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Abstract— SLAM in deformable environments is a very
challenging research topic. Some research works have been
presented by different research groups in the past few years.
However, there are still some challenging research questions
remaining unanswered. This paper discusses some of these
research questions focusing on the case when point features
are used to describe the deformable environments. The SLAM
problems are formulated as extensions of point feature based
SLAM in static environments, including both optimisation
based offline SLAM and filter based online SLAM. To il-
lustrate the problems and questions more clearly, some con-
cepts and results using simple 2D examples are presented.
The MATLAB source codes of the results are made publicly
available (https://github.com/cyb1212/DeformableSLAM2D.git)
to help the readers understand the problems more clearly.

I. INTRODUCTION
Significant progress has been made over the decades in the

study of SLAM in static environments [1]. However, when
the environment has deformations such as when a surgical
robot is navigating in an internal body environment, SLAM
needs to build a time-varying 3D map of the soft tissues and
estimate the location of the sensor relative to the tissues. This
poses a very challenging problem since the sensor is moving
whilst the environment is deforming.

SLAM in deformable environments can find very im-
portant applications in many different areas such as (1)
minimally invasive robotic surgery; (2) animal body shape
reconstruction; (3) human body motion tracking (e.g. for
sports performance analysis); and (4) motion capture in
virtual reality and computer games.

In the last few years, a few research groups have initiated
some research on this challenging topic. When an RGB-D
sensor is used for the observations, a common approach is
to deform the prior or built map based on the observation
directly, using different ways to represent the deformation.
For example, DynamicFusion algorithm [2] and SurfelWarp
[3] apply dual quaternions [4] to represent the warp field,
and provide real-time reconstruction and tracking systems
for non-rigid scenes, one using volumetric data structure
and the other using a surfel based representation of the
geometry. VolumeDeform [5] uses the as-rigid-as-possible
volume regularization of the space embedding to deform
the surface [6]. Fusion4D [7] uses embedded deformation
[8] to deform the map. For surgical cases, MIS-SLAM [9]
is a GPU-based real-time stereo vision SLAM algorithm
in deformable inside-body environment utilising the pose
estimation from the well-known ORB-SLAM system [10].
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In some deformable environments with the spatial limi-
tation, like gastrointestinal tract and urinary tract, the en-
doscope, which is commonly a monocular camera, is the
main sensor to perform inspection tasks. However, SLAM in
deformable environments using a monocular camera is more
challenging, and the camera poses in the global coordinate
frame are more difficult to solve without introducing addi-
tional constraints such as camera motion model or the feature
motion model, because of the lack of edges in the SLAM
graph and the unavailable depth information. A very recent
work, DefSLAM, proposed in [11], presents a complete
framework fusing energy-minimisation pose estimation and
isometric Non-Rigid Structure-from-Motion (NRSfM) tech-
niques. Recent important research work on NRSfM includes
[12], [13], [14], [15], [16], and [17]. As a general tool to
recover depth for multiple monocular images, the NRSfM
method is an important building block for realising the
deformable SLAM with monocular sensors. The NRSfM
problem is still regarded as an open challenging computer
vision problem suffering one or several limitations amongst
solution ambiguities, inaccuracy, ill-posedness, inability to
handle changing data, lack of robustness for noises, high
computational cost, and inability or poor performance in dis-
continuous environment. In [18], a sum-of-Gaussians filter is
proposed to jointly retrieve camera auto-calibration, camera
pose, and the 3D reconstruction of a non-rigid object. Very
recently, some scholars use the learning algorithms to deal
with the camera poses estimation and NRSfM with some
promising results, such as Endo-Depth-and-Motion [19], N-
NRSfM approach [20], Neural Deformation Graphs [21], and
so on.

Although some good progress has been made in the area
of SLAM in deformable environments. There are still many
fundamental questions that have not been clearly answered
yet. For example, what is the observability of the problem
under different scenarios? Can we obtain a consistent result
on the uncertainties of the estimate?

