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Highlights

Toward Extracting and Exploiting Generalizable Knowledge of Deep 2D Transformations in Computer Vision

Jiachen Kang, Wenjing Jia, Xiangjian He

• We demonstrate a new learning methodology, with which the Convolutional Neural Networks (CNNs) can learn generalizable
knowledge of image transformation mechanisms. Specifically, even if a CNN model is trained on black/white noise, it can still
robustly predict the transformation parameters when tested on MNIST, regardless of the domain (semantics) of images.

• We design a novel architecture “InterpretNet” to simulate human visual perception in image classification. With the acquired
generalizable knowledge, InterpretNet is able to provide additional explainability in classifying images with covariate shifts.
Specifically, in addition to answering questions like “Is there a ‘5’ in the image? ”, the InterpretNet is also able to answer
“Why do you think it is a ‘5’ ? ”.
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Abstract

The existing deep learning models suffer from out-of-distribution (o.o.d.) performance drop in computer vision tasks. In compari-
son, humans have a remarkable ability to interpret images, even if the scenes in the images are rare, thanks to the generalizability of
acquired knowledge. This work attempts to answer two research questions: 1) the acquisition and 2) the utilization of generalizable
knowledge about 2D transformations. To answer the first question, we demonstrate that deep neural networks can learn generaliz-
able knowledge with a new training methodology based on synthetic datasets. The generalizability is reflected in the results that,
even when the knowledge is learned from random noise, the networks can still achieve stable performance in parameter estimation
tasks. To answer the second question, a novel architecture called “InterpretNet” is devised to utilize the learned knowledge in
image classification tasks. The architecture consists of an estimator and an identifier, in addition to a classifier. By emulating the
“hypothesis-verification” process in human visual perception, our InterpretNet improves the classification accuracy by 21.1%.

Keywords: Deep Learning, Knowledge Acquisition, O.O.D. Generalization, Explainability, Computer Vision

1. Introduction

Machine learning algorithms based on deep neural networks
(DNNs) have made dramatic progress in the field of computer
vision in the last decade. Most of these algorithms strongly rely
on the assumption of i.i.d., i.e., the training data and test data
are independent and identically distributed. In practice, how-
ever, the i.i.d. assumption can be easily violated due to covari-
ate shift in test datasets [1, 2, 3, 4], which can cause significant
performance drops in the models learned from the training set.
This is known as the out-of-distribution (o.o.d.) generalization
problem, which has become one of the main challenges that
the deep learning community encounters nowadays. One of the
common stopgaps for this problem is to continuously expand
the size of training datasets, in order to strengthen the learned
invariance of the target objects, by getting rid of other mech-
anisms (or factors of variation). For example, ImageNet [5],
which is a typical dataset for training classification and detec-
tion algorithms, contains more than 14 million images. Even
so, popular classification models trained with ImageNet have
experienced 40 − 45% performance drop when tested on Ob-
jectNet [2], a bias-controlled dataset that produces thousands
of images with 600 combinations of parameters, by interven-
ing only on three mechanisms in the photo generation process.
This implies that if we try to construct a big enough dataset
to approximate the distribution of real-world data, by consider-
ing all possible combinations of parameters of mechanisms, the
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Figure 1: What is in image (a)? There are at least two ways to interpret it,
i.e., (b) three black circles partly covered by a white triangle, or (c) three black
circles with a notch on each of them. (The former one may have a stronger
tendency in perception, according to the Gestalt principles [13].)

number of required data points would be nearly infinite. Similar
generalization problems in various sensory domains have been
reported in deep learning literature, such as 3D object model-
ing [6, 7], natural language processing [8, 9], time series signal
processing [10, 11, 12], etc.

Human beings, in comparison, have powerful o.o.d. gener-
alization abilities that enable us to recognize objects based on
efficient learning. Extensive studies have shown that learned
knowledge can be flexibly reused by infants in novel scenar-
ios [14, 15, 16, 17]. This is analogous to algebraic opera-
tions [18], where symbolic variables are manipulated in compu-
tational processes. This can be a crucial explanation for the gen-
eralization ability. To illustrate this, if we look at Fig. 1(a) [19],
based on the same observation, at least two interpretations can
be made, as shown in Figs. 1(b) and (c). This simple example il-
lustrates a typical process of human image perception, in which
causal inference (in the anti-causal direction) is made by utiliz-
ing the mechanisms of either occlusion or notching on variables
of circles and/or triangles. Specifically, the process consists of
a hypothesis (of the content of three circles and a triangle) and
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the verification (whether a figure like this can be generated by
covering the triangle over the circles). If another hypothesis
(e.g., of just three circles) and a corresponding verification (by
making a notch in each of them) can be made, the figure still
makes sense to us. This “hypothesis-verification” process in
human visual perception has been discussed in detail in [20]. It
can be noticed that mechanisms in image generation processes
(e.g. occlusion or notching) are crucial in human visual per-
ception. How an image is perceived relies on our knowledge
of various mechanisms, rather than knowledge of images that
are previously seen (the latter is the way that existing machines
operate). It can also be noticed that our knowledge about oc-
clusion or notching is universal and independent of the domain
of variables. This generalization is also referred to as system-
aticity [21]. Based on the above analysis, it can be inferred that
it is the generalizability of the knowledge about mechanisms
that helps human beings achieve excellent o.o.d. generalization
performance in visual perception.

