
ScienceDirect

Available online at www.sciencedirect.com

Procedia CIRP 120 (2023) 1185–1190

2212-8271 © 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 56th CIRP International Conference on Manufacturing Systems 2023
10.1016/j.procir.2023.09.146

© 2023 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 56th CIRP International Conference on Manufacturing Systems 2023

Keywords: Anomaly detection; time series clustering; unsupervised learning; screw driving; machine learning; tightening data; manufacturing; open source 

1. Introduction 

The digitization of production systems is steadily increasing 
the amount of information and communication technology 
used. This provides manufacturing companies with cost-effec-
tive access to advanced sensor technology and wireless com-
munication technologies [1, 2]. The interconnectivity of assets 
in a digital factory accelerates the adoption of data acquisition 
and storage solutions. This often leads to an extensive archive 
of manufacturing data. Any future use of this data first requires 
the retrieval of information before it can become knowledge. 
Machine Learning (ML) enables such a transition and allows 
gaining novel insights for production planning and control [3]. 

Quality Management constitutes a very promising domain 
to leverage said data availability in manufacturing companies.
Here, any deterioration in process quality may lead to increased 
defect rates, higher rework or scrap costs as well as reputational 
harm [4]. To prevent this, many manufacturing companies rely 
on data-driven methods for process monitoring. For almost a 
century, Statistical Process Control (SPC) has been one of the 
most important tools [5]. SPC control charts are frequently 
used to record and manage the deviation of targeted metrics in 
various processes [3]. However, these systems are only suitable 
to an extent for detecting complex or previously unseen defects 
[6]. In this paper, we present a novel approach to detect process 
anomalies in screw driving data using time series clustering. 
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Abstract

Since bolted joints are ubiquitous in manufacturing, their effective and reliable quality assurance is particularly important. Most tightening pro-
cesses rely on statistical methods to detect faulty screw connections already during assembly. In this paper, we address the detection of faulty
tightening processes using a clustering based approach from the field of Unsupervised Machine Learning. In particular, we deploy the k-Means 
algorithm on a real-world dataset from the automotive industry. The model uses Dynamic Time Warping to determine the similarity between the 
normal and abnormal tightening processes, treating each one as an independent temporal sequence. This approach offers three advantages com-
pared to existing supervised methods: 1.) time series with different lengths can be utilized without extensive preprocessing steps, 2.) errors never
seen before can be detected using the unsupervised approach, and 3.) extensive manual efforts to generate labels are no longer necessary. To 
evaluate the approach, it is applied in a scenario where actual class labels are available. This allows evaluating the clustering results using 
traditional classification scores. The approach manages to achieve an accuracy of up to 88.89% and a macro-average F1-score of up to 63.65%.
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2. Fundamentals 

2.1. Anomaly detection in time series data from screw driving 

As introduced, declining costs for data collection and stor-
age cause a significant increase in volume and velocity of in-
dustrially collected data. A common way to record data in man-
ufacturing is in the form of time series. A time series is a se-
quence of values indexed in chronological order using time 
stamps. These values consist of successive measurements made 
from the same source over a fixed time interval and are used to 
track change over time [7]. As such, we also consider data from 
tightening processes as time series. Digital systems often rec-
ord the torque and angle of rotation to monitor the physical 
forces during tightening. Since the angular velocity in tighten-
ing processes is typically constant, we treat the recorded data 
analogously to any time series.

Bolted joints are widely used in assembly processes. A typ-
ical car, for example, contains around 3,000 threaded fasteners 
[8]. State-of-the-art manufacturing companies analyze the data 
from tightening processes to ensure the desired level of product 
quality [9]. Traditional approaches, such as SPC, are well able
to reduce process variations and to stabilize product quality. 
However, they are ill suited to detect abnormal processes in 
daily operations, where data volumes can reach thousands or 
millions of time series. In this context, we refer to any tighten-
ing process that deviates from the normal and expected pattern 
as an anomaly. A characteristic challenge in identifying anom-
alies in such scenarios is the imbalance in the distribution of 
normal and abnormal classes. Most automated processes in in-
dustrial manufacturing, and in especially machine-supported 
tightening operations, run robust and with only narrow margin 
of variation. Therefore, irregular patterns often occur several 
orders of magnitude less frequently than recordings of a normal 
tightening process do [9, 10]. To refer to that underlying di-
lemma, we consider the problem of unbalanced class distribu-
tions during the analysis in Sec. 4.

