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A B S T R A C T

Process mining focuses on the analysis of event log data to build various process analytical capabilities.
Predictive process analytics has emerged as one of such key capabilities and it uses machine learning techniques
to construct process prediction models. In recent years, deep neural networks have gained increasing interest
in process prediction since they can handle multi-dimensional sequential inputs with minimal information loss.
However, they are considered black-box models and existing studies in explaining deep neural network-based
process predictions rely on only event-level features for explanation. In this paper, we propose a new approach
for generating explanations for process outcome predictions at multiple levels. The approach is underpinned
by three different prediction models: a transparent model for generating global explanations based on case-
level features, an attention-based deep neural network for generating local explanations based on event-level
features, and a novel eXplainable Dual-learning Deep network (XD2-net) for generating local explanations based
on case-level features. Using three publicly available datasets, we have tested the applicability of the approach
and further examined the multi-level explanations generated by the approach through an elaborate case study.
Unlike others, the design of our approach promotes the idea of leveraging the complementary capabilities of
different models and utilizing their strengths, rather than focusing on model performance competition. This
will contribute towards generating more comprehensive explanations that meet the needs of different end users
and purposes in the future.
. Introduction

Business processes form a lifeline of business within and across
rganizations. Executions of day-to-day business processes involve a
ide range of stakeholders and are supported by a variety of informa-

ion systems. Data generated along process execution can be extracted
rom different information systems and curated in the form of event
ogs. An event log consists of event sequences, each of which record
he execution of a process instance (a.k.a. case) step by step over
ime. An event has a set of attributes carrying information of process
xecution on multiple dimensions, for example, the activity captured by
he event, the start or completion time of the activity, the resource(s)
ho performed the activity, the risk profile of the operation involved

n the activity, etc. Hence, event logs are considered multi-dimensional
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time sequence data and often capture rich context information about
process execution.

Process mining focuses on the analysis of event log data to build
various process analytical capabilities (van der Aalst, 2016). In recent
years, predictive process analytics has been developed as one of such
capabilities, where machine learning techniques are being applied to
construct process prediction models. These models aim at predicting
future states of an ongoing case by learning from the process execution
history recorded in event log data. A typical example of process pre-
diction is predicting outcomes that the execution of a business process
may lead to, known as process outcome prediction. It can be used to
predict stage-wise outcomes for an end-to-end process that consists
of several stages with stage-specific outcomes (Le et al., 2014), and
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also to predict decision outcomes for a process involving those decision
points of which the output decisions can be clearly classified (Hsieh
et al., 2021). Hence, process outcome prediction is considered widely
applicable in practice and a benchmark of the performance of various
process outcome prediction models can be found in Teinemaa et al.
(2019).

In a machine learning-based approach, event logs are converted
to trainable features and used as the input data to train prediction
models. Whilst advanced machine learning models such as gradient-
boosted trees can achieve good performances in process outcome pre-
diction (Tama and Comuzzi, 2022), deep neural networks such as
long short-term memory (LSTM) networks, have gained increasing
interest in process prediction (Evermann et al., 2017; Camargo et al.,
2019; Metzger et al., 2019) since they can inherently handle multi-
dimensional sequential inputs (e.g., as tensors) so to preserve the
execution order of process activities as well as to capture the relevant
context data thus ensuring minimum information loss during feature
construction for better prediction accuracy.

However, models that have complex internal architectures, such as
deep neural networks, are considered black-box models because their
reasoning for learning decisions is not transparent. Explainable AI (XAI)
aims to address the issue of black-box models, and two mainstream
approaches have been proposed. One is called post-hoc explanation,
which leaves the complicated model as it is and attempts to explain the
model predictions by using simpler surrogate models. Whilst surrogate
models can be used to approximate how the original model arrived at
its decision, they are limited to estimating how a black-box model made
its decision based on the inputs and outputs. As a result, explanation
fidelity (faithfulness to the original model) becomes one of the key
criteria for evaluating post-hoc explanations. In another approach,
known as an intrinsic explanation, a transparent model (e.g., linear or
logistic regression) or partially black-box model that is incorporated
with certain explainable mechanisms (e.g., attention-based LSTM) and
hereafter referred to as an intrinsically explainable model, is used to

ake a prediction and generate explanation about the model decision.
t has been suggested that a transparent or intrinsically explainable
odel is more appropriate to use than a surrogate model, especially

or explaining high-stake decisions (Rudin, 2019).
So far, a number of studies in process mining have employed model