This paper discusses some of the important questions that
require clear answers and further investigations from a point
feature based SLAM point of view. We hope this discussion
is useful for the researchers in the robotics and computer
vision communities who are interested in working on this
challenging research topic.

II. PROBLEM FORMULATION

We focus on the case when point features are used to
represent the map.



A. Information available

Consider a scenario of a robot (or a mobile sensor such
as a camera) moves around in an environment that contains
point features (e.g. some points on a piece of cloth, or on a
human/animal body, or on an inside body organ). The robot
pose at time step i is denoted as Pi = (xi,Ri) where
xi is the position and Ri is the orientation1. The point
features can change their positions over time because the
“environment” (e.g. human body) can move and the “shape”
of the environment is deformable. The position of the j-th
feature at time step i is denoted as f j

i .
In general, the following information is available for the

SLAM problem in deformable environments.
• Observations: the robot can observe some of the features

at each time step, for example, at time step i, the robot
can observe feature f j

i from pose Pi;
• Dynamic models of the features: some knowledge on

the possible motion of the features should be known,
this includes both the global rigid motion and the local
deformation of the features;

• Odometry (optional): relative pose information between
two consecutive robot poses (such as Pi and Pi+1).

While the observation information and odometry informa-
tion are both commonly used in the SLAM literature, the
dynamic model of the features only appears in SLAM for
dynamic or deformable environments. It should be pointed
out clearly that for SLAM in static environments, the “dy-
namic model of the feature” does exist and the information
is very strong, which is “all the features are stationary with
zero uncertainty”. On the other hand, for SLAM in dynamic
or deformable environments, the “dynamic model of the
feature” is “the feature is moving following a certain model
but with some/large uncertainty”. Thus the information is a
lot weaker. This makes the SLAM problem in deformable
environments very difficult and challenging.

One important question for SLAM in deformable environ-
ments is how to describe this information clearly.

Research question 1: How to describe the dynamic mod-
els of the features correctly and clearly? Or, how to clearly
describe the possible global rigid motion and the possible
local deformation of the features/environment, together with
the associated uncertainties?

B. One possible assumption on the available information

Assume the observation of feature f j
i from pose Pi is zj

i

given by
zj
i = hj

i (xi,Ri,f
j
i ) + ze

ij , (1)

where hj
i is the observation function depending on the sensor

used, ze
ij ∼ N (0,Σij) is the zero mean Gaussian noise in

this measurement.
For the dynamic models of the features, we assume that

they can be separated into two parts.

1In this paper, we use the same notation to represent a pose which can
be either 2D or 3D depending on the scenarios. Similarly, we use the same
notation for both 2D and 3D point features.

Smooth constraints: One part shows the relation between
the feature position at time i (f j

i ) and the feature position at
time i+ 1 (f j

i+1),

rji,i+1 = mj
i (f

j
i ,f

j
i+1) + reij , (2)

where rji,i+1 is the measurement (knowledge) of the con-
straint between j-th feature at i-th time step and at i+ 1-th
time step, reij ∼ N (0, Σ̂ij) is the zero mean Gaussian noise
in this measurement, mj

i is a function depending on the
motion of the feature, which should cover both the global
rigid motion and the local deformation.

Structure constraints: The other part is the relation be-
tween two features at the same time step. This is necessary
since the features are related to each other and cannot move
independently. We express this relation as follows.

qj,k
i = sj,ki (f j

i ,f
k
i ) + qe

ijk, (3)

where qj,k
i is the constraint between features f j

i and fk
i

at time step i, and qe
ijk ∼ N (0, Σ̄ijk) is the zero mean

Gaussian noise in this measurement. sj,ki is a function which
depends on the structure property of the environment. One
example is the distance between the two points. This con-
straint commonly describes the motion relationship between
every two nearby points f j

i and fk
i . We use Ei to denote the

set of all the pairs of features that have connection at time
step i, that is, (j, k) ∈ Ei.

