
Neurocomputing 585 (2024) 127593

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Proactive image manipulation detection via deep semi-fragile watermark
Yuan Zhao a,b, Bo Liu a,b,∗, Tianqing Zhu e, Ming Ding c, Xin Yu d, Wanlei Zhou e

a Centre for Cyber Security and Privacy, University of Technology Sydney (UTS), Ultimo, Sdyney, 2134, NSW, Australia
b The School of Computer Science, University of Technology Sydney (UTS), Ultimo, Sdyney, 2134, NSW, Australia
c CSIRO Data61, Eveleigh, Sdyney, 2015, NSW, Australia
d School of Information Technology and Electrical Engineering, University of Queensland (UQ), St Lucia, Brisbane, 4072, QLD, Australia
e Faculty of Data Science, City University of Macau (CityU), Taipa, Macau, 999078, Australia

A R T I C L E I N F O

Communicated by J. Chen

Keywords:
Semi-fragile watermark
Invisible watermark
Image tampering detection
Manipulation localization

A B S T R A C T

Malicious image tampering refers to intentionally manipulating images to make them harmful to the owners
or users. It has become one of the most severe challenges to image authenticity. Conventional methods
for detecting tampering by identifying visual artifacts and distortions have limitations due to the rapid
advancement of image manipulation techniques, which leave fewer detectable traces. To address these
challenges, we propose a proactive media authentication method using deep learning-based semi-fragile
watermarks. The designed scheme utilizes deep neural networks to embed an invisible watermark into a
target image that is pixel-by-pixel entangled with it, which acts as an indicator of tampering trails. Once the
watermarked image is counterfeited, the embedded watermark will exhibit changes accordingly, so we can
locate the tampered regions by comparing retrieved and original watermarks. This proactive authentication
mechanism makes our method effective against various image tamper techniques, including image copy&move,
splicing and in-painting. Although our watermark is designed to be fragile to malicious tampering operations, it
remains robust to benign image-processing operations such as JPEG compression, scaling, saturation, contrast
adjustments, etc. This design enables our watermark to retain effectiveness when shared over the internet.
Extensive experiments demonstrate that our method achieves state-of-the-art forgery detection with superior
robustness, imperceptibility and security performance.
1. Introduction

Digital images have become an essential medium for information
transmission in our society. However, technical advancement makes
tampering images imperceptibly, which can be exploited for malicious
intentions, e.g., creating fake news and Internet rumors. Therefore,
detecting the tampered regions in an image is essential to protect image
authenticity.

State-of-the-art detection methods leverage deep learning tech-
niques by distinguishing feature distribution inconsistency [1–3] or
boundary discrepancy [4,5] in an image to identify the forgery or
any manipulation. Those methods assume that image manipulation
techniques may inevitably produce detectable artifacts in their outputs.
For example, [3] detects forgery pixels by identifying local anomalous
features in suspicious images. However, this prerequisite might lead to
several inherent drawbacks. First, as image manipulation techniques
progressively evolve, fake images exhibit less noticeable artifacts. As a
result, detection methods developed to detect certain artifacts would
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fail with a high chance. Moreover, existing methods trained on seen
tampering types might fail to detect unseen counterfeits. Besides, some
methods [6–8] detect malicious tampering in a proactive style. Those
methods embed invisible tags into images. Then, according to the
extracted tag, they determine whether a suspicious image has been
forged. However, these methods cannot pinpoint the tampered region
in a forgery image.

To overcome these issues, we propose a proactive image authentica-
tion method based on semi-fragile watermarks generated through deep
learning techniques. Our specialized watermark is robust to benign
image post-processing operations while fragile to malicious tampering.
By employing this watermark, our method can provide accurate and
generalized tampering detection performance, not limited to a specific
forgery or manipulation type. Moreover, it can pinpoint the tampered
pixels rather than merely identify whether an image is a forgery.

The pipeline of our method involves converting a secret image into
an invisible watermark, which we embed pixel-by-pixel into a cover
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image to create a watermarked image (known as the container image).
The container image remains perceptually identical to the original
cover image, allowing us to replace the original cover and use the
container image in scenarios with a risk of malicious tampering. Any
manipulation of the container image will inevitably affect the same
region of the embedded watermark, causing damage to the secret image
in that area. Consequently, we can precisely locate the tampered region
by comparing the decoded secret image from the container image to the
original secret image.

The designed framework consists of three modules to achieve the
above function: a hiding network, an attack module and a revealing
network. We adopt a cover-agnostic style hiding network that generates
watermarks according to different secret images, independent of cover
images. This design allows us to directly add the watermark to an
arbitrary cover image to construct the container image, significantly
improving our method’s generalization. Besides, by minimizing the
perceptual differences between cover and container images, the hiding
network learns to encode secret images as invisible watermarks with
remarkable imperceptibility.

In addition, to make our watermark fragile to malicious tampering
approaches but robust to conventional image post-processing opera-
tions, we introduce an attack module in the training process. It consists
of horizontally combined distortion and tamper layers that simulate
tampering and post-processing manipulations. By applying these ma-
nipulations to container images, the attack module can strengthen the
semi-fragility of our watermark. The attack module is only employed
to co-adapt training with hiding and revealing networks and is not
included in our method’s inference step.

The revealing network aims to recover the secret image from the
container image to locate the tampered regions within it. We thus
train the revealing network using the masked secret image with the
same tampered regions in the processed container image as the label.
Consequently, when tampering occurs within the container image,
the revealing network will only restore the untouched area instead
of reconstructing the entire embedded secret image. This mechanism
allows us to locate the tampered region accurately by comparing the
original and recovered secret images.

Experiment results demonstrate that our designed scheme can
achieve an average detection AUC of nearly 0.95 across a wide range
of image manipulations. It turns the open-world image manipulation
detection problem into a trivial watermark retrieval task, allowing for
greater tamper detection accuracy. Our contributions are summarized
as follows:

• We develop a novel deep learning-based semi-fragile image wa-
termarking framework, which can serve as a proactive defense
against malicious tampering.

• Our watermark achieves a balanced trade-off between detection
performance and imperceptibility, so there is no influence on
watermarked images’ real-world usage.

• We have comprehensively evaluated the proposed method, anal-
ysing its performance across various aspects. We not only com-
pared our method with SOTA detection methods on multiple
datasets to detect various types of tampering to reflect its de-
tection capability, but we also conducted a deep analysis of its
watermark and assessed its performance in terms of robustness
and security. Our experiment can serve as a template for similar
research in the future.

. Related work

Three main research areas are relevant to this work: digital water-
arking, tamper detection and image hiding. In what follows, we give
2

brief description of each topic.
2.1. Digital watermarking

Digital watermarking involves embedding information into an im-
age imperceptibly. This field primarily focuses on developing three
different types of watermarks: fragile [9,10], robust [11–15] and semi-
fragile [16–18] watermarks. Fragile and semi-fragile watermarks are
primarily used to certify the integrity and authenticity of image data.
Specifically, fragile watermarks are designed to achieve accurate digital
media authentication, where even a one-bit change to an image will
lead it to fail the certification system. In contrast, robust watermarks
aim to withstand various image manipulations, allowing media produc-
ers to assert ownership over their content, regardless of redistribution
and modification.

Semi-fragile watermarks are a hybrid approach, merging the ad-
vantages of both robust and fragile watermarks. They are mainly used
for fuzzy authentication of digital images and identification of image
tampering [18]. The rationale behind semi-fragile watermarks lies in
the typical lossy nature of image and video transmission and storage,
which should not disrupt the watermark. However, when the image
gets tampered with, the watermark should also get damaged, indicating
image tampering.

