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Explainable machine learning identifies multi-omics signatures
of muscle response to spaceflight in mice
Kevin Li 1,2,10, Riya Desai3,10, Ryan T. Scott 1,4, Joel Ricky Steele 4,5,6, Meera Machado7, Samuel Demharter 7,
Adrienne Hoarfrost 8, Jessica L. Braun 9, Val A. Fajardo 9, Lauren M. Sanders4,6✉ and Sylvain V. Costes 4✉

The adverse effects of microgravity exposure on mammalian physiology during spaceflight necessitate a deep understanding of the
underlying mechanisms to develop effective countermeasures. One such concern is muscle atrophy, which is partly attributed to
the dysregulation of calcium levels due to abnormalities in SERCA pump functioning. To identify potential biomarkers for this
condition, multi-omics data and physiological data available on the NASA Open Science Data Repository (osdr.nasa.gov) were used,
and machine learning methods were employed. Specifically, we used multi-omics (transcriptomic, proteomic, and DNA
methylation) data and calcium reuptake data collected from C57BL/6 J mouse soleus and tibialis anterior tissues during several 30+
day-long missions on the international space station. The QLattice symbolic regression algorithm was introduced to generate highly
explainable models that predict either experimental conditions or calcium reuptake levels based on multi-omics features. The list of
candidate models established by QLattice was used to identify key features contributing to the predictive capability of these
models, with Acyp1 and Rps7 proteins found to be the most predictive biomarkers related to the resilience of the tibialis anterior
muscle in space. These findings could serve as targets for future interventions aiming to reduce the extent of muscle atrophy
during space travel.
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INTRODUCTION
Muscle atrophy, caused by prolonged exposure to microgravity
conditions, is a major challenge faced by astronauts during
spaceflight1,2. Although intense physical exercise is currently the
main countermeasure, it requires a significant amount of time
from each astronaut (2.5 hours per day, including equipment
setup and breakdown), and even with exercise, the continuous
exposure to microgravity cannot be fully offset.
It has been proposed that muscle atrophy may be at least partly

explained by the dysregulation of cytoplasmic Ca2+ levels due to
abnormalities in the Sarco Endoplasmic Reticulum Calcium ATPase
(SERCA) pump’s ability to reuptake cytoplasmic Ca2+ during
muscle relaxation1. Mammalian muscles are broadly classified into
two types: slow-twitch muscles composed predominantly of
oxidative muscle fibers (e.g., postural muscles like the soleus
[SOL], which is found in the calf and is important for resisting the
pull of gravity) and fast-twitch muscles composed predominantly
of glycolytic muscle fibers (e.g., explosive muscles like the tibialis
anterior [TA], located in the shin). The SOL and TA are two of the
primary muscles impacted by spaceflight, and previous studies
have shown that both the murine SOL and TA will atrophy in
response to microgravity exposure1,3.
With respect to Ca2+ handling, recent work has shown that

during spaceflight, Ca2+ uptake is impaired in the SOL muscle
while being enhanced in the TA muscle, indicating that SERCA
function is affected differently in the two muscle types1. However,
the molecular mechanisms driving these aberrations in Ca2+

reuptake by SERCA are not very well elucidated. Additionally, as
Ca2+ handling at the level of SERCA was not impaired in the TA, it

is possible that there may be other molecular drivers of the muscle
atrophy phenotype. Understanding these mechanisms at the
molecular level is important for prevention and mitigation.
Machine learning (ML) methods are particularly effective in

identifying patterns in complex biological data, particularly for
discovering biomarkers in heterogeneous, high-dimensional,
multi-omics datasets4. Compared to traditional statistical methods,
ML methods are also less prone to distribution-specific effects5,
making them a promising alternative to classic systems biology.
This is particularly important for space biological research, where
small datasets are often combined to increase statistical power.
In this study, we present an ML-based approach to create a

mapping between changes in multi-omics data (transcriptomic,
proteomic, and epigenomic) and calcium reuptake in the SOL and
TA muscles of mice that have been flown in space, compared to
ground controls. To our knowledge, this approach has not been
applied to this scientific question before.
When choosing an ML method for the purposes of gaining

