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Abstract: Increasing connection rates of rooftop photovoltaic (PV) systems to electricity distribution
networks has become a major concern for the distribution network service providers (DNSPs) due to
the inability of existing network infrastructure to accommodate high levels of PV penetration while
maintaining voltage regulation and other operational requirements. The solution to this dilemma is
to undertake a hosting capacity (HC) study to identify the maximum penetration limit of rooftop
PV generation and take necessary actions to enhance the HC of the network. This paper presents a
comprehensive review of two topics: HC assessment strategies and reinforcement learning (RL)-based
coordinated voltage control schemes. In this paper, the RL-based coordinated voltage control schemes
are identified as a means to enhance the HC of electricity distribution networks. RL-based algorithms
have been widely used in many power system applications in recent years due to their precise,
efficient and model-free decision-making capabilities. A large portion of this paper is dedicated to
reviewing RL concepts and recently published literature on RL-based coordinated voltage control
schemes. A non-exhaustive classification of RL algorithms for voltage control is presented and key
RL parameters for the voltage control problem are identified. Furthermore, critical challenges and
risk factors of adopting RL-based methods for coordinated voltage control are discussed.

Keywords: voltage control; hosting capacity; reinforcement learning; artificial neural networks;
quasi-static time series; photovoltaic systems; electricity distribution networks

1. Introduction

Renewable energy generation plays a vital role in decarbonization of the energy sector
and its transition to a green and more sustainable system. According to the International
Energy Agency [1], the global renewable capacity is estimated to increase by almost 75%
between the years 2022 and 2027. Solar generation from rooftop solar PV panels is one of
the most attractive modes of renewable energy generation. Solar PV generation capacity is
estimated to become the largest installed electricity capacity worldwide by 2027, surpassing
natural gas, coal and hydropower [1]. Transitioning the electricity distribution network
to deal with the increasing uptake of rooftop PV systems is a challenging task, as high
amounts of PV generation may cause adverse technical or operational network impacts.

According to [2], the definition of PV-hosting capacity (PVHC) is the total PV genera-
tion capacity that can be accommodated on a given feeder without any adverse impacts
on the electricity distribution network. High penetration of PV generation in an electricity
distribution network may violate network performance indices for voltage, thermal limits,
protection coordination and power quality. Such network operational constraint violations
undermine the network reliability and often result in high economic losses for the DNSPs.
Assessing the PVHC is key in mitigating such adverse impacts and ensuring the reliability
of the electricity distribution network. Due to the lack of advanced planning approaches by
DNSPs, the PVHC can often be under- or overestimated. One of the main objectives of this
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paper is to review various methodologies in the literature that quantify the PVHC more
accurately and in a time-efficient manner.

The violation of voltage constraints is ubiquitously expressed as the limiting factor
in nearly all hosting capacity assessment studies. Innovative approaches to regulate the
voltage in the electricity distribution network are the obvious solution to enhance the HC
and integrate more distributed energy resources (DERs) into the grid [3]. Voltage control
schemes such as Volt-VAr and Volt-Watt of smart inverters only utilize local measurement
data to regulate the voltage [4]. In contrast, coordinated voltage control schemes unlock
the full potential of the voltage-regulating devices and maximize their performance in
regulating the voltage [5]. Such control schemes of network elements have a direct influence
on the HC, especially in unbalanced low-voltage (LV) networks.

Due to the recent advancements in the fields of artificial intelligence and machine
learning, researchers have focused their attention on reinforcement learning (RL)-based
control algorithms to solve various control tasks. RL approaches to solve the coordinated
voltage control problem have been given increased attention in recent years due to their
ability to make highly accurate and efficient decisions as compared to other voltage control
algorithms [6].

Table 1 summarizes the main features of several recently published review works on
HC and RL applications for power systems and highlights the main contributions of the
current paper. Only a few publications can be found on applications of RL algorithms
for quantifying and enhancing the HC of distribution networks, which is identified as a
research gap that deserves more attention [7–9].

Table 1. Comparison of prominent features of previous studies and current work.

Features [10] [11] [12] [13] [14] [15] Current Work

HC assessment methods 3 3 x x x x 3

HC enhancement techniques x 3 x x x x P

An overview of reinforcement learning algorithms x x 3 3 3 3 3

Coordinated voltage control using reinforcement
learning methods x x 3 3 3 P 3

Identification of various challenges in using
reinforcement learning methods x x 3 x 3 P 3

P = Partially.

This paper discusses the key concepts of HC and RL-based algorithms and provides a
guide for researchers pursuing activities on the utilization of RL-based algorithms for HC
studies. In summary, this paper offers several contributions compared with previous efforts:

• It categorizes and explains the major RL-based algorithms that are applicable to the
power system domain and especially distribution network management;

• It explores a wide range of recent publications on RL-based coordinated voltage control
algorithms and highlights the significance of such control methods in enhancing the
performance of electricity distribution networks;

• It compares the main features of these algorithms and reviews their advantages and
disadvantages;

• It explains the HC assessment methods and the application of RL-based algorithms
for enhancing the HC of distribution networks.

The remaining sections of this paper are organized as follows: Section 2 reviews the
hosting capacity quantification methods published in recent literature. Section 3 gives a
brief introduction to the reinforcement learning concepts. In Section 4, reinforcement learn-
ing algorithms for coordinated voltage control in recent literature are classified. Section 5
details multi-agent reinforcement learning methods. Section 6 describes certain parameters
of reinforcement learning algorithms that are unique to the voltage control problem. In
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Section 7, several risk factors and challenges of reinforcement learning algorithms are
identified. Lastly, in Section 8 conclusions are presented.

2. Hosting Capacity Analysis

According to [11], the HC concept originated in 2004 and was used to specify the
impacts of DER penetration on distribution systems. HC quantification is an important issue
for DNSPs since it determines the new DERs that can be added to the distribution system
in the future without any violation of network operating conditions. Before undertaking
an HC analysis on a distribution network, acceptable limits for performance indices need
to be established. Different performance indices are used for HC quantification studies in
various studies, and [11] classifies the main HC performance indices used by most authors
into the following four groups:

• Overvoltage problems;
• Overloading and power loss problems;
• Power quality problems;
• Protection problems.

The limits for each of these HC performance indices are based on the standards
followed by DNSPs. Ref. [16] provides a comparison of performance limits for over/under
voltage, voltage unbalance and harmonics based on different standards. Another example
of such performance limits is presented in [17] by the Electric Power Research Institute
(EPRI) for HC analysis. In [18], an HC assessment of 50,000 real LV distribution systems is
undertaken with over/under voltage, voltage unbalance, conductor thermal capacity and
transformer overload as the monitored operational limits. It was identified that overvoltage
is the most restrictive performance index in HC quantification and constitutes 61.5% of the
incidences of operational limit violations, followed by conductor thermal capacity at 27.7%
and voltage unbalance at 9.6%. The results from this study are consistent with the fact that
overvoltage and conductor thermal capacity are identified as the main two performance
indices considered for the HC analysis in other well-cited literature [10,11].

A number of distinctive methods can be seen in various literature to analyse the
HC of electricity distribution networks. Traditional deterministic load-flow-based HC
analysis is one of the earliest methods that offers faster computational time but with less
accuracy. The most common methods for HC quantification are based on probabilistic
load flow (PLF) that captures various uncertainties of the distribution network. Several
classifications for HC quantification methods are proposed by various authors in [11,16,19],
with a comprehensive review of recent literature and trends in HC assessments. A similar
classification to that proposed in [10] is followed in this paper, which classifies the HC
quantification methods into three groups: deterministic methods, probabilistic load flow
methods and quasi-static time series methods. This classification method captures most of
the publications for HC assessment techniques in a non-exhaustive manner that facilitates
comparing and contrasting their fundamental concepts.

2.1. Deterministic Methods

Fixed input data are used in deterministic methods to analyse the PV hosting capacity
of a distribution network. For example, single input values are used for input data models,
such as customer power consumption and PV production, to give single output values [10].
Three rule-based deterministic methods to quantify the PV hosting capacity of a medium
voltage (MV) network are presented in [20]. These methods consider a rule-based increment
of the utilization factor ratio, which is the assumed PV power to the derived roof potential
power of the installed PV on each node of the MV feeder. In [21], a comparison of these three
algorithms and an alternative Monte Carlo deterministic method for HC quantification
are presented. The deterministic Monte Carlo method is similar in concept to the three
methods except that the utilization factor is increased by a random predefined value. The
Monte Carlo method is highly accurate compared to the mentioned three methods, but it
has a high computational burden and is considered to be slow. These three methods do not
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suffer the high computational burden of the Monte Carlo method. Therefore, DNSPs can
use these three methods to obtain a quick estimate of the HC of the network.