2.2. Image manipulation detection

Developing image editing techniques makes tampered images wide-
ly available and more realistic. Currently, the research community
defines three common types of image tampering, which are: Copy-
move (i.e., copying and moving elements from one region to another
region in a given image), splicing (i.e., copying elements from one
image and pasting them on another image), and inpainting (i.e., re-
moval of unwanted elements). All these manipulations could lead to
misinterpretation of the visual content.

Image manipulation detection aims at detecting and localizing these
tamperings. At first, many previous studies in this field are based
on hand-crafted features, such as local noise analysis [19], CFA arti-
facts [20], and illumination variance analysis [21]. With the success of
deep learning techniques in various computer vision tasks, researchers
try to bring deep neural networks to conduct image manipulation
detection (e.g. CNNs [1] and GANs [22]). Specifically, Li et al. [2]
propose to utilize an FCN’s first convolutional layer with trainable high-
pass filters to capture the tampering features for detection. Beyond
filtering learning, Zhang et al. [23] employ a stacked autoencoder to
learn context features to detect image manipulation. Bayar et al. [24]
improve the detection performance by replacing the low-pass filter
layer with an adaptive kernel layer to learn the filtering kernel used in
tampered regions. Several methods combine hand-crafted features and
learning features for image forensics. For instance, Wu et al. [3] and
Hu et al. [1] use both BayarConv and SRM features as detection clues.
Given features from distinct views, they develop a two-stream network,
which inputs the RGB image and its feature counterpart generated by
the SRM filter to identify the tampered pixels. MVSS-Net [25] replaces
the non-trainable bilinear pooling used in previous works with Dual
Attention. It further concatenates edge features to adaptively predict a
tampered area and its boundary.

Meanwhile, some proactive measures [6–8] are fighting malicious
tampering by embedding an invisible tag into the original image by
the user, which can remain retrievable after the manipulation process,
so the user can retrieve the tag and block the dissemination of fake
information. However, these methods cannot pinpoint the tampered

region.
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2.3. Image hiding

Image hiding is an important research direction that attempts to
conceal a whole image into another rather than simply hiding a binary
message. According to the employed techniques, this research direction
can be divided into traditional and deep image hiding.

Traditional image hiding methods rely on conventional image fea-
tures, such as those in spatial and frequency domains. Least Significant
Bit (LSB) [26] is the most traditional spatial domain-based method for
concealing images. It replaces the n least significant bits of the cover
image with the most significant n bits of the secret image. In addi-
tion to LSB, there are many methods proposed to embed information
in frequency domains, such as the discrete Fourier transform (DFT)
domain [27], discrete cosine transform (DCT) domain [28], and dis-
crete wavelet transform (DWT) domain [29]. For instance, JSteg [30]
conceals data within the LSBs of the host image’s DCT coefficients.
However, our experiments reveal significant limitations of traditional
methods, including visible watermarks, image distortions, and low
robustness against compression techniques like JPEG. Additionally,
these methods are not optimized for image manipulation detection and
localization.

More recently, deep learning techniques have been applied to
image-hiding [31,32], which achieved impressive results. This kind of
method is also referred to as deep image hiding. Baluja [33] is one
of the first deep-learning solutions for concealing a whole RGB image
within another. They adopt a preparation network to extract useful
features of the secret image and then employ a hiding network to
fuse the features of the secret image within the cover image. Finally,
a revealing network is adopted to recover the original secret image.
Based on [33], Rahim et al. [32] added a regular loss to ensure joint
end-to-end training. However, both of them have the problem of color
distortion. Zhang et al. [34] mitigated this impact by decreasing the
payload of the secret image, i.e., only embedding the gray-scale image.
Zhang et al. [35] propose a novel universal deep hiding (UDH) meta-
architecture to disentangle the encoding of the secret image from the
cover image, improving the generalization and interpretability of image
hiding. Luo et al. [36] improve watermark robustness by introducing
adversarial training and channel coding in their framework. Based on
image texture features, [37] formulates adaptive payload distribution
to achieve steganography of multiple images. HiNet [38] adopts an
inverse learning mechanism combined with a novel low-frequency
wavelet loss, achieving impressive high-quality image hiding.

The previous works demonstrate that deep image hiding has a
significant advantage in preserving the container image’s visual quality,
inspiring us to employ this technique to protect the image’s authenti-
cation while guaranteeing the target image’s utility.

3. Methodology

This section explains how to implement the proposed method. Given
an image of size 𝑊 ×𝐻 , the goal of our method is not only to determine
if the image has been tampered with but also to locate the altered
regions. The main notations used in the rest of the paper are listed in
Table 1.

3.1. Motivation and threat model

We begin by elucidating the motivation and threat model of our
method. Fig. 1 presents the common threat model to image-sharing
platforms like Facebook or Instagram. Attackers in this model aim to
tamper images and spread the forgery to produce reputation losses for
the victim or obtain benefits from the forgery. We assume they have the
same access rights as the victim, enabling them to obtain the victim’s
posted images and share the tampered images on the same platform.

In this scenario, the victim shares their images without any reliable
precautionary measure. Once the image is uploaded online, there is
3

Table 1
Summary of notations in this paper.

Notation Description

𝑥𝑠𝑒𝑐𝑟𝑒𝑡 Secret image: the image to be hidden,
serving as the source of a watermark.

𝑥𝑐𝑜𝑣𝑒𝑟 Cover image: the image to hide the secret image,
also the image we want to protect from tampering.

𝑥𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 Container image: the image with 𝑥𝑠𝑒𝑐𝑟𝑒𝑡 embedded,
which is exposed to potential tampering methods.

𝑥𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 Retrieved secret: recovered secret image from container,
comparing it with 𝑥𝑠𝑒𝑐𝑟𝑒𝑡 can identify the tampered area.

Fig. 1. One potential application scenario of our method is protecting users’ images
on some public platforms, such as Instagram. Our method can give users a reliable
approach to verifying the pixel-level authenticity of their images.

no mechanism to ensure its authenticity and integrity, rendering it
vulnerable to malicious tampering attacks. The attackers can easily pick
the victim’s photos, manipulate them, and release the tampered results
while falsely claiming them to be authentic. Such misinformation can
lead to severe reputational damage for the victim and raise security and
privacy concerns. Worse still, it is hard for the victim to disclose the
forgery since there are no reliable third-party identification methods.

To address the above problems, we design a solution for proactively
protecting the authenticity of images. We transform the secret image
into a semi-fragile and invisible watermark and then embed it into the
target image. This watermark is designed to be fragile to malicious
manipulations or tampering, while simultaneously remaining robust
to benign image-processing operations such as compression, scaling
and color adjustment. In this way, our methodology enables the iden-
tification of tampered regions or pixels by comparing the recovered
secret image from the container against the original secret image. This
mechanism equips image owners with a reliable means of proactively
protecting their images’ authenticity and integrity before sharing them
online.

