Few-shot Learning-based, Long-Term Stable, Sensitive Chemosensor for
On-Site Colorimetric Detection of Cr(VI)
Zhao-Jing Huang *-”, Hao Li+ *, Jia-Yi Luo ",Shunxing Li*+., Fengjiao Liu
+ College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou
363000, China.
+ School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney,
Sydney, 2007, Australia
§ Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Province
University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 3630003,
China
*Corresponding Author
Prof. Dr. Li Shun-xing
E-mail: lishunxing@mnnu.edu.cn

Fax : +86-596-2591395



ABSTRACT: The rapid emergence of deep learning, e.g., deep convolutional neural networks
(DCNNSs) as one-click image analysis with super-resolution, has already revolutionized colorimetric
determination. But it is severely limited by its data-hungry nature, which is overcome by combining
the generative adversarial network (GAN), i.e., few-shot learning (FSL). Using the same amount of
real sample data, i.e., 414 and 447 samples as training and test sets, respectively, the accuracy could
be increased from 51.26 to 85.00%, because 13,500 antagonistic samples are created and used by
GAN as the training set. Meanwhile, the generated image quality with GAN is better than that with
the commonly used convolution self-encoder method. The simple and rapid on-site determination of
Cr(VI) with 1,5-diphenylcarbazide (DPC)-based test paper is a favorite for environment monitoring
but is limited by unstable DPC, poor sensitivity, and narrow linear range. The chromogenic agent of
DPC is protected by the blending of polyacrylonitrile (PAN) and then loaded onto thin
chromatographic silica gel (SG) as a Cr(VI) colorimetric sensor (DPC/PAN/SQG); its stability could
be prolonged from 18 h to more than 30 days, and its repeatable reproducibility is realized via facile
electrospinning. By replacing the traditional Ed method with DCNN, the detection limit is greatly
improved from 1.571 mg/L to 50.00 ug/L, and the detection range is prolonged from 1.571-8.000 to
0.0500-20.00 mg/L. The complete test time is shortened to 3 min. Even without time-consuming
and easily stained enrichment processing, its detection limit of Cr(VI) in the drinking water can
meet on-site detection requirements by USEPA, WHO, and China.
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Introduction

In recent years, many exciting discoveries have been reported through the cross-application of
various disciplines and deep learning (DL).!> Analytical chemistry, in particular, has successfully
benefited from the application of DL tools for extracting qualitative and quantitative information
from high-dimensional and complex chemical measurements.®> The deep convolutional neural
network (DCNN), artificial neural network, support vector machine, and generative adversarial
network (GAN) are some examples of DL algorithms frequently employed in chemical analysis.
Currently, DCNN has been successfully applied to improve the analytical performance of
APP-based colorimetric determination, including denoising, recognition, and summary of every
small characteristic change from each image.*® However, data-driven DCNN is data-hungry. A
large number of samples are typically required for proper learning, which has been the major
challenge of its application in analytical chemistry for its time-consuming and resource-greedy part,
i.e., “time and money” cost.>® Often, this is a serious problem. If a training data set is inadequate for
the desired task, the resulting model generalization will be insufficient, and then the accuracy will
be low.” Typically, the solution to data hunger is through operations such as cutting and rotating
sample images, but this is inapplicable to the data from chemical analysis. Therefore, we propose a
scheme based on GAN. As a new semisupervised learning and unsupervised learning technology,
GAN can generate a large number of real sample-based antagonistic samples, i.e., "fake samples",
with the same pattern by learning a small number of real samples and implicitly modeling the
distribution of potential samples.®® The essence of its training process is a pair of network
competition processes to get back propagation signals to achieve the goal. Using this few-shot
learning model (FSL), tens of thousands of antagonistic sample can be simulated through the study

of hundreds of real samples with obvious characteristics, and then the challenge of data-hungry



DCNN could be overcome.