2.2. Machine learning methods and time series clustering 

Data science and the aforementioned domain of ML enables
an automated and intelligent analysis of large amounts of data. 
For this reason, its methods are well suited for the detection of 
anomalies in bolting processes [11]. Scientific literature typi-
cally distinguishes ML algorithms in three paradigms: 

• Supervised learning
• Unsupervised learning
• Reinforcement learning

In supervised learning, there is initial knowledge about the 
class to predict, which in this context is commonly referred to
as label. Unsupervised learning lacks such a label and the mod-
els often aim to predict the label for given observations. Lastly, 
reinforcement learning relies on agents to take actions in an 
environment and maximize a defined reward function [12]. 

In this paper, we only use unsupervised ML (see Sec. 3.2), 
more precisely, methods for clustering. Besides tasks such as
dimension reduction or outlier detection, clustering belongs to
one of the main groups of unsupervised ML. Clustering models 

aim to group a set of objects in such a way that the objects in 
the same group are more similar to each other than the objects 
in other groups [7, 13]. We call each group that is formed in 
this way a cluster. This paper aims to cluster tightening data to 
differentiate between normal from abnormal processes. Since 
the goal is to perform the clustering for time series, we consider 
this in the selection of appropriate models. We introduce the
selected clustering method and the appropriate distance metric
to compare the similarities of time series later in Sec. 3.

2.3. On the necessity of an unsupervised approach 

In principle, the question arises as to why we seek an appli-
cation of unsupervised methods when supervised approaches 
are more widely used in scientific discourse and are already 
successfully applied [11, 14]. For one, some authors argue that 
it is too costly to manually record labels for a dataset of tight-
ening processes and to use them as class information for the 
process analysis [11]. Faults are often only recognized at the 
end of the line and can only be traced back to the root cause 
with considerable effort. Additionally, we see another benefit
of the unsupervised approach in the potential to identify fault
patterns that have not yet occurred. Supervised methods require 
previously recorded examples of the abnormal class to be iden-
tifiable using a respective label. In case of an unseen anomaly, 
the chances of recognizing it decreases considerably. The un-
supervised approach eliminates the need to manually label past 
observations and allows detecting previously unknown faults.

3. Methods

3.1. Dynamic time warping 

The ML methods introduced in Sec. 3.2 utilize metrics to 
determine the distance between time series. One of the most 
common distances is the Euclidean distance (ED) that is simply 
the length of a time segment between two points. Dynamic 
Time Warping (DTW) is another distance metric. The DTW al-
gorithm was originally developed for speech recognition [15]
and is nowadays frequently used for time series analysis due to 
its dynamic shape matching applications [14]. Fig. 1 shows a 
comparison of two exemplary time series, x and y, using ED 
(a) and DTW (b). In contrast to ED, DTW is able to measure a
similarity of two time series that vary in speed. DTW is even 
able to compare series of different length, as indicated in plot 
(a) by the red points of 𝑥𝑥𝑥𝑥 that do not have a match in 𝑦𝑦𝑦𝑦 [16].

Fig. 1. Comparison of distance metrics for (a) an Euclidean example 
and (b) an example using Dynamic time warping.
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DTW assigns each point of time series 𝑥𝑥𝑥𝑥 to a point of a sec-
ond time series 𝑦𝑦𝑦𝑦 and vice versa [17]. In a special scenario 
where DTW assigns all points one-to-one, the DTW distance 
corresponds to ED [18]. To determine DTW, the time series 𝑥𝑥𝑥𝑥
and 𝑦𝑦𝑦𝑦 are arranged in a 𝑙𝑙𝑙𝑙𝑋𝑋𝑋𝑋 × 𝑙𝑙𝑙𝑙𝑌𝑌𝑌𝑌 matrix. In this matrix, the ele-
ment with coordinates (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) corresponds to the squared dis-
tance 𝑑𝑑𝑑𝑑 calculated as d(i, j) = (xi − yi)2 . Then, a path 𝑊𝑊𝑊𝑊 =
𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2, . . . ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 with the 𝑘𝑘𝑘𝑘-th element 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 = (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)𝑘𝑘𝑘𝑘 is searched 
for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥(𝑙𝑙𝑙𝑙𝑋𝑋𝑋𝑋 , 𝑙𝑙𝑙𝑙𝑌𝑌𝑌𝑌) ≤ 𝑤𝑤𝑤𝑤 < 𝑙𝑙𝑙𝑙𝑋𝑋𝑋𝑋 + 𝑙𝑙𝑙𝑙𝑌𝑌𝑌𝑌 − 1 over which the cumula-
tive distance 𝛾𝛾𝛾𝛾(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) is minimized. The elements 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 each corre-
spond to the assignment (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)𝑘𝑘𝑘𝑘 [19]. Finally, the optimal path
is determined by Eq. 1 [20].