Additionally, our approach distinguishes itself from passive detec-
tion methods by utilizing the embedded watermark as detection clues
instead of artifacts left by tampering operations. This feature makes our
method agnostic to the evolution of image manipulation techniques.
So, it has reliable performance when detecting unknown and novel
tampering methods.
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Fig. 2. Overview of the proposed framework. The black arrows refer to data flows, and the red dashed lines show the loss flows. Our framework comprises three modules: hiding
network, attack module and revealing network. The hiding network generates a watermark from the secret image, which is embedded in the cover image to produce the container
image. The attack module manipulates the container image to create a processed image and corresponding mask. Finally, the revealing network retrieves the secret image from the
processed container and determines the tampered region by comparing it with the original secret image. As illustrated in the detection process (right side), we can thus pinpoint
the tampered region (predicted mask) by pixel-to-pixel comparing the retrieved and original secret images.
The bottom panel of Fig. 1(b) illustrates how to deploy our method
in the real world. Before sharing images online, users can use our
method to embed the personalized, human-invisible watermark into
their images. These watermarked images are virtually indistinguishable
from the originals, thereby having a negligible impact on their visual
quality and utility. Once the watermarked image has been tampered
with maliciously, users can employ our method to verify the tampered
region and declare the forgery.

3.2. Network architecture

As outlined in the motivation section, the objective of our networks
is to convert secret image as semi-fragile and invisible watermark,
which is fragile to malicious tampering but withstand conventional
image processing.

To this end, our networks comprise three distinct modules, as
depicted in Fig. 2: (1) Hiding network: This module transfers the secret
image as the human-invisible watermark. (2) Attack module: The attack
module perturbs the container image that co-adapts with the train-
ing of hiding and revealing networks to strengthen our watermark’s
robustness and improve our method’s tamper detection accuracy. (3)
Revealing networks: This module recovers the secret image from the
container and allows it to be compared with the original secret for
identifying the tampered regions.

3.3. Hiding network

Previous learning-based image hiding techniques [31,35] utilize the
frequency discrepancy between the cover image and watermark to
achieve effective hiding that is invisible to humans. Drawing inspiration
from these methods, we adopt the same U-Net style architecture with
full-convolution layers as the backbone for our hiding network. This
architecture has performed excellently in extracting the secret image’s
representative features and encoding them into the high-frequency
(HF) domain to generate the corresponding watermark. Unlike nature
images, which mainly consist of low-frequency (LF) information, the
HF watermark is invisible to human observers.

Consequently, embedding it in the cover image will not produce
virtually noticeable alternations in the corresponding result, i.e., the
container image in our context. Besides, the pixel-wise addition estab-
lishes the simple but effective one-to-one corresponding relationship
between the watermark and the container image pixels. As a result,
pixel changes in the container image directly affect the corresponding
pixel in the embedded watermark, which will be further exhibited in
the recovered secret image. Additionally, our watermarks are directly
embedded in the pixel values of the cover images, eliminating the need
for special handling of various image formats. This feature significantly
broadens the applicability of our approach. The full-convolutional ar-
chitecture also enables us to adjust the number of layers of the hiding
4

network to produce the watermark with the same resolution size and
the number of channels to fit different cover images.

Moreover, ensuring that the embedded watermark is semantically
independent of the container image is crucial in achieving practical
pixel-level tamper detection. An adversary may exploit the semantic in-
formation in the container image to hide tampering traces by modifying
the container image according to its content. However, it is not possible
to hide the variation caused by the tampering process in the embedded
watermark when the watermark is semantically independent of the
container image. Therefore, we adopt the cover-agnostic framework
proposed by [35], which enables us to generate the watermark only
with secret image input without any information from the cover image.
This approach allows our hiding network to embed any secret image
into any cover image without re-training. As a result, even when
advanced tampering operations can generate visually realistic outputs,
the tampered region remains detectable from the secret image, enabling
practical pixel-level tampering detection.

3.4. Attack module

Our semi-fragile watermark should be robust against various im-
age post-processing and be sensitive to tampering operations. Prior
research [39] explicitly incorporates benign and malicious image trans-
formation functions in their training pipeline to achieve selective
fragility and robustness of the watermark. However, this approach
requires applying diverse differentiable image transformations to wa-
termarked images during training, which is hard to exhaustive, leading
to a lack of generalization to unseen manipulations.

To overcome this limitation, we utilize the observation that benign
manipulation typically involves global alterations to images, such as
Gaussian blurring or JPEG compression. In contrast, malicious tam-
pering often targets only specific parts of the images. Leveraging this
distinction, we have developed an innovative attack module. This mod-
ule consists of a horizontally combined distortion layer and tampering
layer, which applies global and local manipulation on container images
to achieve selective fragility and robustness of the watermark.

Distortion layer. According to previous research [40], inserting a
distortion simulation layer after the watermarked image can effectively
improve the pipeline robustness against common image distortions.
Therefore, inspired by prior works [31,35], we designed a distortion
layer to apply various distortions on container images. By co-adapting
the training of our networks with these relevant distortions, we can
improve our watermarks’ robustness against these distortions.

Temper simulation layer. To improve the tamper detection accu-
racy, we also designed a tamper layer that imitates tampering opera-
tions on the container images. This design represents an advancement
over previous methods by avoiding the inclusion of specific tamper
manipulations in the training pipeline, which could potentially limit
the generalizability against different tamper operations. Instead, it
randomly selects and modifies a region in the container image to
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replicate the effect of tampering, subsequently using this modification
as a ground-truth label during training.

The rationale of the tampering layer is that it can generate a
tampered container image with a corresponding mask, allowing us
to introduce simple tampering operations into our network training
procedures. By enforcing the retrieved secret image with the same
tampered region as the container image, the hiding network learns
to embed the secret image sensitive to the container image’s pixel
variation. Similarly, the revealing network learns to extract the secret
image with the same variation region based on changes in the container
image rather than simply reconstructing the entire secret image. We can
thus pinpoint the tampered region in the container image by comparing
the original secret image with the retrieved secret image.

In conclusion, our attack module, comprising the distortion and
tampering layers, is critical to our deep hiding methodology. It is
integrated between the hiding and revealing networks during training
but is excluded during the inference step. A comprehensive analysis of
the attack module’s effectiveness is presented in Section 4.2, demon-
strating our success in achieving semi-fragile watermarking through
this innovative approach.

3.5. Revealing network

As explained in the preceding section, the hidden watermarks and
cover images typically occupy different frequency domains within con-
tainer images, with the watermark mainly residing in the HF and the
original cover image in the LF. From the perspective of the embedded
watermark, the information of the cover image can be perceived as a
frequency disturbance. The revealing network thus aims to retrieve the
watermark under this disturbance and recover it as the secret image.

To this end, we employ a convolutional framework with residual
connect as the backbone of our revealing network, which functions
well when the inputs and outputs are distinct [41]. We jointly train
the revealing network with the hiding network to pay more attention
to the high-frequency spectrum of the embedded watermark. Such a
design can significantly limit the impact of the disturbance of the cover
image on the watermark retrieval and secret image recovery, resulting
in superior performance in both concealing and revealing.

In addition, different from the conventional deep hiding methods
aiming to reconstruct the secret image from the container image as
high-fidelity as possible, our revealing process aims to recover the
secret image with the same tampered region as in the container image.
Therefore, we use the tampering layer masks to mask the secret image
during training as the recovery label for the revealing network instead
of the original secret image.

Retrieving the secret image rather than the original image from
the container image for tamper detection streamlines and enhances the
practicality of our method. If we choose to use the original image as
a reference for locating tampered regions, it would necessitate storing
every original image for future comparison. This approach is not only
costly but also impractical for a large-scale application. Moreover,
this method poses a reliability issue in the authentication process.
A tamperer could falsely claim that their forged image is authentic,
undermining the credibility and effectiveness of the authentication.

