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A B S T R A C T

Variational autoencoders (VAE) are powerful generative models that learn the latent representations of input
data as random variables. Recent studies show that VAE can flexibly learn the complex temporal dynamics
of time series and achieve more promising forecasting results than deterministic models. However, a major
limitation of existing works is that they fail to jointly learn the local patterns (e.g., seasonality and trend)
and temporal dynamics of time series for forecasting. Accordingly, we propose a novel hybrid variational
autoencoder (HyVAE) to integrate the learning of local patterns and temporal dynamics by variational inference
for time series forecasting. Experimental results on four real-world datasets show that the proposed HyVAE
achieves better forecasting results than various counterpart methods, as well as two HyVAE variants that only
learn the local patterns or temporal dynamics of time series, respectively.
1. Introduction

Time series forecasting aims at learning the generation process of
time series and uses previously observed samples to predict future
values [1]. Accurate forecasting is essential and can help with the
success of many applications/businesses. For example, an electricity
company can design effective energy policies in advance by predicting
the future energy consumption [2]; a corporation can minimize its
investment risk if the future stock prices are accurately predicted [3].

Time series forecasting has been studied in the literature for decades,
but to date, it remains a challenging and active research problem
due to the complexity of time series. Classical time series forecast-
ing methods, including autoregressive models (AR), moving average
models (MA), and autoregressive integrated moving average models
(ARIMA) [4], predict future values by assuming they have linear
relationships with observed values; however, this simplification nor-
mally leads to unsatisfactory results for complex real-world time series.
With the booming of deep learning techniques, deep neural networks
(DNN) are widely used to tackle time series forecasting problems.
Unlike classical models, DNNs are flexible non-linear models that can
capture the temporal information of time series for forecasting [5].
Convolutional neural networks (CNN) [6] and recurrent neural net-
works (RNN) [7] are two types of DNN widely adopted for time series
forecasting. CNN captures salient local patterns of short time series
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subsequences/segments (e.g., seasonality [8] and trend [9]), while RNN
learns long-term or mid-term temporal dynamics/dependencies of the
entire time series [10]. In fact, many works capture both types of tem-
poral information by proposing hybrid DNN models and obtaining more
accurate forecasting results [9,11]. For example, the researchers [12]
adopt a hybrid neural network, which stacks CNN with RNN, for DNA
sequence prediction. Specifically, CNN can capture short and recurring
sequence motifs, which represent biological function units in a DNA
sequence. RNN, i.e., long short-term memory (LSTM) [10], is stacked
with the output of CNN to learn the spatial arrangement of these motifs.

However, these DNN-based models cannot capture temporal infor-
mation from time series with high accuracy since they are sensitive
to small perturbations on time series [13]. Recent works refer to
variational autoencoder (VAE) [14], which is a type of deep generative
model, to learn representations of time series as latent random variables
and obtain improved results [15]. Compared with directly fitting the
exact values of time series, the latent random variables learned by VAE
represent the generation process of time series and thus can more accu-
rately capture essential temporal information of time series [16]. Based
on this, existing methods learn either local seasonal-trend patterns [17]
or temporal dynamics [15]; but to date, there is no VAE model that can
jointly capture both information for time series forecasting.
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In this paper, we bridge this gap by proposing a novel hybrid
variational autoencoder (HyVAE) method for time series forecasting.
HyVAE follows the variational inference [14] to jointly learn local
patterns and temporal dynamics of time series. To achieve this goal,
HyVAE is designed based on two objectives: (1) capturing local patterns
by encoding time series subsequences into latent representations; and
(2) learning temporal dynamics through the temporal dependencies
among latent representations of different time series subsequences.
HyVAE integrates the two objectives following the variational infer-
ence. Extensive experiments conducted on four real-world time series
datasets show that HyVAE can improve the time series forecasting
accuracy over strong counterpart methods. The contributions of this
paper are summarized as follows:

– We propose a novel hybrid variational autoencoder (HyVAE) for
time series forecasting. HyVAE derives an objective following vari-
ational inference to integrate the learning of local patterns and
temporal dynamics of time series, thereby improving the accuracy
of forecasting.

– We conduct comprehensive experiments on four real-world datasets
to demonstrate the effectiveness of the proposed HyVAE method,
and the results show that HyVAE achieves better forecasting accu-
racy than strong counterpart methods.

The rest of this paper is organized as follows. The related works
are reviewed in Section 2. The preliminary knowledge is introduced
in Section 3. The proposed method is detailed in Section 4, and is
evaluated in Section 5. The paper is summarized in Section 6.

2. Related work

In this section, we briefly review time series forecasting methods
and VAE-related forecasting approaches.

2.1. Time series forecasting

Classical auto-regressive model (AR) predicts by the linear aggrega-
tion of past time series values and a stochastic term (e.g., white noise).
ARIMA extends AR to non-stationary time series by incorporating
moving average (MA) and differencing. Other statistical models, such as
linear regression [18] and support vector regression [19], enhance the
model capacity but still have limited expressiveness. DNNs are flexible
non-linear models and have been widely used for time series forecasting
in recent years. Specifically, RNNs memorize historical information
with feedback loops and can conveniently learn the temporal dynamics
of time series. Long short-memory network (LSTM) [10] is a typical
RNN that alleviates gradient vanishing with forget gates, and that
enables the learning of long-term temporal dynamics for time series.
Other types of RNN, e.g., GRU [20], and Informer [1], which uses the
attention mechanism [21], are also used to improve the effectiveness
of different forecasting scenarios. In addition, CNNs [22] are further
used to capture local patterns of time series (such as seasonality [8]
and trends [9]). Many works stack CNN and RNN to learn both the
local patterns and the temporal dynamics for challenging forecasting
problems; for example, combining multi-layer one-dimensional CNNs
with bi-directional LSTM for air quality forecasting [9] and DNA se-
quence forecasting [12]; integrating a Savitzky–Golay filter (to avoid
noise) and a stacked TCN-LSTM for traffic forecasting [11]. In addition,
transformers [23] and GNNs are also adopted for forecasting. Trans-
former [23] better captures the complicated period dynamics [24] or
resolves over-stationarization [25] with the flexible multi-head atten-
tion module; however, recent work [26] also suggests that its position
encoding incurs losses of temporal information. Meanwhile, GCN is
applied on specific graph representations, e.g., the time-conditioned
graph structures in Z-GCNETs [27] (by introducing time-aware zigzag
persistence), for robust time series forecasting.
2