insight into biomedical research, it is important to consider two
criteria: explainability/interpretability and generalizability. Many
conventional state-of-the-art algorithms, such as neural networks,
are seen as “black boxes” due to the low interpretability of the
values and interactions of intermediate neurons deep within the
network. Such algorithms thus have low explainability and are not
ideal for research, where the ultimate goal is not performance but
rather acquiring a more sophisticated understanding of relation-
ships between variables. Furthermore, a major challenge posed by
multi-omics data, in particular, is the lack of generalizability of
learned models due to the heterogeneity, high-dimensionality,
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and low-sample-size (HDLSS) nature of the data. Highly expressive
algorithms like neural networks will generate severely overfit
models when trained on HDLSS data6.
With these criteria in mind, we chose to use a recently

developed implementation of symbolic regression called QLattice,
developed by Abzu ApS7,8. Symbolic regression attempts to find
the true, concise mathematical function directly underlying the
features’ relationship to the target, which is much more
interpretable than neural network architectures and less likely to
overfit. It does this by representing mathematical expressions as
computational graphs, where the nodes represent variables or
functions, and by exploring the possible architectures for these
computational graphs. QLattice explores this graph space
efficiently to find concise, interpretable, and accurate models,
which make it a suitable tool for biomarker discovery9.
We aimed to identify molecular drivers of spaceflight effects

on muscle physiology using spaceflight mouse muscle data
from the NASA Open Science Data Repository (OSDR) with
omics data found in GeneLab10,11 and Ca2+ reuptake data
found in Ames Life Sciences Data Archive (ALSDA)12. First, we
trained QLattice to predict calcium reuptake levels of space-
flight and ground control mice using multi-omics features
(genes, proteins, etc.), a regression task. Second, we trained
QLattice to predict whether samples were from spaceflight or
ground control mice, a classification task. We then identified
features that contributed most to the predictive capabilities of
the model’s output by QLattice; these features (i.e., genes,
proteins, or epigenetic markers) are potential biomarkers that
may provide mechanistic insight behind the spaceflight-
induced muscle physiology effects and serve as targets for
future interventions aiming to reduce the extent of muscle
atrophy during space travel.

RESULTS
Multi-omics biomarkers associated with spaceflight calcium
reuptake aberrations are revealed by machine learning
regression analysis
Exposure to spaceflight has been previously reported to increase
Ca2+ uptake in mouse TA muscles and decrease Ca2+ uptake in
mouse SOL muscles1. We hypothesized that this phenotypic
change can be further understood by examining the relationships
between genes, proteins, and methylation markers. Therefore, we
trained QLattice to identify multi-omics biomarkers predictive of
changes in calcium reuptake capacity, using multi-omics datasets
from OSD-104 mouse SOL muscle and OSD-105 mouse TA muscle
from female C57BL/6J mice flown at 16 weeks of age on the RR-1
mission. For each muscle type, multi-omics data were combined
and subject to dimensionality reduction prior to QLattice training,
and calcium reuptake levels were used as a target (see Methods
and Supplementary Information). We matched RR-1 SOL multi-
omics data with RR-1 SOL calcium data and RR-1 TA multi-omics
data with RR-9 TA calcium data. In the latter case, note that RR-9
includes 10-week male mice while RR-1 includes 16-week female
mice, but we hypothesized that the spaceflight muscle effect
would be great enough to overcome these differences. More
details are provided in the Methods and Supplementary
Information.
In the TA regression analysis reported here (Fig. 1), we used

both RNA sequencing (RNA-seq) and proteomics data. We
excluded the methylation data because including it reduced
QLattice performance while producing very similar results (see
Supplementary Information). The top two features predictive of
Ca2+ uptake rate were Acyp1 and Rps7 proteins (Fig. 1b).
Representative models containing Acyp1 and Rps7 are shown in
Fig. 1a. These models consisted of bivariate Gaussian functions,
bivariate multiply functions, and univariate tanh functions (see