Another critical consideration is the nature of the watermark em-
bedding. If we replace the secret image with the original image and
embed it as a watermark pixel-by-pixel into the container image, any
damage to the container image would be mirrored in the retrieved
original image. Consequently, this would render it ineffective for iden-
tifying the tampered regions. Lastly, suppose we embed the original
image as a watermark in some container image area and retrieve it
for tampering location. In that case, it might be risky that this area be
damaged during the tampering, making us fail to retrieve the embedded
image.

Therefore, employing a secret image as a watermark is a more
practical and reliable approach in our context. This strategy balances
the dual objectives of effective tamper detection and efficient, secure
5

watermark embedding. t
3.6. Loss functions

To minimize the difference between the cover and container image,
and enforce the retrieved secret to reflect the container’s tampered
pixels accurately, we adopt the following losses:

Hiding secret loss. We define a simple but effective pixel similarity
oss function between the cover and container image to optimize the
iding network to achieve indistinguishable image hiding:

𝐻𝑖𝑑𝑖𝑛𝑔 = ‖𝑥𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 − 𝑥𝑐𝑜𝑣𝑒𝑟‖2, (1)

where the 𝐻𝑖𝑑𝑖𝑛𝑔 adopts 𝑙2-norm.
Revealing secret loss. Given the tampered container image from

he attack module, we train the revealing network using the same loss
unction as the Hiding loss. Nevertheless, to ensure that the retrieved
ecret image accurately reflects the tampered area in the container
mage, we do not simply reconstruct the entire secret image. Instead,
e use the masked secret image as the ground truth label to train the

evealing network to recover the secret image with the same tampered
egion applied to the container image. This function is defined as
ollows:

𝑅𝑒𝑣𝑒𝑎𝑙𝑖𝑛𝑔 = ‖𝑥𝑠𝑒𝑐𝑟𝑒𝑡 ×𝑀 − 𝑥𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑‖2, (2)

here 𝑅𝑒𝑣𝑒𝑎𝑙𝑖𝑛𝑔 also adopts 𝑙2 norm, and 𝑀 is the absolute residual
etween the mask from the tampering layers and identity matrix,
.e., |𝐼 − 𝑚𝑎𝑠𝑘|.
Total loss function. The total loss function 𝑇 𝑜𝑡𝑎𝑙 is a weighted sum

f 𝐻𝑖𝑑𝑖𝑛𝑔 and 𝑅𝑒𝑣𝑒𝑎𝑙𝑖𝑛𝑔 , as follows:

𝑇 𝑜𝑡𝑎𝑙 = 𝜆𝐻𝐻𝑖𝑑𝑖𝑛𝑔 + 𝜆𝑅𝑅𝑒𝑣𝑒𝑎𝑙𝑖𝑛𝑔 , (3)

here 𝜆𝐻 and 𝜆𝑅 are weights used to balance different loss terms.
It should be noted that all losses can adopt the 𝑙1 norm or a

ombination of different norms. However, our validation results have
hown that the choice of the norm does not significantly impact our
ethod’s performance. Therefore, we have adopted the 𝑙2 norm for
niformity and convenience.

. Experiments

We conduct extensive experiments to evaluate our method’s perfor-
ance from the following aspects: (1) impact of different components

nd decision thresholds; (2) effectiveness in image tamper detection;
3) robustness against conventional image post-processing; (4) imper-
eptibility of the embedded watermark; (5) security under threats and
ountermeasures. Furthermore, we implemented detailed analyses of
he watermark that we embedded.

.1. Experimental setup

Dataset. We train our networks on the widely used face image
ataset FFHQ [42] and test its performance on other datasets. The gap
etween training and test datasets can validate our method’s general-
zation. Note that choosing the FFHQ dataset as the training set is not
ased on considering performance differences.
Evaluation Metrics. To evaluate the performance of our method,

e employed several evaluation metrics for each aspect of our exper-
ments. Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity
ndex Measure (SSIM) are used to measure the similarity between the
atermarked (container) images and original (cover) images to reflect

he imperceptibility of the watermark and fidelity of the watermarked
container) images. We also calculate the Area Under the receiver
perating characteristic curve (AUC) as the primary evaluation metric

o reflect the image tamper detection performance.
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Fig. 3. The tampering detection Accuracy, F1 Score and ROC of our method under different decision thresholds.
4.2. Ablation study

We first perform ablation studies to evaluate the impact of distinct
components and decision thresholds on the performance of our method.

Impact of decision thresholds. Our method classifies the genuine
and forged pixels based on the disparity between the recovered and
original secret images. Thus, the decision threshold for our method is
the threshold value that determines whether two pixels are dissimilar.
To assess the impact of different decision thresholds on our method, we
embed the same secret image into 1k Celeba-HQ [43] images using our
method. Next, we apply three typical tampering operations, i.e., copy-
move, inpainting and splice, to generate the corresponding test sets.
Then, we employ our method to detect the tampered regions in each set
while varying the decision threshold from 0.1 to 0.9 with a step size of
0.1. We calculate the corresponding accuracy and F1 score according to
the detection results and plot the ROC. We do not calculate AUC values
here because it is a threshold-irrelevant metric that cannot reflect the
fluctuations in detection performance with decision thresholds varying.
The results are presented in Fig. 3.

The results in Fig. 3(a) show high detection accuracy across differ-
ent sets, even under extremely low or high thresholds. This abnormal
phenomenon is due to the imbalanced data problem between forgery
and authentic pixels in each image, which rendering accuracy cannot
distinguish the performance of our method under varying decision
thresholds. Nevertheless, according to the trend of F1 Score curves, we
can find that our method exhibits superior detection ability when the
threshold is below 0.7, but beyond this threshold, the performance de-
creases significantly. This phenomenon occurs because a high threshold
ignores correctly identified tampered pixels, leading to poor detection
results. The ROC presented in Fig. 3(c) proves the outstanding detection
capability of our method. All three curves are close to the top left, and
the corresponding AUCs are higher than 0.95.

Visualized predicted masks in Fig. 4 also verify the inference in
the above quantitative evaluation. The predicted tampered areas are
smaller than the ground truth when decision thresholds are higher
than 0.6, while predicted tampered areas with lower thresholds tend to
produce false alarms on authentic pixels. We can safely conclude that
our method can effectively classify genuine and forgery pixels under the
appropriate decision thresholds. Unless otherwise specified, we will set
the decision threshold to 0.5 in the following experiments.

Impact of different components. To assess the influence of indi-
vidual components of our method, we evaluate the designed scheme’s
performance under various configurations. All configurations are
trained on the complete FFHQ dataset and tested on a random sample
of 1k CelebaHQ images. For the sake of simplicity, we compute the
average pixel-level detection AUC values of Copy-Move, Inpainting
and Splice. Additionally, we employ three commonly used image post-
processing methods, namely Blur (with kernel sigma 1.0), JPEG (with
compression factor 70) and Crop (random crop 70% image), to attack
the container images of each configuration. We calculate the detection
6

Fig. 4. Samples of pixel-level detection results of our method in varied decision
thresholds. Mask (GT) represents the ground truth of tampered masks. Mask (PD)
represents the predicted tampered results, and the values under Mask (PD) are the
corresponding decision threshold.

AUC on these images to gauge each configuration’s robustness against
post-processing. The results are summarized in Table 2, while a more
detailed analysis is presented below.

(1) Influence of different secret image formats. As stated in the
methodology section, the secret image used in our method is indepen-
dent of the cover images. Thus, we investigate the impact of different
formats of secret images on our method’s performance. We select
images from four common types of images as secret images, including
RGB, grayscale, QR code, and Gaussian noise. Different secret images
were embedded into the same 1k CelebaHQ images using the same
networks and trained models, resulting in four distinct groups. Next,
we evaluated the performance of each group to determine if there were
any differences in the method’s performance.

