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Abstract: Digital twins are the most important parts of Cyber-Physical Systems (CPSs), and play
a crucial role in the realization of the Metaverse. Therefore, two important factors: flexibility and
adaptability, need to be focused on digital twinning systems. From a virtual perspective, constructing
buildings, structures, and mechanisms in the Metaverse requires digital materials and components.
Hence, accurate and reliable digital models can guarantee the success of implementation, particularly
when it comes to completing physical twins in the real world. Accordingly, four Machine Learning
(ML) methods to make digital twins of an advanced 42SiCr alloy considering all of its uncertainties
and non-linearities have been employed in this paper. These ML methods accelerate the digitalization
of the proposed alloy and allow users to employ them for a wide range of similar metals. Based
on this technique, producers can borrow these virtual materials and build their structures in the
Metaverse. This way, if the properties of the materials were satisfactory, they might buy them and
start manufacturing their products. As a case study, we focus on digital twining of an 42SiCr steel
with some influential factors in its mechanical properties, making the nature of the alloy complex.
Processes, including heat treatment, may restore the material’s deformability; however, Quenching
and Partitioning (Q&P) not only eliminates the impact of cold forming but also provides advanced
high-strength steel (AHSS) properties. In this research, the combined impacts of different Q&P
treatments were investigated on the mechanical properties of 42SiCr steel alloy. The results have
shown the acceptability and accuracy of the proposed ML methods in realizing the digital twins of
this complex alloy.

Keywords: smart manufacturing; metaverse; digital twin; machine learning; cyber-physical systems;
42SiCr steel; Q&amp; P treatment; artificial intelligence

MSC: 00A02

1. Introduction

As has been proved, cyber-physical systems (CPSs) will be the fundamentals of the
Metaverse in the future, particularly in Industry 4.0 and 5.0, where automation seeks a
software backbone. On the other hand, digital twins play a similar role in both CPSs
and the Metaverse platforms [1–5]. Hence, digital twins need to be adaptive and flexible,
especially in the case of specific materials such as alloys because these materials are affected
by many critical factors, such as temperature, forces, tension, etc. Hence, the digital
twinning of these materials will be a challenging task, as the measurement of or calculated
characteristics of alloys are completely different from a normal device, machine, or robot
equipped with many sensors [1,6]. Another challenging part is related to connecting these
alloys to each other to make a mechanism, structure, or building because inaccurate digital
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twinning of the alloys will lead to bigger problems for the whole system. Another important
limitation in the realization of digital twins for materials is that controlling the properties of
a manufactured metal is almost impossible and only predicts its dynamic behavior as long
as the digitalization of the alloy is successful. Therefore, we need digital twins of materials
that can reflect their actual behavior with the highest rate of accuracy. These models can be
used to manufacture and build structures.

While our focus is on the digital twinning of the alloys, we need to have a suitable
physical twin at first. The development of new or modified steel grades that can un-
dergo advanced heat and other treatments for cost and weight reduction, improved fuel
efficiency, and improved mechanical performance is always a result of the sustainability
strategy. Therefore, considering these parameters in a physical twin can be useful. In recent
decades, there has been strong demand for increased safety and reliability of structures
and components exposed to various types of static and cycling service loading. To meet
these demands, researchers have modified steel alloys to have better mechanical properties
while still meeting environmental and economic requirements [7]. The effectiveness of this
technique in producing microstructures with retained austenite (RA) led to its adoption
in 2003 [8–14]. The existence of RA offers the possibility for the optimum strength-to-
ductility ratio, which could be accomplished by deformation-induced processes such as the
transformation-induced plasticity (TRIP) effect during straining. Currently, Quenching and
Partitioning (Q&P) methods are found to be effective in utilizing steels with carbon, and
they have been expanded. The Q&P process typically consists of the following four steps:
annealing, initial quenching, partitioning, and final quenching. Steel undergoes annealing,
also known as partial or complete austenitization, in the first step and then is quenched
to a temperature (QT) between the martensite start temperature (Ms) and the martensite
finish temperature (Mf), where the austenite can partially transform into the martensite
(initial quenching). The steel is then kept at QT or heated to a temperature (PT) that is
higher than QT. This will make it possible to redistribute carbon (C) from the surrounding
martensite into austenite and to then enrich it (partitioning). It will then be cooled to room
temperature (final quenching). If the C enrichment in austenite is insufficient to ensure its
thermal stability, fresh martensite may form in the last stage.