The (optional) odometry between pose Pi and pose Pi+1

is in the form of relative pose (xi,i+1,Ri,i+1) given by

xi,i+1 = R>i (xi+1 − xi) + xe
i ,

Ri,i+1 = R>i Ri+1R
e
i ,

(4)

where xe
i and Re

i ∈ SO(3) are odometry noises. We
assume xe

i ∼ N (0,Σx) is a zero mean Gaussian noise with
covariance matrix Σx. Similar to [22][23], we assume Re

follows an isotropic Langevin distribution.
Once the available information is clearly described, the

SLAM problem can be formulated as: given the observations,
the dynamic models of the features, and the (optional)
odometry, estimate the feature positions and the robot poses
at all the different time steps.

C. Optimisation based offline SLAM

In optimisation based offline SLAM, all the available
information is used to estimate all the robot poses and the
feature positions at all the different time steps. In another
word, we estimate multiple maps (one map at each time step)
together with the robot poses at each time step.

Assuming the robot moves N steps from time step 0
to time step N , and there are M point features in the
environment, the set of the states to be estimated (in the
world coordinate frame) is

Xw = {f1
0 , · · · ,fM

0 , P1,f
1
1 , · · · ,fM

1 , · · · , PN ,f
1
N · · · ,fM

N }
(5)

assuming the robot pose P0 defines the world coordinate
frame. That is, x0 = 0,R0 = I . Thus P0 is not in the set
of the states to be estimated.



Now we can formulate SLAM in deformable environment
as a non-linear least squares optimisation problem:

min
Xw

(∑
i

||xi+1
i −R>i (xi+1 − xi)||2Σ−1

x

+
∑
i

dSO

(
Ri+1

i ,R>i Rj

)2
+
∑
i

∑
j

||zj
i − hj

i (xi,Ri,f
j
i )||2

Σ−1
ij

+
∑
i

∑
(j,k)∈Ei

||qj,k
i − sj,ki (f j

i ,f
k
i )||2

Σ̄−1
ijk

+
∑
i

∑
j

||rji,i+1 −mj
i (f

j
i ,f

j
i+1)||2

Σ̂−1
ij



(6)

where dSO(?, •) represents a distance function on the Lie
group SO(2) or SO(3). If odometry information is not
available, then the first two terms in (6) will be removed.

Fig. 1 shows a graph structure of the problem where M =
3 features exist and robot observes all the features in each
of the 3 time steps (N = 2). This can be regarded as an
extension of graph-based SLAM with static features [1].

Fig. 1. The graph structure of the problem of SLAM in deformable
environments. The black dot lines show the robot to feature observations;
the red dot lines show the structure constraints; the green arrows show the
odometry measurements; the blue arrows show the smooth constraints. The
rigid body motion and the local deformation are also illustrated in the figure.
It is an extension of graph-based SLAM for static environments.

D. Filter based online SLAM

In filter based online SLAM, at time step i, the available
information up to time i is used to estimate the robot pose
and the feature positions at time step i. The feature positions
(map) and the robot pose at time i form the state of the whole
dynamic system, that is

Xw
i = {Pi,f

1
i , · · · ,fM

i }. (7)

The process model of the whole dynamic system consists
of the odometry (4) and the smooth constraint (2). The
observation model of the whole dynamic system consists
of the robot to feature observation (1) and the structure
constraint (3).

Extended Kalman filter (EKF) or other filtering techniques
could be used to solve this state estimation problem for a
dynamic system, provided that a good linearisation point can
always be obtained.

E. Linear case

Now we use a simple 2D linear case as an example to
illustrate the results of the SLAM problems mentioned above.

For the linear case, we assume the robot rotation matrix
is always an identity matrix. Thus the robot rotation is no
longer a variable and the robot pose contains the position
only. The feature observation measurement then becomes:

zj
i = f j

i − xi + ze
ij , ze

ij ∼ N (0,Σij). (8)

The smooth measurement can be assumed to be:

rji,i+1 = f j
i+1 − f j

i + reij , reij ∼ N (0, Σ̂ij). (9)

The structure measurement can be assumed to be:

qj,k
i = fk

i − f j
i + qe

ijk, qe
ijk ∼ N (0, Σ̄ijk). (10)

The odometry measurement will be:

xi,i+1 = xi+1 − xi + xe
i , xe

i ∼ N (0,Σx). (11)

For this simple linear case, the optimisation problem (6)
becomes a linear least squares (LS) problem which has a
closed form solution. In addition, Kalman filter (KF) can be
used to solve the online SLAM problem.