The evaluation results for the various secret image formats are
presented in the last four rows of Table 2 and 2nd to 5th columns in
Fig. 5. The metrics values for each group are similar, with a maximum
difference of 10%, while the qualitative results are almost identical.
These findings suggest that the choice of different secret image formats
does not significantly impact the performance of our proposed method.
This characteristic is particularly practical because users of our method
can freely choose any image as their secret image making it challenging
for potential adversaries to obtain users’ secret images falsely, thus
increasing the security of our method. In the following experiment, we
will use RGB images as the secret image for simplicity and uniformity.

(2) Influence of attack module. Finally, we use different components
combinations in the attack module to reveal their effect (1st to 3rd rows
in Table 2 and last three columns in Fig. 5).

Without equipping the distortion layers, networks achieve high
detection AUCs on no-distorted container images in the first and fourth
rows. However, when applying image post-processing methods to the
container images, the networks experience a significant performance
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Table 2
Ablation studies for different model designs.

Secret Attack module Effectiveness & Robustness Stealthiness

Image None Distortion Tampering AUC ↑ AUC(Blur1.0) ↑ AUC(JPEG70) ↑ AUC(RC0.7) ↑ SSIM ↑ PSNR ↑

✓ 0.9368 0.5658 0.6111 0.9360 0.95 39.65
RGB ✓ 0.9397 0.7410 0.9095 0.9285 0.93 38.01

✓ 0.9755 0.6092 0.6992 0.9745 0.93 37.79
✓ ✓ 0.9793 0.7340 0.9650 0.9750 0.94 38.05

Gray ✓ ✓ 0.9689 0.7213 0.9342 0.9815 0.94 38.01
QR code ✓ ✓ 0.9745 0.7460 0.9676 0.9745 0.93 37.89
Noise ✓ ✓ 0.9780 0.7130 0.9456 0.9667 0.94 38.10
Fig. 5. Samples of pixel-level manipulation detection results of our method in varied
setups. Mask (PD) with the name of post-processing methods or without name means
the predicated tampered mask from the corresponding post-processed or original
tampered container, respectively.

drop. In contrast, networks with distortion layers in their attack module
achieve higher detection AUCs on distorted container images, as shown
in the second and third rows. It can also be observed in Fig. 5 that
the networks without the distortion layer will produce more errors in
the predicted mask when the container images are distorted. These
performance fluctuations indicate that the distortion layers can improve
our method’s robustness against image distortion attacks.

Furthermore, by comparing the models equipping the tampering
layers (third and fourth rows) to those without tampering layers (first
and second rows), we can observe that tampering layers can fur-
ther improve the method’s tampering detection accuracy, especially
on the non-distorted container images. As illustrated in Fig. 5, net-
works with tampering layers produce more accurate predictions of
tampered regions, with fewer false negatives than networks without
attack modules. Conversely, networks without attack modules tend
to underestimate the extent of tampered areas, resulting in reduced
detection performance. Networks equipped only with distortion layers
exhibit a high rate of false alarms, likely due to the perturbations
introduced by the distortion layers.

Overall, the full framework with both distortion and tampering
layers in the attack module achieved the best performance on almost
all detection metrics, justifying the necessity of all components in the
attack module.
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4.3. Effectiveness

In this section, we compare our method with other tamper detec-
tion methods to reflect our method’s advantages and disadvantages in
tamper detection. Three passive methods, HP-CNN [2], MVSS-Net [25],
and ManTraNet [3], and two proactive methods, PIMD [6], AFG [8],
are selected for comparison with our method, for they all have publicly
available pre-trained models and source codes.

Pixel-Level comparison. We first detect pixel-level tampering on
CASIA 1 [44], CASIA 2 [44], Columbia [45], and 10k randomly se-
lected MS-COCO [46] datasets. We embedded the watermark into these
images and applied different tampering operations. Then, we used
our method to detect tampering in these images. Since the proactive
methods are limited to image-level detection, we only employed three
passive methods for detecting forgery on non-watermarked images.
As shown in Table 3, our method outperforms other methods on all
datasets by a significant margin. It exhibits nearly perfect detection
performance on some sets, e.g., IP in CASIA 1 or SP in MS-COCO.
Additionally, all set results indicate that our method has a more stable
detection capability across all different datasets, while others have
extremely higher performance fluctuations.

Image-Level comparison. We then conduct the image-level detec-
tion comparison. Our method can achieve image-level tamper detection
by setting a threshold that the image will be identified as a forgery
when the number of pixels within this image recognized as forgeries
is over this threshold. Specifically, we fix to tamper the 30% area of
each image, and an image will be classified as tampered when 10%
of its pixels are recognized as forgery pixels. We increase this decision
threshold from 10% to 30% with step 2% to calculate corresponding
detection AUC values. Besides, the same number of authentic images
is mixed with tampered in each set to test different methods’ real/fake
classification ability.

Table 4 summarizes the performance of distinct models. Interest-
ingly, all baseline proactive methods, except ours, almost failed in
tampering detection compared with passive methods. This underperfor-
mance is believed to stem from their reliance on generative models for
training, which limits their effectiveness against unfamiliar tampering
operations. This limitation significantly hinders their practical applica-
tion. In contrast, our method, agnostic to cover images and tampering
operations, demonstrates versatility across different scenarios.

As for the comparison between pixel-level and image-level detection
accuracy, despite the degradation of AUC scores across all methods
compared to pixel-level detection results, our method again emerges
as the top performer. These findings demonstrate our method’s su-
perior detection performance at pixel and image levels. Notably, the
MVSS-Net and ManTraNet exhibit more severe degradation in detection
performance than others. We attribute this phenomenon to false-alarm
problems of these methods on the authentic pixels/images. We calcu-
late each method’s pixel-level detection results’ averaged False-Positive
Rate (FPR) to verify this hypothesis. According to Table 5, the baseline
methods’ FPR is significantly higher than ours. These results suggest
that other methods produce more false alarms on the authentic pixels
than ours, leading to unreliable detection results that limit their practi-
cal reliability. On the contrary, our method can provide more reliable
detection effects on both tampered and authentic pixels/images.
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Table 3
The averaged pixel-level tamper detection AUC ↑ results from different methods.

Detection CASIA 1 CASIA 2 Columbia MS-COCO

methods CM IP SP CM IP SP CM IP SP CM IP SP

MVSS-Net 0.9118 0.9376 0.9063 0.9118 0.9243 0.9168 0.9350 0.9104 0.9261 0.9050 0.9199 0.9108
HP-FCN 0.5995 0.6837 0.5906 0.5885 0.6734 0.5909 0.5580 0.6816 0.5845 0.4085 0.6912 0.4050
ManTraNet 0.9064 0.8987 0.8862 0.8774 0.8966 0.8788 0.9161 0.9205 0.8851 0.9411 0.9049 0.8890

Ours 0.9793 0.9930 0.9959 0.9778 0.9924 0.9959 0.9719 0.9936 0.9906 0.9663 0.9991 0.9915

Note: the abbreviation CM represents CopyMove, IP represents Inpainting, SP represents Splice and DF represents DeepFake.
Table 4
The averaged image-level tamper detection AUC ↑ results from different methods.