In recent years, machine learning (ML) approaches have been widely used as predictive
models to analyze and simulate complex systems. The Decision Tree (DT) is a strong and
adaptable supervised machine learning algorithm. This is an effective method to recognize
the relations between different features of complex signals and perform data classification
and prediction accurately. For this reason, it has been found to be a reliable, dependent,
and effective ML tool for problem-solving. Yet, the decision tree regressor’s performance
is not sufficient at low depth since it cannot capture linear relations. At deeper depths,
the decision tree regressor circumvents this restriction, but this leaves it vulnerable to
overfitting. A decision tree is made of a leaf node and an internal/decision node, including
a foot node. DT uses “the divide and conquer” algorithm. First, a root node is initialized at
DT, which is then split into two subsets. Based on the splitting criterion, such as information
gain, Gini index for classification tasks, mean square error (MSE) and Poisson for regression
tasks, the optimal split is determined. Based on a stopping criterion, splits are categorized
either as terminal/leaf nodes or decision/internal nodes. After that, each internal node is
handled independently. This procedure continues until there are no more internal nodes
to split. The evaluation of materials is a difficult process in and of itself, hence various
machine learning and statistical models have been presented to analyze the properties
of materials, each with its limitations, providing the opportunity for further research.
Creating effective algorithms is one technique to improve the prediction’s accuracy and
precision. The alternative is to gradually include more pertinent material parameters in
our datasets. In this investigation, we have dealt with the area of improvement in the
mechanical properties of Q&P-processed 42SiCr steel (0.43% C, 2% Si, 0.59% Mn, and 1.33%
Cr—weight%) as the physical twin for digitalization.
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The fundamentals and basics of digital twins and the Metaverse including modeling
and implementing them will be described in Section 2. In addition, some information about
modern manufacturing has been embedded in this section and the requirements to realize
the Metaverse are brought into this section. The manufacturing process of the proposed
alloy, as the physical twin, and extracting the experimental data to be used in ML methods
for making digital twins are explained in Section 3. In Section 4, the ML methods and their
performances are comprehensively presented. Furthermore, a discussion of the proposed
approach, its benefits, limitations, and foundation have been included there.

2. Digital Twin, the Metaverse, ML, and Alloy

A digital twin is a virtual replica of a real-world physical system or product that
acts as its imperceptible digital equivalent for practical reasons such as system simulation,
testing, maintenance, and monitoring [15–17]. This is best understood when it comes to
complex systems, where each component has an impact on the linear performance of the
system. Materials can be categorized in this classification. Therefore, real-time use and
routine synchronization of a digital twin with the appropriate physical system such as
alloys can accelerate the process of modeling and monitoring the system. Simultaneously
running thorough system verification and validation test scenarios on the digital twin and
the physical twin, which is a specific alloy in this research, is a practical litmus test for
the effectiveness of the digital twin. When it is highly doubtful to consistently tell the
difference between the digital twin and the physical twin, the former is an authentic digital
twin. However, due to various elements of the factory layout, the physical behavior of the
alloys in the digital twins might change. Several elements contribute to the complexity of
the alloys, which depicts the movement of discrete things on conveyors or transport routes
in constant and erratic time intervals. Customization leads to significant differences in a
product’s physical properties. This raises the possibility of physically produced disruptions
that have an impact on both the operation of the production system and the safety of
employees or equipment. The physical contact between the structures and the material
handling systems are the main sources of these disruptions.