Fig. 1 QLattice regression analysis of TA multi-omics data and calcium uptake. a Representative examples of the mathematical
relationships between multi-omic features identified by QLattice to predict calcium reuptake in TA muscle during LOOCV. b Top 9 features
ranked by how many times they were used in a model found by QLattice during LOOCV. c T1 and T10 cross-validated R2 scores, as well as the
number of RNA-seq and proteomic features that were found among the top 50 features. d Gene set enrichment analysis results using the top
nine genes from the QLattice analysis.
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Supplementary Information for additional discussion of model
architectures). Of the 27 models containing Rps7, 24 included a
relationship with Acyp1, possibly indicating a biological interac-
tion between the two features that could be tested in the future
through laboratory studies. Gene set enrichment analysis revealed
significant enrichment of biological signaling involved in apopto-
sis, endocytosis, and protein localization (Fig. 1d).
In the SOL regression analysis, the best-performing models

mainly displayed relationships between the expression of different
genes on the RNA level, related by mathematical functions such as
Gaussian, linear, and exp (Fig. 2a–c). We focused on the top 13
features across all models by rank, all of which were RNA-seq
features: Gm35576, Rspo3, Gpc4, Klhl31, Sox6, Auts2, Sobp, Mdga1,
Aox1, Tle4, Klhl33, Eepd1, Rhbdl3, and Gm21955. Gene set
enrichment analysis revealed significant enrichment of biological
signaling involved in cellular differentiation, synapse organization
and assembly, and neuron migration (Fig. 2d).
QLattice analysis identified 9 and 13 critical genes playing an

important role in calcium reuptake of TA and SOL muscles,
respectively, in the context of spaceflight-inducing muscle loss.
Figure 3 depicts the changes of expression level in FLT versus GC
for some of these genes and their corresponding proteins (when
measurements are available) in both muscle types. Many of the
genes identified have been described in the literature as playing a
role in muscle recovery and we focus our attention on these
genes.
In the case of TA muscle, Acyp1 protein was found in 89 models.

Acyp1 has been shown to inhibit the activity of Ca2+ transporters
in non-phospholamban-associated calcium-dependent ATPases,
such as SERCA-1, which is predominantly found in fast-twitch
muscle fibers, the dominant fiber type in the TA muscle13–15. In
line with this, Acyp1 protein expression is negatively correlated
with calcium reuptake in QLattice models for TA muscles
(Supplementary Fig. 9), indicating that high levels of Acyp1 are
associated with low calcium reuptake efficiency AUC. Consistent
with previous studies1, FLT TA samples exhibit lower Acyp1

protein expression and improved calcium reuptake (Fig. 3a, e).
Interestingly, Acyp1 gene expression in TA has a much greater
spread across samples resulting in no significant difference
between FLT and GC (Fig. 3b), possibly indicating a more reliable
measurement from proteomics than RNA-seq.
Furthermore, Acyp1 has been shown to enhance the activity of

Ca2+ transporters in phospholamban-associated calcium-
ATPases, including SERCA-2a, which is predominantly found in
slow-twitch fibers, the dominant fiber type in SOL muscle. We
examined whether this pattern is consistent in the OSD-104 SOL
multi-omics data and discovered that Acyp1 gene expression was
also downregulated in SOL FLT relative to GC (Fig. 3c), while
calcium reuptake was impaired in SOL as previously reported1 (Fig.
3g). Note that QLattice was not trained to find this association for
SOL muscle. Such a finding is, therefore, quite strong, suggesting a
potential mechanism. The observed downregulation in Acyp1
could contribute to impairments in SERCA function found in the
FLT SOL, as it is known that phospholamban is highly expressed in
this muscle and is less expressed in fast glycolytic muscles. Taken
together, these findings suggest that Acyp1 may play a
mechanistic role in the dysregulation of calcium induced by
spaceflight (Fig. 3d, f), but additional research is necessary to
establish this relationship.
The second key protein identified in TA muscle was Rps7. This

gene is known to be downregulated by nitrosative stress16, which
is related to impaired calcium reuptake1. Consistent with this, Rps7
is positively correlated with calcium reuptake capacity efficiency in
the QLattice models (negatively associated with calcium reuptake
AUC; Supplementary Fig. 9). This suggests a potential role for Rps7
in the calcium reuptake response to nitrosative stress. No
nitrosative stress was reported in the TA samples from the
original study1, suggesting that mechanisms possibly including
Rps7 may have enhanced the calcium reuptake efficiency. Further
studies would be required to establish these relationships.
The QLattice analysis for SOL revealed a very distinct set of

