram decreased and consequently leveled 
off, as was observed in previous studies (Moghim et al., 2011), (Shekari 
and Shafieefar, 2013). An inverse parabolic trend can be seen for hb/Hs 
and fg. The former indicates that the highest damage occurs when the 
water level is equal to the berm elevation (i.e., hb = 0), and the latter 
shows that there is a value of gradation factor that maximizes the 
recession. The same general trend as Tørum et al. (2003) study can be 
seen after fg = 1.5. One advantage of the proposed model is the relatively 
wider domain of the input parameter (submerged to emerged berm 
levels) due to the larger parameter space covered by the data used here. 
As it is illustrated for h/Dn50, the deeper the water in front of the 
breakwater, the higher the damage probability. This is compatible with 
the experimental observations wherein higher waves can collide with 
the structure before breaking. 

4.3. Sensitivity analysis 

The level of influence and contribution of each contributing input 
parameter in the MOGP model was examined by calculating the sensi
tivity percentages of the output parameter by using the following 
equations (Sadat Hosseini et al., 2021): 

Di = fmax(xi) − fmin(xi) (13)  

Si =
Di
∑

D
× 100 (14)  

where fmax(xi) and fmin(xi) correspond to the maximum and minimum 
values of the output parameter by substituting the ith input parameter 
(the target of sensitivity analysis) in the MOGP formula, while the 
average values of the other contributing parameters were inserted. The 
results of the sensitivity analysis in Fig. 10 are presented as a bar chart of 
the influence percentages for each input parameter in the modified data. 
It can be inferred that the most effective parameter is the stability 
parameter H0√T0p, while the berm elevation and the number of waves 
stand in the second and third places, respectively with around 20 
percent sensitivity. The gradation parameter has by far lower effect on 
the recession value. The lower slope angle was omitted in the MOGP 
model generation process through the rule of “survival of the strongest 
species” as explained before. Comparatively, some previous research 
works did not consider some less influencing structural and sea state 
parameters in their presented formulations (van der Meer and Sigur
darson, 2017), (Sigurdarson et al., 2009b). 

Table 5 
Statistical indices for the external validation on the Test dataset (10% data).  

Equation R2 RMSE Percentage of 
data coverage 

Range of 
applicability 

MOGP Model (Eq. (10)) 0.904 0.128 100 5.8 < H0√T0 

< 28.2 
500 < N <
17400 
1.5 < hb/Hs

a<

3.1 
7.3 < h/Dn50 

< 28.3 
1.1 < fg < 1.8 

Hall and Kao (Hall and 
Kao, 1991) 

0.691 0.189 66.8 2 < H0 < 5 

Tørum et al. (Tørum et al., 
2003) 

0.676 0.204 51.6 12.5 < h/Dn50 

< 25 
1.3 < fg < 1.8 

Moghim et al. (Moghim 
et al., 2011) 

0.823 0.133 19.7 7.7 < H0√T0 

< 24.4 
500 < N <
6000 
0.12 < hb/Hs 

< 1.24 
8 < h/Dn50 <

16.5 
1.2 < fg < 1.5 

Sadat Hosseini and 
Shafieefar (Hosseini and 
Shafieefar, 2016) 

0.743 0.176 32.1 6.3 < H0√T0 

< 24.4 
500 < N <
6000 
0.1 < hb/Hs <

6.82 
8.0 < h/Dn50 

< 16.5 
12 < B/Dn50 <

29.41 
Lykke Andersen et al. ( 

Andersen et al., 2014) 
0.760 0.181 100 __ 

Van der Meer and 
Sigurdarson (van der 
Meer and Sigurdarson, 
2017) 

0.690 0.251 100 __  

a Positive values of hb stand for emerged berm. 
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4.4. Future research 

Any new reliable datasets can be added to the existing data for 
enhancing the range of applicability and training of the machine 
learning model. The methodology of this study can be reconducted using 
other relationships between the damage parameter and the number of 
waves. Other soft computing techniques can be used to develop models 
after the homogenization of the data and compared with the present 
formulation. 

5. Conclusion 

An up-to-date form of Multi-Gene Genetic Programming (MGGP), 
namely Multi-Objective Genetic Programming (MOGP), was used to 
develop a formula for predicting recession in rubble mound mass armor 

berm breakwaters. The utilized data for the analysis consisted of two 
major subsets, namely rebuild and cumulative, based on the method
ology of the experiments. Before developing a formula, the results of 
cumulative tests were converted to the equivalent of their rebuild tests 
by using the number of waves and the damage parameter. 