While children have plenty of time to gain generalizable
knowledge and physical mechanisms through observations and
experiments [22, 23, 24], which build foundations for object
perception and future knowledge acquisition [25, 26, 16], exist-
ing machine learning models rarely have opportunities to do so.
One of the main reasons is that current datasets for visual learn-
ing inevitably introduce confounding mechanisms, which make
it difficult for models to learn unbiased representations and ac-
quire generalizable knowledge [27, 28, 29]. Additionally, most
of the studies focus on learning the invariance of objects of in-
terest [30, 31, 32, 33], neglecting the fact that other mechanisms
also provide necessary information for perception, as shown in
the previous example.

Therefore, in addition to the learning of invariance of target
objects, empirical studies are conducted in this paper to learn
knowledge about 2D transformation mechanisms (such as rota-
tion, scaling and translation) using DNNs, in order to answer
the following questions:
(1) Whether the learned knowledge of transformation mecha-
nisms can exhibit some degree of generalizability? If so,
(2) whether the knowledge can be leveraged to facilitate image
classification tasks like humans?

In order to answer the first question, it should be made clear
what we mean by the knowledge of a mechanism. We take the
2D rotation of images as an example of mechanisms. As hu-
man beings, if we have learned the knowledge of 2D rotation,
it means that for any image, with a proper tool, (a) we can ro-
tate the image at will, and (b) we are able to determine whether
(and even how many degrees) the image has been rotated. Ob-
viously, the knowledge that we know about 2D rotation general-
izes systematically and is independent of the domain of images.
For transformation mechanisms studied in this work, the affine
transformation functions are in accord with the description in
(a), and are used as a tool to make precise operations1. There-
fore, our main purpose is the learning of the latter aspect (b),

1It does not imply that transformation operations cannot be learned from
data. Generative models, which are beyond the scope of this study, have been
studied in various tasks [34, 35].

i.e., the estimation of transformation parameters. To achieve
this, we devise a new training methodology and use synthetic
datasets generated with the target transformation mechanisms
for training. It has been found that with this training methodol-
ogy, the transformation parameters can be estimated accurately
and stably, even when networks are trained on random noise
and tested on semantically different images.

For the second research question, we propose the architec-
ture of “InterpretNet”, to emulate the hypothesis-verification
process in human perception in the task of hand-written digit
classification, inspired by the theory in [20]. The proposed In-
terpretNet (Fig. 2) consists of modules of an estimator and an
identifier, which are trained offline separately, and equipped
with generalizable knowledge of mechanisms such as 2D trans-
formations. With the acquired knowledge, InterpretNet is able
to provide additional explainability in classifying images with
covariate shifts. Specifically, in addition to answering questions
like “Is there a ‘5’ in the image? ”, the InterpretNet is also able
to answer “Why do you think it is a ‘5’? ”. In the case of o.o.d.
classification task, the test accuracy of InterpretNet is signifi-
cantly higher than a classic classifier. More impressively, even
if it has not seen and thus had no knowledge of hand-written
digits during training, InterpretNet can still do the classifica-
tion, through hypothesis and verification, just like humans.

To the best of our knowledge, InterpretNet is the first work
that attempts to learn the generalizable knowledge about mech-
anisms and use the learned knowledge in image classification.
The main contributions are as follows.

• We demonstrate a learning methodology, with which the
DNNs can learn generalizable knowledge of image trans-
formation mechanisms robustly using synthetic datasets
(and thus answer the first research question).

• We design a novel architecture “InterpretNet” to simulate
human visual perception in image classification, with ad-
ditional explainability, based on the knowledge that has
been mastered (and thus answer the second question).

Real-world images can be considered as the result of the in-
teractions between factors of variation, such as foreground and
background objects, lighting conditions, camera attributes, etc.
Additionally, with the rapid development of computer graph-
ics, photo-realistic synthetic datasets with 1) controlled inter-
ventions on target factors of variation, and 2) automatic pixel-
accurate annotations, can be efficiently created with 3D render-
ing engines. Therefore, with the proposed methodology and
photo-realistic synthetic datasets, target factors of variation can
be learned and leveraged in the same manner as in this work.

In the following sections, we first review works related to our
study in Section 2. We then propose a novel learning method-
ology and the architecture “InterpretNet” to learn and leverage
generalizable knowledge of 2D Transformations in Section 3.
Details of experiments are described, and results are discussed
in Section 4. Finally, the paper concludes in Section 5.
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Figure 2: The InterpretNet architecture. Potential classes are hypothesized by the classifier C, and verification on these classes is made by the estimator E and the
identifier I through the pipeline of (1) analyzing possible transformations, (2) reconstructing from candidates and (3) matching them with the sample.

2. Related Work

In this section, techniques and research works in computer
vision related to this work are briefly summarized.

Data Augmentation and Domain Randomization. To
tackle the potential drop in o.o.d performance, effective and
commonly used techniques include data augmentation [30, 36,
37, 38, 39] and domain randomization [40, 41].

Data augmentation plays a crucial role in computer vision
by expanding the size and diversity of training datasets, reduc-
ing overfitting, and enhancing the accuracy of machine learning
models. In this section, we briefly review recent works in com-
puter vision to illustrate various data augmentation techniques.

Geometric and color transformations such as rotation, shear-
ing, translation, contrast, brightness, and color jittering are
widely used techniques. Researchers often combine these
transformations to improve performance. Therefore, Cubuk
et al. [36] proposed a search space for automated augmenta-
tion strategies that control all operations jointly. This technique
has led to reduced computational expense and improved perfor-
mance across various tasks (e.g., 1.0 - 1.3% accuracy improve-
ment on object detection tasks).