Traditional deterministic load flow simulation-based methods are used in some studies
to quantify the maximum PV hosting capacity of a distribution system [22,23]. Such
methods utilize iterative power flow simulations and increase the PV capacity in steps
until a violation of operational limits occurs. However, the time-varying behaviour of the
network is not modelled in such methods, since fixed values for customer load and PV
generation are used in the simulations. Deterministic load flow methods are commonly
used in the literature to establish the relationship between PV hosting capacity and other
network factors such as customer load, feeder terminals and electric vehicle (EV) loads.

Analytical approaches to deterministic methods are widely used in many works of
literature, since they offer a quick determination of HC with less computational burden.
Power flow analysis software is not required for such analytic methods, and they can easily
be implemented in spreadsheet environments [24]. Another example of an analytical ap-
proach for HC quantification is presented in [25] for three different scenarios of distributed
generation (DG) placement in the network. Similar to other deterministic methods, the HC
is quantified in analytical approaches considering the allowable voltage rise of the feeder
and the thermal conductivity of the lines.

2.2. Probabilistic Load Flow Methods

The most preferred approach to model uncertainties due to DER in the literature is by
utilizing PLF-based methods. In [19], PLF methods to model uncertainties in the electricity
distribution network are classified into numerical approaches and analytical approaches.
The Monte Carlo simulation (MCS) is the most common numerical PLF method used by
many authors to model the uncertainties in a distribution system. MCS is well known to be
a highly accurate stochastic method and it is often used as a benchmark for comparison
with other HC quantification methods [26–28]. A drawback of MCS-based methods is their
high computational burden with the increasing levels of uncertainty in large distribution
networks. A method for estimating the HC of a large distribution network based on
an MCS performed only on 1% of randomly selected LV systems is presented in [18],
which significantly reduces the computational burden of MCS-based methods. However,
analytical approaches to HC quantification are commonly adopted by many authors as a
solution to the shortcomings of MCS-based methods.

Analytical approaches perform arithmetic using Probability Density Functions (PDF)
of stochastic input variables to solve PLF. Some of the common analytical approaches to
PLF use techniques such as the point estimation method (PEM), unscented transformation
(UT), convolution and cumulants. PEM is an analytical PLF method based on the statistical
data provided by the first few central moments of an uncertain input. PEM computational
time is considerably less compared to the MCS, but the accuracy of the solution is sensitive
to the complexity of the system [29,30]. In terms of modelling correlated uncertain variables
in a power system, the UT method [31] is considered a very appealing approach. The
computational burden of the UT method is almost the same as the PEM method, but lower
than that of MCS. Convolution methods for PLF perform a convolution operation on PDF
of the input variables. This method is most suited for small-scale data systems, while for
large systems high amounts of storage and computational power are required [32]. The
cumulant-based methods prevent the need to perform the convolution operation when
calculating the PDF of a linear combination of several random variables [33].

Most analytical methods are incapable of incorporating system dynamics to perform
PLF and the relation between system variables over time is lost. An analytical approach
based on a Markov chain Monte Carlo formulation is presented in [34] to realize system
dynamics and calculate PLF. Latin Hypercube Sampling with Cholesky Decomposition
proposed in [35] is another example of an analytical PLF method that can incorporate
system dynamics into the PLF solution.
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2.3. Quasi-Static Time Series Methods

The quasi-static time series (QSTS) simulation is defined in the IEEE guide [36] as a
sequence of steady-state power flow simulations with time steps of no less than 1 s up to
steps of 1 h. In QSTS power flow, discrete controls of power distribution devices can be
established that can change their state from one time step to the next. The settling time of a
dynamic event and the time period between steady-state power flow solutions determine
the accuracy of the QSTS analysis.

An analysis of the QSTS requirements, such as the length of the simulation, input
data time resolution and the time step resolution, is presented in [37]. This study identifies
that higher-resolution simulations with shorter time periods are more accurate than the
simulations with longer time periods with lower resolutions. To produce the most accurate
results, QSTS simulation time resolution must be less than the fastest delay of any discrete
control device in the distribution system. A QSTS simulation to analyse the impact of PV
generation on voltage regulation devices such as on-load tap changers (OLTCs), capacitor
banks and voltage regulators is presented in [38]. In this study, high-resolution data
for PV output profiles are synthesized from solar irradiance data or the proxy data of
similar plants.

Performing QSTS year-long simulations on large distribution systems at high-resolution
timescales is proven to be computationally costly. This dilemma has driven researchers
to develop analytical techniques to reduce the computational time of QSTS simulations.
Ref. [39] presents a method to reduce the feeders in a distribution system to a specified
number of buses of interest while retaining its equivalent properties. The proposed method
reduces the QSTS simulation time significantly while incorporating multiphase connections,
mutual coupling between unbalanced multiphase lines, spatial variations and unbalanced
loads/generators into the simulation process.

In [40], vector quantization is utilized to perform fast QSTS year-long simulations to
study the impacts of distributed PV generation. Vector quantization identifies similar input
data profiles and simulates them once, eliminating the redundant calculation steps and
improving the computation time. The traditional algorithm to perform vector quantization
is k-means, in which the input data are partitioned into clusters (time steps) and the
similarity between clusters is established through Euclidean distance. Down-sampling
is another technique to speed up the QSTS simulation by reducing the resolution of the
input data profiles. The study presented in [41] undertakes a comparative study between
down-sampling and vector quantization methods for shortening the QSTS simulation time.
It is identified that vector quantization is the superior technique in terms of accuracy and
the simulation time when voltage control is implemented in the simulation.

A scalable and fast QSTS analysis method is proposed in [42] that relies on a linear
sensitivity model which exploits the correlation between the real/reactive power injections
and the feeder voltage using multiple linear regression. Estimation of control actions is
one of the challenges in undertaking QSTS simulations. The proposed sensitivity model
is inspired by predictive modelling in machine learning and accurately estimates the
control actions required for the entire year-long simulation. The QSTS simulation studies
discussed above consider static methods for determining hosting capacity by considering
infrequent worst-case snapshots in time. The durations of the violations are not accurately
captured by the traditional QSTS simulation methods. Traditional QSTS simulations do
not consider instances in which voltage violations are temporarily acceptable, and they
often lead to overestimation of the HC. The study presented in [43] proposes a dynamic PV
hosting capacity quantification methodology with the formulation of time-aware metrics.
The proposed methodology accurately captures the operation of control-based mitigation
techniques such as Volt-VAr control that enhances the HC of distribution networks.

2.4. Voltage Control

As highlighted in the preceding sections, voltage constraint violations are recognized
by many authors as the primary cause that restricts the HC of electricity distribution
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networks. The voltage in traditional distribution systems without DER is based on the
radial power flows from the substation to the loads. The introduction of DERs may reduce
the performance of the traditional voltage control schemes as the direction of power flows
is now reversed. Transitioning into a smart distribution system through active network
management of DERs is one of the solutions to resolve the voltage constraint violations
and enhance the HC of the network.

Active distributed control schemes require pervasive communication systems to han-
dle the complexity of a smart grid. A classification of such voltage control schemes based on
the communication structure is presented in [44] that categorizes voltage control schemes
into local control, centralized control, distributed control and decentralized control. Coor-
dinated voltage control schemes exploit the full potential of DERs and other controllable
network elements than the local control schemes that only rely on local observations.

The optimal power flow (OPF) problem is at the core of every coordinated voltage
control scheme. Some of the commonly used algorithms for coordinated voltage control in
literature are listed below:

• Rule-based methods [45–47];
• Analytical methods for OPF [48–50];
• Model-predictive control [51–53];
• Heuristic methods [54–56];
• Reinforcement learning [57–59].

Among these control algorithms, reinforcement learning methods have been adopted
in recent years for coordinated voltage control. Recent advancements in artificial neu-
ral networks enable deep RL-based control algorithms to produce more desirable results
than other control algorithms. The following sections of this paper are dedicated to a
brief overview of reinforcement learning concepts and a review of reinforcement learn-
ing algorithms proposed in recent literature for coordinated voltage control in electricity
distribution networks.

3. An Introduction to Reinforcement Learning

Reinforcement learning is a prominent machine learning paradigm that has been used
to solve a variety of control problems in the presence of uncertainty. The application of
RL in sustainable energy and electric systems is considered by many authors as a path to
revolutionize the traditional power utilization mode and bring more intelligence into power
systems. RL is a useful tool that can make (near-) optimal decisions in electricity distribution
systems with complex nonlinearity and uncertainty. Some of the key applications of RL
in power systems can be seen in the fields of energy management, frequency regulation,
voltage control, stability control and congestion management [12,14,15]. However, this
paper only reviews applications of RL in the field of coordinated voltage control in electricity
distribution systems, since voltage is identified to be the main limiting factor of HC.