Fig. 2 shows a 2D example of the estimation result of
LS. The uncertainty ellipses from the obtained covariance
matrices are also shown in the figure. They are all circles
because the covariance matrices for all the measurement
noises are all proportional to an identity matrix and the
estimation problem is linear. Similarly, Fig. 3 shows an
example of the estimation result from KF. We call them
“world centric” because the coordinate frame is decided by
the first robot pose.

Fig. 2. Estimated result based on world centric formulation using LS.

Fig. 3. Estimated result based on world centric formulation using KF at
every step.

F. Some discussions on related problems

The constraints (2) and (3) are some simple examples
representing the possible feature motion and the deformation
structure. The key idea is to express the constraints as
functions of the variables (the features at different times).



The constraint in (2) is called “smooth constraint” in this
paper. It is similar to the energy-minimisation objective func-
tion in [11], this constraint should cover both the global rigid
motion and the local deformation. The smooth constraint
commonly describes the smooth and low-rank trajectory of
the features deforming process [24]. In the NRSfM work
[14], there is no such constraint and there is no odometry
information, thus the camera poses cannot be estimated and
the 3D reconstruction is for the shape in the local frame only.

The constraint in (3) is called “structure constraint” in
this paper. This constraint is commonly related to the local
deformation property of the deforming object. Depending on
the different objects/environments, the commonly used con-
straints include rigid, inextensible (relaxation of isometric),
isometric (e.g. paper, flag, rug, and so on), conformal (e.g.
balloon), equiareal, and generic [14]. The regularization term
in [8], and the as rigid as possible constraint [6] also belong
to this category. The constraint in (3) should be expanded to
cover two or more points in multiple time steps to properly
describe some of the above mentioned constraints.

The above formulation of SLAM in deformable environ-
ments is similar to SLAM with dynamic features. If there is
no structure constraint (3), then the problem becomes SLAM
in dynamic environments because the motions of the features
are independent with each other.

In the point feature based SLAM problem in classical
static environments, the smooth constraint and structure
constraint both exist with zero uncertainty (no noise), they
are implicitly expressed in the “stationary” assumption.

III. OBSERVABILITY AND CONSISTENCY

One key question to ask is whether the information avail-
able is enough to make the problem of SLAM in deformable
environments solvable.

Research question 2: Under what conditions, the problem
of SLAM in deformable environments is solvable? When
the problem is solvable, what is the achievable estimate
accuracy?

It is easy to see the answer to this question is closely
related to Research question 1 and depends on (i) whether
the odometry information is available or not; (2) how many
features can be observed at each time step and the obser-
vation model; (3) the details of the dynamic models of the
features. When the odometry, observation, and the dynamic
models of the features are given by (1), (2), (3) and (4),
the answer to Research question 2 could be obtained by
analysing the corresponding information matrix.

A. Fisher information matrix

For the nonlinear least squares problem (6), the Fisher
information matrix can be computed by

FIM = J>P−1J (12)

where P is constructed by the covariance matrices
Σx,Σij , Σ̂ij , Σ̄ijk and J is the Jacobian matrix.

Whether the Fisher information matrix (Jacobian) is full
rank (meaning the SLAM problem is observable [25]) or not

depends on the connectivity of the graph structure (e.g. Fig.
1), which is related to the number of observations in each
time step, and the number of structure constraints, etc.

B. Unobservable cases

There are clearly some cases when some of the features or
robot poses at certain time steps are not observable or with
very weak observability. For example, if there is no dynamic
model for one particular feature and it is not observed at
time step k, then the feature position at time step k is not
observable. Assuming that the dynamic models for all the
features as in (2) and (3) exist, if one feature is not observed
for multiple consecutive steps k, k+ 1, · · · , k+m, then the
observability of that feature during these time steps will be
very poor. That is, the uncertainty of that feature at these
time steps will be very large.