Noise injection is another commonly used technique. Kar et
al. [38] developed an approach that generates noise and corrup-
tion by incorporating 3D information consistent with the scene
geometry. This approach includes corruptions such as motion
blur, fog, etc., which better represents distribution shifts occur-
ring in the real world, leading to a lower error rate across vari-
ous tasks (e.g., 1.56% l1 error reduction on the AE benchmark).

Synthetic image generation is gaining attention in computer
vision. Hao et al. [39] proposed MixGen, a technique that gen-
erates new image-text pairs preserving their semantic relation-
ships, thus enhancing data efficiency. This technique achieved
significant performance improvements (e.g., a 6.2% accuracy
boost on the COCO fine-tuned image-text retrieval task).

Each of these techniques has its own advantages and disad-
vantages under certain circumstances. For example, in the case
of multi-modal pre-training which is growing in influence in
computer vision recently, geometric and color transformations

may result in the mismatching of image-text pairs and unnec-
essary data pollution of multi-modal datasets. Whereas syn-
thetic data generation may be more suitable in such cases, even
though they may require additional computational resources.

The technique of domain randomization shares similar prin-
ciples with data augmentation. While data augmentation is
usually referred specifically to as 2D transformations, domain
randomization is often adopted when manipulations are made
on parameters in 3D environments. From a causal perspec-
tive, they both make treatment randomization to get rid of con-
founders and to improve the learning of invariance. Based
on this principle, our work also produces synthetic datasets
through treatment randomization, but for a different purpose,
that is, instead of randomizing out the mechanisms of variation,
we aim to take them into consideration in classification tasks.

Parameter Estimation. As introduced above, the task for
learning mechanisms of 2D transformations is to estimate the
transformation parameters. This task has been extensively stud-
ied in various computer vision topics, such as 2D spatial invari-
ance learning [42], object detection [43, 44], and 3D pose es-
timations [45, 46], among many others. However, in most of
the existing studies, parameter estimation is restricted to object
categories that appear in the training sets. An important rea-
son is that single-image parameter estimation is an ill-defined
problem, in the sense that parameters of transformations are
actually procedural variables, whose values are determined by
both of the pre- and post-transformation states. The analysis
and results in Sections 3.1 and 4.1.4 show that models trained
with methodologies based on single images, can hardly gen-
eralize to unseen categories. In this work, the parameter esti-
mation ability that we are interested in should exhibit a certain
degree of generalizability similar to humans. Another series of
works [47, 48] and the study in [49] conducted representation
learning based on pairs of images that are related through mech-
anisms, by using a single encoder for multiple mechanisms. In
this work, to eliminate the potential entanglement from multiple
mechanisms, we try to isolate knowledge of single mechanisms
and reuse them in downstream tasks.

Time Series Analysis. Deep learning studies on time se-
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ries cover almost every field of real-world applications, due
to its inherent connection with the temporal dimension of the
world. These applications include geophysical processes mod-
eling [50], human physical [51, 52] and mental [53, 54, 55]
activity analysis, cybersecurity [56], to name a few. This study
is related to time series analysis if we consider the transforma-
tion of images as a process, and the two most critical time slices
are those before and after the transformation, which are of in-
terest to this study. Architectures such as Convolutional Neural
Networks (CNNs) [52, 53, 54, 57], Long-Short-Term-Memory
(LSTM) [53, 58], Extreme Learning Machine (ELM) [59, 57],
etc., are widely used in researches of time series. CNN is
adopted in this study to better model 2D image transformations.

Program Induction. The knowledge learning in this work is
essentially a program induction problem. Active deep learning
topics in this area include program synthesis [60, 61], image
generation [62, 63], etc. Program induction aims for a more ef-
fective generation of programs, whereas this work focuses more
on the interpretation of images. Therefore, the domain-specific
languages in this work are fundamentally different, being more
semantically relevant to the downstream tasks.

3. Methodology

To answer the two questions raised in the Introduction, we
investigate the generalizability of knowledge of image transfor-
mation mechanisms and leverage the learned knowledge in im-
age classification tasks. We follow common practices in com-
puter vision community [64, 65], by starting the investigation
with the most popular and fundamental MNIST dataset [66].
During image classification, the test set may have a potential
covariate shift caused by a target mechanism that cannot be
overcome through data augmentation (which is a common sit-
uation in real-world applications). We simulate this setting by
applying random 2D transformations on the MNIST test set,
with no data augmentation operations of any kind performed
during training.

Inspired by the human perception process in Fig. 1, we pro-
pose that if the machine can learn the knowledge of a target
mechanism, it is expected to perform better in the classification
tasks under the covariate shift caused by the mechanism. Ac-
cordingly, we devise the “InterpretNet” which consists of three
DNN modules: a classifierC, an estimator E and an identifier
I, to demonstrate this.

We first describe how the datasets are constructed for mod-
ules E and I to learn generalizable knowledge of mechanisms
in Section 3.1. Then we propose the training methodology for
modules E and I in Section 3.2. InterpretNet makes predic-
tions in classification by raising hypotheses with C and verify-
ing them with E and I. The details about the architecture are
described in Section 3.3.