Data-driven devices indicate participation in a digitization and digitalization process
enabled by the convergence of IoT, Big Data, and AI and their far-reaching implications,
including areas such as digital instrumentation and hyperconnectivity, algorithmization,
datafication, and platformization [18–20]. These also apply to the overall design of the
computer-mediated Metaverse, which is a fictional representation of data-driven smart
cities. User interaction, computer vision, AI/blockchain, XR, edge cloud, wireless net-
works, robotics/IoT and hardware infrastructure are a few of the technology pillars of the
Metaverse as a massive ecosystem application.

The Metaverse is coming and it is an undeniable reality that needs to be accepted
and extended in all classes of the relevant industries because not only will it play a crucial
role in producing and optimizing the products economically, but it will also transform the
supply chain. In this respect, the digitalization of the products and relevant infrastructures
will be constructive [15,16]. One of these sectors is the digital twining of the materials.
For example, each alloy shows its own specific dynamic behavior, which may affect the
calculation to produce a product. Hence, having a correct digital version of the alloy can
dramatically save resources and enhance safety. Surprisingly, this virtual version can be
used and addressed in the Metaverse. Thus, having a realistic vision of this revolutionizing
technology can preserve industries. It is not just normative by definition, which refers
to a certain preferred perspective on the virtual world, but it is an effective approach to
modernizing the production. This is why the investment on this emerging technology and
organizing frameworks for developers and researchers to adapt to this area of study is
a must. To be exact, it is essential to address the investment on this technology as many
large companies will put all of their reputation and power to realize the Metaverse-based
platforms as soon as possible, these including Meta, Google, and Amazon, etc. The majority
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of the mega investors believe that the Metaverse will bring them significant benefits. The
process of digital twining for the proposed alloy has been shown in Figure 1.

Figure 1. The process of digital twining for the proposed alloy has been shown. As is observed, after
preparing the physical twin of the proposed alloy in the factory, the structural parameters of the alloy
need to be measured. The digital twin of the alloy is then estimated using several machine-learning
methods. This model of the alloy can be used in the Metaverse.

This research shows how metals, alloys and materials can enter the Metaverse world
and how ML-based methods speed up the progress in development of these complex
systems [21,22]. As alloys play a vital role in manufacturing, the concentration of this
research is to use some intelligent methods for digital twining alloys. This methodology can
provide readers and the Metaverse enthusiasts with the means to conduct similar research
on a wide range of similar alloys and introduce them to the Metaverse world. Considering
the rapid growth of ML-empowered techniques in various aspects of our lives, owing to
their effective performance for modeling, predicting, and estimating complex systems, the
utilization of these methods to make the digital twins of alloys can be constructive. One
of the significant characteristics of ML-based methods is to find the relationship between
inputs and outputs of the system. From a systematic perspective, each alloy can have some
inputs and outputs that give an overview about the characteristics and dynamic behavior
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of that alloy. On the one hand, utilization of analytical methods to address an alloy, which
experienced many nonlinearities and uncertainties during its production, is problematic.
Moreover, this inaccurate style of analyzing alloys needs deep knowledge of mechanical
engineering, material engineering, chemical engineering, and physics that employs many
of the experts in this field, requires a lot of investment, and is not economical.

Another important problem with conventional methods of modeling complex alloys
is the huge latency and time-consuming nature of these methods. More importantly, an
alloy’s properties will change with time, environmental conditions, and many micro or
macro factors. However, these changes are, in most of the applications, ignorable. However,
taking notice of these changes makes no sense in some aerospace programs. Therefore, it is
beneficial to adapt the digital version of the systems, materials, and alloys with intelligent
approaches, such as ML methods [23,24]. These methods provide industries with a fast
and efficient way of modeling complex systems. Most significantly, these methods are the
ideal ways to adapt the physical twins of the alloy to the Metaverse. Hence, the digital
twins of the alloys can be presented and used with Non-Fungible Tokens (NFTs) in the
Metaverse platforms.