3.1. Markov Decision Process

In RL, an agent tries to maximize its cumulative reward by making sequential decisions
in an uncertain environment. A Markov decision process (MDP) provides a mathematical
framework to formalize sequential decision making in RL. An MDP can be described as a
4-tuple (S, A, P, R), where S is the state space (s ∈ S), A is the action space (a ∈ A), P is
the transition probability of an action a in state s at time t that leads to state s′ at time t + 1
and R is the immediate reward of transitioning to state s′ from state s due to action a.

Figure 1 illustrates the MDP where a decision maker called the agent interacts with
its environment sequentially. At each time step, given the state of the environment St, the
agent selects an action At. The environment is then transitioned into its new state St+1 and
the agent is given an immediate reward Rt+1 as its consequent action. The state–action pair
(st, at) can be continuous or discrete.
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The goal of an agent is to maximize its cumulative discounted return of rewards Gt
as given in (1), where γ is the discount factor γ ∈ (0, 1) for which the future rewards are
discounted. The policy π that the agent follows dictates the actions that the agent takes
as a function of the agent’s state. A policy π can be either deterministic or stochastic. The
expected return, designated as the “on-policy” action-value function for following the
policy π, is given as in (2). The optimal action-value function for following the optimal
policy π∗ is given in (3) by means of the Bellman equation. In RL an agent must follow the
optimal policy π∗ to maximize its expected discounted reward.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞

∑
k=0

γkRt+k+1 (1)

Q π(s, a) = E [Gt|St = s, At = a] (2)

Q∗(s, a) = E
[

Rt+1 + γmax
a′

Q∗
(
s′, a′

)]
(3)

3.2. Artificial Neural Networks

Artificial neural networks (ANNs) are inspired by the working mechanism of bi-
ological neurons in the human brain to process information and derive meaning from
complicated or imprecise data. An ANN is comprised of an input layer, one or more
hidden layers and an output layer. Each neuron in these layers is interconnected to another
with an associated weight and a threshold. The capability of ANNs to act as universal
function approximators is widely utilized in many reinforcement learning algorithms in
which the relationship between dependent and independent variables is not clearly under-
stood [61,62]. There are various types of ANNs for different purposes. Some of the most
commonly used ANNs in power system applications are deep neural networks (DNN),
convolutional neural networks (CNN), recurrent neural networks (RNN) and graph neural
networks (GNN).

3.2.1. Deep Neural Networks

A neural network with more than one hidden layer between the input layer and the
output layer is called a deep neural network (DNN). The number of layers and total neurons
depend on the complexity of the function. DNNs contain fully connected layers, otherwise
known as dense layers, in which every neuron in a particular layer is connected to all the
neurons in the next layer. The inputs that are fed to the input layer are multiplied with
weights and fed to the activation function. The primary function of the activation function
is to add nonlinearity to the neural network by transforming the weighted input sum
received to a particular neuron to an output value and passing it to the next neuron. The
weights of the DNN are updated during training using backpropagation which computes
the gradient of the loss function with respect to weights [63,64]. Successful training of
DNNs is dependent on several factors and [65] provides the theory for training ANNs and
an overview of various optimization algorithms.
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3.2.2. Convolutional Neural Networks

Convolutional neural network (CNN) is a class of ANNs that specialize in pattern
detection and is commonly applied to analyse visual imagery. A CNN typically consists
of three main types of layers: convolutional layer, pooling layer and fully connected layer.
The convolutional layer is a type of hidden layer that carries out convolution operations.
Each neuron in a convolutional layer is defined by a low-dimensional matrix that convolves
with the input matrix of a higher dimension which leads to an output matrix that is passed
to the next layer. A convolutional layer is typically followed by additional convolutional
layers or pooling layers. A pooling layer reduces the number of parameters in the input
and conducts dimensionality reduction. Although information is lost in the pooling layer,
it improves efficiency by reducing complexity and limiting the risk of overfitting. The fully
connected layers connect to the output layer and perform the task of classification based on
the features extracted from the previous layers. CNNs are widely utilized in power system
applications such as network transient stability assessments [66], fault identification [67]
and assessment of power quality disturbances [68].

3.2.3. Recurrent Neural Networks

Recurrent neural networks (RNNs) are one of the popular forms of ANNs that spe-
cialize in processing long, sequential data or time series data. RNNs are distinguished by
their memory function in which the information from prior inputs is utilized to generate
the next output of the sequence. Contrary to DNNs that assume the inputs and outputs are
independent of each other, the output of the RNNs depends on the prior elements within
the sequence. There are different variations of RNNs, such as bidirectional recurrent neural
networks (BRNN) [69], long short-term memory (LSTM) [70] and gated recurrent units
(GRUs) [71]. RNNs are widely used in power system applications such as photovoltaic
power forecasting [72,73] and HC analysis [7,9] that generally require the processing of
time series data.

3.2.4. Graph Neural Networks

Graph neural networks (GNNs) are special types of ANNs that are designed to learn
from a graph data structure. A typical GNN constitutes of data points called nodes which
are linked by lines known as edges. The core function of GNNs is to learn nodal embeddings
using the message-passing mechanism, where the features of the nodes are based on the
learnable parameters that transform the messages and features of the neighbouring nodes.
The learned nodal embeddings are aggregated and passed through a readout function,
which is typically a dense layer that outputs the final prediction. Different GNN variants
such as graph convolutional network (GCN), graph attention network (GAT) and graph
recurrent network (GRN) have demonstrated excellent performances on various deep
learning applications [74]. In power system applications, GNNs are typically leveraged to
extract topological information in power distribution networks for reinforcement learning
algorithms. Some of the literature that utilizes GNNs to solve various control problems
can be found in the fields of Volt-VAr control [75], stability control [76] and active-reactive
power coordination [77].

4. A Classification of Reinforcement Learning Algorithms

A taxonomy and categories of the most popular RL algorithms are provided in [78],
and RL algorithms are divided into two main categories: model-based and model-free. The
model-based RL methods require or learn the model of the environment and the model-
free methods do not model the environment but look for the optimal policy directly. RL
algorithms used for coordinated voltage control in most studies are model-free. The reason
is the difficulty of guaranteeing a good model of the environment, which is the electricity
distribution network, due to the uncertainties in its network topology, DERs and loads.
Model-free RL algorithms can be further categorized into value-based and policy-based.
Value-based RL algorithms such as Q-learning derive the optimal policy by determining



Energies 2023, 16, 2371 9 of 28

the optimal action-value function Q∗(s, a), and policy-based RL algorithms optimize the
policy directly. A classification of the most commonly used types of RL algorithms for
coordinated voltage control is given in Figure 2.
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4.1. Value-Based Methods

Value-based methods indirectly find the optimal policy by determining the optimal
action-value function Q∗(s, a). Common RL value-based methods used for coordinated
voltage control include Q-learning and deep Q network (DQN) and its variants. Value-
based methods have high sample efficiency, as past experience samples are used for policy
updates. As the variance of value function estimation is small, convergence is guaranteed
in value-based methods, as it does not easily fall into local optimum. However, value-based
methods are only suitable for discrete action spaces and suffer from overestimation bias.

4.1.1. Q-Learning

Q-learning algorithms are model-free algorithms that estimate the expected return of
an action and form a given state s. The estimated return for a particular state–action pair
is known as the Q-value for that particular state–action pair. In Q-learning, it is desired
that the Q-value for a given state–action pair Q(s, a) eventually converges to its optimal
Q-value Q∗. An action a in state s is considered to yield better results if its Q-value is high.
Q-values are learned and updated iteratively according to (4), where α is the learning rate
α ∈ (0, 1). Q-values for each state–action pair are generally stored in a table known as the
Q-table, and the dimensions of the Q-table are dependent on the number of actions and
states. In [79], a tabular Q-learning algorithm is proposed for the reactive power control in
distribution systems. The action spaces of the controllable devices (OLTCs and reactive
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power compensation devices) in this study are discretized, since Q-learning can only be
applied to discrete action spaces.

Qnew(s, a) = Q(s, a) + α

(
Rt+1 + γmax

a′
Q
(
s′, a′

)
−Q(s, a)

)
(4)

4.1.2. Deep Q-Learning

In deep Q-learning, the agent is replaced with a deep neural network that estimates the
Q-values for each state–action pair and approximates the optimal Q-function Q∗(s, a). This
deep neural network that approximates the Q-function is known as the deep Q network
(DQN). Similar to Q-learning, DQN algorithms can only be applied to discrete action
spaces. To train a DQN, “experience replay” is used, in which the training data are sampled
randomly as a mini-batch from a set of past experiences stored in the “replay buffer”.
This breaks the temporal correlations among the samples used in the training process and
improves the stability of Q-learning. Sampling from previous experiences also increases
the data efficiency of the training process. In deep Q-learning, to further mitigate the
instability of training, a second neural network called the “target network” is used to
estimate the Q(s′, a′) term in the Bellman equation. The parameters of the “target network”
are periodically updated with the parameters of the main network which has been trained.