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚��∑ 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘
𝐾𝐾𝐾𝐾
𝑘𝑘𝑘𝑘=1 (1) 

𝛾𝛾𝛾𝛾(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚�
(𝑦𝑦𝑦𝑦(𝑖𝑖𝑖𝑖 − 1, 𝑗𝑗𝑗𝑗 − 1)
𝑦𝑦𝑦𝑦(𝑖𝑖𝑖𝑖 − 1, 𝑗𝑗𝑗𝑗)
𝑦𝑦𝑦𝑦(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 − 1)

(2)

The determination of the optimal path can then be solved by 
using dynamic programming and Eq. 2 [19].

3.2. K-Means clustering

In this paper, the unsupervised ML method k-Means is used. 
The k-Means algorithm is considered one of the most success-
ful and popular methods for clustering analysis. As such, it is 
an ML case without the need for labels. K-Means is widely used 
and has applications across various domains and fields [21]. 

Let 𝑋𝑋𝑋𝑋 = {𝑥𝑥𝑥𝑥1, . . . , 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚} be a dataset in a 𝑑𝑑𝑑𝑑-dimensional Eu-
clidean space, ℝ𝑑𝑑𝑑𝑑. Then 𝐴𝐴𝐴𝐴 = {𝑚𝑚𝑚𝑚1, . . . , 𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐} represent the centers 
of the 𝑐𝑐𝑐𝑐 clusters. Using 𝑍𝑍𝑍𝑍 = [𝑍𝑍𝑍𝑍𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘]𝑛𝑛𝑛𝑛×𝑐𝑐𝑐𝑐 , a cluster membership 
can be specified, where a binary variable 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 (e.g., 𝑍𝑍𝑍𝑍𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ∈ {0,1}) 
indicates whether the observation 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 belongs to the 𝑘𝑘𝑘𝑘-th cluster 
for 𝑘𝑘𝑘𝑘 = 1, . . . , 𝑐𝑐𝑐𝑐. The k-Means algorithm iterates the conditions 
to minimize the objective function 𝐽𝐽𝐽𝐽(𝑍𝑍𝑍𝑍,𝐴𝐴𝐴𝐴) by redetermining 
the cluster centers and memberships according to the following 
two conditions of Eq. 4 and Eq. 5 [13].

𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 = ∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 / ∑ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1 (3)

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 = �1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ‖𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘‖2 = 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(‖𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘‖2) , 1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑐𝑐𝑐𝑐
𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0

(4) 

To illustrate, we show the clustering with the k-Means algo-
rithm schematically in Fig. 2. We illustrate the algorithm in
three simple steps (a) to (c) and consider the model for two 
clusters. Initially, the data contains no knowledge about any 
class associations (a). As such, k-Means assumes two points as 
centers of the future classes, which we did randomly in the fig-
ure. The green and blue stars constitute the selected centroids
in this example (b). By using a distance measure, the class of 
all observations can be determined based on the distance to the 
new cluster centers. After this assignment, recalculating the
cluster centers allows updating the location of the arbitrarily 
chosen centers. K-Means iterated this step and recalculated the 
centroids until there are no further changes in the cluster as-
signments (c). Then, the k-Means clustering is completed [21].

Fig. 2. (a) Example of a k-Means clustering in three steps (a-c).

3.3. Confusion matrix and classification metrics

Analysts often express the results of a classification with the 
help of confusion matrices. A confusion matrix compares the 
actual classes in a dataset with the predicted classes of a model.
In scenarios with just two classes, the observations of a targeted 
class are often designated as being positive (1), whereas the ob-
servations of the other class are designated as negative (0). As 
such, a confusion matrix has a specific table layout, where each 
row of the matrix represents instances of the actual class while 
each column represents instances of the predicted class [22].
Fig. 3. illustrates an example of a confusion matrix.

Fig. 3. Example of a confusion matrix.

In practice, the 2 × 2 matrix holds the actual number of ob-
servations for the four values: TP, TN, FN, and FP. TP and TF 
denote the observations that the classification correctly pre-
dicted to be positive and negative, respectively. Similarly, FN 
refers to the observations that the prediction model incorrectly 
predicted to be negative, while FP corresponds to the ones that 
were predicted incorrectly. Then, the accuracy, calculated us-
ing Eq. 6, provides a simple metric to evaluate classifications.
Additionally, precision and recall provide more information 
about the quality of a classification (see Eq. 6 and Eq. 7). 

𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

(5)

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇

(6)

𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇,

(7)

However, in scenarios with unequally distributed number of 
classes, these classification metrics are likely to be misleading.
For this purpose, the F1-score provides a useful metric that 
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takes into account class distributions. Eq. 8 describes how to 
calculate it using the harmonic mean of precision and recall.

𝐹𝐹𝐹𝐹1-𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 2 ∗ 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛∗𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛+𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+12(𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇)
(8)

To treat all classes equally, the analysis will discuss the 
macro-averages F1-score. This score is computed using the 
arithmetic mean of all F1-scores of every class (see Eq. 9). 

𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒-𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒 𝐹𝐹𝐹𝐹1 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝐹𝐹1-𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

(9)

4. Results 

4.1. Objective and approach for time series clustering

We apply the methods presented in Sec. 3 to find abnormal 
time series in the tightening data of an automotive manufac-
turer. We deliberately treat the use case for this as an unsuper-
vised scenario despite the availability of class labels. The goal 
is to separate the screw runs based on their specific tightening 
shape. This objective is based on the hypothesis that defective 
tightening data will have a different appearance compared to 
normal runs, and can thus be placed in distinct clusters. Based 
on the number of observations in each cluster, we determine 
the predicted class using the following pair of rules:

• If the number of observations of a single cluster is equal or 
above the total number of observations divided by the num-
ber of clusters, we consider all observation of the respective 
cluster to be of the majority class; in that case to be normal. 

• If the number of observations of a single cluster is below
said quotient, we assign the observation to the minority 
class; in that case to be abnormal or faulty.

4.2. Screw driving use case from the automotive industry

The example used in this paper looks at tightening data from 
a German automotive company. For this case, a comprehensive 
dataset with automatically recorded data of bolted joints from 
the engine assembly is available. In order to obtain a clear sep-
aration of the classes, we consider a single connection that is 
prone to failure in practice for just one engine type. Due to the 
costly, retrospective identification, the number of faulty obser-
vations is only 96. The knowledge about these errors is the re-
sult of a manual investigation in the end-of-line testing. We 
traced these anomalies back to the tightening process under 
consideration. By comparison, we have hundreds of thousands 
of correct observations that we may use for the analysis. In the 
remaining paper, we refer to the normal samples as OK (‘okay’) 
and to the abnormal samples as nOK (‘not okay’). Furthermore, 
we treat OK as class 1 and nOK as class 0.

To obtain robust results, we generated ten datasets by merg-
ing 5,000 OK samples each with all 96 available nOK samples.
As is common during ML model application, we then made a 
random division into training and testing data using a 70:30 ra-
tio. Table 1 summarizes the distribution of classes. Decreasing
the ratio of unequally distributed OK and nOK classes reduced 

the required duration for modeling, but also kept the imbal-
anced nature of the scenario in place to challenge the approach.

Table 1. Distribution of OK- and nOK-classes in training
and test data of the ten generated datasets.

Dataset 
number

Training data Test data 
OK nOK OK nOK

0 3,499 68 1,501 28
1 3,499 68 1,501 28
2 3,501 66 1,499 30
3 3,492 75 1,508 21
4 3,501 66 1,499 30
5 3,504 63 1,496 33
6 3,498 69 1,502 27
7 3,501 66 1,499 30
8 3,508 59 1,492 37
9 3,506 61 1,494 35

As such, the reduction of the dataset class ratio does not re-
duce the validity of the approach. Instead, by later calculating 
averages of the classification scores for ten models, we manage 
to smooth out random outliers and get a more robust modelling 
result. To provide a visual sense of the tightening data, Fig. 4
shows 25 randomly selected OK- and nOK-observations.

Fig. 4. Exemplary display of 25 OK and 25 nOK screw runs.

4.3. Implementation of k-means for tightening data 

We deploy the k-Means model using the Python (v3.7.9) 
package tslearn (v0.5.0.5) [23]. Tslearn provides different 
ML tools for the analysis of time series. The package builds 
and depends on the libraries scikit-learn (v0.24.1), numpy
(v1.19.5) and scipy (v1.6.1). In addition to other implementa-
tions, such as a kernel k-Means or k-shape clustering, tslearn 
provides TimeSeriesKMeans, a model for implementing k-
Means clustering for time series [23]. As a distance measure to 
determine the similarity of observations, we deploy the DTW 
metric introduced during Sec. 3. The full analysis is publicly 
available on GitHub [24]. However, due to data protection con-
siderations, it was not possible to publish the tightening data.
Lastly, since there is no inherently correct amount of clusters 
to generate, we vary the number of k-Means clusters between 
2 and 10. Hence, in total, we train and evaluate 90 models.
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4.4. Results of the clustering-based anomaly detection 

For reference, Appendix A shows the full set of parameters 
of the k-means model. After performing the analyses, we eval-
uate the results. First, we calculate the scores for TP, FP, FN, 
and TN of all of the cluster analyses. To jointly display the re-
sults, we determine relative shares for TP and FP as well as for
FN and TN. Furthermore, since there is a total of ten datasets 
for each number of clusters (ranging from two clusters up to a 
total of ten) there are also ten clustering results each. We deter-
mine the mean value for each score across the different num-
bers of clusters. Fig. 5 displays the averaged and normalized 
values of the four scores. High values for TP and TN corre-
spond to good model results. 