A linear case example: Consider the 2D linear case with
3 features, if feature 3 is not observed from pose 1 to pose
3, then the uncertainties of feature 3 at time steps 1, 2, 3 are
very large, as shown in Fig. 4.

Fig. 4. The result using LS with some missing feature observations.

C. Consistency

Estimate consistency has been an important research topic
for EKF based SLAM algorithms [26][27]. Inconsistent
estimate (over-confident estimate) can happen in traditional
EKF SLAM for static environments especially when the
robot orientation error is large. For SLAM in deformable
environments, since the features are not stationary, the un-
certainty involved is larger than that of SLAM in static
environments. Thus the consistency is also a very important
research topic.

Research question 3: For a SLAM algorithm in de-
formable environments, can we calculate the uncertainty of
the estimate together with the estimate values? Can we make
sure the estimated uncertainty is consistent with the true
error?

D. Uncertainty estimate

In some of the research on SLAM in deformable environ-
ments, the proposed algorithms only provide an estimate of
the map (and robot pose) but do not provide the correspond-
ing uncertainty estimate [11].

When the noises are assumed to be Gaussian and the
problem is formulated as a nonlinear least squares problem
such as in (6), the Fisher information matrix can be computed



by (12), thus the covariance matrix of the estimate could be
obtained by computing the inverse of the Fisher information
matrix. When an EKF is used in solving the SLAM problem,
the corresponding covariance matrix can be obtained directly
from the EKF process.

E. Consistency check

To check the consistency of the estimate, simulation with
ground truth is needed. One way to check the estimate
consistency is to compare the actual estimation error with
the 2σ bounds obtained from the covariance matrix. Another
method is to perform Monte Carlo simulations and compute
Normalised Estimation Error Squared (NEES). For a sample
of errors en, n = 1, · · · , p, if the dimension of en is d, and
the covariance matrix is Cn, then the NEES is given by

NEES =
1

pd

p∑
n=1

e>nC
−1
n en. (13)

F. Linear case example

Consider the 2D linear case with 3 poses and 3 deforming
features, for LS and KF methods, we respectively run the
Monte Carlo simulations 1000 times and get the estimated
results. They are mostly within the 2σ bound, as shown in
Fig. 5 and Fig. 6, thus the algorithms can be claimed as
consistent. We also run a SLAM simulation with 100 frames.
The robot and feature position estimation error are shown in
Fig. 7. It also verifies our statement of the consistency.

Fig. 5. Consistency verification of the LS result.

Fig. 6. Consistency verification of the KF result.

For the Monte Carlo simulations with p = 50, the two-side
95% probability region of NEES is [1.4844, 2.5912] for en
with dimension of 2. For the linear case, the NEES results
with 100 poses and 3 deforming features using LS and KF
methods are respectively shown in Fig. 8 and Fig. 9. The
figures show that the NEES results are well bounded by the
two-side 95% probability regions and only 3-4 out of the
100 points fall outside this region, which is acceptable and
verifies the consistency of the obtained results.

Fig. 7. Robot and feature position estimation error with 2σ bound
for LS and KF result. The LS and KF results are from the same noisy
measurements.

Fig. 8. Robot and feature position NEES result using LS.

IV. DIFFERENT SLAM FORMULATIONS

Typically in a SLAM algorithm, we choose the first robot
pose to define the global coordinate frame as in (5). However,
this “world centric” SLAM problem formulation can result
in inconsistent estimate when traditional EKF is used in the
SLAM problem in static environments. On the other hand,
the “robot centric” EKF SLAM can improve the estimate
consistency [28]. In fact, since all the information available
in SLAM is relative information, we have the freedom to
choose any coordinate frame to define the robot poses and
feature positions in the SLAM problem formulations.

A. World centric

The optimisation based offline SLAM and the filter based
online SLAM problem formulations provided in Section II-C
and Section II-D are both world centric, where the first robot
pose defines the origin of the world coordinate frame.