genes (Fig. 2b). This is, however, not surprising as only gene

Fig. 2 QLattice regression analysis of SOL multi-omics data and calcium uptake. a Representative examples of the mathematical
relationships between multi-omic features identified by QLattice to predict calcium reuptake in SOL muscle during LOOCV. b Top 13 features
ranked by how many times they were used in a model found by QLattice during LOOCV. c T1 and T10 cross-validated R2 scores, as well as the
number of RNA-seq and methylation features that were found among the top 50 features. d Gene set enrichment analysis results using the
top 13 genes from the QLattice analysis.
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expression and methylation data were available. Several of these
genes are already known for their relationship to calcium reuptake
efficiency and muscle response to injury, and their levels are
plotted for protein expression (when available) and gene
expression in both TA and SOL muscle in Fig. 3a–c. Gpc4 is
underexpressed in injury-activated muscle satellite cells17; simi-
larly, Tle4 is normally underexpressed following muscle injury to
allow myogenesis18. In our data, both Tle4 and Gpc4 were
upregulated in mouse FLT SOL (Fig. 3a, b), which displayed
impaired calcium reuptake vs. GC SOL (Fig. 3g). This may indicate
that failure of proper Gpc4 and Tle4 downregulation may play a
role in damaged calcium reuptake, possibly by lowering overall
muscle quality. This is supported by previous RNA-seq data
showing that genes involved with myogenesis and differentiation
were downregulated in the FLT SOL from mice19. Alternatively,
Tle4 expression is known to be triggered by calcium signaling20, so
the observed Tle4 upregulation may instead be the result of
increased cytoplasmic calcium levels due to impaired reuptake.

Further, Rspo3 has been found to be one of the most
upregulated genes after SOL training and is associated with a
decrease in muscle atrophy21, and its knockout has shown to
compromise myogenesis and myotube differentiation22. Similarly,
mice lacking Klhl31 exhibit stunted skeletal muscle growth,
centronuclear myopathy, and SR dilation23. In our data, both
Rspo3 and Klhl31 are also upregulated in SOL FLT samples with
lower calcium reuptake ability (Fig. 3c), possibly as a compensa-
tory or adaptive mechanism to increased calcium levels due to
decreased uptake24.

Multi-omics biomarkers associated with spaceflight calcium
reuptake aberrations are revealed by ML classification
analysis
We then hypothesized that there may be other molecular
pathways affected by spaceflight in mouse muscle that could be
identified through feature relationships in QLattice models.
Therefore, we broadened the scope of our analysis to identify

Fig. 3 Gene/protein relationship with calcium reuptake in SOL and TA muscles and putative mechanism. The expression levels of the top
key genes identified by QLattice analysis and their corresponding protein levels are shown against the calcium reuptake AUC in both TA and
SOL muscles flown in space (FLT) or from ground controls (GC). a QLattice key protein levels in TA. b QLattice key gene expression levels in TA.
c QLattice key gene expression levels in SOL. d Putative mechanism based on the Acyp1 response, showing up in the majority of the models
for TA muscle and e SOL muscle. f Calcium reuptake AUC in TA muscle. g Calcium reuptake AUC in SOL muscle. All significance was calculated
using Mann–Whitney–Wilcoxon test two-sided: *: 1.00e−02 < p ≤ 5.00e−02, **:1.00e−03 < p ≤ 1.00e−02).
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multi-omics features that were predictive of the FLT or GC groups
rather than restricting to a single phenotype. We used QLattice to
classify FLT samples from GC and assessed the resulting models
and feature interactions.
In the TA classification analysis, we used all 3 types of omics

data: RNA-seq, proteomics, and methylation data (Fig. 4a–c). The
top 11 features from this analysis included all 3 types of features:
Trak2 (RNA-seq), Tle4 (RNA-seq), Tspan4 (RNA-seq), Actin (Proteo-
mic), Gm22281 (Methylation), Sell (RNA-seq), Ech1 (Methylation),
Fhod1 (RNA-seq), Egr2 (RNA-seq), Klhl21 (RNA-seq), and Lrp2bp
(RNA-seq).
In keeping with our hypothesis, gene set enrichment analysis

revealed significant enrichment of pathways relevant to muscle
biology and the neuromuscular response to stress, including
skeletal muscle cell differentiation, positive regulation of myelina-
tion, and Schwann cell differentiation (Fig. 4d). Interestingly,
multiple pathways involved mitochondrial regulation, which has
been previously identified as a molecular response to spaceflight
in multiple tissues including muscle25.
The pathway analysis also uncovered perturbation of actin and