2.2. Variational autoencoder-based forecasting

Variational autoencoder (VAE) [14] is a powerful deep generative
model that encodes the input data as latent random variables, in-
stead of deterministic values. To enhance the flexibility of VAE (learns
independent latent random variables), follow-up methods introduce
extra dependencies among the latent random variables. For example,
ladder variational autoencoder [28] specifies a top-down hierarchi-
cal dependency among the latent random variables, fully-connected
variational autoencoder [29] includes all possible dependencies among
variables, and graph variational autoencoder [30] automatically learns
an acyclic dependency graph. Due to the high flexibility, it is introduced
to time series forecasting [31]. To improve the performance of the
vanilla VAE, VRNN [15] introduces an RNN as the backbone to capture
the long-term temporal dynamics of time series. LaST [17] develops
disentangled VAE to learn dissociated seasonality and trend patterns
of time series for forecasting. The proposed HyVAE is different from
existing methods as it integrates the learning of both local patterns and
the temporal dynamic for time series forecasting.

3. Preliminaries

In this section, we first define the problem and then introduce the
preliminary knowledge of VAE.

3.1. Notation and problem statement

A scalar is denoted as a lowercase character, a vector is denoted as
a bold lowercase character, and a matrix is denoted as an uppercase
character. A time series is denoted as 𝒔 = {𝑠1, 𝑠2,… , 𝑠𝑚, 𝑠𝑚+1,… , 𝑠𝑚+𝑛},
he time series forecasting problem is defined as determining {𝑠𝑚+1,… ,
𝑠𝑚+𝑛} with known {𝑠1, 𝑠2,… , 𝑠𝑚}, where 𝑛 is the step of forecasting. For
the convenience, we denote 𝒚 = {𝑠𝑚+1,… , 𝑠𝑚+𝑛}, and the forecasting
roblem can be formulated as 𝒚̂ = 𝑓 (𝑠1, 𝑠2,… , 𝑠𝑚), where 𝒚̂ is the
redicted values for 𝒚. The error of forecasting is measured as follows:

𝑟𝑟(𝒚, 𝒚̂) = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2, (1)

Time series subsequence is denoted as 𝒙𝑡 = {𝑠𝑡,… , 𝑠𝑡+𝑙−1}, where 𝑙
s the length. Time series subsequence contains contextual information
hat expresses local patterns [9], and thus we use subsequences in
he forecasting task. Following [32], we obtain a series of 𝑙 length
ubsequences from time series, using a sliding window. Time series
epresented by subsequences is denoted as {𝒙1,… ,𝒙𝑇 }, where 𝑇 =
−𝑙+1 is the number of its subsequences. Thus, the forecasting problem
ecomes 𝒚̂ = 𝑓 (𝒙≤𝑇 ) = 𝑓 (𝒙1,… ,𝒙𝑇 ) (see Table 1).

3.2. Variational autoencoder

Variational autoencoder (VAE) [14] is an unsupervised generative
learning model that learns the latent representation of the input data as
random variables. Similar to the conventional autoencoder [33], VAE
has an encoding process that encodes the input into latent representa-
tions, and a decoding process that reconstructs the original input with
the learned representations. We show the process of VAE in Fig. 1.

VAE learns the generative model as 𝑝(𝒙, 𝒛) = 𝑝(𝒙|𝒛)𝑝(𝒛), where 𝒙 is
he input data and 𝒛 is its latent representations. The prior of 𝒛, 𝑝(𝒛),
s normally defined as a multivariate Gaussian distribution, i.e., 𝒛 ∼
(𝟎, 𝐼); we denote that as 𝑝(𝒛) =  (𝒛|𝟎, 𝐼) for convenience. The

osterior 𝑝(𝒛|𝒙) normally can be an arbitrary non-linear non-Gaussian
istribution and thus is intractable. To resolve that, VAE approximates
he posterior with 𝑞(𝒛|𝒙) =  (𝒛|𝝁(𝒙),𝝈(𝒙)), where mean and variance
re determined by 𝒙. Then, VAE defines the learning problem as the
aximum likelihood estimation of log 𝑝(𝒙), which can be formulated

s:

og 𝑝(𝒙) = 𝐾𝐿
(

𝑞(𝒛|𝒙)||𝑝(𝒛|𝒙)
)

+ 𝓁, (2)
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Table 1
Summary of notations.

Notation Description

𝒔 time series
𝒚 ground truth future values, {𝑠𝑚+1 ,… , 𝑠𝑚+𝑛}
𝒚̂ predicted future values
𝒙 time series subsequence, {𝑠𝑡 ,… , 𝑠𝑡+𝑙−1}
𝒛 latent representations learnt with VAE
𝒉 hidden states learned with RNN (i.e., GRU)
𝑳 𝑙𝑎𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒 for subsequence encoding
 (𝜇, 𝜎) Gaussian distribution
𝐾𝐿(𝑞(𝑥)||𝑝(𝑥)) KL divergence from 𝑞(𝑥) to 𝑝(𝑥)

Fig. 1. The framework of VAE. VAE encodes the input (𝒙) into the latent random
variables (as Gaussian distributions). Then, 𝑧 is sampled from the distribution of latent
random variables to reconstruct the input (𝒙̂).

where the first term is the KL divergence between the approximated
posterior and the true posterior. Specifically, the KL divergence of two
distributions 𝑞(𝒙) and 𝑝(𝒙) measures their similarity and is defined as:

𝐾𝐿
(

𝑞(𝒙)||𝑝(𝒙)
)

=
∑

𝒙
𝑞(𝒙) 𝑞(𝒙)

𝑝(𝒙)
= E𝑞(𝒙)

𝑞(𝒙)
𝑝(𝒙)

. (3)

In Eq. (2), since 𝑝(𝒛|𝒙) is intractable and KL divergence is non-negative,
maximizing log 𝑝(𝒙) is achieved by maximizing 𝓁, which is the evidence
lower bound (ELBO) of log 𝑝(𝒙) defined as follows:

𝓁 = 𝐸𝑞(𝒛|𝒙) log 𝑝(𝒙|𝒛) −𝐾𝐿
(

𝑞(𝒛|𝒙)||𝑝(𝒛)
)

, (4)

The first term in 𝓁 maximizes the conditional probability of 𝒙 given
the latent representation 𝒛 and can be seen as the reconstruction loss,
while the second term minimizes the difference between the prior and
the approximated posterior.

