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Abstract: This paper introduces a simple but effective image filtering method, namely, local adaptive
image filtering (LAIF), based on an image segmentation method, i.e., recursive dilation segmentation
(RDS). The algorithm is motivated by the observation that for the pixel to be smoothed, only the
similar pixels nearby are utilized to obtain the filtering result. Relying on this observation, similar
pixels are partitioned by RDS before applying a locally adaptive filter to smooth the image. More
specifically, by directly taking the spatial information between adjacent pixels into consideration in a
recursive dilation way, RDS is firstly proposed to partition the guided image into several regions, so
that the pixels belonging to the same segmentation region share a similar property. Then, guided by
the iterative segmented results, the input image can be easily filtered via a local adaptive filtering
technique, which smooths each pixel by selectively averaging its local similar pixels. It is worth
mentioning that RDS makes full use of multiple integrated information including pixel intensity,
hue information, and especially spatial adjacent information, leading to more robust filtering results.
In addition, the application of LAIF in the remote sensing field has achieved outstanding results,
specifically in areas such as image dehazing, denoising, enhancement, and edge preservation, among
others. Experimental results show that the proposed LAIF can be successfully applied to various
filtering-based tasks with favorable performance against state-of-the-art methods.

Keywords: edge-preserving filtering; guided filtering; image segmentation; multiple integrated
information

1. Introduction

Image filtering is a practical technique for suppressing incongruous noise while pre-
serving the intrinsic structure information in images, which has been widely applied in
many computer-vision applications, including image denoising [1–3], exposure image
fusion [4], single-image dehazing [5], etc. Generally, image filtering methods accomplish
filtering tasks by designing a translation-variant from the filtered input images to the output
images under the guidance of guided images. More and more efforts on image filtering
have been made with many meaningful achievements.

In existing remote sensing image dehazing methods [6–8], block artifacts tend to occur
quite easily. However, RDS makes full use of multiple integrated information sources
including pixel intensity, hue information, and especially spatial adjacent information, lead-
ing to more robust filtering results which effectively address the occurrence of block artifacts
and provide a better solution to the issue. During the process of handling remote sensing
images, it is essential to use our proposed method to smooth or enhance [9] the images
while maintaining the critically important edge preservation and enhancement effects.
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The existing image filtering methods can be mainly divided into two categories: local
methods and global methods.

Local methods: The core idea of local methods [10–28] is to achieve image smoothing
solely within local regions in the image. The most representative is the bilateral filter [10,11],
which filters the image by regulating the value of each pixel by taking a weighted average
of its neighboring pixels. In [12], a fast approximation of the bilateral filter was proposed by
imposing the combined color sparseness prior and local statistics prior to the filtering input
images. In [13], an accelerated bilateral filter was developed to efficiently compute filtering
results via applying a KD-tree sampling algorithm. To achieve satisfactory filtering results,
Gavaskar et al. [14] designed an improved bilateral filter with an adaptive Gaussian range
kernel. Apart from the bilateral filter, the guided image filter proposed by He et al. in [15]
also has a remarkable filtering capability; it derives the filtering result from the guided
image using a local linear model. By considering the structural differences between guided
and input images, Ham et al. presented an image filtering method in [16] which uses static
and dynamic guidance. Sun et al. developed a weighted guided image filter (WGIF) [17] to
achieve better-smoothing performance by incorporating edge-aware weighting operators
into the filtering process. Inspired by unsharp masking, Shi et al. presented a simplified
guided filter in [18] based on filtering prior from a low-pass filter.

Global methods: Different from the local methods, global methods [29–44] formulate
the filtering tasks as a global optimization problem consisting of a fidelity term and a regula-
tion term. Typically, the image filtering task is accomplished via building a global weighted
least square model to suppress the noise in the image, as in [29]. Min et al. proposed an
edge-preserving image smoothing filter [30], which solves the optimization problem by
designing a series of global linear sub-systems. In [31], the side window filtering technique
was proposed to effectively preserve the edge information. Xu et al. present an effective ap-
proach [45] for structure–texture image decomposition, leveraging the discriminative patch
recurrence to develop a nonlocal transform that can better distinguish and sparsify texture
components. Motivated by the rapid development of machine learning theory, many global
filtering methods [3,46–57] have been designed under the deep learning architecture. For
instance, a CNN-based joint filter [46] was proposed by selectively taking advantage of
the structure information consistent with both guided and input images. The Self2self [3]
introduces a self-supervised learning method for image denoising, which trains a denoising
network solely on the input noisy image, using dropout on pairs of Bernoulli-sampled
instances of the image. A fully convolutional neural (FCN)-based image filter method was
developed in [58], which determined the learnable parameter through end-to-end training.
However, these methods suffer from poor deployability because trained parameters for
one specific application can hardly be applied to other different categories of smoothing
tasks, making it difficult to put them into practical use at the current stage.