Another challenge to data quality from chemistry aspects is mainly from the stability of the
sensor. To assess the performance of the FSL model in chemical analysis, it is necessary to construct
a stable chemical sensor to obtain high-quality sample data. With the increasing concern for human
health and hydrosphere protection, the toxicity of Cr(VI) as a powerful carcinogenic agent has been
widely recognized, and then Cr(VI) is listed as a priority pollutant by many countries, including the
USA and China.'®"! Because Cr(Ill) can be transformed into toxic Cr(VI) by the pathway of
photooxidation in natural environments, chromium emission and its content in drinking water and
industrial wastewater should be strictly restricted.'?> Therefore, the maximum acceptable
concentration for soluble chromium in drinking water is set at 100 ug/L by the United States
Environmental Protection Agency (USEPA), and a more strict threshold (50 ug/L) is set by the
World Health Organization (WHO) and China.

The conventional analysis of Cr(VI) in water requires highly skilled staff, time-consuming
sample pretreatment, and sophisticated equipment, including atomic absorption spectrometry,
inductively coupled plasma mass spectrometry (ICP-MS), surface-enhanced Raman scattering
spectroscopy, and fluorescence.!> These determination methods with the advantages of low
detection limits and wide detection ranges are not suitable for on-site detection. Currently, simple
and rapid on-site analytical approaches for soluble chromium are in high demand, which is mainly
based on the colorimetric detection of Cr(VI). The most classic and favorite Cr(VI) chromogenic
agent in visual detection is 1,5-diphenylcarbazide (DPC), which can produce a strong color change
for quantitative or semiquantitative analysis.!*!> DPC-based colorimetric detection has the
advantages of high speed, simplicity, and low cost. However, its poor stability is also obvious,

including strict storage conditions and short effective timeliness. Meanwhile, the signal strength



from the image acquisition equipment in colorimetric analysis could be seriously affected by the
environment as the main source of a high signal-to-noise ratio.” Therefore, the visual chromogenic
test paper should be combined with sophisticated preconcentration technology because its detection
limit is not enough for assessing drinking water quality.'®!” In this case, these shortages of
DPC-based colorimetric detection from four main sources should be overcome for on-site visual
detection of Cr(VI), including (a) short effective use time, poor sensitivity, and narrow linear range
from unstable DPC, (b) unreliable reproducibility from chromogenic test paper, (¢) environmental
interference from image acquisition equipment, and (d) data insufficiency from DCNN.!%!
Therefore, we aim to solve the challenges of data-hungry DCNN and data quality via the

optimization and synergism of a colorimetric Cr(VI) chemosensor (chemical analytical aspects) and
the construction of FSL-based models (data processing aspects), and the latter is important for
long-time-prepared, precious, small amount, chemical analysis data. This process is provided in the
supporting information. A series of new strategies are proposed by us to overcome these obstacles,
including (a) the protection of DPC by the blending of polyacrylonitrile (PAN) and thin-layer silica
gel (SG) as a Cr(VI) color sensor (DPC/PAN/SG), (b) the electrospinning technology to prepare test
paper with reliable reproducibility, (c) the obtaining of real sample pictures through dark boxes,
structural light sources and high-stability and high-performance industrial cameras to minimize the
sample noise caused by environmental changes, and (d) a new deep learning model for analytical
chemistry, i.e., the combined technology of DCNN and GAN as FSL to improve the analytical
performance with limited and real experimental data.
Materials and Methods

Chemical and Reagents. N-Dimethylformamide (DMF, 99 %), 1,5-diphenylcarbazide

(C13H14N4O, DPC), potassium dichromate (K2Cr207), and the thin-layer chromatographic silica gel



(SG) were purchased from Xilong Chemistry Technology Co. Ltd. Polyacrylonitrile (PAN,
My:150,000) was purchased from Sigma-Aldrich. All of them were analytically pure and directly
used in the experiment. Ultrapure water was used during all experiments.