4. The proposed method

In this section, we first provide an overview of the proposed hybrid
variational autoencoder (HyVAE) method and then elaborate on its
details.

4.1. Overview of HyVAE

We propose a novel generative hybrid variational autoencoder (Hy-
VAE) model for time series forecasting, inspired by existing hybrid
deterministic deep neural models. HyVAE jointly learns the local pat-
terns from time series subsequences and the temporal dynamics among
time series subsequences. To achieve that, HyVAE is derived based on
variational inference to integrate two processes: (1) the encoding of
time series subsequences, which captures local patterns; and (2) the
encoding of entire time series, which learns temporal dynamics among
time series subsequences. In the following content, we separately detail
the encoding of time series subsequences and the encoding of the entire
time series, respectively, and then explain the integration of these two
processes for time series forecasting.

4.2. Encoding of time series subsequence

As discussed in Section 1, many existing models have shown that
learning the local patterns can effectively improve time series forecast-
ing [9]. To capture the flexible local patterns, we encode time series
subsequences as latent random variables, rather than deterministic
values.

An intuitive choice of the encoder is the conventional VAE, which
maps a time series subsequence (𝒙𝑡) into latent random variables (𝒛𝑡)
3

Fig. 2. The encoder (inference process) and the decoder (generative process) of
subsequence encoding.

to learn the local patterns. In VAE, 𝒛𝑡 are assumed to be independent
variables as 𝑝(𝒛𝑡) =  (𝒛𝑡|𝝁𝑡,𝝈𝑡), where 𝝈𝑡 is the diagonal covariance
matrix. However, such a simplified assumption may lead to inaccurate
local pattern learning since essential causal information is neglected.
In particular, a sample in a time series is always highly affected by its
previous samples (e.g., autoregressive). Therefore, we further enforce
causal dependency among variables in 𝒛𝑡 to capture causal information
within local patterns.

We separate latent random variables in 𝒛𝑡 as 𝐿 ladders (groups)
(𝐿 is the 𝑙𝑎𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒) [28], i.e, {𝒛𝑡1,… , 𝒛𝑡𝐿}, and the groups have a
sequential causal dependency (from 1 to 𝐿). We illustrate the encoding
and decoding process of subsequence encoding in Fig. 2, in which the
top row is the encoding process and the bottom row is the decoding
process. For the convenience of implementation, we adopt the same
causal dependency among the latent random variables (𝒛𝑡1 ←←→ ⋯ ←←→

𝒛𝑡𝐿) in the encoding and decoding processes. Based on this, the prior
distribution of 𝒛𝑡 can be factorized as:

𝑝(𝒛𝑡) = 𝑝(𝒛𝑡𝐿)
𝐿−1
∏

𝑖=1
𝑝(𝒛𝑡𝑖|𝒛

𝑡
𝑖+1),

𝑝(𝒛𝑡𝑖|𝒛
𝑡
𝑖+1) =  (𝒛𝑡𝑖|𝝁𝑖

𝑡(𝒛𝑡𝑖+1),𝝈
𝑡
𝑖(𝒛

𝑡
𝑖+1)),

(5)

where {𝝁(⋆),𝝈(⋆)} = 𝜑(⋆) and we implement 𝜑(⋆) as a multilayer per-
ceptron (MLP). By changing the size of dependency (𝐿, the 𝑙𝑎𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒),
we can regulate how well causal information is preserved, and no
causal information when 𝐿 = 1 (i.e., all latent random variables
are independent). Based on this, the generative model of subsequence
encoding can further be factorized as follows:

𝑝(𝒙𝑡, 𝒛𝑡) = 𝑝(𝒙𝑡|𝒛𝑡1)𝑝(𝒛
𝑡
𝐿)

𝐿−1
∏

𝑖=1
𝑝(𝒛𝑡𝑖|𝒛

𝑡
𝑖+1), (6)

where 𝑝(𝒙𝑡|𝒛𝑡1) =  (𝒙𝑡|𝝁𝑡𝑖(𝒛
𝑡
1),𝝈

𝑡
𝑖(𝒛

𝑡
1)). This causal dependency ensures

the latent random variables have sufficient flexibility to model the
complex local patterns of subsequences. Since the posterior 𝑝(𝒛𝑡|𝒙𝑡) is
intractable, 𝑞(𝒛𝑡|𝒙𝑡) is used as an approximation. Meanwhile, to avoid
{𝑧𝑡𝐿,… , 𝑧𝑡1} converging to arbitrary variables, they all depend on 𝑥𝑡 in
the inference model similar to [28] as follows:

𝑞(𝒛𝑡|𝒙𝑡) = 𝑞(𝒛𝑡𝐿|𝒙
𝑡)
𝐿−1
∏

𝑖=1
𝑞(𝒛𝑡𝑖|𝒛

𝑡
𝑖+1,𝒙

𝑡),

𝑞(𝒛𝑡𝐿|𝒙
𝑡) =  (𝒛𝑡𝐿|𝝁

𝑡
𝑖(𝒙

𝑡),𝝈𝑡𝑖(𝒙
𝑡)),

𝑞(𝒛𝑡𝑖|𝒛
𝑡
𝑖+1,𝒙

𝑡) =  (𝒛𝑡𝑖|𝝁
𝑡
𝑖(𝒛

𝑡
𝑖+1,𝒙

𝑡),𝝈𝑡𝑖(𝒛
𝑡
𝑖+1,𝒙

𝑡)),

(7)

where {𝝁(⋆,⋆),𝝈(⋆,⋆)} = 𝜑([⋆;⋆]) and [; ] is the concatenation opera-
tion.