The homogenized data were used as the input for MOGP modeling. 
The performance of the model was checked based on the correlation of 
coefficient and root mean square error. These two indicators were 0.911 
and 0.11 for the Training set, and 0.906 and 0.134 for the Validation 
subset, respectively. 

The accuracy of model predictions was subsequently examined for 
the Test dataset in comparison with the proposed formulas in the liter
ature. Results show that the MOGP model not only covers a broader 
range of applicability but also can acceptably predict the recession in 
comparison to the other formulas. 

Fig. 9. Parametric study of the contributing inputs and target parameter in the MOGP model: a) Ln(H0√T0), b) Ln(N), c) fg.  
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A parametric study was conducted on the MOGP formula to analyze 
the response of the target parameter (Recession) to changes in the inputs 
of the proposed formula. Also, a sensitivity analysis was conducted to 
study the dependency level of the recession on each of the contributing 
input parameters. It was generally found that the modified dynamic 
stability parameter plays the most significant role in the datasets, which 
has by far the highest influence on the predictions for about 43 percent 
sensitivity followed by the number of waves, N, and berm elevation, hb, 
in the second place (around 20%), and about 12 percent sensitivity on 
the water depth, h, and four percent on the rock gradation factor, fg. 

Overall, each formula reported in the literature works well for its 
range of data. However, in engineering studies and the design of marine 
structures, it is difficult to use different formulas based on the applica
bility criteria. The database used for deriving the MOGP model corre
sponds to a relatively larger amount of data which can overcome this 
problem to some extent. 

Ethical statement 

The paper has been submitted with full responsibility, following due 
ethical procedure, and there is no duplicate publication, fraud, plagia
rism. None of the authors of this paper has a financial or personal 
relationship with other people or organizations that could inappropri
ately influence or bias the content of the paper. 

Funding body 

The authors received no financial support for the research, author
ship and publication of this article. 

CRediT authorship contribution statement 

Alireza Sadat Hosseini: Conceptualization, Methodology, Software, 
Writing – original draft. Amir Kabiri: Software, Data curation, Writing – 
original draft, Visualization. Amir H. Gandomi: Methodology, Super
vision, Writing – review & editing. Mehdi Shafieefar: Supervision, 
Resources. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The Python and Matlab codes are available on request. Each dataset 
needs a permission from its original owner. 

Acknowledgements 

The authors of this paper would like to officially acknowledge the 
considerable and invaluable efforts of the researchers who provided us 
with data acquired in their experimental studies. Moreover, the authors 
highly appreciate the provision of part of the experimental data by Prof. 
J. van der Meer, and his suggestions which helped to improve the pa
per’s quality. 

References 

Andersen, T.L., Moghim, M.N., Burcharth, H.F., 2014. Revised recession of reshaping 
berm breakwaters. Coast. Eng. 2. 

Ehsani, M., Moghim, M.N., Shafieefar, M., 2020. An experimental study on the hydraulic 
stability of Icelandic-Type berm breakwaters. Coast Eng. 156, 103599. 

Ferreira, C., 2001. Gene Expression Programming: a New Adaptive Algorithm for Solving 
Problems. arXiv preprint cs/0102027.  

Formentin, S.M., Zanuttigh, B., van der Meer, J.W., 2017. A neural network tool for 
predicting wave reflection, overtopping and transmission. Coast Eng. J. 59 (1), 
1750006. 

Frank, I.E., Todeschini, R., 1994. The Data Analysis Handbook. Elsevier. 
Gandomi, M., Kashani, A.R., Farhadi, A., Akhani, M., Gandomi, A.H., 2021. Spectral 

acceleration prediction using genetic programming based approaches. Appl. Soft 
Comput. 106, 107326 https://doi.org/10.1016/j.asoc.2021.107326. 

Golbraikh, A., Tropsha, A., 2002. Beware of q2. J. Mol. Graph. Model. 20 (4), 269–276. 
Hall, K.R., Kao, J.S., 1991. A study of the stability of dynamically stable breakwaters. 

Can. J. Civ. Eng. 18 (6), 916–925. 
Harish, N., Lokesha, N., Mandal, S., Rao, S., Patil, S.G., 2014. Parameter optimization 

using GA in SVM to predict damage level of non-reshaped berm breakwater. The 
International Journal of Ocean and Climate Systems 5 (2), 79–88. 