The max operator in DQN uses the same values to select and evaluate an action. This
makes DQN more prone to select overestimated values, resulting in overoptimistic value
estimates. The double-DQN variation of deep Q-learning decouples the action selection
and evaluation to reduce overestimations. This is achieved by learning two value functions,
one to determine the greedy policy and another to determine its value. The online network
is used to evaluate the greedy policy and the “target network” of DQN is utilized to
estimate its value, without introducing any additional networks [80]. Some of the other
variations of DQN are Dueling DQN [81], NoisyNet DQN [82] and Distributed DQN [83].
In [84], a two-timescale voltage control method is proposed to control capacitor banks and
reactive power output of smart inverters using a DQN-based algorithm. Furthermore,
it is demonstrated that tabular Q-learning-based algorithms become less feasible as the
dimensionality of the action space increases, and DQN-based algorithms address this issue
by providing compact low-dimensional representations of high-dimensional inputs.

4.2. Policy-Based Methods

In contrast to the value-based methods, policy-based methods optimize the policy
directly. Policy-based methods can be applied to continuous or higher-dimension action
spaces with the advantage of simpler policy parameterization. Policy-based RL algorithms
such as Trust Region Policy Optimization (TRPO) [85] and Proximal Policy Optimization
(PPO) [86] update their policies in an “on-policy” manner, in which new samples are
generated to update the policy by following the current policy. Such methods are considered
to be more stable but suffer from low sample efficiency, as they are “on-policy” algorithms.
In contrast, value-based based RL algorithms such as DQN are “off-policy” algorithms, in
which the samples for the policy update are generated by following a different policy called
“behavioural policy”. Vanilla policy gradient methods aim to directly learn the optimal
policy by estimating the gradient of the policy as given in (5), where πθ represents a policy
with parameter θ and r(st, at) is the immediate reward at state st for taking an action at.
The policy parameters θ are updated via gradient accent in the direction that provides the
maximum expected rewards [87].

∇ J =
H

∑
t=0
∇θ log πθ(at|st) r(st, at) (5)

The study presented in [88] formulates the optimal power flow of distribution net-
works as an MDP and employs the PPO algorithm to solve the MDP sequentially. The main
objective of the proposed method is to minimize the cost of power loss while considering
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voltage constraints of the network. Such algorithms may be effective for voltage regulation
to some extent but will not provide the best solution to regulate the voltage, as it is not their
main objective. In [75], the PPO algorithm is combined with a graph convolutional neural
network (GCN) to regulate the voltage in power distribution systems. Capacitors, voltage
regulators and batteries are the controlled network elements in this study, and the action
space of each controlled element is discretized. The graph representation for the GCN
for this study is induced by the physical power system topology. A comparative study
between dense neural networks (DNN) and GCN used for the PPO algorithm is presented
in this study, and the results indicate that both policies converge to the same reward when
used in the PPO algorithm with GCN converging at a slower rate. However, the advantage
of using GCN is that it is more robust to the errors associated with data misalignments and
communication failure.

4.3. Actor-Critic Algorithms

The most commonly used algorithms for coordinated voltage control are actor-critic
algorithms such as deep deterministic policy gradient and soft actor-critic, which combine
the merits of value-based and policy-based methods. These algorithms possess the advan-
tages such as high sample efficiency from value-based methods and the applicability to
both continuous and discrete action spaces from policy-based methods. However, these
actor-critic algorithms also inherit several disadvantages, such as overestimation bias and
insufficient exploration from the merge of value-based and policy-based methods. In
actor-critic algorithms, two functions actor and critic are parameterized by neural networks.
The critic estimates the action value (Q) or the state value (V) and the actor updates the
policy distribution suggested by the critic with policy gradients.

4.3.1. Deep Deterministic Policy Gradient

One of the drawbacks of Q-learning is that it cannot be straightforwardly applied to
continuous action spaces because it is computationally expensive to exhaustively evaluate a
continuous action space and use a normal optimization algorithm to calculate max

a′
Q∗(s, a).

Hence, an actor-critic approach based on the deterministic policy gradient algorithm
(DDPG) is proposed in [89] for reinforcement learning with continuous action spaces.
Deterministic policy gradient exploits the differentiability of Q∗(s, a) with respect to the
action argument in continuous action spaces to establish a gradient-based policy rule for a
policy µ(s).

DDPG is an actor-critic method that uses deep neural networks to parameterize
policies (θ) and concurrently learn a Q-function and a policy. The parameterized actor
function µ(s|θµ) specifies the current policy in DDPG by deterministically mapping states
to a specific action. The critic function is learned similar to Q-learning by using the Bellman
equation and the off-policy data which are generated from a different stochastic behaviour
policy β. The critic parameters are updated by minimizing this mean-squared Bellman
error loss function according to (6) and (7). The actor is updated according to (8), which
is the derivative of the start distribution J with respect to the actor parameter θµ and it is
simplified further by applying the chain rule [90]. Similar to DQN, a replay buffer and
target networks are used in DDPG to improve the stability of training.

L
(

θQ
)
= Est∼ρβ , at∼β , rt∼E

[(
Q
(

st, at

∣∣∣θQ
)
− yt

)2
]

(6)

where
yt = r(st, at) + γQ

(
st+1, µ(st+1)

∣∣∣θQ
)

(7)

∂J(θµ)
∂θµ = Est∼ρβ

[
|∇θµ Q(s, a|θµ)|s=st , a=µ(s|θµ)

]
= Est∼ρβ

[ ∣∣∣∇aQ
(
s, a
∣∣θQ)∣∣

s=st , a=µ(st)

∣∣∣∇θµ
µ(s, a|θµ)

∣∣∣
s=st

] (8)
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DDPG algorithms are widely used by many authors to control various network ele-
ments such as PV systems, static VAr compensators (SVCs), battery energy systems, flexible
loads and smart transformers to regulate the voltage in the distribution network [71,91,92].
The inverter-based DERs in the electricity distribution network are fast timescale devices
that can be controlled within seconds. DDPG is well suited for such control problems with
continuous devices due to its applicability to continuous state-action spaces. A comparison
between the double-DQN algorithm and DDPG algorithm applied to the same voltage
control problem is provided in [91]. The results indicate that DDPG achieves a better
performance of the two, as double-DQN is incapable of fully utilizing the voltage control
capabilities of the controlled elements due to the aggregation and discretization of actions.
Several key factors that impact the performance of DDPG algorithms used for coordinated
voltage control are listed as follows:

• The replay buffer size—The performance of DDPG increases with the size of the replay
buffer, but converges after a certain value. Identification of the correct replay buffer
size is key in maximizing the performance of DDPG while utilizing less memory.

• Exploration strategy—DDPG algorithms are deterministic and do not explore the
environment as do other stochastic algorithms, and they often converge to a local
optimum. One of the strategies to achieve exploration in DDPG algorithms is to add
Gaussian noise to the actions during the training process.

• Accuracy of the training model—DDPG algorithms are often trained offline before
their implementation in the online distribution network to minimize the undesirable
costs associated with the start-up stage. Therefore, the distribution network model
used for training must be accurate to achieve a good level of performance and low
costs during the online execution.

It is not always possible to have an accurate model of the distribution network,
especially the LV distribution network, due to inaccuracies and unavailability of data on
network elements and network topology. One of the solutions proposed in recent literature
to this dilemma is to use a data-driven DNN-based surrogate model that estimates the
bus voltages and power losses in the distribution network [91,92]. Training samples for
DDPG are generated by the DNN-based surrogate model and control policies are learned
offline, without interacting with the actual distribution network. However, it is difficult for
a DNN-based network model to estimate line parameters and the topology of the actual
distribution network. Changes to the distribution network topology such as the increase or
decrease in network nodes or branches may produce undesirable results in the execution
phase of DDPG control policies that are trained with a DNN-based surrogate model.

In [77], a graph attention network (GAT) is leveraged to extract and aggregate topology
branch correlations and node power information. The extracted topological information
is embedded with node features and fed into the underlying network architecture of the
DDPG algorithm as intermediate latent environment states. The attention mechanism
of GAT aggregates neighbour nodes and allocates weights adaptively according to the
correlation of node information in feature extraction. The proposed method regulates
the voltage of the distribution network using a real-time coordinated scheduling scheme
of active and reactive power of controllable devices such as PV systems, flexible loads,
energy storage systems and SVCs. The use of GAT embedded into DDPG can achieve
highly desirable performance levels even under unknown electrical fault scenarios and
topology variations.