Fig. 9. Robot and feature position NEES result using KF.



B. Robot centric

In the robot centric formulation, the last robot pose is
defined as the origin of the coordinate frame. This frame
keeps changing when the robot is moving.

For the optimisation based offline SLAM, the set of states
to be estimated (in the final robot coordinate frame) is

Xr = {f1
0 , · · · ,fM

0 , P0, · · · ,fM
N−1, PN−1,f

1
N , · · · ,fM

N }
(14)

where the robot pose PN defines the robot coordinate frame.
That is, xN = 0,RN = I .

C. Map centric

In the map centric formulation, 2 features (for 2D) or 3
features (for 3D) are used to define the coordinate frame
[29] [30]. The details on the coordinate transformation can
be found in the Appendix in [30].

For SLAM in static environments, the coordinate frame
defined by the features does not change. But for SLAM in
deformable environments, since the features are moving, the
coordinate frame is also changing over time.

For the optimisation based offline SLAM in 2D case, the
set of the states to be estimated (in the map coordinate frame
defined by f1

0 and f2
0 ) is

Xm = {P0,f
2
0 (x),f3

0 , · · · ,fM
0 , · · · , PN ,f

1
N , · · · ,fM

N }
(15)

where f2
0 (x) means the x coordinate of feature f2

0 . In this
case, f1

0 = 0 and f2
0 (y) = 0 are not in the set of the states

to be estimated while all the poses P0, · · · , PN are in the
set.

D. Linear case

For the 2D linear case, the state vectors of the LS
optimisation based SLAM for world centric, robot centric
and map centric (assuming the first feature at time step 0 is
used to define the map coordinate frame) are respectively

Xw = {f1
0 , · · · ,fM

0 ,x1,f
1
1 , · · · ,xN ,f

1
N , · · · ,fM

N } (16)

Xr = {f1
0 , · · · ,fM

0 ,x0, · · · ,xN−1,f
1
N , · · · ,fM

N } (17)

Xm = {x0,f
2
0 , · · · ,fM

0 , · · · ,xN ,f
1
N , · · · ,fM

N } (18)

Please note that in the 2D linear case, one feature f1
0 can

define the map coordinate frame.
For the world centric formulation, example results using

LS and KF are shown in Fig. 2 and Fig. 3.
The estimated results based on the robot centric formula-

tion using the LS and KF methods are presented in Fig. 10
and Fig. 11 (using the same dataset for Fig. 2 and Fig. 3).

The estimated results based on the map centric formulation
using the LS and KF methods are presented in Fig. 12 and
Fig. 13 (using the same dataset as that for Fig. 2 and Fig. 3).

Based on the LS and KF results for world centric, robot
centric and map centric using the same measurement data
are presented in Fig. 2, Fig. 3, Fig. 10 to Fig. 13. Through
numerical checking, all the LS results are the same (can be
transferred from one to another). The LS results are also the

Fig. 10. Estimated result based on robot centric formulation using LS at
last step (robot pose 2 is the origin).

Fig. 11. Estimated result based on robot centric formulation using KF at
every step.

same as the KF results (for the latest time step when all the
information is used).

For the nonlinear cases, in optimisation based SLAM,
the different SLAM formulations are expected to produce
exactly the same results, meaning the estimates (and their
corresponding covariance matrices) can be transferred from
one to another using coordinate transformations. However,
for EKF based SLAM, the results are expected to be signif-
icantly different.

Research question 4: Are there any advantages using
robot centric or map centric problem formulations for SLAM
in deformable environments? Can these problem formula-
tions result in better estimate consistency especially for filter
based online SLAM? Is it possible to develop invariant EKF
SLAM algorithm similar to [27]?

Fig. 12. Estimated result based on map centric formulation using LS (the
feature 1 at time step 0 is used to define the coordinate frame).

Fig. 13. Estimated result based on map centric formulation using KF at
every step.



