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Abstract
Imaging flow cytometry (FC) is a powerful analytic tool that combines the principles of
conventional FC with rich spatial information, allowing more profound insight into single-cell
analysis. However, offering such high-resolution, full-frame feedback can restrain processing speed
and has become a significant trade-off during development. In addition, the dynamic range (DR)
offered by conventional photosensors can only capture limited fluorescence signals, which
compromises the detection of high-velocity fluorescent objects. Neuromorphic photo-sensing
focuses on the events of interest via individual-firing pixels to reduce data redundancy and latency.
With its inherent high DR, this architecture has the potential to drastically elevate the performance
in throughput and sensitivity to fluorescent targets. Herein, we presented an early demonstration
of neuromorphic cytometry, demonstrating the feasibility of adopting an event-based resolution in
describing spatiotemporal feedback on microscale objects and for the first time, including
cytometric-like functions in object counting and size estimation to measure 8 µm, 15 µm
microparticles and human monocytic cell line (THP-1). Our work has achieved highly consistent
outputs with a widely adopted flow cytometer (CytoFLEX) in detecting microparticles. Moreover,
the capacity of an event-based photosensor in registering fluorescent signals was evaluated by
recording 6 µm Fluorescein isothiocyanate-marked particles in different lighting conditions,
revealing superior performance compared to a standard photosensor. Although the current
platform cannot deliver multiparametric measurements on cells, future endeavours will include
further functionalities and increase the measurement parameters (granularity, cell condition,
fluorescence analysis) to enrich cell interpretation.

1. Introduction

Conventional flow cytometry (FC) is a vastly adopted high-throughput technology that is capable of
measuring multiparametric features of cells in a population, including cell count, relative size, granularity,
and can be combined with fluorescence detection for additional phenotypical characterisations [1, 2]. It
registers the light scatter and fluorescence signals from cells that are excited by a laser beam into
photodetectors. This paradigm entails a high-speed processing method, which can go over 10 000 events per
second [3]. However, such an expeditious approach is limited to lower-dimensional feedback and lacks
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subcellular resolution [4]. Thus, numerous applications have been developed to optimise various emerging
research needs. Imaging flow cytometry (IFC) is one of the remarkable strategies that combines features of
high efficiency in FC with detailed spatial information and fluorescence intensity [3, 5]. It can
comprehensively visualise cell area with more intricate metrics, including cell morphology, texture,
correlation and marker localisation in high-resolution feedback [6]. As with every invention, the
frame-based photosensor adopted in IFC can suffer from inherent constraints that hinder its performance in
delivering high throughput results while maintaining rich spatial information.

Considering the limited field of view provided by a microscope or interrogation point in IFC, cells in the
flow can only remain within the bounds of the scene for an extremely brief period. The frame-based
capturing techniques can be vulnerable against consecutive fast-moving targets, especially in equipment with
high frame intervals. High-velocity objects between two frames can lead to motion blur, ghost detection and
other motion-induced artifacts [7]. Even though a professional-grade camera or sensor can be integrated to
perform the image acquisition to reduce motion impact, the data redundancy caused by a high frame rate
can obstruct the efficiency in data-intensive and delay-sensitive tasks [8]. Also, such a device’s expensive cost
and maintenance can be overbearing for research and start-up projects. In terms of fluorescence analysis in
IFC, which is an indispensable combination for revealing cell signalling, co-localisation, cell-to-cell
interaction and DNA integrity in large-scale populations [6]. The dynamic range (DR) of current
photosensors can have difficulties perceiving limited fluorescence signals, and overexcitation from light
sources can lead to phototoxicity, photobleaching and tissue heating on cells [9]. These further exacerbate
the trade-off relationship between speed, sensitivity and spatial resolution [10]. Increasing the throughput of
IFC without jeopardising spatial resolution and sorting purity remains one of the outstanding obstacles in
the field of IFC [11]. These inspired us to develop a data- and cost-efficient fluorescence-sensitive
high-throughput neuromorphic imaging cytometry (NIC) to challenge these conundrums.