Since DDPG-based algorithms can only be applied to continuous action spaces, they
cannot be used to control network elements with discrete action spaces such as OLTCs,
voltage regulators and capacitor banks. This can be seen as a disadvantage of using
DDPG-based algorithms for optimal control operations in the distribution network.

4.3.2. Soft Actor Critic

DDPG algorithms train a deterministic policy in an off-policy manner and are highly
sample efficient, as the policy update uses past experience samples in the replay buffer.
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However, DDPG is considered to be brittle due to its sensitivity to hyperparameters and
often requires more tuning to converge. Soft actor-critic algorithms (SACs) are considered
to be more robust to hyperparameters and more stable than DDPG algorithms, as they
optimize a stochastic policy in an off-policy way. SACs introduce entropy regularization,
in which the policy is trained to maximize both its expected return and entropy. The
randomness of the policy is termed as entropy, and it influences the exploration–exploitation
trade-off.

J(π) =
T

∑
t=0

E(st ,at)∼ρπ
[r(st, at) + αH(π(·|st ))] (9)

The objective function of an SAC is given in (9), whereH(π(·|st )) is the entropy term
weighted by the temperature parameter α. Maximizing entropy encourages the policy
network to explore, which accelerates learning and prevents the policy from converging
into a local optimum. SAC utilizes three parameterized networks: state-value function
Vψ(St), soft Q-function Qθ(st, at) and a policy function πφ(at|st). The parameters for the
state-value function, soft Q-function and policy function are ψ, θ and φ, respectively. SAC is
implemented on continuous action spaces similar to DDPG. However, it is also possible to
implement SAC on discrete action spaces by slightly changing the policy update rule. The
parameters for the state-value function, soft Q-function and policy function are updated
according to (10), (11) and (12), respectively [93]. A target state-value function Vψ(St+1) is
used for the soft Q-function update and to ensure training stability. For the policy update
in (12), the reparameterization trick is employed, where at = fφ(εt; st) and εt is an input
noise vector.

∇̂ψ JV(ψ) = ∇ψVψ(St)
(
Vψ(St)−Qθ(st, at) + log πφ(at|st)

)
(10)

∇̂θ JQ(θ) = ∇θQθ(st, at)
(

Qθ(st, at)− r(st, at)− γVψ(St+1)
)

(11)

∇̂φ Jπ(φ) = ∇φ log πφ(at|st) +
(
∇at log πφ(at|st)−∇at Q(st, at)

)
∇φ fφ(εt; st) (12)

In addition to replay buffers, target networks and entropy regularization, one of the
crucial tricks employed by SAC algorithms is the clipped double-Q learning, which learns
two Q-functions and uses the smaller Q-value of the two in the Bellman error loss function.
This facilitates fending off the overestimation bias in the Q-function. In [94], an SAC
algorithm is used to regulate the voltage by regulating the inverter-based devices and SVCs
in the distribution network. The proposed SAC-based control framework is safe, stable and
efficient, as the control policies are trained offline utilizing historical operational data before
online execution in the actual distribution network. One of the advantages of SAC over
other algorithms such as DDPG is its ability to learn control policies for both continuous
and discrete action spaces. Ref. [95] is one of such applications of SAC in voltage regulation,
where control policies are learned for both slow timescale devices (OLTCs and capacitor
banks) with discrete action spaces and fast timescale devices (PV inverters and SVCs) with
continuous action spaces. In this study, two separate SAC agents were utilized, each for
slow timescale devices and fast timescale devices, and through coordinated control between
agents, stable and satisfactory optimized voltage control is achieved.

Certain exploratory control actions produced by various RL algorithms including SAC
may lead to significant voltage violations in the distribution network that undermine the
reliability of the network. In most studies, network constraints are implemented by simply
augmenting the reward with a penalty term. This often makes the learned policy of the
RL algorithm infeasible or too conservative. In contrast, RL algorithms formulated on
the Constrained Markov Decision Process (CMDP) for coordinated voltage control often
achieve near-perfect constraint satisfaction.

CMDP can be defined as a tuple (S, A, p, r, c, d, γ), similar to MDP, where an agent
interacts with the environment at discrete time step t at state s ε S and then takes an action
a ε A to receive a reward r(s, a) and a cost c(s, a); p is the transition probability function, γ
is the discount factor γ ε (0, 1) and d is the safety threshold. The goal of the agent in CMDP
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is given in (13), where an agent learns a policy π that maximizes the expected return such
that the safety constraint violations remain below the threshold d for each time step t [96].

max
π

E(st ,at)∼pπ

[
∑

t
γt r(st, at)

]
s.t. E(st ,at)∼pπ

[
∑

t
γt c(st, at)

]
≤ d (13)

The SAC algorithm, which has been demonstrated to successfully implement co-
ordinated voltage control, cannot be used to solve CMDPs, as it is designed to solve
MDPs. The constrained soft actor-critic (CSAC) algorithm extends SAC to satisfy the
operational constraints in CMDP and solve the constrained optimization problem by using
the Lagrange-multiplier method [97]. The CSAC algorithm employs two critics: reward
critic and safety critic. The reward critic is trained to express the estimation of long-term
rewards with entropy and the safety critic is trained to express the estimation of long-term
costs to encourage safety. The trade-off between reward and safety is managed by using
adaptive safety weights.

Several variations of the CSAC algorithm are used in the recent literature to solve the
CMDP and learn a parameterized control policy to regulate the voltage in the electricity
distribution network [98,99]. The use of CSAC in voltage control enables safe exploration
for controllable devices and guarantees operational constraint satisfaction in the form of
expectation. However, direct online implementation of CSAC in the distribution network
may result in some voltage violations during the start-up stage that could lead to poor
network reliability and an increase in economic costs. This is due to the learned control
policy of the CSAC algorithm being weak during the initial start-up stage. In [98], the per-
formance of CSAC on the same voltage control problem is compared with other algorithms
such as SAC, DQN and constrained policy optimization (CPO), and the results indicate
that CSAC achieves better performance in relation to sample efficiency, scalability and
constraint satisfaction.

Joint adversarial soft actor-critic (JASAC) is another variation of SAC proposed in [100]
to regulate the voltage of distribution networks by controlling the reactive power of the
inverter-based energy resources and SVCs. The JASAC algorithm formulates the Volt-VAr
control problem as an adversarial Markov decision process (AMDP), which is an extension
of the MDP. A protagonist and an adversary are involved in the AMDP and the goal of
the adversarial agent is to hinder the protagonist by adjusting for the network modelling
errors. The proposed method is implemented in two stages: offline stage and online stage.
In the offline stage, a model of the distribution network is used in the training of an offline
agent using JASAC, and in the online stage, the offline agent is transferred to the online
agent to perform continuous learning and control using the SAC algorithm on the actual
distribution network. Performance of the JASAC algorithm is benchmarked against SAC
for the same voltage control problem and the results indicate that the JASAC performs
better than SAC in the online stage due to its robustness to changes in network parameters.

5. Multi-Agent Reinforcement Learning

In multi-agent reinforcement learning (MARL) a number of individual agents com-
municate with each other and interact with the environment to solve complex tasks. The
sequential decision-making process of MARL is formalized using Markov games, which
is an extension of the MDP. A Markov game at time step t for K number of agents can be
defined by the tuple

(
S,
{

Oi}K
i=1

{
Ai}K

i=1, P,
{

ri}K
i=1

)
that consists of a global state S, K

number of local observations Oi for each agent i, K number of local action spaces Ai for
each agent i, a global transition probability P and K number of local reward functions ri

for each agent i. For each discrete time step t, each agent selects a local action Ai
t based on

the local observation Oi
t. Then, each agent receives a reward Ri

t+1 = ri(St, A1
t , A2

t , . . . , AK
t
)

as a function of the state St and the joint action At =
[
A1

t , A2
t , . . . , AK

t
]
. Consequently,

the environment’s global state transitions to St+1 based on the state transition probability
P
(
St+1

∣∣St, A1
t , A2

t , . . . , AK
t
)

and each agent receives next local observation Oi
t+1. All agents
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communicate with each other at every time step and share local information to identify the
local control policy such that the joint policy π of all the agents maximizes the expected
discounted average return J(π) as given in (14) [101].

J(π) = E
[

T

∑
t=0

γt 1
K

K

∑
i=1

Ri
t+1

]
(14)

A direct extension of single-agent RL into a multi-agent environment as an indepen-
dent Q-learning algorithm will be computationally expensive and vulnerable to overfitting,
as each agent aims to learn an independent policy by assuming other agents as a com-
ponent of the environment. An alternative and the standard paradigm of multi-agent
RL is the centralized learning and the decentralized execution approach. A multi-agent
tabular Q-learning algorithm is proposed in [102] to regulate the voltage of the distribution
network through centralized learning of control policies and decentralized execution of
control actions. Each controllable network element is assigned to an agent that maintains
and updates a Q-table during the learning process. The optimal control action for each
controllable network element is determined based on the Q-values of the respective agent’s
Q-table. However, for large control problems, multi-agent DQN (MADQN) methods are
always preferred over traditional multi-agent tabular Q-learning methods, as they become
less feasible with the increase in dimensions of the Q-table.