In Section 3, to prove the efficiency and applicability of the proposed approach, a
specific alloy has been designed and manufactured. Some specific operations have been
undertaken in this process to ensure that the studied alloy for digital twining has enough
complexity and uncertainty. This process has been described in the next section. In reality,
we want to build precise digital twins of an alloy based on its physical twin information,
the process of manufacturing, and the relevant properties. This way, this research is
conducted based on a comprehensive examination, including the experimental part and
the simulation.

3. Physical Twin
3.1. Tested Material

As is emphasized in the previous sections, data play an important role in the digital
twining of an ally as well as the application of that in the Metaverse. Therefore, a compre-
hensive examination of a real process of alloy manufacturing is organized to make sure
about the modeling part. Commercial 42SiCr steel sheets were employed and used as the
physical twin in this research. The low alloy 42SiCr steel is a modification for a number of
materials particularly suited for producing shafts, pins, screws, or springs for transportation
vehicles. The principal chemical elements are, in weight percentage, 0.42% C, 2% Si, 0.59%
Mn, and 1.33% Cr. Comparing this steel to others in its category, the mechanical qualities
are improved by the higher Si content. This may lessen the precipitation of carbides and
allow carbon to diffuse into leftover austenite. In addition, pearlite will form as a result
of the manganese improving the solubility of carbon in austenite [25]. Additionally, the
composition of the material may be able to support the phase changes of the heat treatment
Q&P while still offering appropriate cold-forming capabilities in the initial pearlitic state.
Table 1 lists the chemical composition of the 42SiCr steel alloy used in this research as well
as the calculated carbon equivalent value (CEV).

Table 1. Chemical composition and CEV of 42SiCr steel used in this work.

Element C Si Cr Mn Fe CEV

wt% 0.42 2.0 1.3 0.68 Bal. 0.82

3.2. Q&P Heat Treatment

The Q&P heat treatments were carried out to improve the alloy’s mechanical strength
and restore its ductility. Advanced High Strength Steel (AHSS) material properties and
increased ductility were achieved by the Q&P treatment. Using this method, the initial
pearlitic microstructure is converted primarily into a martensitic microstructure with some
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retained austenite. To examine the impact of each Q&P parameter on the mechanical
characteristics of this material, several combinations of Q&P procedures were used.

As demonstrated in Figure 2, to reach the austenite region, all of the samples were
annealed at 950 ◦C (Austenitization). Later, to keep some fraction of the austenite, it was
then partially quenched to the quenching temperature QT, which held just a little bit above
the Martensite finish (Mf) temperature. For 42SiCr steel, the martensitic transformation
typically starts at around Ms = 298 ◦C, while Mf is maintained at about 178 ◦C. The
specimens were then heated once more to the partitioning temperature (PT) and kept
there for the partitioning time (tp). This will enable the remaining austenite (RA) to be
stabilised through the redistribution of carbon atoms. Table 2 shows the summary of the
Q&P parameters range that were employed in this investigation, and Figure 2 shows the
scheme of the Q-P treatment, where:

Figure 2. Schematic illustration of the Q&P process used in this study. Ms is the martensitic start
temperature, Mf is the martensitic finish temperature, QT is the quenching temperature, PT is the
Partitioning temperature, th is the heat-up time, tp is the partitioning time.

Table 2. Q&P process parameters range used in this study.