4.3. Encoding of entire time series

From the global perspective, we encode all time series subsequences
{𝒙1,… ,𝒙𝑇 } as {𝒛1,… , 𝒛𝑇 } to learn the temporal dynamics of entire
time series. Since time series subsequences are normally not indepen-
dent across different time stamps, we first impose a temporal depen-
dency for consecutive subsequences (e.g., 𝑝(𝒛𝑡, 𝒛𝑡−1) = 𝑝(𝒛𝑡|𝒛𝑡−1)𝑝(𝒛𝑡−1)).

In addition, we capture long-term temporal dependency with other
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Fig. 3. The illustration of HyVAE; (a) shows the prior defined by Eq. (13); (b) is the recurrent updating of GRU hidden states in Eq. (9); (c) shows the inference operation in
Eq. (14); and (d) represents the generation operation in Eq. (15).
subsequences by hidden states of a recurrent neural network, i.e., gated
recurrent unit (GRU) [20]. Therefore, we have the following derivation:
𝑝(𝒛𝑡|𝒛<𝑡) can be derived as follows:

𝑝(𝒛𝑡|𝒛<𝑡) = 𝑝(𝒛𝑡|𝒛𝑡−1,𝒉𝑡−1),

𝑝(𝒛𝑡|𝒛𝑡−1,𝒉𝑡−1) =  (𝒛𝑡|𝝁𝑡𝑖(𝒛
𝑡−1,𝒉𝑡−1),𝝈𝑡𝑖(𝒛

𝑡−1,𝒉𝑡−1)),
(8)

where 𝒉 is the hidden state and is obtained by:

𝒉𝑡 = GRU(𝒉𝑡−1,𝒙𝑡). (9)

GRU(∗) is the calculation of hidden states in a GRU unit. GRU adopts
gates and memory cells and alleviates the gradient vanishing problem
while being easier to train than LSTM due to fewer gates used. The
structure of GRU is formulated as follows:
𝒓𝑡 = 𝜎(𝑊𝑟[𝒉𝑡−1;𝒙𝑡]),

𝜻 𝑡 = 𝜎(𝑊𝜁 [𝒉𝑡−1;𝒙𝑡]),

𝒉̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ̃[𝒓𝑡◦𝒉𝑡−1;𝒙𝑡]),

𝒉𝑡 = (𝟏 − 𝜻 𝑡)◦𝒉𝑡−1 + 𝜻 𝑡◦𝒉̃
𝑡,

(10)

where ◦ is the element-wise product. Specifically, 𝒓𝑡 and 𝜻 𝑡 are the reset
gate vector and update gate vector, which decides how much past in-
formation needs to be forgotten/preserved, respectively. Meanwhile, 𝒉̃𝑡

is the candidate activation vector that memorizes the past information,
and 𝒉𝑡 is obtained as the balanced sum of the short (𝒉𝑡−1) memory and
the long (𝒉̃𝑡) memory.

For the generative process 𝑝(𝒙≤𝑇 , 𝒛≤𝑇 ), we explicitly simplify
𝑝(𝒙𝑡|𝒛≤𝑡) as 𝑝(𝒙𝑡|𝒛𝑡) to ensure the local pattern of 𝒙𝑡 is mainly preserved
in 𝒛𝑡; this simplification also can largely reduce the complexity of the
reconstruction/decoding process. Based on (8), the generation model
can be factorized as follows:

𝑝(𝒙≤𝑇 , 𝒛≤𝑇 ) =
𝑇
∏

𝑡=1
𝑝(𝒙𝑡|𝒛𝑡,𝒙<𝑡)𝑝(𝒛𝑡|𝒙<𝑡, 𝒛𝑡−1), (11)

𝒑(𝒙𝑡|𝒛𝑡,𝒙<𝑡) also can be denoted as 𝑝(𝒙𝑡|𝒛𝑡,𝒉𝑡−1), due to the recursive
nature of GRU, which requires 𝒉𝑡−1 being obtained by the recursive
calculation with 𝒙<𝑡.

Similarly, we derive the inference model as:

𝑞(𝒛𝑡|𝒙≤𝑡, 𝒛𝑡−1) = (𝒛𝑡|𝝁𝑡𝑖(𝒙
≤𝑡, 𝒛𝑡−1),𝝈𝑡𝑖(𝒙

≤𝑡, 𝒛𝑡−1))

= (𝒛𝑡|𝝁𝑡𝑖(𝒉
𝑡−1,𝒙𝑡, 𝒛𝑡−1),𝝈𝑡𝑖(𝒉

𝑡−1,𝒙𝑡, 𝒛𝑡−1)).
(12)

The above approximated posterior of 𝒛𝑡 captures the long-term dynam-
ics carried by 𝒙<𝑡 (𝒉𝑡−1), the neighboring dependency with 𝒛𝑡−1, and the
corresponding subsequence 𝒙𝑡.

4.4. Integration and joint learning

Based on the encoding of a subsequence and the encoding of the en-
tire time series (represented as subsequences) discussed above, we now
integrate them into a HyVAE model, which can jointly learn the local
patterns and temporal dynamics for time series forecasting. The jointly
learned latent random variables for both time series subsequences
and the entire time series are denoted as {(𝒛1𝐿,… , 𝒛11),… , (𝒛𝑇𝐿,… , 𝒛𝑇1 )},
with respect to time series {𝒙1,… ,𝒙𝑇 }, and the encoding process is
4

illustrated in Fig. 3. By combining the prior of subsequence encoding
in Eq. (5) and the prior of entire time series encoding in Eq. (8), we
obtain the prior of HyVAE, which is factorized as follows:

𝑝(𝒛𝑡|𝒛𝑡−1,𝒉𝑡−1) = 𝑝(𝒛𝑡𝐿|𝒛
𝑡−1
1 ,𝒉𝑡−1)

𝐿
∏

𝑖=1
𝑝(𝒛𝑡𝑖|𝒛

𝑡
𝑖+1),

𝑝(𝒛𝑡𝐿|𝒛
𝑡−1
1 ,𝒉𝑡−1) =  (𝒛𝑡𝐿|𝝁

𝑡(𝒛𝑡−11 ,𝒉𝑡−1),𝝈𝑡(𝒛𝑡−11 ,𝒉𝑡−1)),

𝑝(𝒛𝑡𝑖|𝒛
𝑡
𝑖+1) =  (𝒙𝑡|𝝁𝑡𝑖(𝒛

𝑡
1),𝝈

𝑡
𝑖(𝒛

𝑡
1)).