Harish, N., Mandal, S., Rao, S., Patil, S.G., 2015. Particle Swarm Optimization based 
support vector machine for damage level prediction of non-reshaped berm 
breakwater. Appl. Soft Comput. 27, 313–321. https://doi.org/10.1016/j. 
asoc.2014.10.041. 

Hosseini, A.S., Shafieefar, M., 2016. Prediction of seaward slope recession in berm 
breakwaters using M5’machine learning approach. China Ocean Eng. 30 (1), 19–32. 

Juhl, J., Jensen, O.J., 1995. Features of berm breakwaters and practical experience. In: 
International Conference on Coastal and Port Engineering in Developing Countries. 
Rio de Janeiro, Brazil.  

Koza, J.R., 1992. Genetic Programming: on the Programming of Computers by Means of 
Natural Selection, vol. 1. MIT press. 

Lykke Andersen, T., 2006. Hydraulic Response of Rubble Mound Breakwaters: Scale 
Effects-Berm Breakwaters, vol. 27. Aalborg University report. ISSN 0909-4296, 
Dissertation.  

Lykke Andersen, T., Burcharth, H.F., 2010. A new formula for front slope recession of 
berm breakwaters. Coast Eng. 57 (4), 359–374. https://doi.org/10.1016/j. 
coastaleng.2009.10.017. 

MAST II, 1997. Berm Breakwater Structures, Final Report under MAST-CONTRACT 
MAS2-CT94-0087. 

Moghim, M.N., Lykke Andersen, T., 2015. Armor stability of hardly (or partly) reshaping 
berm breakwaters. Coast Eng. 104, 1–12. https://doi.org/10.1016/j. 
coastaleng.2015.06.003. 

Moghim, M.N., Shafieefar, M., Tørum, A., Chegini, V., 2011. A new formula for the sea 
state and structural parameters influencing the stability of homogeneous reshaping 
berm breakwaters. Coast Eng. 58 (8), 706–721. https://doi.org/10.1016/j. 
coastaleng.2011.03.006. 

Motalebi, A., 2010. Experimental Study of Investigating the Influence of Armor Stone 
Size in Stability of Berm Breakwaters.” Master Thesis. Tarbiat modares University. 

Pontiki, M., 2019. Bayesian damage prediction of berm breakwaters in the arctic. In: 
Ports 2019: Port Planning and Development. American Society of Civil Engineers 
Reston, VA, pp. 12–21. 

Research, C.I., Association, I., 2007. C. C. U. R. en R. (Netherlands), and C. d’etudes 
maritimes et fluviales, The rock manual: the use of rock in hydraulic engineering, 
vol. 683. Ciria. 

Sadat Hosseini, A., Shafieefar, M., 2014. Estimation of reshaped profile of berm 
breakwaters using experimental data. Int. J. Marit. Technol. 2, 55–65. 

Sadat Hosseini, A., Hajikarimi, P., Gandomi, M., Moghadas Nejad, F., Gandomi, A.H., 
2021. Genetic programming to formulate viscoelastic behavior of modified asphalt 
binder. Construct. Build. Mater. 286, 122954 https://doi.org/10.1016/j. 
conbuildmat.2021.122954. 

Salgotra, R., Gandomi, M., Gandomi, A.H., 2020. Time series analysis and forecast of the 
COVID-19 pandemic in India using genetic programming. Chaos, Solit. Fractals 138, 
109945. https://doi.org/10.1016/j.chaos.2020.109945. 

Searson, D.P., 2015. GPTIPS 2: an open-source software platform for symbolic data 
mining. In: Handbook of Genetic Programming Applications. Springer, pp. 551–573. 

Fig. 10. Sensitivity analysis bar chart for the input parameters of the 
MOGP model. 