Neuromorphic vision can detect objects in motion by individually adapting brightness changes in each
pixel, and when there is no motion included in the field, pixels will remain inactivated [12]. This is compared
to a frame-based pixel array synchronously timed to a global shutter. The unique mechanism in
neuromorphic allows real-time processing with low latency, leading to great application in object tracking,
recognition and motion analysis [13]. As the maximum detection range of fluorescent signals is highly
dependent on the DR of the applied sensor [14], the high dynamic range (HDR) (>120 dB) provided by an
event-based vision sensor (EVS) can be an ideal candidate for visualising fluorescence-tagged objects,
especially in low lighting or dark scenarios. To evaluate the feasibility of integrating EVS as a substitution for
frame-based sensors in IFC, the experiments were carried out with different sizes of polystyrene-based
microparticles and THP-1 cells flowed within a microfluidic channel to create the essential dynamic contrast
between targeted objects and the background for neuromorphic imaging, counting and size estimation.
Additionally, to appraise the performance of EVS in detecting fluorescent signals, Fluorescein isothiocyanate
(FITC)-marked microparticles were assessed under the neuromorphic vision in comparison to a traditional
Complementary Metal-Oxide-Semiconductor (CMOS) sensor and a Scientific Complementary
Metal-Oxide-Semiconductor (sCMOS) sensor. Herein, we are delivering an early demonstration of NIC to
perform object counting, size estimation and fluorescence analysis on microscale targets, presenting the first
instance of neuromorphic cytometric-like measurements and building upon our previous endeavour on
introducing neuromorphic architecture as an alternative to overcome the conventional frame-related
challenges in IFC.

2. Relevant works

IFC can offer rich spatial information regarding cell interpretation; however, as with many imaging systems,
IFC is also bound to the triangle of imaging constraints—speed, sensitivity and resolution. Increasing one of
the parameters can lead to degradation in others [3]. In contrast, EVS is more robust in handling
low-lighting conditions and highly dynamic scenes owning to their asynchronous firing pixels, and the
high-resolution event data can support over⩾3 µs frame-rate [15]. The study conducted by Howell et al [16]
evaluated the performance of an EVS in detecting fluorescent objects flowing in a spiral microfluidic device
and proved the visualisation. Adopting an event-focused vision and architecture can significantly reduce data
redundancy and latency, possibly elevating the performance in throughput and sensitivity He et al [17]
utilised the neuromorphic-enabled imaging classification, accomplished a mean average precision of 98.52%
at a speed of over 1000 frames per second (fps) and performed 3D reconstruction of the measured subjects
via intensity and contour extraction. Moreover, the recent work conducted by Abreu et al [18] utilising an
EVS to conduct binary particle classification with a spiking neural network and achieved 98.45% testing
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accuracy, which further consolidates the feasibility of implementing neuromorphic architecture in the field
of cytometry. To the best of our knowledge, our previous work, Zhang et al [19], is the first feasibility
demonstrations of conceptualising and building a neuromorphic-enabled FC, delivering early imaging of
microscale objects under an event-based vision. All these endeavours indicated the potential of adopting a
neuromorphic vision and architecture in providing cell measurements, exhibiting a high level of accuracy
and possible advanced throughput of NIC.

3. Method

3.1. Sample preparation
Polystyrene-based microparticles were prepared in the initial testing to evaluate the performance of
neuromorphic vision in capturing microscale targets. About 10 wt.% concentrated 8 µm and 15 µm
microparticle solutions were acquired (Sigma-Aldrich, USA) to emulate the relative size of human blood cells
(erythrocyte, leukocyte) and abnormal cells (e.g. cancer cells). 8 µm particle solution was diluted in 1:250
with deionised water to maintain a sufficient count and spacing between particles, preventing statistical
inadequacy in sample size and possible aggregation. As the concentration of the particles was distributed by
weight, 15 µm particle solution was diluted in 1:38 to obtain a similar number with diluted 8 µm particles.
Once the dilutions were completed, the sample particles were introduced into respective microfluidic
channels to acquire neuromorphic feedback on counting and size estimation. To establish a baseline
comparison, the same concentrations of the particles were prepared and analysed by an FC (CytoFLEX LX,
Beckman Coulter) to obtain the measurement of counts and sizes to ensure the validity of the results.