myosin structural regulation. The actin protein was the top
proteomics feature found across QLattice models (Fig. 4b) and was
upregulated in TA FLT samples (Fig. 5a). Actin is a key component
in the myofibril bundles which generate muscle contractions after
Ca2+ release and signaling26. Further, the top RNA-seq feature
Trak2 is known to enable myosin binding activity for muscle
contraction27. Trak2 is also involved in the Rho GTPase cycle,
which plays an important role in muscle mass regeneration and
myofibrillogenesis27. The Trak2 gene is upregulated in FLT TA
muscle in our data (Fig. 5b), possibly as a muscle regeneration
mechanism in a weightless environment. Tle4, the second highest
occurring RNA-seq feature across all QLattice models, acts as a
corepressor regulating muscle cell differentiation18. The Tle4 gene
is upregulated in FLT TA muscle in our data (Fig. 5b), possibly due

to the lack of a need for skeletal muscle growth in a weightless
environment.
Interestingly, both Trak2 and Tle4 displayed some co-occurrence

with Actin. Out of the 20 models that Trak2 appeared in, 4 of them
contained Actin, while out of the 14 models containing Tle4, 2 of
them contained Actin. This may indicate a co-regulation network
between Actin structural muscle activity and muscle mass
regeneration and cell differentiation in response to spaceflight,
which could be further investigated in laboratory studies.
In the SOL classification analysis, RNA-seq gene features

comprised 69 out of the 80 features across all resulting models
(Fig. 6a–c). The top 9 recurrent features were Fam220a, Lrp4,
Osgin2, Gm29686, Gm22281 (Methylation), Sema6c, Alpk3, Tmod1,
and Bcam. For the most part, these features appeared in single-
feature models related to the FLT/GC outcome by a linear, log, or
inverse relationship. Of the 120 total models, 18 described
relationships between 2 features. Interestingly, 11 of these were
pairs of methylation and RNA-seq features, indicating a potential
cooperative relationship between gene expression and DNA
methylation in spaceflight SOL muscle response.
Similar to the calcium reuptake prediction analysis, the SOL FLT/

GC classification analysis mainly identified models with interac-
tions between RNA-seq gene features. Gene set enrichment
analysis of the top 11 features revealed enrichment of pre- and
post-synaptic membrane assembly and organization (Fig. 6d), in
keeping with previous research showing structural alterations in
muscle synaptic organization in spaceflight28.

DISCUSSION
Here we report the identification of multi-omics biomarkers in
mouse SOL or TA muscle that are predictive of change in calcium
reuptake capacity during spaceflight or broadly predictive of
molecular changes in spaceflight samples compared to ground

Fig. 4 QLattice classification analysis of TA multi-omics data and FLT/GC groups. a Representative examples of the mathematical
relationships between multi-omic features identified by QLattice to predict FLT versus GC in TA muscle during LOOCV. b Top 11 features
ranked by how many times they were used in a model found by QLattice during LOOCV. c T1 and T10 cross-validated R2 scores, as well as the
total number of RNA-seq, proteomics, and methylation features across all models. d Gene set enrichment analysis results using the top 11
features from the QLattice analysis.
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control. Our study is a key contribution to the field both in the
identification of these biomarkers and in that we demonstrate the
utility of ML methodology for biomarker discovery in space
biology by using the QLattice symbolic regression method to
characterize biomarker relationships to each other and to the
predictive target. Instead of using the traditional systems biology
approach, ML methods provide unbiased identification of
potential candidates for biological mechanisms. Our study is also
one of the first to analyze combined multi-omics and non-omics/
phenotypic data from the NASA OSDR, leveraging the relational
database structure, which allows for mapping samples across
assays and missions.
Appropriate regulation of muscular cytoplasmic calcium levels is

key for several downstream calcium-dependent signaling path-
ways. Calcium reuptake is reportedly improved in TA muscle but
impaired in SOL muscle, during spaceflight1, with limited under-
standing of the molecular signaling causing these phenotypic
changes. Here, we report that enhanced Ca2+ uptake in FLT TA is
directly related to the combined interaction of Acyp1 protein
downregulation and Rps7 protein upregulation; while decreased
Ca2+ uptake in FLT SOL is related to interactions of upregulation of
several different pairs of genes, including Gpc4, Tle4, Rspo3, and
Klhl31. The lower Ca2+ uptake in FLT SOL is also correlated with
significant weight loss for the SOL muscle in the RR1 flight
samples (t-test p-value < 0.05); whereas there is no significant
change in weight for TA muscles (Table 1). Overall, the analysis
provided here suggests that TA muscles are more resilient to
space conditions, and Acyp1 and Rps7 seem to be good
candidates to counteract weight losses and poor Ca2+ uptake
observed in SOL muscles.
On the technological aspect of this work, we show that one of