(13)

As shown in Fig. 3(a), the prior of HyVAE integrates the long-term
temporal dynamics by affecting the first latent random variable of each
subsequence (e.g., 𝒛𝑡𝐿) with the hidden states (e.g., 𝒉𝑡−1, generated by
GRU) of its precedent subsequence. Meanwhile, 𝒉𝑡 is obtained by the
recurrence process with GRU as shown in Fig. 3(b). We then obtain the
inference model of HyVAE by integrating Eqs. (7) and (12) as follows
(Fig. 3(c)):

𝑞(𝒛𝑡|𝒙≤𝑡, 𝒛𝑡−1) = 𝑞(𝒛𝑡𝐿|𝒙
≤𝑡, 𝒛𝑡−11 )

𝐿−1
∏

𝑖=1
𝑞(𝒛𝑡𝑖|𝒛

𝑡
𝑖+1,𝒙

𝑡),

𝑞(𝒛𝑡𝐿|𝒙
≤𝑡, 𝒛𝑡−11 ) =  (𝒛𝑡𝐿|𝝁

𝑡(𝒛𝑡−11 ,𝒙≤𝑡),𝝈𝑡(𝒛𝑡−11 ,𝒙≤𝑡)),

𝑞(𝒛𝑡𝑖|𝒛
𝑡
𝑖+1,𝒙

𝑡) =  (𝒛𝑡𝐿|𝝁
𝑡
𝑖(𝒛

𝑡
𝑖+1,𝒙

𝑡),𝝈𝑡𝑖(𝒛
𝑡
𝑖+1,𝒙

𝑡)).

(14)

Similarly, for 𝒙𝑡, the above encoding process also includes the temporal
dynamics carried by 𝒉𝑡−1 during the encoding of 𝒛𝑡𝐿, while the rest
latent random variables of 𝒛𝑡 only learn from 𝒙𝑡. Then, as shown in
Fig. 3(d), the generation model of HyVAE is obtained by combining
Eqs. (6) and (11) as follows:

𝑝(𝒙𝑡|𝒛𝑡,𝒙<𝑡) = 𝑝(𝒙𝑡|𝒛𝑡1,𝒉
𝑡−1),

=  (𝒙𝑡|𝝁𝑡𝑖(𝒛
𝑡
1,𝒉

𝑡−1),𝝈𝑡𝑖(𝒛
𝑡
1,𝒉

𝑡−1)).
(15)

Following the derivative process of variational inference, with Eq. (13)
to (15), HyVAE learns the latent representations by maximizing its
ELBO defined as follows:

𝓁𝑒𝑛𝑐 =
𝑇
∑

𝑡=1

{

E𝑞(𝒛𝑡𝑙 |𝒙≤𝑡 ,𝒛𝑡−11 ) log 𝑝(𝒙
𝑡
|𝒉𝑡−1, 𝒛𝑡1)

−
𝑙−1
∑

1
𝐾𝐿

(

𝑞(𝒛𝑡𝑖|𝒛
𝑡
𝑖+1,𝒙

𝑡)||𝑝(𝒛𝑡𝑖|𝒛
𝑡
𝑖+1)

)

− 𝐾𝐿
(

𝑞(𝒛𝑡𝑙|𝒙
≤𝑡, 𝒛𝑡−11 )||𝑝(𝒛𝑡𝑙|𝒙

<𝑡, 𝒛<𝑡1
)

}

.

(16)

The first term in 𝓁𝑒𝑛𝑐 implies the reconstruction loss of HyVAE for each
time series subsequence, i.e., between the input 𝒙𝑡 and the 𝒙̂𝑡 recon-
structed with (𝒛𝑡1,𝒉

𝑡−1) (see Fig. 3(d)). The second and third terms are
regularization terms that enforce the encoded latent random variables
to jointly capture the local patterns of individual subsequences and
learn the temporal dynamics of the entire time series. The expectation
of 𝓁𝑒𝑛𝑐 is approximated by Monte Carlo estimation [34] and is estimated
with the average of the 𝓁𝑒𝑛𝑐 of each sample time series.

We use 𝒉𝑡 and 𝒛𝑡 for the final time series forecasting, i.e., 𝒚̂ =
𝜓(𝒉𝑡, 𝒛𝑡), where 𝜓(∗) is a single-layer fully-connected neural network.
The forecasting loss is measured by Eq. (1):

̂
𝓁𝑝𝑟𝑒𝑑 = 𝐸𝑟𝑟(𝒚, 𝒚). (17)
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Table 2
Statistics of the datasets.

Dataset Train Valid Test Description

Parking 2856 357 358 Car park occupancy
Stock 1081 135 136 NASDAQ stock index
Electricity 1120 140 140 Electricity load values
Sealevel 1120 140 140 Sea level pressure

Then, the overall loss minimizes the negative ELBO of HyVAE and the
forecasting loss as follows:

𝓁 = −𝓁𝑒𝑛𝑐 + 𝓁𝑝𝑟𝑒𝑑 . (18)

In 𝓁, 𝓁𝑒𝑛𝑐 aims at learning representations that capture the latent dis-
tribution of time series, while 𝓁𝑝𝑟𝑒𝑑 can be regarded as a regularization
term that ensures the latent representations can provide insights for ac-
curate forecasting. We perform ADMA [35] for the optimization and use
the reparameterization trick [14] for the model training. For 𝓁𝑒𝑛𝑐 , we
dopt the warm-up scheme [28] during the implementation to avoid in-
ctive latent random variables caused by the variational regularization.

. Evaluation

In this section, we first introduce the real-world datasets used to
valuate the proposed method. Then, we explain the accuracy metrics
or time series forecasting and briefly describe the counterpart methods.
inally, we analyze the results and compare HyVAE with counterpart
ethods regarding the effectiveness of time series forecasting. All the

xperiments are implemented with Python 3.7 and run on a Linux
latform with a 2.6G CPU and 132G RAM.