3.1. Synthetic Datasets

To help DNNs learn the generalizable knowledge of a mech-
anism, the principle, based on which a training set is synthe-
sized, is explained below. Generally, let us denote by x and

Figure 3: The causal graph of image transformation. X: Image before the
transformation. X f : Image after the transformation. Θ: Parameter(s) of the
transformation in this study, as the variable is randomly sampled, this “treat-
ment randomization” operation removes all arrows pointing to Θ. U: Other
unobservable variables that cause the generation of X.

x f , respectively, the images before and after transformation f
(parameterized with θ), then we have

x f = f (x; θ). (1)

Note that, θ here can be a vector, representing any transforma-
tion parameters. In this study, θ represents the rotation angle,
the scaling factor, the translation offsets, or the combination of
the above. As explained in the Introduction, the goal of the
knowledge learning is to estimate the value of transformation
parameter θ. Let X, X f and Θ be the variables from which x,
x f and θ are instantiated, respectively. According to the causal
graph in Fig. 3, if the estimation is made based only on the
image after transformation, i.e., E(Θ|X f ), given that X f is a col-
lider, conditioning on it will inevitably cause the information
flow from U toΘ, which will hinder us from learning stable and
thus generalizable knowledge of f (via Θ). Therefore, in order
to remove confounding caused by U, thus making the predic-
tion ofΘ generalize better in test domains, we have to condition
on both X and X f , i.e., the Markov blanket of Θ. 2

Concretely, in knowledge learning we aim to compute
EPtest (Θ|X, X f ) given only access to Ptrain(x, x f , θ). The Covari-
ate Shift Assumption and Same Support Assumption, i.e.,

Ptrain(θ|x, x f ) = Ptest(θ|x, x f ) and, (2)
supptrain(x, x f ) = supptest(x, x f ), (3)

are required for the causal model to work, where Ptrain and
Ptest are distributions of data in training and test sets, and
Ptrain(x, x f , θ) , Ptest(x, x f , θ).

In this work, synthetic datasets for knowledge learning are
constructed according to the above causal framework. Each
data point is composed of a pair of images x and x f that are
before and after the transformation, and the transformation pa-
rameter θ. Since the labels are automatically generated and
no manual annotation is needed, this can be viewed as a self-
supervised learning problem.

Learning the knowledge of transformation mechanisms that
can be leveraged in classification involves two tasks, i.e., esti-
mating the parameters of the 2D transformation fT (x; θT ), and
determining the identity of an image pair defined by the iden-
tity function fI(x; θI). An image xT generated through the 2D
transformation function fT can be represented as:

xT = fT (x; θT ). (4)

2This is also intuitively true, because it is pointless to ask how a picture has
been transformed when no reference is provided.
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In this work, we target 2D transformation mechanisms includ-
ing rotation, scaling and translation, which are implemented us-
ing affine transformation functions. For the identity function
fI(x; θI), when θI = 1, the function returns a same-identity but
transformed image x̂T , and any random sample other than x̂T

when θI = 0. Concretely, the identity function is defined by:

xI = fI(x; θI) =

x̂T if θI = 1;
x̂′T if θI = 0,

(5)

where

x̂T = fT (x; θ̂T ),

x̂′T = fT (x′; θ̂T ).

Here, x′ is a random sample other than x, and θ̂T is the 2D
transformation parameter estimated by the Estimator E (see
Sections 3.2 and 3.3 for the details).

3.2. Knowledge Learning

Based on the above synthetic datasets, the estimator E and
the identifier I are trained to learn knowledge of 2D transfor-
mations fT and the identity function fI , respectively. Specifi-
cally, we employ E that takes as the input paired images x and
xT generated from fT , to predict the transformation parameters
θ̂T . The role of I, on the other hand, is to learn from fI and
to predict the probability that a pair of images are of the same
identity. In practice, note that the inputs of I are xT and xI (in-
stead of x and xI).

The mechanism of fT is independent of fI , and thus E is op-
timized first, by minimizing the mean squared error loss LMS E

on θT . I is then trained based on datasets generated with fI and
E, and optimized by minimizing the binary cross entropy loss
LBCE on θI . Therefore, the objectives of knowledge learning in
this study can be represented as:

arg min
E

LMS E(E(x, fT (x; θT )), θT ), (6)

arg min
I

LBCE(I( fT (x; θT ), fI(x; θI)), θI). (7)

Knowledge Learning Models To obtain modules E and I
that are capable to learn more generalizable knowledge, we in-
vestigate a less studied Convolutional Neural Network (CNN)
model, which takes concatenated image pairs as input (shown
in Fig. 4(a)). This model is referred to as “CNN pair” in
this paper. We also take two commonly studied CNN mod-
els that are relevant to this research as baselines, which are
the Siamese networks [67] (Fig. 4(b)) and the Vanilla CNN
(Fig. 4(c)). The Siamese networks, extensively studied on
datasets with intrinsic relations in metric learning and repre-
sentation learning, also take image pairs as input during train-
ing. The vanilla CNN, which is another common method for
numerical regression tasks, takes single-images as input and is
denoted as “CNN single” in this paper.

FCCNN(a)

(b)

(c)

concat.

share
weight FC

FC

CNN

CNN

CNN

concat.

Figure 4: The forward process of three CNN models used for knowledge learn-
ing. (a) CNN pair: paired images x and x f are concatenated in channel di-
mension before being fed into CNN. The transformation information is en-
coded as representations in the latent space, which are then sent to the fully
connected (FC) layer; (b) Siamese network: x and x f are fed into CNN sepa-
rately. The representations are then concatenated and fed into the FC layer; (c)
CNN single: Only the transformed images x f are fed into CNN and encoded.
The representations are then linearly transformed through the FC layer, and the
2D transformation parameters are predicted as output.

3.3. InterpretNet for Classification
With the learned knowledge, we then demonstrate how the

learned knowledge can be leveraged for image classification
tasks. Towards this end, we design an “InterpretNet” archi-
tecture. The InterpretNet consists of three DNN modules: a
classifier C, an estimator E and an identifier I. It makes
classification predictions by first raising hypotheses with C and
then verifying them with E and I. We now describe in detail
each module and its roles in simulating the human hypothesis-
verification process.