In [57], a decentralized voltage control method is proposed using a MADQN algorithm
to control network elements such as smart inverters, switchable capacitors and voltage
regulators. MADQN algorithms are more scalable than single-agent DQN, as the action
space of single-agent DQN increases exponentially with the increase in controllable ele-
ments. The training of the proposed RL algorithm is performed offline in a centralized
manner and online execution is performed in a decentralized way. During the training
process of the proposed MADQN algorithm, each agent takes an action based on their local
observations and the action is evaluated by considering the overall Q-value of combined
actions of all agents. One of the advantages of the decentralized execution of MADQN
policies is that it involves no communication constraints. However, the convergence theory
of single-agent Q-learning that is extended to MARL is not guaranteed in the presence of
a non-stationary environment. The environment becomes non-stationary if the learning
among agents constantly reshapes the environment and affects the optimal policy of agents.
The exploration–exploitation trade-off could be more influential in a multi-agent setting
and the interactions among agents must be performed while ensuring the stability of the
agents [103].

Multi-agent deep deterministic policy gradient (MADDPG) algorithms adopt a frame-
work of centralized training with decentralized execution for continuous action spaces.
The MADDPG algorithm is a simple extension of the DDPG where the agents learn a
centralized critic, which is augmented with the policies of all the agents. However, the actor
only has access to local information. MADDPG is applicable for cooperative settings due to
the capability of agents to learn the policies of other agents online and incorporate them
in their own policy-learning procedure. According to [104], actor and critic parameters
of MADDPG are updated according to (15) and (16, respectively, where X represents the
state information and D is the experience replay buffer that contains the experience tuples
(X, X′, a1, . . . , aN , r1, . . . , rN) of all agents.

∇θi J(µi) = EX,a∼D

[∣∣∣∇θi µi(ai|oi)∇ai Q
µ
i (X, a1, . . . , aN)

∣∣∣
ai=µi(oi)

]
(15)

L(θi) = EX,a,r,X′

[(
Qµ

i (X, a1, . . . , aN)− y
)2
]

(16)

y = ri + γQµ
i
(
X′, a′1, . . . , a′N

)∣∣∣
a′j=µ′j(oj)

′ (17)
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In [105], a two-stage control scheme is proposed to control the network elements
such as OLTCs, capacitor banks and PV systems to regulate the voltage in the distribu-
tion network. In the first stage, a day-ahead dispatch of OLTC and capacitor banks is
obtained by solving the optimal power flow problem using mixed-integer second-order
cone programming. In the second stage, the MADDPG algorithm is used to control the
reactive power outputs of PV systems using the dispatched results for the OLTCs and
capacitor banks in the first stage. The objective of the proposed MADDPG algorithm is to
minimize the network power loss while satisfying the voltage violation constraints and PV
systems’ reactive power capability constraints. Due to the decentralized online execution
of the proposed MADDPG algorithm, deployment of costly communication infrastructure
is not required. However, the performance of the proposed MADDPG relies on an accurate
network model for offline training. Therefore, its performance may degrade in the instances
of network expansions and network reconfigurations that change the network model.

In [106], an autonomous voltage control framework is proposed using the MADDPG
algorithm. The objective of the proposed algorithm is to maintain the voltage bus magni-
tudes within the desirable levels. The critic of the proposed MADDPG algorithm treats
actions of all agents equally. This means that the spatial properties between agents are
ignored and may lead to performance degradation when applied to a large system with
a high number of control elements (agents), as the input of the critic increases with the
number of agents. An attention-critic-based MADDPG method is proposed in [107] to
enhance the scalability of the MADDPG algorithm used for the coordinated voltage control
of PV inverters. The attention critic allows for the intelligent learning of specific information
that is most relevant to the rewards when the number of control objects are high, especially
in large distribution networks.

A variation of the multi-agent soft actor critic (MASAC) algorithm is proposed in [101]
to control voltage regulators, capacitor banks and OLTCs to regulate the voltage in a
decentralized manner. Communication efficiency is achieved, as each agent maintains a
local replay buffer and information is transmitted only within the neighbouring agents.
The proposed algorithm is identified to have the same performance level as that of a
single-agent SAC algorithm, but the key difference between the proposed algorithm from
centralized algorithms such as SAC is that the system continues to function even when
there is a communication link breakdown, as it is implemented in a decentralized manner.
However, if the MASAC algorithms are directly implemented on the distribution network,
the exploratory actions in the early stages of learning may cause constraint violations and
degradation of switching elements. These exploratory actions of MASAC will diminish
over time but a few will persist due to entropy regularization.

To achieve excellent constraint satisfaction and reduce communication delay during
training, a variation of the multi-agent constrained soft actor critic algorithm (MACSAC)
is proposed in [108], which controls PV inverters and SVCs in the distribution system to
regulate the voltage. The control policies of the implemented MACASC algorithm are
learned online in a centralized manner and executed in a decentralized manner by the
local controllers. Each agent communicates with a control centre asynchronously, where a
centralized critic is learned considering observations of all the agents. The latest control
policies are then sent to the local controllers by the control centre. The implemented asyn-
chronous learning, sampling and control process does not create any delay to the control
actions due to the training process and it is highly efficient in terms of communication.
The performance of MACSAC is compared against CSAC and MADDPG and the results
demonstrate that MACSAC has similar performance to CSAC but higher performance
when compared with MADDPG. However, MACSAC is efficient in communication when
compared with CSAC due to its decentralized execution of control actions.
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6. Environment Model and MDP Parameters

This section discusses several key components of the recently proposed RL algorithms
for coordinated voltage control including the environment model, state space, action space,
reward function and constraints.

6.1. Environment

The electricity distribution network is the environment of the coordinated voltage
control problem solved through reinforcement learning methods. However, most of the
references rely on accurate electricity distribution network models to test and train the
proposed algorithms. This is due to the risks associated with implementing untrained RL
algorithms in real distribution networks that could potentially lead to unbearable costs and
jeopardize network reliability. Offline training of RL agents requires an accurate model of
the electricity distribution network to achieve higher performance levels. Developing a
good simulation model often requires an extensive amount of historical data and accurate
information on network topology and network elements. For the instances in which
such data are not available, some studies model the distribution network in the form of
DNN [91,92] and GNN [75,77] instead of the traditional power flow models.

Distribution networks such as the IEEE 123-bus system, IEEE 33-bus system and IEEE
37-bus system are some of the most commonly used distribution network test environments
in the recent literature. A distribution network with a certain degree of unbalance is more
suitable as a test environment for the proposed RL algorithms, since the voltage control
actions are sensitive to the unbalance of the distribution network. It should be noted that the
majority of the proposed RL algorithms are tested on MV distribution networks. However,
the voltage control problem is more prominent in low-voltage (LV) networks with low
reactance/resistance ratio of the conductors, and testing the proposed RL algorithms on LV
networks will give a good indication of their performance.

6.2. State Space

A state is a representation of the environment that influences the decision-making
process of an agent, reward calculation and transitions of the environment. The state
space of an MDP is the set of all possible states in an environment. The voltage control
problem in the distribution network depends on a range of network variables. A state
representation that consists of much redundant information may slow down the learning
process. Therefore, incorporating the most relevant variables to the voltage control problem
in the state information is key to achieving a higher level of performance for any RL
algorithm. Some of the distribution network variables featured in the state space of
proposed RL algorithms in recent literature are as follows:

• Active and reactive power of customer loads [109];
• Active and reactive power injections of PV systems [110];
• Three-phase voltages of buses [111];
• Tap positions of OLTCs, capacitor banks and voltage regulators [112,113].

The current state information of the environment makes up the states in most of the
literature. However, it is possible to incorporate past experiences in the state information as
in [94], which includes the previous action in the states. The distribution network topology
cannot be easily represented by the state values in an MDP, and a solution to this is to use
GNN-based policies that capture the topological information of the network as inputs to
the RL algorithm [75,77].

6.3. Action Space

The action space is the set of all possible actions that an agent can take in a specific
environment. In the coordinated voltage control problem, the actions of an RL agent are
typically the control actions of the voltage-regulating devices in the distribution network. In
many cases, these actions are state dependent and can be discrete or continuous depending



Energies 2023, 16, 2371 18 of 28

on the controlled device. Some of the controlled devices and their respective actions of RL
algorithms proposed in the recent literature are as follows:

• Reactive power of PV inverters [105,107];
• Active power curtailed by PV systems [91];
• Discretized actions for the tap positions of voltage regulators, capacitor banks and

OLTCs [101];
• Reactive power output of SVCs [108];
• Reactive power adjustments of the smart transformers [92].