.1. Datasets

We select four datasets widely used for time series forecasting.
arking Birmingham dataset [36] is collected from car parks in Birm-
ngham, which regularly records the total occupancy of all available
arking spaces between October 4, 2016, and December 19, 2016.
e down-sample the recording frequency to every 5 h and result in

571 records. Another NASDAQ stock dataset [37] consists of stock
rices of 104 corporations together with the overall NASDAQ100 in-
ex, which is collected from July 26, 2016, to December 22, 2016.
e use the NASDAQ100 index for forecasting and down-sample the

ecords every 30 min, which results in 1352 records. The other two
atasets1 record the electricity load values of Poland from the 1990s
nd monthly Darwin sea level pressures from 1882 to 1998, respec-
ively; both datasets contain 1400 records. We preprocess each dataset
ith Min-Max normalization by:

′
𝑖 =

𝑠𝑖 − 𝑚𝑖𝑛(𝒔)
𝑚𝑎𝑥(𝒔) − 𝑚𝑖𝑛(𝒔)

. (19)

hen, each dataset is split into a training set, a validation set and a
est set by {80%, 10%, 10%}. The number of known time series values
sed for forecasting is fixed as 50 for all datasets. The statistics of the
atasets are shown in Table 2.

.2. Performance metric

We use three different metrics widely used for time series fore-
asting [9,15] in the evaluation, and they are mean square error
MSE), mean absolute error (MAE), and mean absolute percentage
rror (MAPE). MSE and MAE respectively measure the variance and

1 https://research.cs.aalto.fi/aml/datasets.shtml
5

average of the residuals of the forecasting results to ground truth and
are respectively defined as follows:

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝒚𝑖 − 𝒚̂𝑖)2,𝑀𝐴𝐸 = 1

𝑛

𝑛
∑

𝑖=1
|𝒚𝑖 − 𝒚̂𝑖|. (20)

MAPE measures the proportion of forecasting deviation to the ground
truth as follows:

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|

𝒚𝑖 − 𝒚̂𝑖
max(𝜖, 𝒚𝑖)

|, (21)

where 𝜖 is an arbitrarily small positive value to ensure the dividing is
always legal.

5.3. Counterpart methods

We select three types of counterpart methods to compare with the
proposed method, i.e., the classical statistical models, deterministic
DNN-based methods, and VAE-based methods. The classical models
include the widely used AR, ARIMA, and SVR. For deterministic DNN-
based methods, we choose the LSTM and Informer and implement a
stacked CNN and LSTM model (CNN+LSTM) following [9] for time
series forecasting. For the VAE-based methods, other than the vanilla
VAE, we adopt VRNN [15] and LaST [17]. We brief these methods as
follows:

– AR forecasts with the weighted sum of past values. ARIMA incor-
porates moving average and differencing to AR for non-stationary
time series.

– SVR [19] is based on the support vector machine (SVM) and the
principle of structural risk minimization.

– LSTM [10] is an RNN model that can learn the long dynamics
with its forget gates.

– Informer [23] uses multi-head attention with position encoding
to learn the latent structure of time series for forecasting.

– CNN+LSTM [9] stacks CNN and LSTM for accurate air qual-
ity forecasting. CNN+LSTM includes three TCN layers and two
bi-LSTM layers.

– Vanilla VAE [14] is the basic variational autoencoder that learns
latent representations as independent Gaussian random variables.

– VRNN [15] extends VAE to be capable of learning temporal
dynamics by introducing temporal dependency among the latent
representations.

– LaST [17] adopts disentangled variational autoencoder to cap-
ture seasonality and trend, with auxiliary objectives to ensure
dissociate representations.

– GBT [38] decouples the Transformer-based forecasting into an
auto-regressive stage and a self-regression stage to overcome the
severe over-fitting problem.

– N-HiTS [39] incorporates hierarchical interpolation and multi-
rate data sampling to address the volatility of predictions.

5.4. Experiment setup

In all the experiments, we use the validation sets to tune optimal
parameters and use the test sets for forecasting accuracy measurement.
For AR, we search the optimal number of 𝑙𝑎𝑔 (past time series val-
ues) from 1 to 10, and use the same strategy to search optimal 𝑝
(the number of past observations) and 𝑞 (the size of moving average
window) for ARIMA, with the optimal differencing degree searched
from 0 to 3. For SVR, we adopt the radial basis function (𝑅𝐵𝐹 )
kernel for running, with its parameters 𝐶 (regularization parameter)
searched from {1, 10, 100, 1000} and 𝛾 (kernel coefficient) searched from
{0.00005, 0.0005, 0.005, 0.05}.

For LSTM, Informer, CNN+LSTM, GBT, N-HiTS, vanilla VAE, VRNN,
LaST, and HyVAE, we search the optimal batch size from {32, 64, 128}

and set the maximum iteration to be 100 epochs. The learning rate

https://research.cs.aalto.fi/aml/datasets.shtml
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Table 3
Time series forecasting results on the datasets, with the best displayed in bold.

Methods Parking Stock Electricity Sealevel

MSE
(×10−2)

MAE MAPE MSE
(×10−2)

MAE MAPE MSE
(×10−2)

MAE MAPE MSE
(×10−2)

MAE MAPE

AR 1.043 0.085 0.474 1.876 0.114 0.146 1.093 0.086 0.336 1.481 0.095 0.187
ARIMA 0.637 0.066 0.289 0.880 0.080 0.100 0.743 0.056 0.249 1.613 0.107 0.204
SVR 1.077 0.082 0.288 0.606 0.075 0.092 0.563 0.057 0.254 1.003 0.079 0.161

LSTM 0.571 0.057 0.249 0.557 0.068 0.078 0.321 0.036 0.211 0.801 0.068 0.139
Informer 0.425 0.051 0.224 0.728 0.078 0.090 0.305 0.037 0.219 1.083 0.083 0.173
CNN+LSTM 0.397 0.046 0.200 0.254 0.043 0.049 0.149 0.023 0.210 0.667 0.062 0.127
GBT 0.400 0.046 0.200 0.420 0.056 0.061 0.117 0.017 0.178 0.760 0.072 0.138
N-HiTS 0.401 0.469 0.197 0.127 0.027 0.031 0.336 0.042 0.229 0.687 0.064 0.129