Human monocytic cell line, THP-1 cells were collected from Barry Slobedman laboratory in the Charles
Perkins Centre at The University of Sydney. The cells were maintained in a 37 ◦C and 5% CO2 incubator and
harvested in this experiment to examine the compatibility of neuromorphic vision with real sample cells and
determine whether the complexity in cells can degrade or impact the visualisation and detection algorithm.
The targeted cell line was prepared at the concentration of 1× 106 cellsml−1. The cell solution was first
centrifuged at a speed of 400 g for 5 min for sample separation. Then, the cell pellet was collected cells and
re-suspended with an FC buffer made of 0.02% sodium azide, 0.5% bovine serum albumin and 2 mM
ethylenediaminetetraacetic acid in phosphate-buffered saline. The sample solution was vortexed and equally
distributed into aliquots for neuromorphic analysis and CytoFLEX baseline comparison.

FITC-marked melamine resin microparticles with a diameter of 6 µm were purchased (Sigma-Aldrich,
USA). 2.5 wt.% concentrated solution was diluted into 1:100 with deionised water and allocated onto a glass
slide for fluorescence observation under a microscope.

3.2. Microfluidic platform
A 60 µm-height and 100 µm-width microfluidic chip was fabricated utilising a standard photolithography
protocol [20]. The chip contains one inlet and outlet channel to create an essential delivery and visualisation
pathway for the target samples. In addition, the channel employed a height of 60 µm to focus the particles
into a relatively limited plane to avoid a broad depth range and excessive calibration caused by it.

The microparticles in the size of 8 µm and 15 µm and THP-1 cells were adopted in this experiment to
investigate the capacity of asynchronously activated pixels in tracking microscale objects. The diluted sample
solution was loaded into a 1 ml syringe and distributed into the channel by actuation of a syringe pump
(LEGATO 200 Syringe Pumps, KD Scientific Inc., USA) at the flow rate of 10 µl min−1. As the objects
travelled through the section of interest, the physical characteristics of the targets were collected by the
selected sensors and later analysed for object counting and size estimation. The same dilution factor was
applied to the samples and analysed via CytoFLEX to provide outputs on total counts and estimated sizes for
the baseline comparison.

3.3. Imaging setup
An event-based camera, Evaluation Kit 4 (EVK4, Prophesee, France) consisting of 1280× 720 pixels,
4.86× 4.86 µm pixel size, time resolution equivalent to>10k fps,>120 dB in DR and 92% quantum
efficiency was mounted into the microscope (IX73 Inverted Microscope, Olympus, Japan) for 10×
magnification of the microscale objects and monitoring the dynamics of the field of interest. Metavision
Studio software was utilised to intimate recording and adjust the imaging setting regarding accumulation
time and event-generated threshold to optimise the visibility.

An sCMOS camera, Prime BSI Express (Teledyne Technologies, USA) was ported into the microscope
simultaneously to verify the event stream captured by EVK4. The camera consists of 2048× 2048 pixels,
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6.5× 6.5 µm pixel size, 48 fps at full frame, 74.98 dB in DR and 95% quantum efficiency. Micro-Manger and
ImageJ software were paired to control and facilitate image acquisition by auto-adjusting the brightness and
contrast.

For the fluorescence analysis, an additional CMOS camera, Alvium 1800 U-240 m (Allied Vision,
Germany) consisting of 1936× 1216 pixels, 3.45× 3.45 µm pixel size, 178 fps, 72 dB in DR and 64%
quantum efficiency. The camera was employed to serve as a benchmark for evaluating the performance of
traditional photosensors in registering fluorescent signals. Image Acquisition Toolbox in MATLAB was used
to interface with the camera and deliver visual feedback.

3.4. Object counting and size estimation
The function of object counting and size estimation is accomplished by an open-access
metavision_psm.py from Prophesee. The code applied a Particle Size Estimation (PSM) algorithm to
count and estimate the size of the ongoing objects. This algorithm utilises a series of lines of interest to record
the triggered events and clusters the pixels within a certain distance as a single object. As the particles were
observed under 10×magnification, the number of lines was set to 10 within the default section area. This
measure was taken to ensure precise matching of detections across multiple lines and to prevent any potential
ambiguity.