One of the instances in which the action space of a RL algorithm does not belong to a
controllable device can be found in [100], where modelling errors related to line reactance
and resistance are considered as actions in the proposed JASAC algorithm. A recurring
challenge in RL algorithms with discrete actions is that the size of the action space increases
exponentially with each additional feature in the state. This is commonly known as the
“curse of dimensionality”, and one of the solutions to this dilemma is presented in [98],
where the policy network is designed with a device-decoupled structure to ensure the
network structure increases linearly with the number of controllable devices.

6.4. Reward Function and Constraints

The reward function determines the direct reward received by an agent. The objectives
in solving the problem are reflected in the formulation of the reward function. Incorrect
formulation of the reward function will result in undesired behaviour of RL algorithms.
The reward function for the voltage control problem is formulated differently in various
literature. In [91,107], the reward function is formulated to reduce the voltage deviations
throughout the network from its nominal value. This makes voltage control the main
objective of the RL agent. However, most of the proposed RL algorithms consider voltage
constraints as a penalty factor embedded in the reward function along with several other
objectives as listed below:

• Reduce the active power loss in the network [114];
• Reduce network operational costs [113];
• Reduce device switching costs [101].

Other methods for implementing voltage constraints are by means of a safety layer
that operates on top of the RL algorithm [92] and explicitly modelling voltage constraints
as a cost function [98,108].

7. Risk Factors and Challenges

This section presents the centralized and decentralized facets of RL-based coordinated
voltage control methods and discusses some of the critical challenges of implementing
such algorithms in the electricity distribution network. A comparison of several RL-based
algorithms considering key challenges that are associated with the voltage control problem,
such as scalability, sample efficiency, robustness to network changes, constraint satisfaction
and safety, are provided in Table 2. Furthermore, a summary of references for RL-based
coordinated voltage control and their key features is provided in Table 3.

Table 2. Comparison of RL algorithms used for coordinated voltage control.

Algorithm Ref. Sample
Efficiency Scalability

Constraint
Satisfaction
and Safety

Robustness to
Network
Changes

Centralized/
Decentralized

Tabular Q-learning [79] High Low Low Low Centralized

DQN [84] High Low Low Low Centralized

PPO [75,88] Low High Medium Low Centralized

DDPG [77,91,92] High High Medium Low Centralized
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Table 2. Cont.

Algorithm Ref. Sample
Efficiency Scalability

Constraint
Satisfaction
and Safety

Robustness to
Network
Changes

Centralized/
Decentralized

SAC [94,95] High High Medium Low Centralized

CSAC [98,99] High High High Low Centralized

JASAC [100] High High High High Centralized

MA Tabular
Q-learning [102] High High Low Medium Decentralized

MADQN [57] High High Low Medium Decentralized

MADDPG [105,106,111] High High Medium High Decentralized

MASAC [101,110,112] High High Medium High Decentralized

MACSAC [108] High High High High Decentralized

Table 3. A summary of references for RL algorithms used for coordinated voltage control.

Ref. RL
Algorithm State Space Action Space

Algorithm(s)
Used for

Benchmarking

Implemented
Network(s) Description

[79] Tabular
Q-learning

Constraint
violations of
busbars

Discretized
actions for OLTCs
and reactive
power
compensation
devices

Probabilistic
constrained load
flow and genetic
algorithm

IEEE 14-bus
system and IEEE
136-bus system

A tabular Q-learning
algorithm is proposed to
provide offline control settings
while satisfying operational
limits of the constraint
variables

[84] DQN

Active power of
busbars and current
capacitor
configurations

Discretized
actions for
capacitor banks
(on/off)

Nil

IEEE 123-bus
system and a
real-world 47 bus
network

A two-timescale voltage
control algorithm is proposed
with slow-timescale learning
for optimal capacitor settings
using DQN and fast timescale
optimization for smart
inverter reactive power using
optimal power flow models

[75] GCN-PPO

Minimum-phase
voltage at every bus
and the control
status of voltage
regulators,
capacitor banks and
batteries

Discretized
actions for the tap
positions of
voltage
regulators,
capacitor banks
(on/off) and
batteries (charg-
ing/discharging)

Dense-PPO

IEEE 13-bus
system, IEEE
123-bus system,
IEEE 34-bus
system and 8500
node system

GCN-based policy network is
used in the PPO algorithm to
capture the topological
information of the distribution
network and regulate the
voltage

[77] GAT-DDPG

Connection
relations and power
information of the
distribution
network are
mapped to
graph-structured
vertices and edges

Power outputs of
PV systems,
flexible loads,
battery energy
systems and
SVCs

DDPG
GCN-DDPG

IEEE 33-bus
system

A GAT-based policy network
is combined with DDPG
algorithm to optimally
schedule controllable devices
while being robust to network
topology variations

[91] DDPG

Active and reactive
power of customer
nodes and active
power outputs of
PV systems

Active power
curtailed in PV
systems and
reactive power
outputs of SVCs
and PV systems

Double-DQN,
model-predictive
control (MPC)

IEEE 123-bus
system

A model-free voltage control
method is proposed using a
DNN-based surrogate model
of the distribution network
with a DDPG algorithm
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Table 3. Cont.

Ref. RL
Algorithm State Space Action Space

Algorithm(s)
Used for

Benchmarking

Implemented
Network(s) Description

[92] DDPG Voltage magnitudes
of bus voltages

Smart
transformer
reactive power
adjustments

MPC
IEEE 33-bus
system and IEEE
123-bus system

A DDPG algorithm is utilized
with a safety layer technique
to achieve the objectives of
system power loss reduction
and voltage regulation by
realizing optimal control
policies for smart transformers

[94] SAC

Voltage, active and
reactive power of
nodes and the
previous action

Reactive power
outputs of
inverter-based
energy resources
and SVCs

Without Volt-VAr
control, online
trained SAC

IEEE 33-bus
system and

A PEDNN is utilized to learn
the power flow model of the
distribution network and then
incorporated in the training
process of the SAC-based
polices that is used to regulate
the voltage in the distribution
network

[95] SAC

Active and reactive
power injections of
buses, voltage
magnitudes and tap
positions of OLTCs
and capacitor banks

Discrete actions
for tap positions
in the SAC agent
controlling slow
timescale devices;
continuous
actions for
reactive power
injections in the
SAC agent
controlling fast
timescale devices

DQN
IEEE 33-bus
system and IEEE
123-bus system

The proposed two-timescale
SAC based algorithm learns
control policies for both fast
timescale and slow timescale
network elements to optimize
voltage regulation in the
distribution network in a
coordinated manner

[98] CSAC

Active and reactive
power injections of
buses and current
tap positions of
controlled devices

Discrete actions
for tap positions
of voltage
regulators,
OLTCs and
capacitor banks.

SAC, DQN and
CPO

IEEE 4-bus,
34-bus and
123-bus
distribution test
feeders

A safe model-free CSAC
algorithm is proposed to
regulate the voltage in the
distribution network and
achieve operational constraint
satisfaction

[100] JASAC

Voltage magnitude,
active and reactive
power of buses in
the network

Reactive power
outputs of
inverter-based
energy resources
and SVCs

SAC

IEEE 33-bus,
69-bus and
123-bus test
feeders

A two-stage deep RL
algorithm that is robust to
network variations is
proposed to regulate the
voltage in the distribution
network

[102] MA tabular
Q-learning

The local
observations for
every agent are the
active power flows
to neighbouring
buses

Voltage
regulators,
capacitor banks
and OLTCs are
considered as
agents and the
action space is
dependent on the
type of
controlling device

Discrete particle
swarm
optimization
algorithm and
interior point
method

Ward-Hale 6-bus
system, IEEE
30-bus system
and the IEEE
162-bus system

MA tabular Q-learning
algorithm is proposed to
regulate the voltage of the
distribution network and
minimize the real power loss
while satisfying the
operational constraints

[57] MADQN

Three-phase
voltages at all buses
in the distribution
network

Control actions of
smart inverters,
autonomous
voltage regulators
and capacitor
banks

Nil.

IEEE 13-bus and
123-bus
distribution
systems

A MADQN algorithm is
proposed to regulate the
voltage and reduce power loss
in an unbalance distribution
network

[105] MADDPG

Local
measurements of
PV systems
combined with
dispatch results of
OLTC and capacitor
banks

Difference in PV
reactive power
between two
consecutive time
steps

One-timescale
centralized,
double-timescale
local and
combined
centralized and
local Volt-VAr

IEEE 33-bus
system

A MADDPG algorithm is
proposed to regulate the
voltage that features offline
centralized training and
online decentralized execution
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Table 3. Cont.