In this paper, we observe that the pixel in the filtered result tends to be obtained
by averaging the similar pixels nearby. Motivated by this observation, we first propose
a simple image segmentation method called recursive dilation segmentation (RDS) to
partition the image into several regions with similar pixels inside, which directly respects
the intrinsic spatial information between two adjacent pixels. Then, constrained by the
segmented results obtained from RDS, a local adaptive filtering technique named local
adaptive image filtering (LAIF) is developed to filter the input image by selectively utilizing
the local pixels. Benefiting from the effective RDS, the filtering process, i.e., to smooth
the flat regions and preserve the structure information, can be easily realized under the
guidance of segmented results. Different from previous works, the proposed LAIF makes
full use of the integrated information with respect to pixel intensity, hue component, and
especially spatial adjacent information, which makes the filtered results more accurate
and reasonable.

The paper is organized as follows. The motivation of this work is introduced in
Section 2 and LAIF is proposed in Section 3. This is followed by the experimental results of
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the LAIF and state-of-the-art methods in Section 4. Finally, the conclusions are provided in
Section 5.

2. Motivation

Generally, the task of image filtering is to design a linear translation-variant from a
filtering input image p to an output image q under the guidance of a guided image I, which
can be defined as:

qxxx = ∑
yyy∈ω

Wxyxyxy(I)pyyy (1)

where xxx and yyy are pixel indexes, Wxyxyxy(I) is a designed kernel weight to cope with the linear
relationship between p and q, and ω is an N-by-N local patch. This linear translation-
variant model is employed in the proposed LAIF and there is no doubt that the design of
the kernel weight is extremely important in the translation-variant model.

The inspiration of the design of the kernel weight in this work comes from two two
classic edge-preserving filters, i.e., bilateral filtering (BF) [10] and guided image filtering
(GIF) [15]. Before introducing the proposed LAIF, it is necessary to review these two classic
filtering algorithms.

In bilateral filtering, Wxyxyxy depends on the distance between pixels and the pixel intensity
differences. Mathematically, it can be formulated as

WBF
xyxyxy (I) =

1
Kxxx

exp

(
−‖xxx− yyy‖2

σ2
d

−
‖Ixxx − Iyyy‖2

σ2
r

)
(2)

where Kxxx is a normalization coefficient, and σd and σr are the standard deviations in the
spatial domain and range domain, respectively.

Figure 1a shows the filtering result of BF. Notably, the filtering ability of BF is remark-
able, which can be explained as follows: according to Equation (2), the output pixel is more
likely to be influenced by the nearby pixels with similar distance information and the pixel
intensity information (see the weight kernel shown in the figure), thus, the pixels in flat
regions are smoothed by the similar pixels nearby and the edges are preserved.

Figure 1. Demonstration of filtering processes of BF and GIF. (a) The filtering process of BF and an
enlarged section of the result. The red frames show the filtering weight kernel of two pixels in the
image (red means a larger weight and blue means a smaller weight). (b) The filtering process of GIF
and an enlarged section of the result. The white words in the zoomed-in panel are the description of
the panel.
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Different from BF, GIF is developed based on a common assumption: the filtering
output q is a linear transform of the guided image I in a local window, which can be
expressed as

qxxx = akkk Ixxx + bkkk, ∀xxx ∈ωkkk (3)

where ωkkk is a local window centered at pixel kkk, and akkk and bkkk are two constant coefficients
in ωkkk.

By formulating the filtering task into an optimization problem, the solution is given by

akkk =

1
|ω| ∑xxx∈ωkkk

Ixxx pxxx − µkkk p̄kkk

σ2
kkk + ε

(4)

bkkk = pkkk − akkkµkkk (5)

where µkkk and σ2
kkk are the mean and variance of the guided image in ωkkk, pkkk is the mean of

the input filtering image in ωkkk, |·| is an operator returning the number of pixels inside, and
ε is a regularization parameter used in optimization problem. The kernel weight can be
obtained by averaging akkk and bkkk to āiii and b̄iii.