To optimise the integrity of objects in the recorded data, a Metavision pre-processing code on polarity,
Polarity Filter Algorithm was implemented to include only one polarity to enhance object sharpness
and avoid multiple detections on the same object. With particles as the main subject, polarity was configured
to exclusively display OFF (decreased light intensity) events for optimal detection with the PSM algorithm.
Moreover, accumulation time can be customised to improve the completeness of spatial distribution on the
captured objects, which can pair with the polarity setting to maximise the performance outputs. In this work,
as particles have different sizes and velocities during flow, accumulation time in a range of 100–1000 µs was
selected according to various scenarios.

To reduce the noise caused by random light fluctuation while maintaining the accuracy in detecting
particles, A Metavision noise filter, Activity Noise Filter Algorithm was adopted to eliminate the
unwanted noise that can lead to misdetection. This filter validates events that occur similarly around its
previous coordinates and within the selected time window. An adjustable parameter for the time window was
defined in the range of 150–500 µs. Prior to the recording, an event threshold can be defined to determine
the light contrast required for generating an event. Increasing this value can lead to a higher light contract to
trigger an event, which leads to a reduction in noise but also compromises the sensitivity in capturing
particles of interest. Deceasing this value can elevate the frequency of noise but increase the sensitivity in
detecting objects with minor light fluctuation. In this experiment, the biases setting was left on default as the
subjects were travelling at an acceptable velocity and sufficient illumination. By enumerating these objects
and including their respective spatial extent with the temporal characteristics, the overall counts and size
estimation are calculated.

3.5. Fluorescent signal analysis
To evaluate the efficiency of receiving fluorescent signals facilitated by HDR, 10 µl of FITC-marked
microparticle solution was allocated on a glass slide and observed under the microscope. In this experiment,
three lighting conditions were deployed, bright-field, and fluorescence mode with two distinct illumination
intensities. The fluorescence illumination was activated by CoolLED pE300 white with light intensity set on 2
and 20 in the blue region to create different degrees of FITC excitation and emission. The view of the
microscope under 20×magnification was captured by the aforementioned cameras under varying
illumination conditions.

4. Results

The proposed schematic of our NIC is illustrated in figure 1 to demonstrate the working principle and
expected future implementation. As the sample flow is introduced into the channel, the EVS will detect the
ongoing subjects once it enters the view. The captured imaging will be fed to the processing centre for
denoising, filtering, object counting, size and morphology estimation, determining whether the object is of
interest and sending a signal to the dielectrophoretic sorter for sorting decisions. Once the DEF device
receives the outcome, the electrodes gently pull the targeted object into the pathway to the collection outlet.
The unaltered objects will enter the waste outlet by default geometrical design.

One of the novel attempts that should be continuously explored with EVS is the ability of HDR to
capture high-speed fluorescent objects. Figure 2 illustrates the documented throughput of fluorescence IFC
with their respective DR, and the work published by Vinegoni et al [14] highlighted that the maximum
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Figure 1. (A) Proposed schema of NIC. The target samples were introduced into the microfluidic channel in a flow. Features of
the samples were captured by an event-based camera, sending the inputs into the processing unit for classification and sorting
purposes. After decision-making, the target object was directed into the collection channel via a DEP sorter. (B) The current setup
of the platform with an event-based camera integrated into a microscope for recording and capturing the sample flow.

Figure 2. Performance of the previously reported fluorescence IFC with their incorporated DR. The grey shade highlighted the
unattained outputs and DR provided by the neuromorphic vision and sample imaging of different microscale targets. Cited
papers in this figure are Huang et al [10], Zmijan et al [21], Holzner et al [22], Rane et al [23].

capacity of the fluorescence detected is majorly dependent on the DR provided. Even though recent efforts
have achieved a high throughput with high-resolution imaging in detecting fluorescent-tagged objects, these
works, while remarkable, only adopted compensation strategies such as time-delay integration and
virtual-freezing technique, the direct correlation and performance of HDR in registering fluorescent signals
remain unknown. To our knowledge, there has not been an IFC that exploited such an HDR (>120 dB)
compared to EVS, future endeavours on the subject can be highly informative and promising in developing
next-generation IFC.