Ref. RL
Algorithm State Space Action Space

Algorithm(s)
Used for

Benchmarking

Implemented
Network(s) Description

[106] MADDPG

States are defined as
a vector including
system bus voltages,
phase angles and
power flows

Action space is
defined as a
vector of
generator bus
voltage
magnitudes

DDPG Illinois 200-bus
system

A data-driven MADDPG
algorithm that is robust to a
weak communication
environment is proposed to
solve the autonomous voltage
control problem

[107] MADDPG

A set of local
observations
consisting of active
and reactive power
of loads and active
power injections of
PV systems

The action space
is a set of actions
by all agents
consisting of
reactive power
outputs of the
inverters

QV-droop control
and MADDPG
without attention
critic

IEEE 33-bus
system and IEEE
123-bus system

A MADDPG algorithm is
developed by incorporating
an attention critic model that
allows intelligent learning and
identifies certain information
that is the most relevant to the
rewards

[101] MASAC

State is a set of
network active and
reactive power
injections and the
status of the
controlled devices
in the previous step

Action space is a
set of tap
positions of
OLTCs, capacitor
banks and
voltage regulators

SAC, MPC and
mixed-integer
conic
programming

IEEE 4-bus,
34-bus and
123-bus
distribution test
feeders

A randomization-based
consensus algorithm is
developed utilizing MASAC
by establishing
communication of each agent
with its neighbours to regulate
the voltage in the distribution
network

[108] MACSAC

State space is
defined as a vector
that consists of
active and reactive
power injections of
buses and voltage
magnitudes

Action space is
defined as vector
containing the
reactive power
outputs of PV
inverters and
SVCs

CSAC, MASAC
and MADDPG

33-bus, 141-bus
and IEEE 37-bus
distribution test
feeders

The distribution network is
divided into several areas and
each area is given a local
controller that act as an agent
in the implemented MACSAC
algorithm; each agent controls
the reactive power of the
controllable devices locally in
the respective area

7.1. Centralized and Decentralized Control

Most single-agent RL algorithms such as DDPG and SAC regulate the voltage in the
distribution network in a centralized manner. Such algorithms require the RL agent to have
full access to all the necessary information in the environment. This often requires a central-
ized controller that constitutes high-performance computers with large-scale data storage
backed by a highly reliable communication infrastructure. The single-agent centralized RL
algorithm may produce undesirable outcomes in the events of communication breakdown
and changes to the network [91,98].

MARL algorithms typically control voltage in the online distribution system in a de-
centralized manner with learning experiences gained from offline centralized training using
a model of the network. In MARL, multiple agents with partial observations of the environ-
ment cooperatively learn decentralized policies to achieve a shared objective. This is highly
advantageous in solving the voltage control problem in the instances where the decision
maker does not have access to all the required information in the environment. Compared
to single-agent centralized RL algorithms, the decentralized implementations of MARL
algorithms require less communication infrastructure and are robust to communication
breakdown [106,107].

7.2. Safety and Scalability

RL-based coordinated voltage control schemes are implemented on top of the vital
infrastructure of power distribution networks. Hence, RL algorithms that guarantee the
safety of the learning process and learned policies are more desirable. A proposed RL
algorithm can be safely implemented in the distribution network if the learned policies
satisfy the network operational constraints: robust to communication breakdown and
resilient to network variations.
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If RL algorithms are directly implemented in the distribution network, it may lead
to severe security problems and unbearable costs due to the exploration actions of the RL
agents during the start-up phase. Therefore, the RL agents are often preferred to be trained
offline before the online implementation in the distribution network. The “transfer gap” is
the disparity between the real distribution network and the distribution network model
used for the offline training. The trained offline agent may show undesirable performance
when transferred to the online agent due to the transfer gap. Therefore, an algorithm that
is robust to the network modelling errors is more desirable, since it is very difficult to
accurately model all the parameters of the distribution network. Some of the solutions to
the transfer gap proposed in recent literature are as follows:

• The JASAC algorithm proposed in [100] makes use of an adversarial agent to learn
the control policies that are robust to the transfer gap. The protagonist actor and the
adversary actor share a joint critic in the proposed JASAC algorithm that promotes the
efficiency and the convergence of the training process, especially for large state-action
spaces.

• The SAC algorithm proposed in [94] utilizes a probabilistic ensemble deep neural
network (PEDNN) model of the actual distribution network that captures the aleatoric
and epistemic uncertainties of voltage. Some of the aleatoric uncertainties of the
distribution network are the resistance and reactance of lines that change according to
external factors such as humidity and temperature. Epistemic uncertainties account
for the uncertainty of the model due to the lack of sufficient data.

• The DDPG algorithm proposed in [92] makes use of a data-driven DNN model that
acts as a substitute to the actual electricity distribution network. The constructed
DNN model is used to generate the training samples required for the DDPG algorithm
without interacting with the actual distribution network.

Satisfaction of network operational constraints is vital in guaranteeing the safety of
any proposed RL algorithm. Several different ways that recently proposed RL algorithms
implement constraints in the voltage control problem are embedding constraint violations
as a penalty term in the formulated reward function, explicitly modelling network con-
straints as a cost function [98], and through a safety layer in which a sensitivity matrix
model is used to predict the change in constrained states over a single time step and correct
the actions if required [92].

An RL algorithm that is robust to communication breakdown is more desirable, as
it ensures safety in implementation. MARL algorithms are in general more robust to
communication breakdown due to their decentralized execution structure. GNN-based
policies are identified to be more robust to communication failure and data misalignment
than using a conventional dense neural network [75]. The asynchronous learning, sampling
and control process proposed in [108] is another solution found in recent literature that
guarantees robust communication and minimizes the delay in control actions due to the
training process.

Electricity distribution networks frequently encounter fault scenarios and network
topology variations. Hence, it is desirable for the RL algorithms used to solve the voltage
control problem to be resilient to such network variations. GNN-based policies such as
GCN and GAT are commonly used in recent literature to capture topological information in
the distribution network. A comparison in the performance of GCN and GAT-based policies
for RL algorithms is presented in [77], and the results indicate that GAT-based policies
achieve higher performance than GCN due to its attention mechanism that distinguishes
important information.

Most of the proposed RL algorithms are simulated on small-scale power systems with
a few controllable devices, and it is reasonable to question the scalability of such algorithms.
Electricity distribution networks are large-scale systems with multiple controllable devices
and numerous uncertainties. Q-learning and DQN algorithms in general are not suited for
large-scale systems, as their action space increases exponentially (curse of dimensionality)
for every addition of a controllable element, resulting in large policy networks that are



Energies 2023, 16, 2371 23 of 28

infeasible and difficult to train. The discrete action space of DQN algorithms is another
factor that negatively affects their scalability. A wide adoption of SAC algorithms is seen in
recent literature, since SAC is more scalable than DQN in addition to its ability to feature
both continuous and discrete action spaces. One of such variations of the SAC algorithm
that controls devices with discrete action spaces is presented in [98], where the policy
network is designed with a device-decoupled structure, such that the network structure
only increases linearly with each addition of a controlled device.

The curse of dimensionality is a recurrent problem even in MARL methods, as the
input size of the critic network increases with the number of controllable elements. This may
result in performance degradation of MARL algorithms when applied to large distribution
networks with a high number of control elements. A solution to this scalability issue is
proposed in [107], which uses an attention critic that allows intelligent learning of specific
information that is most relevant to the rewards. In general, MARL algorithms can be
considered to be more scalable than single-agent RL algorithms, as they are less reliant on
the communication infrastructure that could introduce delays to the control actions.

8. Conclusions

This paper reviews recently published literature for HC assessment strategies and RL-
based coordinated voltage control schemes that enhance the HC of electricity distribution
networks. Among the HC quantification methods, QSTS simulation methods are identified
as the most accurate approach to evaluate the HC, as it captures the dynamic events of
controlled elements. The advent of artificial intelligence in control problems is inevitable
and the voltage control problem of power systems is of no exception. However, to the best
of the authors’ knowledge, no real-world implementation of RL algorithms for coordinated
voltage control has been reported yet. This is mainly due to the associated risks and the
significantly high start-up cost of such proposals. Most of the literature published on
RL algorithms for coordinated voltage control do not undertake an HC assessment to
identify the increased HC due to the proposed control algorithm. Undertaking a hosting
capacity assessment will provide insights into the techno-economic benefits of the proposed
coordinated voltage control schemes and encourage DNSPs and stakeholders to invest
more funds in the development of such control schemes. The review of the RL-based
algorithms for coordinated voltage control presented in this paper can guide researchers
to further develop such RL-based algorithms suitable for practical applications. Future
directions for current work include the development of highly accurate HC quantification
methods and HC enhancement strategies using RL-based algorithms.
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