Detection CASIA 1 CASIA 2 Columbia MS-COCO

methods CM IP SP CM IP SP CM IP SP CM IP SP

MVSS-Net 0.8010 0.7945 0.8134 0.8201 0.7847 0.8130 0.8210 0.8014 0.8203 0.7900 0.7887 0.8108
HP-FCN 0.5159 0.5837 0.5100 0.5534 0.5974 0.6100 0.5050 0.5860 0.5145 0.5085 0.5901 0.4950
ManTraNet 0.7850 0.7780 0.7915 0.8074 0.8090 0.7880 0.8105 0.8130 0.7905 0.8330 0.8158 0.7930

PIMD 0.6854 0.6870 0.6951 0.6274 0.6390 0.6686 0.6725 0.6738 0.6609 0.6839 0.6585 0.6590
AFG 0.6050 0.6078 0.6175 0.6054 0.6238 0.6180 0.6105 0.6170 0.6205 0.6030 0.6144 0.6087

Ours 0.9139 0.9353 0.9291 0.9210 0.9213 0.9312 0.9152 0.9301 0.9445 0.9236 0.9080 0.9210

Note: the abbreviation CM represents CopyMove, IP represents Inpainting, SP represents Splice and DF represents DeepFake.
Table 5
The averaged pixel-level tamper detection FPR ↓ from different methods.

Detection methods CopyMove Inpainting Splice

MVSS-Net 0.1921 0.0526 0.077
HP-FCN 0.0419 0.0413 0.0388
ManTraNet 0.1444 0.0419 0.0988

Ours 0.0144 0.0176 0.0124

Computation efficiency comparison. We also measure the detec-
tion efficiency in terms of Frames Per Second (FPS). Tested on NVIDIA
Tesla K80 GPU, HP-FCN, MVSS-Net, and ManTra-Net run at FPS of
3.91, 19.84 and 2.73, respectively. The watermarking stage of our
method runs at 9.88 FPS, while the detection stage runs at 36.71
FPS. Our method’s primary time consumption is mainly associated
with embedding the watermark into images. In practice, this stage
can be executed before tamper detection. Therefore, only considering
the detection stage, the FPS of our method is sufficient for real-time
application.

Qualitative comparison. Finally, we visualize each method’s de-
tection results in Fig. 6. Consistent with qualitative results, the figure
illustrates that our method can accurately locate the tampered regions
with significantly fewer false positive pixels, especially when detecting
authentic images. While other methods can also pinpoint the tampered
regions, they are accompanied by some false alarm results in both
tampered and authentic images. Therefore, our method’s detection
results are more reliable.

4.4. Robustness

In real life, one may disguise a tampered image with additional
post-processing to evade detection or apply various post-processing on
the container image for different applications. The detection methods
should remain effective against these processing techniques. Here, we
consider five typical post-processing techniques and also present how
we apply them in the following experiment:

• Gaussian blur the images with kernel standard deviation ranging
from 0.5 to 1.3 with a step size of 0.1.

• JPEG compress all images with quality factors ranging from 40
to 100 with a step size of 10.

• Crop the image to a smaller size ranging from 100% to 50% with
a step size of 10%.
8

Fig. 6. Examples of mask prediction from different detection methods. Compared
with other methods, ours can accurately pinpoint the tampered pixels and produce
significantly fewer false alarms on the authentic pixels.

• Horizontally flip all images.
• Color adjusts all images’ brightness, contrast, saturation and hue

randomly.

We apply the above post-processing to the tampered images and
then employ different methods to detect the tampered regions. Our
watermarks are directly embedded into the pixel values of cover im-
ages, eliminating the need for specialized embedding processes for
different types of post-processed images. As shown in Table 6 and
Fig. 7, our method is immune to crop, JPEG compression and horizontal
flip, whereas it is susceptible to Gaussian blur and color adjustment.
Especially for the Gaussian blur, the overall performance almost drops
linearly. The main reason is that these processing methods would mod-
ify the images’ pixel value, further distorting our embedded watermark
so that they will significantly impact our method’s detection capability.

However, compared to the robust performance of other methods,
which still fall short of our results and are prone to similar distortions,
our method demonstrates superior detection performance. This output
indicates its reliability and effectiveness in detecting tampering under
real-world distortive conditions.
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Fig. 7. The averaged image/pixel-level tamper detection AUC ↑ from different methods against Gaussian blur, JPEG compress and crop. The solid line indicates the pixel-level
detection results, while the dashed line represents the image-level detection results. Our method is robust against crop and JPEG compress but sensitive to Gaussian blur. However,
our method still achieves better detection performance than other methods under these post-processing distortions.
Table 6
The averaged image/pixel-level detection AUC ↑ results from different methods under
color adjustment and horizontal flipping.

Detection methods

MVss-Net HP-FCN ManTraNet PIMD AFG Ours

Color 0.77/0.88 0.53/0.55 0.73/0.86 (N/A)/0.65 (N/A)/0.59 0.78/0.84
Flip 0.79/0.91 0.54/0.58 0.78/0.89 (N/A)/0.67 (N/A)/0.61 0.92/0.98

Table 7
The averaged similarity between original and watermarked images from different image
hiding methods.

Quality Deep hiding techniques LSB Ours

metrics HiNet DDH UDH

SSIM ↑ 0.97 0.71 0.84 0.78 0.94
PSNR ↑ 40.17 26.24 29.77 28.05 38.05

4.5. Imperceptibility

In this section, we evaluate the visual quality of the container
image to reflect the stealthiness and imperceptibility of our watermark,
thereby ensuring that it does not compromise the utility of the water-
marked image. As there is no available deep watermark-based tamper
detection method for comparison, we compare our method with SOTA
invisible watermarking methods. To ensure a fair comparison, we only
select methods with a payload capacity higher than 24 bits per pixel
(bpp), which can hide an entire image into a cover image. As a result,
HiNet [38], DDH [47], and UDH [35] are selected as the learning-
based baselines, and 4bit-LSB [26] which is a traditional watermarking
technique, is also selected as a reference in our comparison.

To assess the imperceptibility of our method and all baselines, we
use them to embed the same secret image into 1k randomly selected
MS-COCO images to generate corresponding container image sets. We
then calculate PSNR and SSIM between each method’s container and
cover images. The numerical results are summarized in Table 7. From
the table, we observe that HiNet achieves exceptionally high values
on both metrics, while our method ranks second with slightly inferior
performance (SSIM 0.04 lower and PSNR 2.0 dB lower), which still
outperforms other methods by a large margin.

While our method may not have the best quantitative imperceptibil-
ity performance, the qualitative results in Fig. 8 demonstrate that the
container images of our method are sufficiently naturalistic for human
observers. Both HiNet and our method generate high visual quality
container images with more visual-realistic and accurately preserve
the original’s hue and light in corresponding watermarked images. In
contrast, UDH and DDH introduce apparent artifacts in their water-
marked images. LSB outputs have obvious color distortions. The high
visual quality of the container image can also verify our watermark’s
imperceptibility.

Besides evaluating the similarity between the container and cover
images, we employ an open-source steganalysis tool called StegExpose
to measure the anti-steganalysis ability of each method’s watermark.
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Fig. 8. Qualitative comparison between our method and SOTA hiding techniques’
watermarked images. Our outputs are perceptually identical to the original, while the
results of LSB have slight color distortion, and DDH and UDH introduce noticeable
artifacts in their outputs.

Fig. 9. ROC curves of StegExpose for detecting different image-hiding methods.
The detection accuracy on all learning-based methods is close to random guess,
demonstrating the highly imperceptible to fool the Statical steganalysis tool.