Apparatus. An electrospinning machine (LN-01C, Lvna Technology Co., Ltd. , China), a
scanning electron microscope (SEM, Supra 55 sapphire, CARL ZEISS, German), a transmission
electron microscope (FEI Tecnai F20, FEI Company, America), a constant-temperature magnetic
agitator (LTD HWCL Type 1, Great Wall Technology & Trade Co., China), a solid-state UV-vis
spectrophotometer (USB2000+, Ocean Optics, America), and a workstation (DELL Precision 3640
Tower 006, Dell Inc.) were used in this paper.

Preparation of Visualization Test Paper by Electrospinning. According to the literature 2!
and experimental results in Figure S1, the optimal concentrations of precursor solutions were
designed as follows. PAN (0.90 g), SG (0.30 g), and DPC (0.10 g) were completely dissolved in
DMF (10 mL) by magnetic stirring at 60.0°C for 5.0 h, and then a thick and uniformly dispersed
mixture was obtained for electrospinning. Before spinning, the temperature and the humidity were
adjusted to 25.0°C and less than 50.0 %, respectively. The solution was inhaled into a syringe (10.0
mL), and an aluminum foil was wrapped with photoetching paper as the receiving plate. The
injection pump propulsion speed and the voltage between the positive and negative electrodes were
adjusted to 2.0 mL/h and 16.0 kV, respectively. Under the action of electrostatic gravity, the solution
formed a Taylor cone at the tip of the syringe and pulled out a jet to accumulate uniformly on the
surface of the receiving plate. After spinning, the nanofiber film was dried in a vacuum oven at
60.0°C for 2.0 h, and then the obtained visual test paper (DPC/PAN/SG) was cut into a size of 1.0
cmx1.0 cm as a Cr(VI) colorimetric sensor.

Construction of a Cr(VI) Determination System with a Colorimetric Sensor and a DL Tool.



Two hundred and thirty samples with uniform concentration distribution were prepared, with
concentration gradients of 0.1000 and 0.0500 mg/L in the ranges of 0.0500-20.00 and
0.0500-0.1000 mg/L, respectivey. In addition, 861 real samples were also prepared in advance,
whose concentration distribution was in the range of 0-20.00 mg/L. The samples (10 pL) were
dropped on the visual test strip, and the standard plane-light was used to capture the sample images
in the camera bellows. According to the influence of pH and hold time on the colorimetric reaction
between DPC/PAN/SG and Cr(VI) (shown in Figure S2 and S3), the optimal pH value was 2, and
the colorimetric reaction was complete after 30 s. To obtain high-quality sample data for improving
the training accuracy and then the generation effect of the confrontation model, a camera bellows
was assembled with a plane-structured light source and a high-stability industrial camera with 5
million pixels, and then the sample noise, e.g., uneven color spots and background interference,

could be greatly reduced.
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Figure 1. Improve Sample quality with the model-training process (epoch 1-50)
The sample image was labeled according to its concentration, and 230 and 861 pictures of
standard and real samples were obtained, respectively, for training to generate the confrontation
model, and then the standard sample database was prepared. The training set was a triplet of

adjacent concentrations, and the elements of each triple could make any sample of the same



concentration (as shown in Figure 1). As a result, 13,500 “antagonistic samples” were generated.
With the increase in model-training time, the quality of the sample image generated by the
confrontation was also greatly improved to get close to the real sample, and the features gradually
became obvious.

Both 13,500 of antagonistic sample images from GAN and 414 real sample images were
randomly used as the training set, and the other 447 real sample images were used as the test set. By
referring to the open-source model, DCNN as a high-performance and super-resolution tool was
designed to “analyze” and “learn” the sample image signals, which was composed of an input layer,
convolution layers, pooling layers, a full connection layer, and an output layer. The trained model
could extract the color features of the colorimetric test paper from the image and classify it into a
certain concentration. With the number of training increasing from 0 to 150 times, the loss value

gradually decreased, and the training accuracy gradually increased to 85% (shown in Figure 2).
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Figure 2. Training accuracy and loss value versus training number (epoch from 0 to 150)
The trained DCNN model was combined with smartphone software to realize the rapid analysis

of the test data on-site. In the insitu test, the users could drop the sample onto the visual test paper,



capture images by a smartphone, and upload them on the APP, and then the prediction result of the
DCNN model could be obtained within 10 s.
Results and Discussion