QT [◦C] PT [◦C] tp [s] Cooling Rate

RT, 160,
180, 200,
230, 260

RT, 230,
250, 270,
280, 340, 380

0, 120,
300, 400,
500, 600,
700, 800, 1800

0.0325, 0.0625,
0.125, 0.25, 0.5, 1, 2

3.3. Testing Preparation and Equipments

Standard tensile samples are made to fit in the tensile machine and have the following
dimensions: gauge length 20 mm, width 2 mm, and average thickness 2.5 mm. All of the samples
are cut using a water jet cutting technology in a longitudinal manner (parallel to the rolling
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direction) and ground up. The mechanical tests were carried out utilising a servo-hydraulic
MTS thermomechanical simulator and a UHL/VMHT hardness tester (Walter Uhl, Asslar,
Germany) (MTS, Minnesota, MN, USA). For the servo-hydraulic MTS, the authors prepared
special convertors (UWB, Pilsen, Czech Republic). For all tensile tests, the strain rate was
1× 103 s−1. After testing three samples from each state, the average values of ultimate tensile
strength (UTS) and elongation to failure (A) were calculated statistically. Hardness tests on the
polished sample heads were performed using 10 kg weight and 11-s loading time. The average
value was determined by averaging three measurements. Samples of the treated materials
were obtained for metallographic examination. The sample preparation process involved using
common grinding and polishing techniques. Figures 3 and 4 depict the parameters of the alloy
that has been used to make the digital twin.

Figure 3. Illustration of the parameters of the alloy, which have been considered inputs for the
ML methods.

Figure 4. Illustration of the parameters of the alloy, which have been considered targets for the
ML methods.

4. Machine Learning Methods Procedure
4.1. ML Linear Regression

The first ML method we use to realize the digital twin of the proposed alloy is ML
Linear Regression. This linear statistical technique, used for modelling the relationship



Mathematics 2023, 11, 4 8 of 23

between a scalar response and at least one explanatory variable (also referred to as depen-
dent and independent variables), can be a good candidate for materials. Figures 5 and 6
depict the performance of this simple and powerful ML method in digital twining the
alloy considering the inputs. In the case that there is just one explanatory variable, the
method is known as simple linear regression; if there are more, it is known as multiple
linear regression [26]. This term also differs from multivariate linear regression, which is
used for predictions of multiple correlated dependent variables, as opposed to a single
scalar variable. In linear regression, linear predictor functions are used to model relations
with the model’s unknown parameters being estimated from the data. These models can be
utilized for digital twinning because the digital version of the systems needs to recognize
complexity or accuracy. Most frequently, it is assumed that the conditional mean of the
response when considering the values of the explanatory variables (or predictors) is an
affine function of those values; the conditional median or another quantile is applied less
frequently. Similar to all other methods of regression analysis, the concentration of linear
regression is on the conditional probability distribution of the response based on the values
of the predictors rather than the joint probability distribution of all these variables, which
is the focus of multivariate analysis.

Figure 5. Evaluation of the ML Linear Regression in modelling the digital twins of the alloy based on
HV10 (a) and (b); R0.2 (c) and (d); Rm (e) and (f) in the presence of all inputs, including heating, QT,
PT, and Pt; (a,c,e): Train and (b,d,f): Test.
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Figure 6. Description of the performance of ML Linear Regression in modelling the digital twins of
the alloy based on A20 (a,b); FB (c,d); BW (e,f) in the presence of all inputs including, Heating, QT,
PT, and Pt; (a,c,e): Train and (b,d,f): Test.

The first regression analysis method that underwent in-depth research and saw a lot
of use in actual applications was linear regression. This is because models with linear
dependence on their unknown variables are simpler to fit than models with non-linear
dependence on their variables, and because it is simpler to determine the statistical charac-
teristics of the resulting estimators. This method is based on supervised learning, where it
executes a regression operation. Regression uses independent variables to model a goal
prediction value. It is mostly used to determine how variables and forecasting relate to
one another. Regression models vary according to the number of independent variables
they use and the type of relationships they take into account between the dependent and
independent variables.
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4.2. Decision Tree Regression

Another effective technique for digital twinning of the alloy is Decision Tree Regression
(DTR), which has good performance in the estimation of the characteristics of the studied
alloy. Its results have been demonstrated in Figures 7 and 8. This supervised learning
approach called a decision tree is used in a wide range of regression modelling. This
method is used for analyzing the proposed alloy [27].