V. ACTIVE SLAM

Similar to active SLAM in static environments [31], active
SLAM in deformable environments means to plan the robot
trajectory such that the quality of the SLAM estimate can be
improved. In another word, the robot odometry is not pre-
determined as in (4), instead, the robot decides its control
action online based on the different situations.

A. Active SLAM problem

In active SLAM, one of the most important performance
criteria is the quality of SLAM estimate. This can be decided
by a metric of the covariance matrix in the obtained SLAM
result, for example, the trace/determinant of the covariance
matrix.

For deformable environment, the robot trajectory is very
critical for achieving high quality SLAM estimate. Intu-
itively, the robot wants to observe as many moving features
as possible at every time steps such that it can gain more
information through the observations to features.

In active SLAM, there are some other performance re-
quirements such as coverage or exploration within minimal
time [32]. Keeping a good balance between performing
other tasks and minimising the uncertainty in SLAM is an
important challenge.

B. Example: 2D nonlinear case

A simple example is given to show the advantages of
active SLAM over SLAM with a predetermined path. As
shown in Fig. 14, the three features are deforming and at
the same time moving along a circle-like path. Fig. 14(a)
shows the result of SLAM with a pre-determined circular
robot path. Since the features are not following the circular
path exactly, sometimes the robot cannot observe some
features (the total number of unseen features is 47) and the
uncertainty of the SLAM estimate is large. On the other hand,
as shown in Fig. 14(b), the robot in active SLAM follows the
features very closely and can observe all the three features at
almost all the steps (there is only one time with one feature
unobserved). The uncertainty of the SLAM estimate is small.

Research question 5: How can we plan the robot trajec-
tory such that better estimation results can be achieved for
SLAM in deformable environments? Can we plan the robot
trajectory to optimise the observability of the SLAM problem
and improve the consistency of the SLAM results?

VI. SOME OTHER RESEARCH QUESTIONS

In this paper, we have mainly focused on the back-end
of SLAM problem in deformable environments with point
features. There are many other important research questions
that have not been discussed yet. We will briefly mention
some of them in this section.

A. Data association

Data association is a very important aspect in SLAM. The
process of extracting the point features, tracking them, and
getting rid of outliers are all very important and challenging
topics for SLAM in deformable environments. A method of

(a) SLAM with a predetermined circular robot path. Number of
unseen features is 47. The uncertainty of the estimate of some
features is very large.

(b) Active SLAM. Number of unseen features is 1. The uncertainty
of the feature estimate is very small.

Fig. 14. Comparing active SLAM with SLAM using a predetermined robot
path. Blue cross are robot positions and green star are feature positions. The
three features are deforming and moving along a near circular path.

simultaneous estimating the correspondences and non-rigid
structure is proposed in [33].

B. Point features are not available

In the case when point features are not available or very
difficult to be detected and matched, non-rigid scan matching
techniques have been proposed to deal with the SLAM
problem in deformable environments [34]. In this case, one
challenge is to distinguish whether the scan difference is
from the change of poses or from the deformation of the
surface. Clearly finding the overlapping area between two
scans correctly is also very difficult.

C. Learn the deformation model

A key requirement for solving SLAM in deformable
SLAM is to understand the model of the deformation, which
is part of the dynamics of features. Finite element analysis
has been proposed to characterise the mechanical model of
the deformation [18][35]. Machine learning approaches can
also be used to learn the model of deformation [36].



VII. CONCLUSIONS

In this paper, we present a few research questions for
SLAM in deformable environments when point features are
used to represent the map. The research questions are related
to problem formulation, observability, consistency, different
map representations, and active SLAM. The results of simple
2D examples are used to illustrate the questions and some of
the answers. It is demonstrated that for the 2D linear cases,
both the different versions of Kalman filter based SLAM
algorithms and the different versions of linear least squares
SLAM algorithms provide exactly the same optimal results.
The MATLAB codes of the results presented in this paper
are made publicly available.

The research questions for 3D nonlinear cases are much
more complicated and require further investigation. These
research questions together with some other challenging
questions associated with SLAM in deformable environments
are the topics of our future research work.
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