Classifier C. To create an o.o.d. task, images in the MNIST
test set are transformed before testing, denoted by Xtest

T , while
those in the training set, denoted by Xtrain, are original ones
without any transformation. Given a test sample xtest

T ∈ Xtest
T ,

the Classifier C produces a probability distribution of the test
sample across all classes, which is exploited as confidence
scores. If the highest confidence score across all classes is lower
than a preset threshold, instead of making a prediction, C will
output a hypothesis H(xtest

T ) = {yi}
k
i=1, containing a list of class

labels with the top k confidence scores for further verification.
Estimator E. The Estimator E randomly samples N(N ⩾ 1)

candidates from Xtrain for each class in H(xtest
T ). Concretely, if

the set of all candidates for xtest
T is denoted by Xc ⊂ Xtrain, we

have Xc = {X
(yi)
c }

k
i=1, and each X(yi)

c = {x(yi), j}Nj=1. With the as-
sumption that xtest

T may be transformed from what looks simi-
lar to some of the candidates in Xc, E then analyzes the rela-
tionship between xtest

T and each candidate w.r.t. the 2D transfor-
mation using the knowledge learned previously, by computing

θ̂i, j
T = E(x(yi), j, xtest

T ).
Identifier I. Since E is a deterministic function and will pro-

duce an output regardless of whether two images are really re-
lated, the role of the Identifier I is to examine which candidate
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is more similar to the xtest
T . To achieve this, firstly, reconstruc-

tions are performed on each candidate by exploiting the param-

eters θ̂i, j
T predicted by E and we obtain x̂(yi), j

T = fT (x(yi), j; θ̂i, j
T ).

Then, x̂(yi), j
T is tested with I on how likely it matches to xtest

T , us-

ing I(xtest
T , x̂

(yi), j
T ), which is trained with the identity function fI .

The label of the candidate with the highest likelihood will be

output as the final prediction ŷ = arg maxyi I(xtest
T , x̂

(yi), j
T ).

In the above process, the potential classes are hypothesized
by C, and verification on these classes is made by modules E
and I through the pipeline of (a) analyzing possible transfor-
mations, (b) reconstructing from candidates, and (c) matching
them with the sample.

It can also be noticed that the pre-trained modules E and I
do not have access to MNIST during training, and do not have
to rely on C either. Based on the fact that the training and test
set of MNIST share the same class label space, we also explore
the architecture of InterpretNet without a C (denoted as “In-
terpretNet noC”). The only difference is that InterpretNet noC
directly takes all classes as a hypothesis (k = 10).

The codes of our methodology are publicly available3.

4. Experiments

In this section, experiments are conducted to answer the two
questions raised in the Introduction, i.e.,
(1) whether the learned knowledge of transformation mech-
anisms can exhibit some degree of generalizability? (Sec-
tion 4.1)
(2) whether the knowledge can be leveraged to facilitate image
classification tasks like humans? (Section 4.2)

4.1. Is the Learned Knowledge Generalizable?
In order to study the robustness of the estimations on θT of

fT and θI of fI , synthetic datasets are constructed according to
the procedure described in Section 3.1. Three DNN models are
trained and tested based on the methodology illustrated in Sec-
tion 3.2. Next, we first examine the performance of CNN pair
in Sections 4.1.2 and 4.1.3. The comparisons between the
CNN pair and the two baseline models, i.e., the Siamese net-
works and the CNN single, are conducted in Section 4.1.4.

4.1.1. Training
Datasets. In the experiments, the original images in MNIST,

EMNIST [68] and CIFAR-10 [69] are randomly transformed
before being used as x to alleviate the potential overfitting. We
obtain xT = fT (x; θT ), where the transformation parameters θT

are randomly sampled in a uniform distribution (see Table 1).
In this work, we conduct learning on four types of fT , includ-

ing individual transformations of rotation, scaling and transla-
tion, and the joint transformation of the above three. For learn-
ing individual transformations, only one of the three transfor-
mations is applied at a time, while all three transformations are
applied simultaneously in the joint case.

3Codes have been released at https://github.com/xxx

Table 1: The parameters of 2D transformations investigated in experiments.
Each parameter is uniformly sampled within its ranges.

Parameter Range
Rotation angle [−90◦, 90◦]
Translation (horizontal) [−5, 5] pixels
Translation (vertical) [−5, 5] pixels
Scale factor [0.7, 1.3]

Furthermore, to demonstrate that the generalizable knowl-
edge is independent of the domain of images, a synthetic dataset
composed of black/white noises (of a Bernoulli distribution) is
randomly generated and used as x. To better test generalizabil-
ity, all test data are sampled from datasets that are semantically
different from the training sets. Three groups of experiments
are conducted, whose detailed schemes are listed in Table 2.

Model Settings for Knowledge Learning. The CNN model
in [47] is used as the backbone in CNN pair and the two base-
lines (i.e., the Siamese network and CNN single). All input
pairs of x and xT are concatenated along the channel dimension
before being fed into the CNN pair. Thus, the input dimension
is Nbatch × 2 × 28 × 28 in Exp MNIST and Exp NOISE, and
Nbatch × 6 × 32 × 32 in Exp CIFAR, where Nbatch is the batch
size. We keep the default settings for the baselines.