Fig. 5. TP, FN, FP and TN for ten clusters (and averaged for ten datasets). 

The figure shows that the scores of TP and TN marked in 
green are in most cases above the scores of FN and FP marked 
in red. This means that with the help of the approach, starting 
at a cluster number of more than two, significantly more obser-
vations were correctly identified as normal (TP) than as faulty 
(FP). At the same time, starting at a cluster number of more 
than three, the number of bolted joints correctly identified as 
abnormal (TN) is continuously higher than the number of ob-
servations that are falsely identified as being correct (FN).

Table 2. Summary of analysis results with additional classification metrics.

Number 
of clusters Accuracy Precision Recall Macro-avg.

F1 score

2 62,35 ± 22,62 62,70 ± 23,58 77,48 ± 12,42 49,18 ± 13,92
3 88,89 ± 1,66 89,65 ± 1,85 98,97 ± 0,00 63,65 ± 1,91
4 83,56 ± 1,28 84,07 ± 1,37 98,99 ± 0,00 53,54 ± 0,74
5 87,35 ± 0,99 88,05 ± 1,11 98,99 ± 0,00 58,44 ± 1,24
6 87,15 ± 0,61 87,79 ± 0,67 99,02 ± 0,00 56,24 ± 0,64
7 89,02 ± 0,37 89,68 ± 0,41 99,04 ± 0,00 57,94 ± 0,62
8 88,53 ± 0,35 89,07 ± 0,37 99,14 ± 0,00 56,94 ± 0,29
9 89,19 ± 0,34 89,83 ± 0,36 99,06 ± 0,00 56,91 ± 0,29
10 89,14 ± 0,38 89,73 ± 0,41 99,11 ± 0,00 57,92 ± 0,47

Besides accuracy, precision and recall, Table 2 shows the 
macro-avg. F1-scores, averaged for the ten datasets. Since the 
unequally distributed classes do not influence that score, it bet-
ter shows the performance of the analysis. Except for a cluster 
number of 2, the score is above 50% for all cases and thus 
above random speculation. In the best case, when we generated
three clusters, the macro-avg. F1-score is highest at 63.65%.

Fig. 6 shows an exemplary clustering result for dataset zero
and for a clustering with five groups. While clusters 1, 3 and 4 
contain mainly OK observations, clusters 2 and 5 contain ex-
clusively nOK samples. This example illustrates the advantage 
of the methodology. If the pattern of tightening data differs suf-
ficiently, such distinct observations fall into relatively small 
clusters. Application of the rule set from Sec. 4.1 then flags 
these observations as faulty tightening runs. With that, the
tightening anomalies emerge as a novel and distinct cluster. 

5. Conclusion

In summary, the presented approach helps to find anomalies 
in tightening data. We consider the real-world application from 
the automotive industry a success, since we were able to detect
distinct anomalies. However, it is required that abnormal tight-
ening observations differ clearly in their pattern compared to 
the normal observations. Thus, the unsupervised approach is 
not the only (or the easiest) way to find these particular obser-
vations. Nevertheless, a major advantage of the approach is that 
it did not require extensive investigation of past tightening er-
rors to detect anomalies prior to the ML analysis.

Fig. 6. Visualization of the results for a cluster analysis with a DTW-based k-means for five clusters (exemplary results for dataset #0)
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Furthermore, the approach was not able to detect all anom-
alies. For example, cluster 4 in Fig. 6 shows a different type of 
anomalous deviation in the final tightening phase. Despite this, 
the DTW-based clustering approach has placed the observa-
tions in a group dominated mainly by OK observations. We be-
lieve it is necessary to develop further unsupervised approaches 
to detect tightening data anomalies, even if these errors occur 
extremely rarely or just once.

In future work, we will continue to focus on unsupervised 
anomaly detection. A particular focus of the activities is the de-
tection of anomalies within value chain networks. We aim to 
develop an anomaly detection approach that works across value 
chains and aids in identifying multivariate anomalies.
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