Figure 1b gives the filtering result of GIF. As analyzed in [15], GIF has a strong filtering
capability: for pixels in the “low-variance” area, where the pixels have similar intensity
information, their value becomes the average of the neighboring pixels, while for pixels in
the “high-variance” area, their pixel values are nearly unchanged.

As mentioned above, both BF and GIF smooth the image based on the local pixels with
similar properties with respect to distance information or intensity information. Therefore,
for the pixel to be smoothed, only the similar pixels nearby need to be utilized to obtain
the filtering result. This motivates us to segment the image into several regions, where the
pixels in one partition region share a similar property, before locally smoothing the image
based on the segmented results.

3. Proposed Method

In this section, a simple but effective image filter technique, i.e., LAIF is proposed.
Only two modules are included in LAIF, i.e., the recursive dilation segmentation module
and the local adaptive image smoothing module.

3.1. Recursive Dilation Segmentation Module

Before introducing recursive dilation segmentation (RDS), we first define the dissimi-
larity between two pixels in the guided image, which is an RGB-channel image III in this
work, by considering both pixel intensity distance and hue distance, and mathematically
describe it as:

δ(xxx, yyy) = ‖IIIxxx − IIIyyy‖2 + λ · ‖Hxxx − Hyyy‖2 (6)

where δ(x, yx, yx, y) is the quantifying dissimilarity between xxx and yyy, H is the hue component
of RGB image III, and λ is a balance weight parameter that makes a trade-off between two
different categories of distance. In this way, two pixels can be defined as ‘similar’ if

δ(xxx, yyy) < ε (7)

where ε is a threshold parameter that provides an estimation of the maximum possible δ
between two similar pixels.

Given the criteria for judging whether two pixels are similar, the image can be easily
segmented via RDS.

The fundamental idea of RDS is to partition the image into several segmentation
regions in which each pixel belonging to the same segmentation part has similar spatial
information and pixel intensity, in a recursive dilation way. More specifically, the image
will be gradually partitioned into several non-overlapping regions via several segmentation
operations. For the ith segmentation operation, we firstly select one pixel that has not



Sensors 2023, 23, 5776 5 of 14

been traversed in the image as the dilating center pixel, then, all its similar neighboring
pixels will be judged according to Equation (7) before recursively dilating to them and
treating them as the new dilating center pixels. The dilation procedure in each segmentation
operation will continue recursively until all the adjacent similar pixels have been traversed.
All the pixels traversed within the same ith segmentation operation will be stored into
the same partition pixel set Si. This operation will be executed multiple times until all
the image’s pixels are traversed. The segmentation process is described in Figure 2 and
Algorithm 1.

Figure 2. Illustration of one segmentation operation. The squares with the same color denote pixels
with similar properties based on Equation (7), the red frame is the traversed region, and the red
arrows stand for the dilation directions.

Algorithm 1: Proposed LAIF
Input: Guided image GGG;Input image III;

1 Function: check() return whether all the pixels in the image GGG are traversed;
2 while check() == f alse do
3 Select one un-traversed pixel;
4 Execute the segmentation operation shown in Figure 2 based on Equation (7);
5 Filtering the segmentation results based on Equation (9);
6 end

Result: The result image S after being processed by LAIF.

It is worth mentioning that the proposed RDS algorithm is different from the clustering-
based image segmentation methods presented in [59,60] because RDS directly applies
spatial adjacent information in a gradual extension way. Benefiting from this property, the
partitioned pixels in the same pixel set are more analogous with respect to both spatial
information and color information.

3.2. Local Adaptive Image Smoothing Module

Different from the linear translation-variant model expressed in Equation (1), in this
work we make an assumption that the pixels in the filtering output are only related to the
pixels with similar properties within a local window in the filtering input image, which can
be formulated as

qxxx = ∑
yyy∈Sxxx∩ωxxx

Wxyxyxy(III) · pyyy (8)

where ωxxx is a local patch with the size s of N × N centered at pixel xxx, and Sxxx is a partition
pixel set that the centering pixel xxx belongs to. In GIF, the pixels will be smoothed by a local
average operation if they are surrounded by similar pixels. Accordingly, a local average
operation is employed in LAIF as well, to smooth the target pixels by the similar pixels
nearby, thus, the filtering kernel weight can be obtained as