the major advantages of QLattice compared to traditional multi-

omics or differential gene expression analysis methods is its ability
to elucidate a variety of mathematical interactions, not necessarily
linear, between different multi-omics features. We noted a variety
of mathematical functions in the QLattice models from our
analysis, including bivariate Gaussian, bivariate multiply, univariate
tanh, addition, multiplication, and log. The response plots
provided by QLattice help translate the mathematical functions
into biological and mechanistic interpretations (Supplementary
Fig. 9). We noted that when Gaussian functions are reported, only
the first half of the Gaussian curve is being used to fit a sigmoidal
trend (Supplementary Fig. 9). Biologically, we interpret this to be
because biological quantities (e.g., calcium concentration) cannot
be negative, nor cannot exceed a certain threshold (e.g., the total
amount of calcium stored in the sarcoplasmic reticulum). Thus,
linear models would actually fail to extrapolate in these more
extreme ends of the quantity’s range, while sigmoidal models
would fit much more accurately. To further improve the predictive
capability of this tool, it would be valuable to further characterize
the relationship between the mathematical functions identified by
QLattice and the distribution of protein concentrations in various
tissues. Such characteristics would help further translate the
interactions of the various functions found in QLattice with an
actual biological process between different key components of a
tissue.
While additional study is needed to fully characterize the

relationships identified here by QLattice, we suggest that
QLattice’s emphasis on concise, interpretable models makes it
an especially appropriate ML methodology for research applica-
tions where explainability is key. Biomedical research, and
especially space biology research, presents the additional
challenge of small sample sizes, which usually leads to severe
overfitting and a lack of generalizability in the models found by

Fig. 5 Expression levels of top proteins and genes identified by QLattice TA and SOL classification analysis and muscle weights.
a QLattice key protein levels in TA. b QLattice key gene levels in TA. c QLattice key gene levels in SOL. All significance was calculated using
Mann–Whitney–Wilcoxon test two-sided: *: 1.00e−02 < p ≤ 5.00e−02, **:1.00e−03 < p ≤ 1.00e−02).
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conventional ML algorithms. This issue is at least partially
addressed by QLattice’s predisposition to limit the architectural
complexity of models (which has a strong regularizing effect), as
well as its heavy intrinsic feature selection based on mutual
information with the target variable. A valuable future study
would be to characterize the relationship between the individual
data modalities and the overall multi-omics results.
As demonstrated in this study, when an ML method properly

accounts for these challenges and priorities specific to space
biology research, it can provide significant guidance for what to
focus on in future research. Although the top biomarkers from
QLattice must be further characterized and confirmed, the
method has appreciably narrowed the research “search space”
by directing us toward groups of biomarkers that are most

promising. In this way, explainable and interpretable ML, with its
advantage over humans in being able to process huge feature
spaces, serves as a metaphorical “metal detector,” telling us where
we should start digging. The results we report here would benefit
from future experimental validation studies.
We conclude with our observations on the contributions of the

different types of omics data to the QLattice predictive models. In
this work, DNA methylation CpG+ features, when mapped to
gene names or when maintained as genomic coordinates, failed
to greatly contribute to model architectures and resulted in lower
predictive performance. We suggest that this may be because
methylation marks are deposited over time, so molecular changes
during spaceflight are primarily dominated by functional changes,
while small but persistent epigenetic changes may be better
captured upon return to earth. To test this hypothesis, future
studies could capture methylation measurements both before and
after spaceflight from the same animals. In accordance with this
hypothesis, both protein and gene expression changes were the
most predictive features, with the top proteomic features much
stronger and more cohesive than those of top RNA-seq features.
This may constitute support in favor of focusing on proteomic
analysis over RNA-seq analysis in future spaceflight studies, as the
relationship between proteins and function is more immediate
compared to the presumably noisier relationship between
transcripts and function.