Vanilla VAE 0.713 0.067 0.312 15.142 0.373 0.754 5.445 0.200 0.457 4.386 0.178 0.332
VRNN 0.454 0.056 0.226 0.190 0.039 0.042 0.199 0.029 0.195 0.665 0.066 0.125
LaST 0.366 0.043 0.191 0.119 0.026 0.029 0.116 0.018 0.164 0.674 0.064 0.128
HyVAE 0.133 0.028 0.144 0.087 0.021 0.023 0.097 0.015 0.143 0.623 0.060 0.123
Table 4
Multi-step forecasting results (MSE×10−2) on the datasets, with the best displayed in bold.
Methods Parking Stock Electricity Sealevel

3 4 5 3 4 5 3 4 5 3 4 5

LSTM 0.712 0.696 0.743 0.669 0.778 1.388 0.340 0.396 0.386 0.938 1.052 1.122
Informer 0.662 0.638 0.649 0.933 1.163 1.297 0.307 0.409 0.450 1.105 1.177 1.056
CNN+LSTM 0.635 0.643 0.636 0.524 0.710 0.822 0.163 0.156 0.197 0.890 0.959 1.032
GBT 0.640 0.661 0.682 0.722 0.848 0.951 0.140 0.153 0.201 0.958 1.023 1.247
N-HiTS 0.640 0.653 0.655 0.436 0.493 0.670 0.362 0.403 0.492 0.847 0.936 1.096

VRNN 0.614 0.700 0.760 0.557 0.653 0.895 0.232 0.437 0.458 0.870 1.257 1.322
LaST 0.442 0.533 0.574 0.425 0.463 0.617 0.136 0.138 0.189 0.819 0.892 1.021
HyVAE 0.446 0.466 0.502 0.367 0.365 0.431 0.123 0.137 0.151 0.787 0.858 0.931
is searched from {0.001, 0.01, 0.1}. The dimension of the LSTM/GRU
idden states and latent representations are searched from {8, 16, 32, 64,

128}, and the number of layers is no more than 3. For HyVAE, the
𝑙𝑎𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒 and the 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ are searched from {2, 4, 6, 8, 10}
and {10, 20, 30, 40}, respectively. We run each method 50 times and
report the average accuracy as the final results.

5.5. Main results

In this experiment, we compare the accuracy of HyVAE with coun-
terpart methods, with respect to single-step forecasting and multi-step
(3, 4, and 5 steps) forecasting, respectively, on the four datasets.

As shown in Table 3, HyVAE generally achieves the best perfor-
mance among all methods on the four datasets. Notably, we observe on
the Parking dataset, the MSE achieved by HyVAE (0.133×10−2) is nearly
three times smaller than that of the second-best performed LaST (0.366×
10−2). The least improvement over all the counterpart methods is
shown in the Sealevel dataset, in which HyVAE reduces the MSE, MAE,
and MAPE of VRNN (the second best) by 6.3%, 9.1% and 1.6%, respec-
tively. When further considering the type of the counterpart methods,
first, we see HyVAE achieves significant improvement over the classical
AR, ARIMA, and SVR methods, by achieving nearly one magnitude
smaller MSE on the Parking and Stock datasets. Second, compared
with the deterministic DNN-based LSTM, Informer, CNN+LSTM, GBT,
and N-HiTS, HyVAE also shows significant improvement; especially on
the Parking dataset, HyVAE achieves nearly two times smaller MSE,
MAE, and MAPE than the best-performed deterministic neural model
(CNN-LSTM). Although CNN+LSTM also considers both local patterns
and temporal dynamics of time series and outperforms LSTM and
Informer on all the datasets, HyVAE constantly being more effective
and thus is better at capturing the complex structure of time series
for forecasting. Third, we can see that HyVAE achieves more accurate
forecasting results than other VAE-based methods that only learn part
of the information of time series. That includes the vanilla VAE, which
misses the temporal dynamics, VRNN, which only learns the temporal
dynamics, and LaST for seasonality/trend patterns of time series. This
6

observation shows the effectiveness of HyVAE in learning both the local
patterns and temporal dynamics for time series forecasting.

For multi-step forecasting, in Table 4, we show the MSE of LSTM,
Informer, CNN+LSTM, GBT, N-HiTS, VRNN, LaST, and HyVAE; AR,
ARIMA, SVR, and vanilla VAE are excluded due to low performance.
The results show that HyVAE achieves more accurate forecasting results
than compared counterpart methods. Although generally, the forecast-
ing accuracy decreases with larger forecasting steps, except for the
Parking dataset, the forecasting accuracy of HyVAE decreases much
slower than the compared counterpart methods since it captures more
informative patterns of time series. For example, from 3-step forecast-
ing to 5-step forecasting in the Electricity dataset, the MSE of HyVAE
only decreases by 0.028, while LSTM, Informer, CNN+LSTM, GBT, N-
HiTS, VRNN, and LaST decrease by 0.046, 0.143, 0.034, 0.061, 0.130,
0.226 and 0.063, respectively. Meanwhile, CNN+LSTM and HyVAE in
most cases produce more accurate forecasting results than other de-
terministic DNN-based methods and VAE-based methods, respectively,
and that again supports the effectiveness of learning both local patterns
and temporal dynamics for time series forecasting.

In addition, we compare the variational inference-based methods
(VRNN, LaST, and HyVAE) on their performance on probabilistic fore-
casting, and the results are measured by continuous ranked probability
score (CRPS). With 𝐹 denoting the cumulative distribution function of
the forecasts distribution, CRPS is defined as CRPS(𝐹 , 𝑥) = ∫ ∞

−∞(𝐹 (𝑦) −
1(𝑦 − 𝑥)2)𝑑𝑦, where 1 is the Heaviside step function. CRPS measures
the similarity of the forecasted distribution with the true prediction
and is minimized when they are identical. The results in Table 5 show
that on all four datasets, HyVAE achieves more accurate probabilistic
forecasting performance than VRNN, which only learns the global
temporal dynamics, and LaST, which aims to capture specific temporal
patterns (trend and seasonality).

5.6. Ablation analysis

We conduct an ablation analysis to further understand the effective-
ness of learning both the local patterns and the temporal dynamics in
HyVAE. To do that, we implement two variants of HyVAE by removing
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Fig. 4. Forecasting results of HyVAE, w/o Entire and w/o Subseq on the datasets.
Table 5
Probabilistic forecasting results (measured by CRPS) on the datasets, with the best
displayed in bold.