Wxyxyxy(xxx) =
1

|Sxxx ∩ωxxx|
, yyy ∈ Sxxx ∩ωxxx (9)

The essence of this weight parameter is to selectively utilize local information for local
adaptive smoothing. The benefit of doing so is that the pixel information with respect to
spatial distance, pixel intensity, and the hue component can be effectively integrated and
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utilized. Thus, by substituting Equation (9) into Equation (8), the filtering result can be
obtained as

qxxx = ∑
yyy∈Sxxx∩ωxxx

1
|Sxxx ∩ωxxx|

· pyyy (10)

and the whole algorithm is illustrated in Figure 3.

Figure 3. Illustration of the proposed LAIF.

As shown in Figure 4, LAIF has a remarkable capability to smooth the flat regions
and preserve edge information in contour regions. The filtering capability of LAIF can
be explained intuitively as follows. Considering the pixels in the flat regions surrounded
by many similar pixels, the local average operation will be employed on them, thus, the
corresponding regions can be smoothed as shown in Figure 4a. As for the edge regions,
two pixels on different sides are bound to belong to different pixel sets because of the
distinct color and intensity information. This means pixels across the edge are not averaged
together, making conspicuous edges emerge between them, as shown in Figure 4b, so
that the edge information is well preserved. However, if we directly apply filtering to the
overall segmentation results, the final outcome is quite likely to be influenced by poor
segmentation results. Therefore, we have employed the method of iteration between
segmentation and filtering. In the joint iterative process of segmentation and filtering,
each step of optimization can provide a more accurate input for the next step. In this
way, segmentation and filtering can influence and optimize each other in every iteration,
resulting in an overall output that comes increasingly close to the optimal solution. This
process is illustrated through Algorithm 1.

Figure 4. Illustration of the segmented result and the corresponding filtering result of LAIF. The (a) is
the interior of the segmentation result and The (b) is The boundary of the segmentation result.
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4. Experiments

In this section, a series of experiments in various computer vision tasks are conducted
to evaluate the performance of LAIF compared with state-of-the-art methods, i.e., GIF [15],
JBF [19], EBF [20], and SDF [16]. The parameters used in the compared methods were
adjusted according to the corresponding references. All the experiments were conducted in
MATLAB R2020a, on a PC with Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz (12 CPUs),
2.2 GHz.

4.1. Parameter Study

In this section, we conduct an experiment to study two key parameters in this method,
i.e., pixel distance threshold ε and local filtering patch size s. According to Equation (7),
ε determines the criteria for judging whether two pixels are similar, the image will be
partitioned into fewer but larger regions with the increase in ε. As for the local filtering
patch size, it determines the number of selected pixels when implementing local adaptive
filtering. A larger local filtering patch size makes more pixels with similar properties be
averaged together according to Equation (10). To investigate the effect of ε and the size of
the filtering patch s, we filter two images under the guidance of themselves using LAIF
with different values of ε and different sizes of the filtering patch. The different filtered
results are given in Figure 5. As demonstrated from the figure, LAIF with a larger ε tends to
show a stronger smoothing ability, effectively removing the unwanted noise in the texture
region, while the results via a larger filtering patch size seem more uniform and smooth.
Therefore, the filtering ability of LAIF can be changed flexibly by adjusting the values of ε
and s, enabling LAIF to be applied to different filtering tasks.

Figure 5. The results of LAIF using different values of ε and sizes of filtering patch s.

4.2. Dehazing

The task of image dehazing is to remove haze from a single image. In traditional meth-
ods [61], the coarse transmission can be estimated via the patch-wise prior and optimized
by an edge-preserving filter to obtain the accurate transmission map. In this section, we
consider the hazy image as the guided image and optimize the coarse transmission via dif-
ferent filtering methods. Figure 6 shows the dehazed images restored by the corresponding
optimized transmission map. Notably, there exist some halo effects near the edge regions
for GIF, JBF, EBF, and SDF (see the highlighted zoomed-in panels), which means that the
block effect is not eliminated effectively by the filtering method. On the contrary, LAIF
can effectively optimize the transmission map under the guidance of input hazy images.
We selected two publicly available datasets, I-HAZE [62] and O-HAZE [63], and used the
DCP [61] method to perform haze removal. The results were evaluated using the SSIM and
PSNR metrics. The results are shown in Table 1.
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Table 1. Comparative analysis of methods (EBF, GIF, GBF, SDF, ours) on two public haze datasets
(I-HAZE and O-HAZE) using the SSIM and PSNR metrics. The top two performing methods
are underlined.