Figure 7. Evaluation of the Decision Tree Regression in modelling the digital twins of the alloy based
on HV10 (a,b); R0.2 (c,d); Rm (e,f) in the presence of all inputs including heating, QT, PT, and Pt;
(a,c,e): Train and (b,d,f): Test.
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Figure 8. Description of the performance of Decision Tree Regression in modelling the digital twins
of the alloy based on A20 (a,b); FB (c,d); BW (e,f) in the presence of all inputs including heating, QT,
PT, and Pt; (a,c,e): Train and (b,d,f): Test.

These trees are used to categorize or regress data using true or false responses to
specific queries. When the structure is visualized, it resembles a tree with distinct sorts of
nodes at the root, internal, and leaf layers. Figure 9 demonstrates the implementation of
this method and its algorithm, which has been changed based on the dynamic of the data.
The decision tree begins at the root node and branches out to internal nodes and leaf nodes.
The final classification categories or actual values are found in the leaf nodes.
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Figure 9. The applications of Decision Tree Regression in modelling R.02 (a), Rm (b), and A20 (c).
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Choosing a feature to serve as the root node is the first step in creating a decision tree.
Typically, no one feature can predict the final classes with absolute accuracy; this is known
as impurity. This impurity is measured using techniques like Gini, entropy, and information
gain, which show how well a feature categorizes the supplied data. At whatever level,
the node is chosen as the feature with the least impurity. In order to determine the Gini
impurity for a feature with numerical values, the data must first be sorted in ascending
order and then the averages of the adjacent values are computed. The Gini impurity is
then determined at each chosen average value by organizing the data points according to
whether the feature values are smaller or larger than the chosen value and whether the
selection accurately categorizes the data. Then, using equation

Gini Impurity = 1−
k

∑
i=1

p2
i (1)

the Gini impurity is determined. Here, k is the total number of classification categories, and
p is the percentage of categories that are present.

For the leaves at each value, the weighted average of the Gini impurity is determined.
For that characteristic, the value with the lowest impurity is chosen. To choose the feature
and value that will form the node, the procedure is repeated for many features. This process
is iterated at each depth level and at each node until all the data is categorised.

Once built, the tree must descend based on the conditions at each node to reach the final
value or classification to make a prediction for a data point. When utilizing decision trees
for regression, the impurity is measured using variance or the sum of squared residuals.

4.3. Random Forest Regression

The third ML method that we used for the implementation of the digital twin of the pro-
posed alloy is Random Forest Regression (RFR). RFR is one of the most widely used algorithms
for regression problems due to its simplicity and great accuracy. Therefore, this method can be
a suitable tool in digital twining of the materials and alloys [28]. Figures 10 and 11 give useful
information about the performance of this method in estimating the desired parameters of the
proposed alloy. Multiple decision trees are combined with a voting mechanism in this ensemble
technique. It performs more generally than DTR due to randomness. This aids in lowering the
variance of the model. It is typically trained using the bagging technique, which combines pre-
dictions from various machine learning algorithms to provide predictions that are more accurate
than those from a single model. They do not require a lot of parameter adjusting and are less
susceptible to dataset outliers. The only RFR parameter normally required for experimentation is
the number of ensemble trees. As the average prediction across all decision trees, the predictions
are calculated. The fact that the separate models have little association with one another is crucial.
RFR is a regressor that uses a voting mechanism to produce predictions based on decision trees.
Using divisions between the training samples, RFRs create multi-decision trees. In accordance
with the bootstrap sampling method, a portion of the data set is randomly chosen as the training
example, and the remaining data is utilized as the validation sample for each decision tree. In
order to get the final predictions while regressing unknown samples, the predictions of each
decision tree are first generated, and all of the predictions are then aggregated using a simple
voting procedure.

RFR’s inherent capacity to automatically fix decision trees’ overfitting issues to their
training data sets is its most noticeable advantage. Applying the bagging method and
random feature selection, the overfitting issue—which frequently results in erroneous
results—is almost entirely solved.
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Figure 10. Validation of the Random Forest Regression in modelling the digital twins of the alloy
based on HV10 (a,b); R0.2 (c,d); Rm (e,f) in the presence of all inputs including heating, QT, PT, and
Pt; (a,c,e): Train and (b,d,f): Test.
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Figure 11. Description of the performance of Random Forest Regression in modelling the digital
twins of the alloy based on A20 (a,b); FB (c,d); BW (e,f) in the presence of all inputs including heating,
QT, PT, and Pt; (a,c,e): Train and (b,d,f): Test.