At the current stage, our platform can visualise and perform measurements on the basic physical
properties of microscale objects. In figures 3(A)–(F), the precise contour and relative size difference in
neuromorphic view can be observed and compared to conventional microscopic imaging captured by
sCMOS sensor. Both imaging techniques were competent in delivering essential visual feedback without
losing the key integrity of the subjects. Furthermore, when conducting microfluidic delivery with microscale
targets, some of the travelling objects will inevitably adhere to the internal surface of the channel, rendering
multiple imaging obstructions and deviating the focus from subjects. In neuromorphic, as the necessary
movements are required to create the contrast between objects and the background, objects that remain in a
static position will not activate the pixels. This unique architecture can mitigate that consequential image
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Figure 3. Conventional microscopic imaging captured by a sCMOS sensor and neuromorphic imaging of 8 µm, 15 µm
microparticles and THP-1 cells. (A) and (B) Microscopic and neuromorphic images of 8 µmmicroparticles. (C) and (D)
Microscopic and neuromorphic images of 15 µmmicroparticles. (E) and (F) Microscopic and neuromorphic images of THP-1
cells. (M), and (N) Nucleus-like objects in MCF-7 cells captured by neuromorphic vision under 20×magnification.

Figure 4.Microscopic imaging captured by Alvinum 1800 U-240 m (CMOS), Prime BSI Express (sCMOS) and EVK4 under
varying illumination conditions. The first column on the left illustrated the images captured under a bright-field. The second
column indicated the images taken in a fluorescence mode with light intensity set on 2 in the blue light region. The third column
illustrated the images taken with light intensity set on 20 in the blue light region.
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effect caused by attached objects, significantly reducing the labour required for post-imaging processing and
focusing on subjects of interest.

The sensitivity of EVS to fluorescent signals was examined in comparison to a standard CMOS, Alvium
1800 U-240 and sCMOS camera, Prime BSI Express. In figure 4, the visions of three cameras were revealed.
In the context of a bright-field, all cameras can deliver visual feedback on FITC particles with essential
features intact. As the illumination was turned into fluorescence mode, the traditional camera lost its ability
to detect any object in a dark background regardless of the intensity of the excitation light. On the contrary,
the sCMOS sensor and EVS can depict the spatial content with lower and higher excitation (2 and 20). The
difference in the sCMOS camera under weak and higher excitation power is that when the object is excited by
the weak illumination, the image shows more background noise during detection, and higher illumination
can lead to a more well-defined sample imaging with minimised background noise. With EVS, both lighting
conditions can lead to visualisation without a noticeable increase in noise. Owing to the high quantum
efficiency (95%), DR (74.98 dB) and aid of auto-contrast provided by Micro-Manager software, the sCMOS
sensor has focused and distinct visual feedback in presenting fluorescent targets. However, offering such high
sensitivity leads to a compromised frame rate, which only tolerates 43 fps at full resolution (2048× 2048,
16-bit) and a maximum of 1468 fps with reduced frame resolution (2048× 128, 11-bit). On the other hand,
EVS can support over 10k fps while maintaining its current sensitivity to fluorescent targets without any
strategy of imaging processing. We believe that in the context of static imaging, a sCMOS such as Prime BSI
Express can generate outstanding resolution and sensitivity, however, in a highly dynamic scene, the limited
frame rate can be challenging to capture the ongoing subjects and EVS can be an optimal candidate.