Dataset Metric
Methods

EBF GIF GBF SDF Ours

I-HAZE SSIM 0.7297 0.7205 0.7248 0.6217 0.7274
PSNR 28.0868 28.0389 28.0834 27.8027 28.1024

O-HAZE SSIM 0.7002 0.6891 0.6887 0.6117 0.7124
PSNR 28.1271 28.1691 28.2235 27.8548 28.2481

For the I-HAZE dataset, our proposed method is among the top performers in both
SSIM and PSNR. With an SSIM score of 0.7274, it slightly trails EBF’s 0.7297 but surpasses
the performance of GIF, GBF, and SDF. In terms of PSNR, our method outperforms all
others, with a score of 28.1024, slightly edging out EBF’s 28.0868. When it comes to the
O-HAZE dataset, our method maintains its strong performance. It leads in SSIM scoring,
achieving 0.7124, which is marginally better than EBF’s 0.7002. With PSNR, our method
again secures one of the top two positions. It scores 28.2481, slightly higher than GBF’s
28.2235. In summary, across both datasets and two distinct metrics our proposed method
demonstrates consistently strong performance, often achieving or being very close to the
best score among all of the tested methods.

Figure 6. Dehazing results obtained by the optimized transmission map via LAIF and other state-of-
the-art methods, and the corresponding zoomed-in patches in the blue frames. (a) Hazy images as
the guided images. (b) Coarse transmission map as the input images. (c) GIF. (d) JBF. (e) EBF. (f) SDF.
(g) LAIF.

4.3. Denoising

In this section, we investigate the denoising performance of LAIF via denoising a
no-flash noisy image under the guidance of the corresponding flash image. A comparison
between the proposed LAIF and state-of-the-art methods, i.e., GIF, JBF, EBF, and SDF is
provided in Figure 7. Visually, the edge texture information of the recovered results via EBF
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and SDF are prone to blurriness. For the denoising result by JBF, some texture details are
removed, which does not correspond to the guided image. In comparison, our recovered
results are clean and the structure information is well preserved. We conducted experiments
related to image denoising, including the evaluation of flash/no-flash denoising and
standard denoising. We selected the FAID [64] dataset for our experiments. These images
from the FAID dataset are a subset of the Flash and Ambient Illuminations Dataset. In the
evaluation process of flash/no-flash denoising, we added Gaussian noise to the ambient
light images and used the flash images as guidance. Additionally, we also employed the
standard denoising methods (Gaussian filter denoising [65], median filter denoising, total
variation denoising [66]) for direct denoising operations.

Figure 7. Filtering results via LAIF and other state-of-the-art methods, and the corresponding
zoomed-in patches in the blue frames. (a) Flash images as guided images. (b) No-flash images as
input images. (c) GIF. (d) JBF. (e) EBF. (f) SDF. (g) LAIF.

Table 2 evaluates various denoising methods using SSIM and PSNR metrics. The
proposed LAIF method excels in flash/no-flash denoising, achieving the highest scores
(SSIM: 0.7588, PSNR: 28.5654), indicating superior structure preservation and noise reduc-
tion. In standard denoising, LAIF remains competitive, surpassing Gaussian filter and total
variation in SSIM and nearly matching median filter in PSNR.

Table 2. Flash/no-flash denoising and standard denoising capability evaluation based on SSIM and
PSNR metrics. ‘w/o’ means without.