4.4. Gradient Boosting Algorithm

The last ML technique which has been employed in this research for building the
digital twin based on the physical twin described in Section 3, is the Gradient Boosting
Algorithm (GBA). GBA is an approach for supervised ML that was developed in the past
two decades [29].

The boosting ensemble approach employs many weak learners which concentrate on
the errors that happen at each step until a robust model for regression and classification is
generated. In this paper, the boosting approach is applied to perform regression. While
Figure 12 demonstrates the validation of this algorithm in modelling the digital twins of
the alloy based on HV10, R0.2 and Rm, Figure 13 depicts the performance of this method
for other targets, such as A20, FB, and BW. Gradient Boosting Regression Algorithm has
three main parts: the discrepancy between actual and expected values is identified by
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the loss function. A weak learner is a decision tree that makes a prediction. An additive
model is used for minimizing the loss function [29]. To enhance prediction and lower
prediction error, each weak learner model tries to correct errors left by preceding weak
learner models. Considering a collection of random input parameters x = {x1, x2, . . . xn}
and a corresponding response variable z,

F̃(x) = argmin
F(X)

Lz,x(z, F(x)) (2)

To estimate the approximation function, the loss function is combined with a squared
error function as

Loss(z, F(x)) = (z− F(x))2 (3)

To determine the gradient of the loss function Loss(z, F(x)), the following equation is
used [29]:

z̃i =

[
∂Loss(zi, F(x))

∂F(xi)

]
F(x)=Fm−1(x)

(4)

The calculation range of the gradient might be generalized if the regression trees
h(xi; b) with parameter b as weak learners are used. It is often a parameterized function of
the input variables x with parameter b. To obtain the tree, the following equation may be
solved:

bm =
argmin
b,β

N

∑
i=1

[z̃i − βh(xi, b)]2 (5)

where bm is the weight value also often identified as the expansion coefficient of each weak
and m, β is the parameters collected at iteration m.

Figure 12. Cont.



Mathematics 2023, 11, 4 17 of 23

Figure 12. Validation of the Gradient Boosting Regression Algorithm in modelling the digital twins
of the alloy based on HV10 (a,b); R0.2 (c,d); Rm (e,f) in the presence of all inputs including heating,
QT, PT, and Pt; (a,c,e): Train and (b,d,f): Test.

Figure 13. Cont.
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Figure 13. Description of the performance of Gradient Boosting Regression Algorithm in modelling
the digital twins of the alloy based on A20 (a,b); FB (c,d); BW (e,f) in the presence of all inputs
including heating, QT, PT, and Pt; (a,c,e): Train and (b,d,f): Test.

5. Results and Discussion

As a sample of a real-time digital twin, a robot, for instance, could be connected with a
number of sensors pertinent to key functional areas. These sensors generate data regarding
several performance characteristics of the physical twin, such as load conditions, strain
rate, and temperature. Afterwards, a processing system applies this data to the digital
twin. Therefore, the evolution of the system design and engineering processes has led
to the development of digital twins. Engineering specifications and product drawings
have advanced from hand-drawn sketches to computer-aided design further to model-
based systems engineering and strict adherence to signals from the physical equivalent.
To improve this part, focusing on some studies like the tuning of digital PID controllers
and fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject
to unbalanced datasets can be constructive [30,31]. However, in the case of materials,
the digital twining would be more challenging. Nevertheless, to transfer the material
to the Metaverse world, building the digital twins of them is inevitable. In this study, a
comprehensive process of the digital twining material with four ML methods, including
ML Linear Regression, Decision Tree Regression, Random Forest Regression, and Gradient
Boosting Algorithm have been described. While building digital twins of the materials
and alloys are the most important part in transferring these materials to the Metaverse,
it should be noticed that concentration on simple and more effective methods to achieve
this objective is necessary. To evaluate this process, Mean Absolute Model (MAE) has been
used. Figure 14 presents the heat map of all used ML-methods to analyze the alloy. This
way, RFR estimates A20 with highest rate of accuracy with an MAE of 1.1. On the other