Fig. 6 QLattice classification analysis of SOL multi-omics data and FLT/GC groups. a Representative examples of the mathematical
relationships between multi-omic features identified by QLattice to predict FLT versus GC in SOL muscle during LOOCV. b Top 9 features
ranked by how many times they were used in a model found by QLattice during LOOCV. c T1 and T10 cross-validated R2 scores, as well as the
total number of RNA-seq and methylation features across all models. d Gene set enrichment analysis results using the top 9 features from the
QLattice analysis.

Table 1. Average processed tissue weights for RR-1 SOL and TA
groups.

Condition Average weight (mg)

RR-1 SOL FLT 7.9

GC 10.5

RR-1 TA FLT 13.3

GC 13.9
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Taken together, our results build on previous work in the field
by reporting a promising demonstration of an explainable ML
method for space biology research and providing several potential
biomarkers for future study on muscle response to spaceflight.

METHODS
RNA sequencing data (RR-1—SOL and TA muscles—female)
For RNA-seq RR-1 data, we started with the raw count files
available on OSDR from the GeneLab RNA-seq processing
pipeline29. We filtered out lowly expressed genes with unreliable
reads (i.e., we only kept genes that had at least 10 non-zero reads
in at least 3 samples), resulting in a reduction of dimensionality
from 55,536 genes to 15,848 genes for OSD-104 and 16,660 genes
for OSD-105, with an overlap of 15,216 genes between the two
datasets (Supplementary Fig. 5g). We then applied a variance-
stabilizing transformation (VST) using DESeq2 v1.34.030, which
corrected for library size/sequencing depth and mitigated
heteroskedasticity and skewed distributions. The mean-variance
relationship and count distribution were checked post-
normalization to confirm the effectiveness of preprocessing
(Supplementary Fig. 1a–d, Supplementary Fig. 3a–d). Within- and
across-group gene expression variance distributions show greater
variance spread for the FLT samples than the GC samples
(Supplementary Fig. 5a–f).

Proteomics data (RR-1—TA muscle only—female)
The proteomics data for OSD-105 was collected in two runs of TMT-
labeled mass spectrometry with a bridge channel in each run
consisting of a pooled sample of all FLT and GC samples31. To ensure
values were comparable when combining the runs, we used the ratio
of expression values for each sample relative to that of the
corresponding bridge channel. After combining the data from the
runs, we performed a log2 transformation of the expression values,
filtered out proteins with too many missing values, and applied VST
normalization, all using the DEP v1.16.0R package32. Again, the
mean-variance relationship and distribution were checked (Supple-
mentary Fig. 1e, f, Supplementary Fig. 3e, f). We then imputed
missing data using K-nearest neighbor imputation, which did not
significantly affect the distribution (Supplementary Fig. 4a, c). Finally,
we removed any remaining batch effects between the two runs that
were amplified through the preprocessing steps using methods from
the limma v3.50.3R package, which are appropriate to apply on
properly transformed proteomics data33. The removal of batch
effects was confirmed using paired PCA plots of the top principal
components (PCs) (Supplementary Fig. 4b, d). The preprocessed
dataset contained 1786 proteins.

Bisulfite sequencing data (RR-1—SOL and TA muscle—female)
Raw bisulfite sequencing FASTQ files were processed using the
Nextflow nf-core methylseq pipeline (v1.6.1), which uses the
Bismark aligner for genome alignment and extracting methylation
calls (Supplementary Fig. 2a)34,35. The processed data were filtered
to only CpG-type methylated sites, as non-CpG methylation is
usually restricted to a few specific cell types (e.g., pluripotent stem
cells, glial cells, neurons) that are not as relevant in this context
(Supplementary Fig. 2b–d)36. The methylation sites were then
mapped to their corresponding genes. For each methylation site,
we found the gene whose chromosomal range included the site.
Methylation sites that didn’t fall into annotated gene regions were
discarded, as the current study focuses on mechanistic relation-
ships between coding features. We then calculated the percen-
tage of CpG sites in each gene that was methylated (%
methylation). There were 48,368 and 47,660 methylation features
for OSD-104 and OSD-105, respectively, after preprocessing
(distributions shown in Supplementary Fig. 4e, f). We

experimented with using site-level methylation features instead
of gene-level methylation features, but this resulted in severe
overfitting of ML models. The remaining methylation features
overlap with the majority of the genes measured in the RNA-seq
datasets, although a majority of the methylation loci do not map
to an RNA-seq gene (Supplementary Fig. 5g). In order to assess
whether the loci with the highest percent methylation are related
to the genes with the lowest expression, as would be expected
mechanistically, we compared the top 10% methylated genes with
the bottom 10% expressed genes (Supplementary Fig. 5h). There
is some limited overlap but less than would be expected
considering the overlap of all genes and methylated loci.