ttention mechanisms in deep learning-based process prediction models
or generating intrinsic explanations (e.g., Sindhgatta et al., 2020a and

ickramanayake et al., 2022a). Although these models are capable of
andling event sequences with minimal information loss, their output
as to rely on event-level features for explanation. Such explanation

often presents information of low granularity, e.g., ‘occurrence of ac-
tivity A at timestep 3 and/or timestep 4 has a certain influence
on the model’s decision in rejecting a loan application’. This may be
useful for a data scientist (to conduct model inspection) but can be
difficult for a business user to extract insights. A business user, such
as a process analyst, is usually interested in case-level features captured
by information consolidated from event-level attributes. For example,
an explanation stating that ‘the number of activity A’s occurrences in
processing a loan application has the highest impact on the model’s
decision in rejecting the application’ would be more intuitive and
useful to inform strategies for reducing loan rejection rate. Among
others, how to generate explanations using case-level features from a
process prediction model built upon deep neural networks has yet to
be addressed.

In this paper, we are interested in generating explanations for pro-
cess outcome predictions at multiple levels. The meaning of ‘multiple
levels’ is twofold. One refers to the construction and representation
of features at the event-level and case level from the aspect of process
execution, whereas the other refers to explanations at the local and
global levels from the aspect of XAI. In XAI, an explanation is essentially
an answer to why and how a model arrived at its decision (Miller,

2019), and different levels of granularity in explanations offer this

2

answer differently (Wickramanayake et al., 2022b). Global explanations
are those that would offer a common explanation for the prediction
of any data point (e.g., an entire collection of process instances), and
a local explanation is specific to the prediction of a given data point
(e.g., a specific process instance). Hence, global explanations are useful
to gain an overall understanding of a model’s decision making, whereas
a local explanation can be used to extract insights into how the model
arrived at its decision in a specific instance.

To this end, we propose a machine learning-based approach for
generating multi-level explanations for process outcome predictions.
Our approach is underpinned by three different prediction models: a
transparent model for generating global explanations based on case-
level features, an attention-based deep neural network for generating
local explanations based on event-level features, and a new model
named eXplainable Dual-learning Deep network (XD2-net) for generating
local explanations based on case-level features. In XD2-net, the novelty
is that the model is trained using event-level attributes to learn the
weights of case-level features. The design of such internal architecture
allows the model to generate explanations using case-level features
based on the input of event-level attributes that minimizes information
loss. Also, it is worth noting that our approach promotes the idea
of leveraging the complementary capabilities of different models and
utilizing their strengths, rather than focusing on model performance
competition. This will contribute towards generating more compre-
hensive explanations that meet the needs of different end users and
purposes in future research.

The rest of the paper is organized as follows. Section 2 provides an
overview of explainable AI, existing techniques of explaining a model,
current work in explaining process predictive models and evaluation
of model explanations. Section 3 details our approach for generat-
ing multi-level explanations for process outcome predictions and the
proposed ensemble architecture of XD2-net. Section 4 presents the
experimental setup and results of the quantitative evaluation of the
explanations and explainable models. Section 5 examines the multi-
level explanations that are generated through our approach, along with
a quantitative evaluation of interpretability of global explanations. Fi-
nally, Section 6 summarizes the contributions of our work and outlines
future work.

2. Related work

In this section, we discuss the notion of model explainability, the ex-
isting techniques for explaining models, and the evaluation of model ex-
planations. Further, we introduce how model explainability is applied
in the application domain of predictive process analytics.

2.1. Explainable AI

The primary need for explaining a machine learning model is to
understand what are the criteria/approach used by the model to arrive
at a decision. However, this basic requirement is expected to fulfil
a range of end objectives (Nunes and Jannach, 2017), which can be
listed as follows; Transparency, Effectiveness, Trust, Persuasiveness,
Satisfaction, Education, Efficiency, Scrutability, and Debugging.