Training Details. The CNN models are trained using Adam
optimizer with a batch size of 512 and the weight decay set to
5.0 × 10−4. In Exp MNIST and Exp CIFAR, the models are
trained for 500 epochs in each experiment, with the learning
rate initialized to 0.03 and decaying by a factor of 0.6 for every
50 epochs. In Exp NOISE, since the noise images are generated
on-the-go, the models are trained for 1.0 × 105 steps with the
same batch size of 512. The initial learning rate is also set to
0.03 with a decaying factor of 0.5, and a decaying cadence of
1.0 × 104 steps.

4.1.2. Learning of 2D Transformation Mechanisms
The performance of CNN pair on learning the knowledge

of the three individual transformations is presented in Figs. 5
and 6. It can be observed in Fig. 5 that the majority proportions
of the absolute percentage errors (APE) (e.g. the third quar-
tile in the distributions) are below 20% in most experiments
for CNN pair. Moreover, Due to the domain shift between the
training and test sets, varying degrees of distribution shifts of
the APE can be observed in Fig. 6. However, the shift is signif-
icantly smaller for model CNN pair compared to the other two
models, namely Siamese network and CNN single. Comparing
the mean median of the distribution shift across all three mech-
anisms, the CNN pair exhibits a much lower shift of 2.5% APE
between training and test sets, while the Siamese network and
the CNN single exhibit shifts of 9.2% and 76.8%, respectively.

The above prediction performance and the minor distribu-
tional difference of APE indicates the robust generalizability
of 2D transformation knowledge learned by CNN pair. This is
a noteworthy finding, considering the fact that the data in the
training and test sets differ completely in terms of semantics.
More results on the performance of CNN pair on 2D transfor-
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mation learning can be found in Appendix A.

4.1.3. Learning of the Identity Function
To evaluate the generalization performance of the θI estima-

tion, Exp NOISE in Table 2 is chosen to train the CNN pair
because it is the most difficult among the three experiments.
Synthetic data is generated for training with the method in Sec-
tion 3.1, where the parameter θI randomly takes a value of ei-
ther 0 or 1 in order to produce a balanced dataset. The resultant
F1 scores are 0.9987 and 0.9757 for training and test set, re-
spectively. This minor difference between the two F1 scores
again indicates the strong generalizability of knowledge of the
identity function learned with CNN pair.

4.1.4. Key Elements in Knowledge Learning
In this section, ablation studies are conducted to examine el-

ements crucial for learning generalizable knowledge.
Firstly, as analyzed based on the causal graph in Fig. 3, if

there exists a causal relationship from U to X, it is necessary
to condition on both X and X f in order to predict Θ robustly.
As shown in Fig. 6, the performance drop of the generaliza-
tion of CNN single is much more severe in all learning cases,
compared with CNN pair and Siamese networks that both take
paired images X and X f as inputs. The translation learning of
CNN single generalizes relatively better than rotation or scal-
ing learning of CNN single, because the position of X (the orig-
inal images in this case) is always in the center and independent
of U. However, while being able to estimate rotation angles ac-
curately in the training set, CNN single completely fails in the
test set, because the estimation of angles relies highly on the
pattern of images, which is determined by U. This also offers
insight into numerical regression tasks in contemporary com-
puter vision studies, such as object pose estimation, for which
given only the images after transformation for training, a good
generalization performance cannot be expected.

Secondly, for CNN backbones, computation based on image-
level concatenation (instead of feature-level) is beneficial for
making more accurate estimations. Fig. 6 shows that Siamese
networks underperform CNN pair in learning all mechanisms.
Much information about transformations is lost through the
convolutional and max pooling operations, while more infor-
mation can be preserved from the beginning with the CNN pair.

Additionally, we speculate that the inductive bias of CNNs
fundamentally affects the effectiveness of knowledge learning.
This is based on the observation of the learning curves of the
three mechanisms (in Fig. A.13 in Appendix A). Fast learning
on translation and scaling and a slow one on rotation can be no-
ticed for all models, indicating that CNN models have greater
difficulty learning the mechanism of rotation. Another interest-
ing property of CNN pair and Siamese networks can be found
(only) in learning translations. Given two images x and xT both
with a small square in the center, and the target value of trans-
lation θT , we can obtain a (coarse) translated version of xT by
optimizing xT with gradient decent according to:

xT ← xT − α∇xT LMS E(E(x, xT ), θT ), (8)

where α is the learning rate. As shown in Fig. 7, this opera-
tion can be viewed as an approximation of the translation func-
tion fT . Although this reversed generation of images is by no
means accurate and only limited to very simple patterns, the
phenomenon clearly shows what the models have learned.

Considering CNN’s properties of translation-equivariance,
positional information can be encoded and operated with CNN
at higher efficiency. An extensive investigation into other in-
ductive biases is necessary for a more solid claim to be made in
the future.

4.2. Can Knowledge be Leveraged?

In the previous section, it can be seen that effective learn-
ing can be achieved with CNN pair. The models are capable
of making accurate estimations on parameters θ, and this ca-
pability can be generalized to semantically different datasets.
This indicates a certain degree of generalizability. Hence, using
these models as building blocks, we construct the InterpretNet
as described in Section 3.3. In this section, the classification
performance is reported in Section 4.2.1, followed by the ab-
lation study in Section 4.2.2 and discussion of the relationship
with human’s visual perception in Section 4.2.3.

4.2.1. Classification Performance
In the experiment, classification is performed with the setting

of covariate shift caused by rotation. To construct InterpretNet,
the CNN pair models trained in Exp NOISE for the (individ-
ual) rotation learning and the identity function learning are ex-
ploited as the modules E and I, respectively. Only Exp NOISE
is conducted to train E and I, and therefore we can conclude that
semantic knowledge is not required in classification as long as
the models have learned how to transform and compare images.
The classifier C (or the basic classifier) is trained with original
samples Xtrain in MNIST without any data augmentations. The
length k of hypothesis H(xtest

T ) is set to 5 and 10. The number of
candidates N for E is set to 200 for each class. The confidence
threshold of C is set to 0.9999.