Fig. 9 shows the ROC curve of each method. We can see that the
StegExpose detection accuracy on learning-based methods is quite close
to the random guess, indicating their watermarked images are highly
imperceptible to fool the Statistical steganalysis tool.

In summary, qualitative and quantitative results demonstrate that
our method can generate high visual-quality container images and
imperceptible watermarks, ensuring that our watermarked image can
still be used normally in real-world scenarios.

4.6. Security

This section investigates potential security risks that the attackers
may exploit to compromise the effectiveness of the proposed method.

The security of the secret image. Our initial investigation focuses
on determining whether adversaries can acquire users’ secret images by
analyzing information from container or cover images.

The first line of defense against this threat is the imperceptibility of
our watermark. As demonstrated by the results of our imperceptibility
experiments, adversaries cannot distinguish between the container and
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Fig. 10. Residuals between our method’s container and cover images. As expected,
the residuals without magnification are nearly equal to blank. Magnifying the residuals
may reveal the embedded secret images’ outlines, but still very ambiguous.

Fig. 11. Samples of the experiment result when the secret image is leaked. Embedding
the same secret image into the tampered container images will lead our method to miss
some tampered pixels in detection results, but the major tampered regions are still
accurately localized. Additionally, this cloak action will also produce apparent artifacts
in the outputs.

cover images using quantitative, qualitative or steganalysis-based anal-
yses. Consequently, it would be challenging for adversaries to locate
images containing secret information, let alone obtain them.

In our method’s application scenario, users share only the container
images on platforms with risks of malicious tampering while keep-
ing their cover images private. As a result, adversaries cannot access
original cover images without users’ permission. To fully validate the
security of our method, we investigate whether the secret image is safe
when the cover images leak. As illustrated in Fig. 10, the residuals
between the container and cover images are exceedingly thin, and
even with 50 or 100 times magnification, they remain ambiguous.
Consequently, adversaries cannot obtain the secret images according
to the container and cover images.

Risk of the secret image leakage. We then consider the scenario
in which users’ secret images are compromised while the pre-trained
models remain secure. Adversaries will use their trained models to
embed these secret images into their tampered images to conceal the
tampered area and evade our detection.

To simulate this attack, we trained two different groups of models
on an identical dataset to represent the user and adversary, respec-
tively. We first employ user networks to embed the secret image
into 1k randomly selected CelebaHQ images, followed by tampering
operations. We then use adversary networks to embed the same secret
image into these tampered images to simulate the adversary’s cloaking
action. Finally, we utilize the user’s networks to detect tampered and
cloaked images, testing whether our method is still effective. Table 8
summarizes the detection FPR, TPR, Precision and F1 Score, while
Fig. 11 provides visual representations of the results.

Our findings indicate that this attack reduces the detection perfor-
mance of our method, particularly by generating more false negative
tampered pixels. However, the TPR suggests that more than 65% of
tampered areas can still be successfully localized, demonstrating that
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Table 8
Pixel-level detection results when the secret image leaks. w/o represents without, and
w represents with.

TPR ↑ FPR ↓ Precision ↑ F1 Score ↑

CopyMove

w/o cloak 0.7035 0.0140 0.9490 0.8080
w cloak 0.6114 0.0162 0.9441 0.7422

Inpainting

w/o cloak 0.7271 0.0195 0.9273 0.8151
w cloak 0.6114 0.0162 0.9441 0.7422

Splice

w/o cloak 0.7209 0.0131 0.9518 0.8204
w cloak 0.6114 0.0162 0.9441 0.7422

Fig. 12. Samples of the experiment result when the pre-trained model is leaked.
Embedding the different secret images using the same models into the tampered
containers will make our method produce more false alarms when detecting authentic
pixels. However, the tampered areas are still accurately identified, and apparent
artifacts appear in the cloaked images.

adversaries cannot wholly evade detection. Furthermore, the qualita-
tive results presented in Fig. 11 validate the above inference that,
despite reduced detection accuracy, the primary tampered regions in
the container images are still accurately identified. We attribute this to
the inability of different network groups to replace the watermarked
secret images in each container image perfectly.

Additionally, we observe that cloaked images exhibit apparent ar-
tifacts, likely due to the overflow of embedding the extra secret image
into already watermarked images. This phenomenon renders the at-
tack meaningless again, as cloaked images are easy to identify and
forbidden.

Risk of the pre-trained model. Finally, we analyze the situation
where users’ pre-trained models are compromised while their secret
images remain safe. Adversaries will use the same networks to embed
different secret images into their tampered images to conceal the
tampered regions and evade our detection.

To simulate this attack, we first employ our networks to embed
a secret image (secret a) into the cover images and then perform
tamper operations on these images. Next, we use the same networks to
embed another secret image (secret b) into these tampered images to
imitate the adversaries’ concealing process. Finally, we conduct tamper
detection on these images based on the secret image a.

The results are provided in Table 9 and Fig. 12. Similar to the
previous, this attack also declined our method’s detection performance,
but as evidenced by FPR values, it will lead to more false alarms on
the authentic pixels in detection results rather than falsely negating
tampered pixels. The results in Fig. 12 are consistent with quantita-
tive results, as the tampered regions can be accurately identified, but
together with some false alarms on the authentic pixels.

We infer that this phenomenon occurs because the newly embedded
secret image destroys the original watermark in the container image.
Therefore, when comparing the original secret image with the secret
image recovered from this cloaked container, the destroyed area in the
watermark will result in false alarms. Nevertheless, as the results show,
the tampered regions can still be identified.
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Table 9
Pixel-level detection results when pre-trained models leaked. w/o represents without,
and w represents with.

TPR ↑ FPR ↓ Precision ↑ F1 Score ↑

CopyMove

w/o cloak 0.7094 0.0144 0.9473 0.8113
w cloak 0.6750 0.0236 0.9141 0.7766

Splice

w/o cloak 0.7232 0.0182 0.9323 0.8146
w cloak 0.6760 0.0292 0.8924 0.7693

Splice

w/o cloak 0.7258 0.0138 0.9489 0.8225
w cloak 0.6356 0.0220 0.9218 0.7524

Fig. 13. The partial pixel values of cover and container images and the values gap
between them. Since adding with watermark in it, the container image’s pixel values
are different from the cover image. Nevertheless, the values gap is tiny, so there is
no perceptual difference between cover and container images, indicating our method’s
perfect concealing ability.

In summary, we have validated our method’s security, which can
keep users’ secret images safe in the practical application scenario
and sustain detection performance even if some credential information
is compromised. However, considering the performance degradation
when credentials are leakage, it is still essential for users of our method
to keep their secret images and pre-trained models private.

4.7. Analysis

According to the above examinations, it is clear that our method is
capable of reliable pixel and image-level tamper detection. However, it
is still insufficient to understand our watermark and the watermarked
image. In this section, we will implement an investigation to analyze
how our method works.

Pixel value Analysis. We begin our investigation by analyzing the
pixel values of our watermark. Our method incorporates the watermark
into the cover image by directly pixel-wise addition to generate the
corresponding container image. Consequently, this process inevitably
introduces pixel differences between the cover and container images.
However, the Hiding secret loss of our method enforces the container
to be identical to the cover image. This design ensures that the Hiding
network produces the watermark with minimal pixel values to include
the secret image’s information.