A. Sadat Hosseini et al.                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0029-8018(23)00849-1/sref1
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref1
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref2
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref2
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref3
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref3
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref4
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref4
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref4
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref5
https://doi.org/10.1016/j.asoc.2021.107326
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref8
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref9
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref9
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref10
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref10
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref10
https://doi.org/10.1016/j.asoc.2014.10.041
https://doi.org/10.1016/j.asoc.2014.10.041
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref12
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref12
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref13
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref13
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref13
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref14
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref14
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref15
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref15
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref15
https://doi.org/10.1016/j.coastaleng.2009.10.017
https://doi.org/10.1016/j.coastaleng.2009.10.017
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref17
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref17
https://doi.org/10.1016/j.coastaleng.2015.06.003
https://doi.org/10.1016/j.coastaleng.2015.06.003
https://doi.org/10.1016/j.coastaleng.2011.03.006
https://doi.org/10.1016/j.coastaleng.2011.03.006
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref20
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref20
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref21
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref21
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref21
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref22
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref22
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref22
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref23
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref23
https://doi.org/10.1016/j.conbuildmat.2021.122954
https://doi.org/10.1016/j.conbuildmat.2021.122954
https://doi.org/10.1016/j.chaos.2020.109945
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref26
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref26


Ocean Engineering 279 (2023) 114465

13

Shafieefar, M., Shekari, M.R., Hofland, B., 2020. Influence of toe berm geometry on 
stability of reshaping berm breakwaters. Coast Eng. 157, 103636. 

Shekari, M.R., Shafieefar, M., 2013. An experimental study on the reshaping of berm 
breakwaters under irregular wave attacks. Appl. Ocean Res. 42, 16–23. 

Sigurdarson, S., van der Meer, J., 2013. Front slope stability of the Icelandic-type berm 
breakwater. In: Coastal Structures 2011: (In 2 Volumes). World Scientific, 
pp. 435–446. 

Sigurdarson, S., van der Meer, J., 2014. Design of berm breakwaters: recession, 
overtopping and reflection. In: From Sea to Shore–Meeting the Challenges of the Sea: 
(Coasts, Marine Structures and Breakwaters 2013), pp. 64–74. 

Sigurdarson, S., van der Meer, J.W., Burcharth, H.F., Sørensen, J.D., 2009a. Optimum 
safety levels and design rules for the Icelandic-type berm breakwater. In: Coastal 
Structures 2007: (In 2 Volumes. World Scientific, pp. 53–64. 

Sigurdarson, S., van der Meer, J.W., Tørum, A., Tomasicchio, R., 2009b. Berm recession 
of the Icelandic-type berm breakwater. In: Coastal Engineering 2008: (In 5 Volumes). 
World Scientific, pp. 3311–3323. 

Smith, G.N., 1986. Probability and Statistics in Civil Engineering, vol. 244. Collins 
professional and technical books. 

Tørum, A., Krogh, S.R., 2000. Berm breakwaters. Stone quality. In: SINTEF Report No. 
STF22 A00207. SINTEF, Civil and Environmental Engineering. 

Tørum, A., Kuhnen, F., Menze, A., 2003. On berm breakwaters. Stability, scour, 
overtopping. Coast. Eng. 49 (3), 209–238. 

van der Meer, J.W., 1988. Rock Slopes and Gravel Beaches under Wave Attack. 
van der Meer, J.W., Pilarczyk, K.W., 1984. Stability of rubble mound slopes under 

random wave attack. Coast Eng. 1985, 2620–2634. 
van der Meer, J., Sigurdarson, S., 2017. Design and Construction of Berm Breakwaters. 

World Scientific. 
van Gent, M.R.A., van den Boogaard, H.F.P., Pozueta, B., Medina, J.R., 2007. Neural 

network modelling of wave overtopping at coastal structures. Coast. Eng. 54 (8), 
586–593. 

A. Sadat Hosseini et al.                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0029-8018(23)00849-1/sref27
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref27
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref28
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref28
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref29
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref29
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref29
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref30
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref30
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref30
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref31
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref31
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref31
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref32
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref32
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref32
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref33
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref33
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref34
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref34
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref35
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref35
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref36
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref37
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref37
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref38
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref38
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref39
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref39
http://refhub.elsevier.com/S0029-8018(23)00849-1/sref39

	Genetic programming for the prediction of berm breakwaters recession
	1 Introduction
	2 Methodology
	2.1 Experimental data
	2.2 Data homogenization
	2.3 Model development
	2.3.1 The genetic programming methodology
	2.3.2 Preparation of datasets
	2.3.3 MOGP formulation


	3 Results
	4 Discussion
	4.1 Comparison with the literature formulas
	4.2 Parametric study
	4.3 Sensitivity analysis
	4.4 Future research

	5 Conclusion
	Ethical statement
	Funding body
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