With object counting and size estimation, the number of microscale objects with their respective sizes
can be estimated during the flow. In a traditional FC, forward scatter (FSC) refers to the intensity of light that
is scattered in the forward direction when an object passes through a laser beam, illustrating the relevant
sizes of the detected objects. Side scatter (SSC) refers to the intensity of light that is generally perpendicular
to the light source, delivering information on the granularity of the objects. Conventional cytometry scatter
plots were provided in figures 5(A), (D) and (G), including the gated population of 8, 15 µmmicroparticles
and THP-1 cells based on their sizes and granularity from FSC-A and SCC-A. For the 8 µmmicroparticle
solution, in table 1 and figure 5(B), the total event count was 3189 with 95.6% gated for 8 µmmicroparticles,
formulating a highly concentrated pattern of distribution around 1.1 M in FSC-A measurements with
CytoFLEX; in figure 5(C), the neuromorphic detection was adopted and generated an overall count of 3086
with gating tolerance between±2 µm in respective size, and yields 98.1% of the population as 8 µm
microparticles. For the 15 µmmicroparticle solution, in figure 5(E), the total event count was 3220 with
92.9% gated for 15 µm particles with CytoFLEX, presenting a concentrated distribution around 3.4 M in
FSC-A measurement; in figure 5(F), the overall neuromorphic count was 3898 with 98.7% gated as 15 µm
microparticles. Both technologies yield remarkable counting similarities and purities in measuring pure
polystyrene-based beads in different sizes, constructing a highly alike size of distribution in describing the
sample population. As the sample solutions are prepared with only microbeads, our strategy can compete
with conventional cytometry to provide higher purity and accuracy. For THP-1 cells, in figure 5(H), a total
event number of 4429 was estimated by CytoFLEX with 40.6% identified as live THP-1 cells, 26.6% dead cells
and 28.8% debris; in figure 5(I), the neuromorphic count was 3056 and condition of the cells and division
into subsets remain inaccessible owing to the inability to contrast different level of granularity. Although the
majority of the ongoing objects in varied sizes can be detected, such discrepancy in the total count can be
caused by the significant amount of tiny debris in the cell solution, which can be easily recognised as
noise-like events during the flow in neuromorphic. As a result, our platform achieved high correspondence
with commercialised cytometry when conducting measurements on pure microscale objects; however, in the
context of cell measurements in real practice, the debris, doublets, complexity, viability and cycle of cells can
raise the parameters to be implemented to distinguish various components in cell culture.

During the early testing stage, MCF-7 cells were observed under the platform for testing the
compatibility of neuromorphic vision with biological samples. In figures 3(M) and (N), in addition to the
morphology acquisition, under phase contrast, the internal nucleus-like objects were identified with distinct
clarity during the view without the aid of any staining techniques. Such a phenomenon can be supported by
the HDR provided by neuromorphic vision. However, as this is the first instance of the event, we cannot
conclude an absolute explanation on the matter. Further investigations and parallel studies on various cell
lines are required to verify the specific mechanism behind it. Nevertheless, if the assumption is valid, this
unique feature can contribute a deeper insight into NIC and can be utilised as an additional metric in
conducting cell measurement and sorting.
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Figure 5. Cytometry and neuromorphic measurements on microparticles and THP-1 cells. (A) CytoFLEX interpretation of 8 µm
microparticles based on forward scatter area (FSC-A) and sideward scatter area (SSC-A), gating 95.6% of the population being
8 µmmicroparticles. (B) Histogram of 8 µmmicroparticle size distribution based on FSC-A measurement. (C) Histogram of
8 µmmicroparticle size distribution based on neuromorphic outputs. (D) CytoFLEX interpretation of 15 µmmicroparticles
based on FSC-A and SSC-A, gating 92.9% of the population being 15 µmmicroparticles. (E) Histogram of 15 µmmicroparticle
size distribution based on FSC-A. (F) Histogram of 15 µmmicroparticle size distribution based on neuromorphic outputs. (G)
CytoFLEX interpretation of THP-1 cells based on FSC-A and SSC-A, gating 40.6% as live THP-1 cells, 26.6% dead cells and 28.8%
debris. (H) Size distribution of live THP-1 cells, dead cells and debris based on FSC-A. (I) Histogram of THP-1 cell size
distribution based on neuromorphic outputs.

Table 1. CytoFLEX and neuromorphic output on the total event count of 8 µm, 15 µmmicroparticles and THP-1 cells in their sample
solution.

Subject name
Total population
(CytoFLEX)

Target population
(CytoFLEX)

Total population
(Neuromorphic)

Target population
(Neuromorphic)

8 µmmicroparticles 3189 3049 (95.6%) 3086 3027 (98.1%)
15 µmmicroparticles 3220 2990 (92.9%) 3898 3848 (98.7%)
THP-1 cells 4429 1799 (40.6%) 3072 N/A

5. Conclusion

In this work, we have concluded our first milestone in fluorescence assessment with EVS and performing cell
population measurement in terms of object counting and size estimation. The high consistency and purity in
describing microbeads in different sizes compared to commercialised cytometry indicated the measurement
accuracy and alike characterisation of NIC. Although the function of classifying the cell condition and
surrounding events is putting forward, the low latency and event-focused architecture in neuromorphic has
the potential to outperformance the conventional IFC in throughput and data optimisation, enabling a
prospect of a data- and cost-efficient fluorescence-sensitive high-throughput neuromorphic cytometry.
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