DPC-Based Colorimetric Detection Performance Comparison between Traditional
Coating and DPC/PAN/SG. The stability and sensitivity of the colorimetric reaction depend to a
great extent on the microstructure of nanomaterials, including the distribution and protection of the
chromogenic agent, their specific surface area and hydrophilicity. By heating, stirring, and
electrospinning, the chromogenic agent (DPC) can be effectively dissolved in DMF and uniformly
mixed with a protective agent (PAN) and a hydrophilic carrier (SG). The stacking of nanofibers
(DPC/PAN/SG) can be clearly seen by SEM images, and the diameters are uniformly distributed
between 290 and 350 nm (Figure 3a), which brings a high specific surface area (53.43 m?%g, Figure
S4). When the water sample is dropped onto the test strip, due to the existence of a large number of
hydroxyl groups on the surface of SG, its hydrophilicity is greatly improved (Figure S5), and the
sample can infiltrate into the test paper quickly and evenly. Therefore, the reaction between DPC
and Cr(VI) can be sufficient and fast. Comparing the TEM of DPC/PAN/SG before and after Cr(VI)
detection (Figure S6), it can also be seen that DPC in the nanofibers could be dissolved into the
water sample for the color reaction.

However, as one of the most commonly used chromogenic agents for Cr(VI) colorimetric
detection, DPC is limited by its instability and active time, especially for on-site detection, because
it should be isolated from the air and light. As a high-stability polymer, PAN is selected as the
electrospinning substrate to blend, wrap, and stack the chromogenic agent of DPC, i.e., to block air
into the visual test paper and then protect DPC before use, meanwhile, hydrophilic SG is also used

as the carrier to guide Cr(VI) water samples into the visual test paper for the chromogenic reaction



between DPC. The stability of DPC in the visual test paper prepared with traditional coating on the
SG plate and DPC/PAN/SG is tested by exposing under the same operating environment, including
the same light, humidity, and air, and the results are shown in Figure S7. With the increase of the
exposure time from 1 to 30 days, DPC loaded on the SG plate is deteriorates completely and fades,
but the test strip of DPC/PAN/SG is still suitable for colorimetric detection. To verify the validity of
DPC in the DPC/PAN/SG, the standard Cr(VI) solutions with different concentrations are dropped
onto the test strip and scanned by solid-state ultraviolet. As shown in Figure 3b, the significant
ultraviolet absorptions in the range of 540-560 nm with the maximum absorption band at 540 nm
are observed, and the absorption intensities are proportional to Cr(VI) concentration, which is
similar to DPC used alone.!* It is proved that the complexation reaction between DPC and Cr(VI) is

not affected by its blending with PAN and SG.
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Figure 3. (a) SEM of DPC/PAN/SG before (left) and after (right) Cr(VI) detection. (b) Solid
ultraviolet scanning spectrogram of DPC/PAN/SG with different Cr(VI) concentration. (c¢) Gray
value-based standard curves of visual test strips prepared by different methods.

The colorimetric detection performances of two kinds of DPC-based test papers, including



traditional SG coating and DPC/PAN/SG, are compared with the Euclid Distance method. After
adding Cr(VI) (0-8.000 mg/L) onto the test paper, the gray value of each color spot is recorded via
Photoshop software, and then a linear correlation between the Cr(VI) concentrations and gray
values is found, with a high correlation coefficient (R* >0.99, Figure 3c). According to the linear
slope, the colorimetric detection sensitivity of DPC/PAN/SG is better than that of SG coating, and
their detection limits are 1.571 and 3.738 mg/L, respectively, i.e., the colorimetric reaction active
sites and rate between DPC and Cr(VI) could be improved by more than 2.0 times by the blending
of PAN and SG and electrospinning for the increase in specific surface area. In addition, the
anti-interference ability of DPC/PAN/SG for selective determination of Cr(VI) is excellent, under
the optimum reaction conditions. The influence of coexisting ions (29 kinds ?*2°) on the color and
gray value change (AG) on DPC /PAN /SG after the reaction with Cr(VI) (10 mg/L), i.e.,

colorimetric determination, is not obvious (shown in Figure 4).
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Figure 4. Color and gray value change (AG) on DPC/PAN/SG after the reaction with Cr(VI) (10
mg/L), adding the coexisting ions (1 mg/L for Fe’" and Fe**, 10 mg/L for other ions; n = 3).