Metric w/o Denoising
Flash/No-Flash Denoising Standard Denoising

EBF GIF GBF SDF Ours GF MF TV Ours

SSIM 0.4022 0.7241 0.7105 0.7346 0.7312 0.7588 0.6978 0.6325 0.5568 0.7018

PSNR 28.0484 27.7332 28.2232 27.4847 27.5689 28.5654 27.6523 28.0335 27.8402 27.9041

4.4. Detail Enhancement

The fundamental idea of detail enhancement is to magnify the high-frequency detail
layer, i.e., the difference between the input image and the filtering output image. Figure 8
gives the enhanced images obtained by the combination of the boosted detail layer (three
times magnification) and the input image. As shown in the figure, JBF and SDF tend to
introduce a gradient reversal effect into the results. In comparison, the enhanced results via
the proposed LAIF can highlight the detail information in the images without producing
negative visual effects, e.g., halo artifacts or gradient reversal. In the evaluation of detail
enhancement, we selected the publicly available LIVE Release2 [67] dataset. This dataset
contains various types of distorted images. We enhanced the details of images distorted
by JPEG, JPEG2000, and Gaussian blur, and then evaluated them using the SSIM and
PNSR metrics. The results are shown in Table 3. Our proposed method generally exhibits
superior performance in the SSIM metric across all datasets. This suggests that our method
is highly effective in enhancing structural details in images while preserving their natural
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appearance. In conclusion, these results overall suggest that our method consistently
delivers strong performance in detail enhancement.

Table 3. Comparative analysis of methods (EBF, GIF, GBF, SDF, ours) on three datasets (gblur,
jp2k, jpeg) of LIVE Release2 using the SSIM and PSNR metrics. The top two performing methods
are underlined.

Dataset Metric
Methods

EBF GIF GBF SDF Ours

gblur SSIM 0.7654 0.7609 0.6724 0.7394 0.7945
PSNR 33.7678 29.1134 29.3686 30.0151 31.1163

jp2k SSIM 0.6912 0.7048 0.5796 0.6283 0.7267
PSNR 29.4225 28.9668 29.0575 29.4278 29.541

jpeg SSIM 0.6534 0.6718 0.5238 0.5694 0.6912
PSNR 28.9976 28.7603 28.7542 29.0288 28.8364

Figure 8. Detail enhancement results via LAIF and other state-of-the-art methods, and the corre-
sponding zoomed-in patches in the blue frames. (a) Guided images. (b) Input images. (c) GIF. (d) JBF.
(e) EBF. (f) SDF. (g) LAIF.

4.5. Edge Preserving

Edge preserving is a necessary ability for ‘good’ image filtering. We first obtain
segmented guidance images and segmentation information through recursive dilation.
These are then fed into the filter to perform filtering operations on the image. The filtered
result represents the edge-preserved outcome. For other methods, we used the official
smoothing techniques provided to assess their edge-preservation effects. To evaluate the
edge-preserving ability of the proposed LAIF, we provide the filtering results of state-of-
the-art filtering methods, and the corresponding one-dimensional illustrations, in Figure 9.
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It can be observed from the figure that GIF, JBF, and EBF are prone to streak artifacts,
deviating the edges from their original shapes. In contrast, the filtered results via the
proposed LAIF are free of halo effects and the edge information is well preserved. Moreover,
LAIF can smooth the noise in flat regions, as shown in the result. Because the effect of
edge preservation cannot be directly quantified and the effect of edge preservation is
often reflected in its dehazing ability, we can evaluate the edge preservation and dehazing
ability together. This is because in traditional dehazing methods, the better the smoothness
and edge preservation when estimating the transmittance, the better the dehazing effect.
Therefore, the effect of edge preservation is also reflected in its dehazing ability. The results
are shown in Table 1.

Figure 9. Filtering results via LAIF and other state-of-the-art methods, and the 1D detail illustration
on the blue scanline (black corresponds to the input image, red corresponds to the output image).
(a) Guided images. (b) Input images. (c) GIF. (d) JBF. (e) EBF. (f) SDF. (g) LAIF.

5. Conclusions

In this paper, we observe that the pixel in a filtered result can be obtained using similar
pixels nearby. By applying the recursive dilation segmentation method, an image can
be partitioned into several segmentation regions, the pixels within each of which share a
similar property. The main advantage of this method is that it can directly make use of the
intrinsic spatial adjacent information between two neighboring pixels in a recursive dilation
manner. Moreover, the pixel intensity information and hue component information are
also considered in the dilation process. Benefiting from this image segmentation method,
the unwanted texture details in the flat regions can be effectively smoothed while the
structure information in the edge regions can be well preserved, via employing a local
adaptive image filter derived from RDS. In addition, the application of LAIF in the remote



Sensors 2023, 23, 5776 12 of 14

sensing field has achieved outstanding results, specifically in areas such as image dehazing,
denoising, enhancement, and edge preserving, among others. We investigate the filtering
ability of LAIF by conducting a series of experiments between LAIF and the state-of-the-art
methods, demonstrating that it performs favorably against the others in terms of both
filtering quality and generic ability.
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