As a result, there is no noticeable distinction between cover and
container images, even though their pixel values are slightly different.
To support our hypothesis, we provide Fig. 13 as evidence. We can ob-
serve that although the pixel values of the cover and container images
within the red box differ in all three RGB channels, this difference is
very slight. Therefore, the changes in pixel values resulting from the
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Fig. 14. The averaged Azimuthal Integral values of different cover, container and
watermark images. The watermarks mainly consist of a high-frequency spectrum. The
container images’ low-frequency distribution is almost aligned with that of the cover
images while having a higher high-frequency spectrum. So, it would be straightforward
to conclude that this high-frequency difference is due to the embedded watermarks on
containers.

Fig. 15. The frequency distribution of the original and recovered secret images.
They are almost perfectly aligned in most frequency domains but only differ in the
high-frequency.

watermark would not produce distinguishable perceptual alterations in
the container image.

Frequency analysis. We then compute the averaged Azimuthal
Integral (AI) [48] values of different images that appear in our method
to explore their frequency properties. In brief, Azimuthal Integral re-
turns the relative frequency intensity distribution spectrum, where the
intensity begins with the highest value at the lowest frequency and
decreases as the frequency increases. The outcomes are plotted in
Figs. 14 and 15.

From Fig. 14, it can be observed that the frequency distribution
of the container image in the low-frequency domain almost aligns
with that of the cover images. Since the high-frequency contents in
images are generally imperceptible to human observers, it explains why
container images are perceptually indistinguishable from their corre-
sponding cover images. Similarly, the watermark images, which are
almost perceptually invisible, mainly consist of high-frequency distribu-
tion with a significantly weak low-frequency spectrum. Consequently,
the container images embedded with these watermark images will only
exhibit some high-frequency distortion compared to the cover images
but no noticeable artifacts. The secret images’ frequency distributions
in Fig. 15 are almost perfectly aligned in most frequency domains but
only slightly differ in the high-frequency domain. These imperfections
could be attributed to the imperfection reconstruction of our method,
but based on the previous experimental results, we consider them
acceptable.

5. Conclusion and discussion

The task of image tamper detection has become increasingly chal-
lenging due to the constant evolution of image editing and synthesizing
techniques. Confirming the authenticity of images by identifying ar-
tifacts left from the manipulation process has become more complex
than ever before. To address these challenges, we propose a proactive
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method to protect the authenticity of images by embedding a semi-
fragile and invisible watermark into each target image. This watermark
serves as an indicator to verify the authenticity of the image’s pixels.

The experiment results have demonstrated that our method per-
forms exceptionally well across all evaluation metrics. However, it
should be noted that our method follows a distinct pipeline from other
current image tamper detection methods, which requires additional
steps. Given the perfect detection performance of our method, we
believe this overhead is acceptable. At present, the proposed method
is best suited for protecting critical information. For example, public
celebrities can use our method to add personalized watermarks to their
images to prevent malicious image forgery and tampering. Only images
with their watermarks can be considered authoritative, while images
without the corresponding watermarks will be assumed to come from
unofficial channels. They can also verify the tampered regions and
declare forgery to reduce reputation loss.

Overall, this work represents a new direction for proactively fight-
ing against malicious tampering operations on image data.
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Appendix A. Network architecture

We illustrate the detailed structure of our networks in Fig. A.16.
Our method consists of two U-Net style pure convolutional networks,
the Hiding network and the Revealing network, respectively.

The left side of Fig. A.16 depicts the architecture of the hiding
network, which is symmetric with down- and up-sampling blocks.
The features extracted by the down-sampling blocks are passed on to
the up-sampling blocks for further processing. Specifically, the down-
sampling block consists of a 4 × 4 Conv2d layer with a stride of 2, a
LeakyReLU layer with a negative sloop of 0.1, and a BatchNorm layer.
The cover image is firstly down-sampled to a tensor with a size of
1024 × 2 × 2, which is then up-sampled to obtain the watermark. The
up-sampling block includes a 4 × 4 ConvTransposed2d with a stride of
2, a ReLU layer, and a BatchNorm layer. At the end of the up-sampling
process, the sigmoid function projects the outputs pixel value to −1 to
1 as the subsequent embedding process’s watermark. This architecture
enables the up-sampling blocks to share the features extracted by the
down-sampling blocks, thereby preserving the input information for
generating the output.
12
Fig. A.16. Network architecture. Conv k,s,p represents a Convolutional Layer with ker-
nel size k, stride s and padding p. ConvTran k,s,p represents a Transposed Convolutional
Layer with kernel size k, stride s and padding p. All Leaky ReLUs have 𝛼 = 0.1.

The revealing network’s architecture illustrated on the right side of
Fig. A.16 comprises three parts: the down-sampling, the residue, and
the up-sampling. In the down-sampling part, the unit block consists of
a 3 × 3 Conv2d layer, a BatchNorm layer, and a ReLU layer. Specifically,
the stride is set to two in the last block of the down-sampling part to
enlarge the receptive field. In the residue part, nine residue blocks,
comprising 18 convolution layers, generate residual features. In the
up-sampling part, the residual features are up-sampled to recover the
secret image. The unit block here is similar to the down-sampling part,
with only differences in the number of input and output channels. For
up-sampling, the first block’s Conv2d layer has a stride and kernel size
of 2 and 4 × 4, respectively. Finally, the sigmoid function is applied
to output the final recovered secret image. This architecture is based
on CEILNet, which performs well when its output differs significantly
from its input, making it suitable for retrieving the secret image from
the container image.
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Fig. C.17. Samples of each post-processing method are adopted in the robust-
ness evaluation. Note that the Crop’s samples are resized in this figure for better
visualization.

Fig. D.18. Azimuthal Integral. The input image is transformed into a 2D spectrum
using discrete Fourier transform. Then, the integration is conducted from the inside
of the 2D spectrum to the outside, along the yellow arrow circularly. Eventually, the
1D spectrum is derived, where the red and green lines represent the sum of the pixel
values on the red and green circles.

Appendix B. Implementation details

Our method is implemented in PyTorch and trained on an NVIDIA
Tesla K80 GPU. The image size in the experiment is set to 256 × 256.
We use an Adam optimizer whose learning rate periodically decays
from 10e–4 to 10e–7. We set the two weights in the combined loss
as 𝜆𝐻 = 1 and 𝜆𝑅 = 0.75, according to the model performance on a
held-out validation set from FFHQ.

Appendix C. Post processing samples

We present samples of different post-processing operations’ results
in Fig. C.17. These samples provide a visual representation of the
impact of various post-processing techniques on the images.

Appendix D. Azimuthal integral

In brief, Azimuthal Integral [49] computes the radial integral over
the 2D discrete Fourier Transform spectrum along the spatial fre-
quency. Given a square image 𝐼 of size 𝑀 × 𝑁(𝑀 = 𝑁), the spectral
representation is computed from the discrete Fourier Transform (DCT)

DCT(𝐼)(𝑘, 𝑙) =
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
𝑒−2𝜋𝑖⋅

𝑗𝑘
𝑀 𝑒−2𝜋𝑖⋅

𝑗𝑙
𝑁 ⋅ 𝐼(𝑚, 𝑛),

for 𝑘 = 1,… ,𝑀, 𝑙 = 1,… , 𝑁,

(D.1)

via Azimuthal Integration over radial frequencies 𝜙

AI(𝜔𝑘) = ∫

2𝜋

0
‖DCT(𝐼)(𝜔𝑘 ⋅ cos(𝜙), 𝜔𝑘 ⋅ sin(𝜙))‖2𝑑𝜙

for 𝑘 = 1,… ,𝑀∕2.
(D.2)

As depicted in Fig. D.18, the 1D Azimuthal Integral power spectrum
reflects the relative intensity of the 2D spectrum at a certain frequency
spatial coordinate.
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