At present, the detection limits of DPC-based dipstick tests for Cr(VI) without additional



enrichment are reported in the range of 3.000-10.00 mg/L,* which is difficult to meet the
requirement of WHO and USEPA. Therefore, gray value-based signal processing technology for the
sample images should be replaced by the deep learning method.

Few-Shot Learning-Based Data Tool for Cr(VI) Colorimetric Detection. DCNN, as
one-click image analysis with super-resolution, has already revolutionized colorimetric
determination. > But it is severely limited by its data-hungry nature, which is overcome by

combining the GAN with DCNN, i.e., FSL is proposed as a new data tool.
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number (epoch from 0 to 150).

The developed GAN is mainly composed of two parts, including a generator and a
discriminator. A series of data groups from real samples are used, including three different
concentrations, i.e., a higher concentration, a lower concentration and an intermediate concentration
between them. The generator only gets the data from the higher and lower concentrations and
generates a “noise”, i.e., fake sample data, as the output, which is similar to the intermediate sample.
They are designed to produce very realistic images, which are especially difficult to identify by the
eye. This noise acts as the intermediate concentration and forms a complete data group for the
judgment of its accuracy with the discriminator. The discriminator gets both the real and the
generated data as input, which come from the training set from real and generated samples,
respectively. In brief, the generator tries to generate realistic samples, and the discriminator makes a
correct judgment during the training process (Figure 5a). After 100 cycles of training, the simulation
effect is shown in Figure 5b, the accuracy is greatly improved. While selecting the sample
generation method, the commonly used convolution self-encoder (CSE) method is also tested, using
the same train samples. In the 100th training, CSE is able to extract and generalize the feature
information via the comparison between the samples, but its generated image quality is poorer than
that with GAN, according to the comparison among real samples and their corresponding generated
samples with GAN and CSE in Figure 6. Therefore, the GAN model is chosen for the generation of

sample images with full concentrations from 0 to 20.00 mg/L.
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Figure 6. Comparison of real samples and their corresponding generated samples with CSE and

FSL.

As an open-source database, a new DCNN model with five convolutions and five pooling is
designed to improve its ability for extracting sample features and reducing its calculation quantity.
The increase in the number of real samples is important to improve the learning effect of the DCNN
model and judge the generated sample effect of the GAN, resulting in a sharp increase in workload.
The use of antagonistic sample images solves this problem and also complements the samples with
unknown concentrations. Therefore, an appropriate quantity and quality of samples, including both
real and antagonistic samples, on the prediction effect are important. The same test set and different
training sets are used to train two models of DCNN and train 150 times to compare their accuracies
and loss function changes. The first model uses 414 real samples as the training set, and the second
model uses the same 414 real samples plus 13,500 antagonistic samples as the training set. In
addition, the same 447 nonrepetitive real samples as the test set are applied by these two models.
The above samples as the test and training sets are randomly selected from all 861 real samples. The
variation curves of the training accuracy and loss rate of these two training sets are obtained for the
same DCNN model. With the addition of large generated samples (13,500 of antagonistic samples)
into the training set (only 414 real samples), the training accuracy could be increased from 51.26 to
85.00%, after epoch 150 in the detection range of 0.050-20.00 mg/L, as shown in Figure 5b. The
accuracy of 85.00% is enough for the microdetection with colorimetry. Therefore, the limit of
data-hungry from DCNN could be overcome by combining with GAN, i.e., FSL.