Methods Parking Stock Electricity Sealevel

VRNN 1.220 0.231 0.129 0.574
LaST 0.838 0.172 0.060 0.389
HyVAE 0.649 0.138 0.052 0.306

Table 6
Ablation analysis of HyVAE (MSE×10−2), with the best displayed in bold.

Methods Parking Stock Electricity Sealevel

w/o Entire 0.410 0.980 0.503 1.742
w/o Subseq 0.389 0.513 0.160 1.088
HyVAE 0.133 0.087 0.116 0.623

the learning of one type of information, respectively; that is, w/o
Subseq that excludes the learning of local patterns from subsequences,
and w/o Entire that does not learn the temporal dynamics of the entire
time series. The parameters of w/o Subseq and w/o Entire are tuned
with the validation set the same as HyVAE, and we show the results of
time series forecasting measured by MSE in Table 6.

In Table 6, HyVAE that learns both information achieves higher
forecasting accuracy than the two variants. Specifically, the largest
improvement of HyVAE towards the variants is shown in the Stock
dataset (0.087), i.e., around six times smaller than that of w/o Subseq
(0.513, second best). The smallest improvement appears in the Sealevel
dataset, but the MSE of HyVAE is still around two times smaller
than that of the second-best performed w/o Subseq (0.623 to 1.088).
Meanwhile, it is interesting to observe that w/o Entire, which misses
the temporal dynamics, constantly performs worse that w/o Subseq,
which misses local patterns, on the four datasets.
7

We further show the forecasting results of HyVAE and the variants
against the ground truth in Fig. 4. For w/o Entire, since no temporal
dynamics is learned, it cannot properly capture the global trend of time
series; especially for the Stock dataset (Fig. 4(b)), it misunderstands the
steady curves between the 55 and 75 timestamps as sharp spikes. As
for the results of the Electricity dataset and the Sealevel dataset shown
in Fig. 4(c–d), w/o Entire only emphasizes recurring local patterns
but misses their differences at different timestamps. Meanwhile, w/o
Subseq can better express the temporal dynamics than w/o Entire, as
clearly shown in Fig. 4(b); however, it fails to properly capture local
details. By combining the strengths of w/o Entire and w/o Subseq,
HyVAE achieves the best forecasting results that are quite close to the
ground truth.

Based on the above analysis, we summarize that the improved fore-
casting accuracy of HyVAE is due to its joint learning of local patterns
and global dynamics of time series. Compared with only learning the
global dynamics (w/o Subseq), HyVAE can more accurately capture the
local details, e.g., the flat peaks in Fig. 4(c), thus significantly reduc-
ing the forecasting error in detail-rich regions on time series. While
compared with only capturing the local patterns (w/o Entire), HyVAE
improves the forecasting of global trends and dynamics, leading to an
overall reduction of forecasting errors on most time series samples.

5.7. Parameter analysis

In this experiment, we analyze the impact of three parameters of
HyVAE, i.e., the 𝑙𝑎𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒, the 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ, and the 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔
𝑠𝑖𝑧𝑒, on its performance. Specifically, the 𝑙𝑎𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒 determines the
causal information during subsequence encoding, and we vary the
𝑙𝑎𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒 from 0 to 10, where 0 means HyVAE learns no causal in-
formation of subsequences (see Fig. 2). The 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ balances
the local patterns and the temporal dynamics, i.e., HyVAE is degraded



Knowledge-Based Systems 281 (2023) 111079B. Cai et al.
Fig. 5. Parameter analysis of HyVAE with respect to 𝑙𝑎𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒 and 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ.
Fig. 6. Parameter analysis of HyVAE with respect to 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑠𝑖𝑧𝑒.
to w/o Subseq or w/o Entire if 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ is 0 (no subsequence)
or the maximum (50, the subsequence becomes the entire time series),
respectively. The results measured by MSE are shown in Fig. 5. For the
𝑙𝑎𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒 shown in Fig. 5(a–d), the forecasting accuracy significantly
decreases when 𝑙𝑎𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒 is too small or too large. The optimal ladder
sizes are relatively small (2 for the Sealevel dataset, 4 for the Parking
and Stock datasets, and 6 for the Electricity dataset). Meanwhile, we
see that when the 𝑙𝑎𝑑𝑑𝑒𝑟 𝑠𝑖𝑧𝑒 equals 0, HyVAE still outperforms w/o
Subseq on all the datasets. The results of 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ are shown
in Fig. 5(c–d), in which we see that HyVAE prefers short subsequences
to obtain optimal forecasting results, i.e., 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ is 10
(Parking, Electricity, and Sealevel datasets) or 20 (Stock dataset). The
reason is that if the subsequences are too long, temporal dynamics
can hardly be preserved. Not surprisingly, HyVAE that learns temporal
dynamics with different 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ achieves better forecasting
accuracy than w/o Entire, which does not learn temporal dynamics at
all.

We then run HyVAE with varying 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑠𝑖𝑧𝑒 {8, 16, 32, 64, 128},
which determines the dimension of latent representation and the di-
mension of hidden states in neural networks, and the results are shown
in Fig. 6. On all the datasets, accuracy measured by MSE, MAE, and
MAPE has similar trends. First, the forecasting accuracy is low with
small 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑠𝑖𝑧𝑒, mainly because the small size of latent random
variables cannot properly capture the complex non-linear processes of
time series. When the 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑠𝑖𝑧𝑒 becomes too large (128), the ac-
curacy decreases due to over-fitting. The results show that HyVAE can
obtain optimal forecasting results with relatively small 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑠𝑖𝑧𝑒.
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6. Conclusion

This paper proposes a novel hybrid variational autoencoder (Hy-
VAE) model for time series forecasting. HyVAE integrates the learning
of local patterns and temporal dynamics into a variational autoencoder.
Through comprehensive evaluation on four real-world datasets, we
show that HyVAE achieves better time series forecasting accuracy
than various counterpart methods, including a deterministic DNN-
based method (CNN+LSTM) that also learns both information of time
series. Moreover, the ablation analyses demonstrate that by jointly
learning local patterns and temporal dynamics, HyVAE outperforms its
two variants which only learn local patterns and temporal dynamics
from time series, respectively.
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