Calcium reuptake data (RR-1 SOL female, RR-9 TA male)
Calcium reuptake data was acquired from OSDR dataset OSD-
48837, which contains rates of Ca2+ uptake in the muscle
homogenates measured in a 96-well plate using the Indo-1 Ca2+
fluorophore1. These values were collected as a time series, with
the measurements of cytoplasmic calcium concentrations taken at
multiple points in time during a period of muscle relaxation. For
our analysis, we use the area under the curve (AUC) as a
measurement of calcium reuptake change over time. A lower AUC
value implies more efficient calcium reuptake.
For this study, we did not have multi-omics and calcium uptake

measurements from the same animals. Therefore, for comparing
omics and calcium uptake data, we assigned calcium reuptake
values to omics samples based on perturbation analysis to identify
the optimal pairing (see Supplementary Information, Supplemen-
tary Fig. 8). It is well characterized that there are significant
physiological and molecular differences between muscle samples
from spaceflight and ground samples1,2. We inferred that this
difference would be greater than within-group differences in
mission, age, and sex and would allow us to identify the
spaceflight effect relationship between omics features and
calcium uptake. Specifically, the SOL calcium reuptake measure-
ments were collected from age- and sex-matched mice from the
same RR-1 cohort as the OSD-104 SOL omics data. There was no
TA calcium reuptake measurement done in the RR-1 cohort; the
OSD-488 dataset only had TA calcium reuptake measurements
collected from 10-week-old male mice flown on the RR-9 mission.
We, therefore, paired the TA muscles calcium reuptake from these
10-week-old male mice with the OSD-105 TA multi-omics data,
which are from older females.

Model hyperparameters
The primary hyperparameters for QLattice (feyn package v3.0.2)
were the number of epochs and the maximum complexity of the
architectures. The number of epochs corresponded to the number
of generations for the evolutionary search algorithm as a whole
rather than the number of epochs of backpropagation for any
individual model architecture being explored. We tried various
values for the number of epochs between 10 and 100, but there
were no significant differences in validation performance or
feature rankings. The maximum architectural complexity was
restricted to 4 (2 features and 2 functional interactions) for the SOL
analysis since SOL data had two data types, and we were
interested in modeling the interactions between the data types.
Similarly, the maximum architectural complexity was restricted to
6 for the TA analysis.

Statistical analysis
Gene set enrichment analysis was performed using the Enrichr
implementation in the gseapy library (v0.10.4) in Python, using
GO_Biological_Process_2021 as the background gene set. Box-
plots were generated using seaborn (v0.11.2) in Python, with
statistical annotations calculated using the statannotations
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package (v0.5.0) implementation of the Mann–Whitney–Wilcoxon
two-sided test.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets used in this study were collected from the NASA Rodent Research 1 (RR-
1) and 9 (RR-9) missions and are publicly available on the NASA OSDR (osdr.nasa.gov).
RR-1 samples were from female C57BL/6 J mice flown at 16 weeks of age for 37 days.
RR-9 samples were from male C57BL/6 J mice flown at 10 weeks of age for 35 days.
Specifically, we used datasets OSD-104 (RR-1 multi-omics mouse SOL data)31, OSD-
105 (RR-1 multi-omics mouse TA data)38, and OSD-488 (RR-1 and RR-9 calcium
reuptake data)37. OSD-104 dataset consists of bulk RNA-seq and bisulfite sequencing
DNA methylation data for SOL muscle samples collected from 6 space-flown mice
(FLT) and 6 ground control mice (GC) during the RR-1 mission38. OSD-105 dataset
consists of bulk RNA-seq, bisulfite sequencing DNA methylation, and mass-
spectrometry-based proteomics data for TA muscle samples, also collected from 6
FLT and 6 GC mice during RR-131. OSD-488 dataset1,37 originates from a study
consisting of calcium reuptake data from female SOL muscle samples collected from
4 FLT and 4 GC during the RR-1 mission; 10 FLT and 10 GC of SOL and TA male
muscle samples during the RR-9 mission.
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