Mathematics 2023, 11, 4 19 of 23

hand, RFR and LR shows the worst performance in digital twining FB. However, the other
two remaining methods could not have an acceptable output in modeling FB. Figure 15
shows that all proposed methods have desirable performance in modeling A20, while
estimating FB was problematic. Figure 16 shows the MAE histogram of the ML methods
for each target. Based on this chart, it can be concluded that, in most cases, DT had a
successful implementation.

Figure 14. Heat map of the used ML methods in implementing the digital twins of the proposed alloy.

Figure 15. Evaluation the performance of the utilized ML approaches to the experimental data using MAE.
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Figure 16. MAE histogram of the proposed method in modelling the alloy based on different parameters.

One of the important factors that has been focused on in this research is the connectivity
of the models. As many platforms have been implemented based on the AI, digital
twining of the materials based on ML methods facilitates this characteristic to present
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the models in the Metaverse [32]. Numerous new technologies have recently emerged as
a result of applications of ML methods, and they can be a backbone for the development
of digital twin technology and to enhance the efficiency of cyber-physical systems. AI
demonstrates several characteristics that can be used to analyze and model the most
complex behavior of the system and create structures in the Metaverse, where the structures
built in a virtual environment function like physical ones. This is the reason for their
connected nature. Therefore, supplying experimental data to create these models using
ML techniques enables the communication between the physical component such as an
alloy and its digital equivalent. This connection is the foundation of digital twins; without
it, there would be no digital twin technology. This connectedness is produced through
intelligent analysis, data mining, and physical items like alloys to model their properties.
Nevertheless, these systems’ ability to collect data and analyze information quickly and
accurately is another benefit. Digital twin technology based on the ML approach also leads
to better connectivity among organizations, products and customers.

From a mechanical viewpoint, due to different processes and specialized applications,
alloys can become strongly complex, which can cause physical disturbances. These can
result in mistakes or accidents, but they can be controlled by modeling the actual interaction
that occurs while the material handling systems are in use. The combination of such a
physical simulation model with an experimental model of an alloy based on data mining
extends to the idea of a digital twin. The main function of digital twins is to provide
decision assistance for real systems by coupling simulation models with operational data.
There have been few known instances of digital twins being used in manufacturing outside
of the machine tool industry.

6. Conclusions

In this paper, four ML approaches have been employed to digital twining materials
with a focus on mechanical properties of a Q&P treated 4SiCr steel alloy. This study
can be considered a useful reference for the mechanical and material engineers as to
how they can transfer a digital version of their products to the Metaverse using ML. The
proposed ML methods include ML Linear Regression, Decision Tree Regression, Random
Forest Regression, and the Gradient Boosting Algorithm. This research shows how these
classical ML techniques can analyze and model the complex behavior of the proposed
alloy and overcome the existing shortage of tangible digital twin implementations in the
manufacturing process. The results show the suitable applicability of the proposed method
in the digital twining of the proposed alloy.

With regard to the three digital twin functions of prediction, monitoring, and diagnosis,
a real-world use case illustrated the flexible advantages of the adopted approaches. It is
worthy of note that the method presented here isn’t a full-fledged digital replica of an
alloy that exhibits every conceivable behavior linked to a structure. This method can be
improved with deep learning methods, although deep learning may not be productive, as
in alloys the extraction of the data is very limited.

This study aimed to create digital twins for actual alloys and study the intricate interac-
tions between manufacturing structures in the Metaverse and digital twins. Concentrating
on the interconnected features of the understudied alloy characteristics, expansion impacts
the accuracy, acceptability, and applicability of the digital twins.
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