The classification accuracy obtained on the MNIST test set,
with or without rotations, is shown in Fig. 8. The first observa-
tion is that, in the case of rotated test set, the basic classifier has
experienced nearly a 40% performance drop. However, the ac-
curacy of InterpretNet has increased to 77% when k = 5 (Inter-
pretNet 5) and further to 82% when k = 10 (InterpretNet 10).
In InterpretNet, E and I are introduced for further interpreta-
tion when C is not very confident in its prediction, and they
provide extra explanations about why the sample is classified
as such and how it is rotated, by leveraging the knowledge of
rotation with E. Additionally, this process does not affect the
performance too much for the test set without rotation.

4.2.2. Ablation Study
The classifier C. InterpretNet noC is studied by removing

C from InterpretNet. Due to the absence of C and thus the
length of label space is unknown, the value of k is set to 10. It
is found that InterpretNet noC outperforms the basic classifier
by +13%, with a classification accuracy of 75% (in Fig. 8). It
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Table 2: The training and test data used in the three groups of experiments for knowledge learning. Five example images are provided for each dataset to
demonstrate the 2D transformations in each experiment. These transformations, shown from left to right, include the original image, rotation, translation, scaling
and a combination of the three. To prevent potential artifacts generated during transformations, such as slanted image edges, a circular mask is applied to CIFAR-10
and Noise images.

Experiment Training set Test set
Exp_MNIST

Exp_CIFAR

Exp_NOISE 

MNIST (training)

CIFAR-10 (training, 9 classes)

black/white noise

EMNIST (test, ‘letter’ division)

CIFAR-10 (training, the remaining class)

MNIST (test)

MNIST CIFAR NOISE
Experiment
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Figure 5: Performance of CNN pair for individual rotation learning. (left) Predictions of rotation angle vs. the ground truth (normalized to [−1, 1]) in test set. (right)
Distributions of absolute percentage errors (in %) of all data points in the dataset.

is worth noting that the performance is achieved without any
knowledge of the handwritten digits (since both E and I are
trained in Exp NOISE), but only through the processes of an-
alyzing, reconstructing and matching. Furthermore, only 4%
(200 × 10/50000) of the training data are accessed during in-
ference. This result indicates that InterpretNet noC is capable
of classifying characters that it does not know at all, as long as
necessary references are provided, which is behaviorally simi-
lar to human beings.

The estimator E. To investigate the role of E with its knowl-
edge about rotation, an ablation study was conducted on Inter-
pretNet noE by removing E from the InterpretNet. As shown in
Fig. 8, the InterpretNet noE loses the ability to interpret rotation
information and the performance on recognising rotated test set
has dropped from 82% to lower than 60%. On the one hand, this
indicates the importance of rotation knowledge to I, which re-
quires instructions for reconstruction. On the other hand, since
the rotated samples look very different from the candidates, it
also indirectly demonstrates the effectiveness of I.

The number of candidates. As shown in Fig. 9, classifica-
tion accuracy is greatly affected by the number of candidates.
Given that I is trained on noise, the module is really sensitive
to nuance differences. Therefore, to find a candidate that is
very similar to a sample, a candidate pool of a proper size is re-

quired. In addition, the generation of digits can also be viewed
as a mechanism. Unlike 2D transformations, the parameteriza-
tion of digit generation is much more complicated [70]. While
the integration of an estimation module for digit generation (as
a new E) into the existing InterpretNet would presumably re-
duce the required number of candidates significantly, this will,
at the same time, introduce new challenges in compositionality,
which involves the collaboration between multiple Es.

4.2.3. Simulation of human’s visual perception
In this work, we propose InterpretNet as an exploratory sim-

ulation of human hypothesis-verification process in visual per-
ception. Although the simulation is not reverse engineering of
the human brain, based on psychological studies about cogni-
tion and behaviors, both humans and InterpretNet share simi-
larities in how information is processed.

As human beings, we have the powerful ability to model
an object with functionally easier mechanisms according to
Gestalt principles [13]. This happens not only in visual per-
ception, but also in other aspects of behaviors [71, 72], where
people try to rationalize their behaviors with convincing (but
sometimes incorrect) reasons. The role of E and I in Interpret-
Net is actually to provide explainability, with which machines
can “make sense”, to some extent, of what they see. This ex-
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Figure 7: Images obtained with the Translation CNN pair through gradient de-
cent. The image in the center is the original one x. According to the values of
θ (four of them are marked in the corners), xT are generated through gradient
descent. In each of xT , an obvious offset of the light area from the original
position (the blue dot) to the target position can be observed.
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Figure 8: The performance of classification. InterpretNet 5 and InterpretNet 10
denote InterpretNet with hypothesis k = 5 and k = 10, respectively.

plainability also provides possibilities for humans to improve
the architectures, in ways that they can comprehend.

Furthermore, the simulation and imagination in brains have
been studied in various works, and are proposed as the key el-
ements in the understanding of physical scenes and counter-
factual reasoning [15, 73]. Based on the model of the world
in mind, humans can make predictions about the future (in a
causal direction) and infer the causes of things that have hap-
pened (in an anti-causal direction). In the architecture of In-
terpretNet, simulations of 2D transformations in anti-causal
and causal directions are enabled with the module E and the
affine transformation functions, respectively, which equip the
machine with an imagination space.
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Figure 9: The classification accuracy of InterpretNet with different numbers
of candidates. Performance surpasses the basic classifier (the green dash line)
when N ⩾ 10.