Analytical Performance of the Colorimetric Cr(VI) Chemosensor. To verify the
practicability and accuracy of our intelligent analysis platform, drinking water and river water are

tested as real samples. 500 mL of samples are pretreated for the determination of Cr(VI), according



to the preprocessing process shown in the supporting information. The results and their
comparisons with ICP-MS are shown in Table 1. The result of our intelligent analysis platform is
consistent with that of ICP-MS, and the recovery is between 99.60 and 101.8%. The influence of
the coexisted organic matter and metals in drinking and river water on the analytical performance is
not observed and it might be due to the advantage of DPC-based colorimetric detection. Here, the
detectability and high performance of hyphenated techniques based on the DPC-based chemosensor
and FSL for Cr(VI) detection have a great improvement in analytical performance.

After the protection of DPC with the blending of PAN and SG and its reliable reproducibility
via electrospinning, the colorimetric detection performance of the DPC-based Cr(VI) color sensor is
improved. Compared with using DPC/PAN/SG alone, the detection limit of its combination with
FSL is further optimized from 1.571 to 0.050 mg/L. Using traditional measurement methods
(including ED methods or the naked eye) to discriminate color data is far inferior to using machine
learning for analysis, because they could be disturbed by environmental noise, and then their color
features will be subjected to certain fluctuations. The color blocks in different positions of the same
sample image, especially in the edge and center, will be different due to the slow infiltration of the
sample and the difference in light scattering for unavoidable material heterogeneity. If these
environmental noises cannot be effectively avoided and the color feature information can be
accurately extracted, the outcome of color block-based data analysis by traditional measurement
methods will be greatly reduced and varied. FSL tools benefit from their whole sample image-based
characterization and powerful feature extraction capabilities, and then the detection accuracy and
detection limit of DPC-based chemical sensors could be greatly optimized. Even without
enrichment processing for avoiding its time consumption and easy contamination, the detection

limit of Cr(VI) in the drinking water can meet on-site detection requirements by USEPA, WHO and



China. Furthermore, FSL, as a new DL tool for solving the data-hungriness of DCNN, will be
emerged as the indisputable leader for colorimetric analysis.

Table 1. Determination of Cr(VI) in 500 mL of Natural Water Samples

found by
added found RSD recovery RSD

water samples ICP-MS

(mg) (mg) (%0, n=9) (%) (%, n=9)
(mg)

drinking water 0 0 0 - 0.009 2.594
2.500 2.556 5.842 99.6 2.531 1.535
5.000 4.815 6.044 101.8 5.010 0.613
river water 0 0.005 5.694 - 0.023 3.475
2.500 2.454 1.887 97.1 2.563 2.330
5.000 5.076 2.238 100.5 5.014 3.505

Conclusions

Through the combination of GAN and DCNN, a new DL method as FSL is proposed for the
first time, and then an accuracy, intelligent and chemosensor-based analysis platform is quickly
built, just based on a small number of sample images. Compared with DCNN with the same real
samples and training level, our FSL model has higher accuracy, faster learning efficiency and lower
training loss. Compared with the traditional ED method with DCNN, our analytical performance,
including the detection limit and the detection range, could be significantly improved, for FSL with
whole sample image-based characterization and powerful feature extraction capabilities. It has been
successfully applied for the visual detection of Cr(VI) in natural water, after smartphone APP-based
data collection. If FSL is used with blockchain technology for secure data end-to-end connectivity
and management, 2° on-site water environment monitoring systems for Cr(VI) could be established.

With the combination of PAN, DPC, and SG via electrospinning technology, a new DPC-based
chemosensor is obtained, with the advantages of high stability, enough hydrophilicity, fast reaction
speed, good repeatabillity and so on. The time for the full determination process, i.e., from addition

of the sample to obtain the final result, can be shortened to 3 min. Such improvements of popular



DPC-based chemosensors enhance the quality of the sample images and lengthen the effective time
for more than 30 days, making them convenient, fast, low-cost. Thus, this chemosensor is suitable

for intelligent and visual on-site detection.
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