5. Conclusion

In conclusion, this study has conducted comprehensive ex-
periments to address the two research questions: 1) learning
and 2) leveraging generalizable knowledge of 2D image trans-
formations. Firstly, it has been demonstrated that learning gen-
eralizable knowledge of 2D image transformation mechanisms
is possible if the CNN pair model is trained on synthetic im-
ages that are intrinsically related through the mechanism. The
CNN pair model has exhibited significantly lower shift of mean
median APE, as low as 2.5%, compared to 9.2% and 76.8% for
the Siamese network and the CNN single, respectively. This re-
sult indicates robust generalizability of the learned knowledge,
irrespective of the semantic domain of images.

Secondly, the CNN pair model, with its acquired knowledge,
can be applied to InterpretNet and improve the performance of
image classifications under covariate shift. With a single clas-
sifier, the classification accuracy drops to 60.9% (from 99.3% )
after rotation. However, by leveraging the capability of trans-
forming and comparing images, InterpretNet has improved the
accuracy after rotation to 82.0% (+21.1%). The performance
boost of the InterpretNet suggests the effectiveness of the sim-
ulation in human-like visual perception.
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Appendix A. Additional Results

Individual learning. Additional results of performance of CNN pair for individual 2D transformation learning is shown in
Fig. A.10. Similar to the result in Fig. 5, several observations for individual learning are listed as follows.

• Majority of absolute percentage errors (APE) can be controlled to below 20% for individual learning, which indicates the
effectiveness of 2D transformation learning.

• There are only minor differences in the distributions of APE between the training and test sets for individual learning across
all experiments, which suggests strong generalizability.

Exp_MNIST Exp_CIFAR Exp_NOISE
Translation

Exp_MNIST Exp_CIFAR Exp_NOISE
Scaling

Exp_MNIST Exp_CIFAR Exp_NOISE
Rotation

0

20

40

60

80

100

A
bs

ol
ut

e 
P

er
ce

nt
ag

e 
E

rr
or Dataset

training
test

Figure A.10: Performance of CNN pair for individual 2D transformation learning. (left) Rotation. (center) Scaling. (right) Translation.

Joint learning. For joint learning of 2D transformation, obvious performance drop in both the training and test set can be observed
in Fig. A.11, compared with the individual learning, even if the number of parameters of CNN pair is four times that of models for
individual learning. Similar results are reported in study [74], where more accurate estimations of variables are made by separately
trained models, because of the improved “selectivity and invariance at the individual neuronal level”.
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Figure A.11: Performance of CNN pair for joint 2D transformation learning. (left) Rotation. (center) Scaling. (right) Translation.

CNN pair trained in Exp NOISE. Although CNN pair exhibits strong generalization, the performance decreases to some extent
when the difference between the training and test sets becomes considerably big. For instance, a larger performance gap between
the training and test set in Exp NOISE can be noticed, compared with the other two experiments in Fig. A.10 and A.11. The
most apparent characteristic in this experiment is the pattern difference between noises and hand-written digits, which implies the
potential difference in exploitation of patterns during learning.

To prove this, an ablation study was conducted by altering the ratio of black to white pixels of the training data in Exp NOISE.
As shown in Fig. A.12, the best-performing model for rotation learning is trained on 7 : 3 black/white noises. However, if the
pixel values in MNIST are swapped ( i.e. black digits on white background), the best performance can be achieved around 4 : 6.
Different ratios will provide different patterns that can be exploited in learning. The best ratio for individual learning of translation
and rotation is around 7 : 3, while for scaling it is around 3 : 7, which can also explain the poor o.o.d. generalization performance
of joint learning in Exp NOISE, since it is impossible for the model to learn the three transformations equally well with only one
ratio.
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Figure A.12: Performance of CNN pair in rotation learning with controlled black/white pixel ratios in EXP NOISE. Pixel values are swapped in MNIST b.

Learning curves in 2D transformation learning. The learning curves in 2D transformation learning are shown in Fig. A.13. For all
three models, fast learning on translation and scaling and a slow one on rotation can be observed.
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Figure A.13: The learning curves in transformation learning across different models. Fast learning on translation and scaling and a slow one on rotation can be
observed for all models.

Appendix B. Model Architecture Details

We follow the implementation in [47] to construct the three models (in Fig. 4) for knowledge learning experiments. The architec-
tures for individual mechanism learning are shown in Table B.3. The models for joint learning are only different in channel sizes,
which are all doubled in Exp MNIST and Exp NOISE, and 50% larger in Exp CIFAR.
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Table B.3: Architecture of models for knowledge learning.

Models in Exp MNIST and Exp NOISE Models in Exp CIFAR
5×5 Conv 96, BatchNorm, ReLU 5×5 Conv 192, BatchNorm, ReLU
1×1 Conv 64, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 64, BatchNorm, ReLU
3×3 MaxPooling stride 2 3×3 MaxPooling stride 2
3×3 Conv 32, BatchNorm, ReLU 3×3 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
3×3 MaxPooling stride 2 3×3 MaxPooling stride 2
3×3 Conv 32, BatchNorm, ReLU 3×3 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
3×3 MaxPooling stride 2 3×3 MaxPooling stride 2
2×2 Conv 32, BatchNorm, ReLU 2×2 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
3×3 MaxPooling stride 2 3×3 MaxPooling stride 2
FC FC
FC (Siamese networks only) FC (Siamese networks only)
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