A model can be classified as either a transparent model or a black-
ox model in terms of their explainability (Guidotti et al., 2019). A
odel is called transparent when its decision-making process is entirely

isible via feature weights or heuristics. Regression models, Bayesian
etworks, and Decision Trees are examples of such transparent models.

black-box model (which is, in contrast, not transparent) can be
xplained by either approximating the model’s performance/outcomes
y an explainable surrogate model/mathematical relationships or by
aking the model transparent to explain the model using its internal
roperties. The first method is called post-hoc explanation, and the sec-
nd is called intrinsic explanation. The most popular post-hoc methods
include LIME (which tries to establish a linear relationship between
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input and output locally) (Ribeiro et al., 2016), SHAP (which deter-
mines a feature’s contribution towards the model decision using shapely
values) (Lundberg and Lee, 2017), and the use of transparent surrogate
models to approximate cohorts of the input space. A model can be
intrinsically explained either by using properties of the underlying
model to fully or partially explain the model, such as using regression
activation maps (Wolanin et al., 2020) (to explain convolutional neural
networks), and attention weights (Choi et al., 2016) to explain long
short-term memory (LSTM) networks. Another approach to explain-
ing computationally complex models intrinsically is to incorporate
explainability to the model in the design of the model itself. This is
done by augmenting the complex model with an explainable white
box (Alvarez-Melis and Jaakkola, 2018; Chen et al., 2018; Kraus and
Feuerriegel, 2019), and explaining the model completely via the white
box. Hence, such models can be called semi-white boxes.

Model explanations are and need to be oriented towards the in-
tended users of those explanations (Ribera Turró and Lapedriza, 2019;
Tomsett et al., 2018). The particular purpose and the end user of the
explanation would guide how the explanations need to be generated
and presented (Chromik and Schuessler, 2020; Wickramanayake et al.,
2022b). Thus, when the model explanation is as critical as the model
performance for a particular application, instead of involving the user
at the final stage getting involved in the design of the explanation
(hence often the model) may lead to better explainability (Hoque and
Mueller, 2022; Kwon et al., 2019).

2.2. Explaining deep learning-based process predictions

Predictive process analytics is a relatively new branch of data an-
alytics dedicated to providing business process intelligence in modern
organizations. It uses event logs, which capture process execution traces
in the form of multi-dimensional sequence data, as the key input
to train predictive models. These predictive models, underpinned by
advanced machine learning or deep learning techniques, can be used
to make predictions about states of business process execution. In
particular, recurrent neural networks (RNNs) and their variants such
as long short-term memory (LSTM) networks have naturally found ap-
plicability in predictive process analytics. For example, given an input
event log that records the sequence data of a running business process,
an LSTM-based model can be trained to predict the next event in the
running process (Evermann et al., 2017; Tax et al., 2017; Camargo
et al., 2019) as well as the remaining execution time of the running
process (Camargo et al., 2019).

If exploratory process model-based techniques or transparent mac-
hine-learning techniques (e.g., Logistic regression/decision tree) are
used for the process predictions, how the model makes prediction is
transparent to the user. However, when deep learning-based techniques
are used, how those predictions were made is opaque to the user. Thus,
these models require to be explained to gain that visibility. Most of
the current work in explainable deep learning-based predictive process
analytics approaches use post-hoc methods such as LIME and SHAP
to explain the model’s prediction (Sindhgatta et al., 2020b; Galanti
et al., 2020; Mehdiyev and Fettke, 2020), while some of the recent
approaches focus on intrinsic interpretable deep learning architectures.
These include the approaches that use model attention (Sindhgatta
et al., 2020a; Wickramanayake et al., 2022a), and use of partial de-
pendence plots (Mehdiyev and Fettke, 2021), and Layer wise relevance
propagation (Samek et al., 2019; Weinzierl et al., 2020). A semi-white
box proposed in this space is the approach of combining the process
model with a gated graph neural network (Harl et al., 2020).

Post-hoc methods such as LIME and SHAP are model agnostic,
hence can be used irrespective of the underlying model architecture
to explain a deep-learning-based process prediction model. However,
the fidelity (faithfulness) of these explanations towards the underlying
predictive model is a concern and needs to be evaluated before using

them (Velmurugan et al., 2020, 2021). On the other hand, intrinsic
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approaches do not encounter this problem but given the complexity of
the deep-learning architecture, these explanations may not completely
explain the model. Semi-white boxes are also an intrinsic explainable
approach, however, the difference is that the explainability is em-
bedded in the architecture itself to a greater extent, by combining
a white-box with a deep-learning-based black-box. Although in these
techniques, the prediction could be explained completely using the
white-box component, it still does not explain the black-box’s decision
mechanism.

2.3. Evaluating model explanations

A model explanation can be evaluated using two main criteria
(Guidotti et al., 2019). Interpretability refers to how easy an explanation
is to be understood by a human and fidelity refers to how truthful
the explanation is to the model being explained. Since the post-hoc
explanations are external to the actual model of interest, there arises
the need to evaluate how truthful is the explanation towards the
model (Zhou et al., 2021) and requires specific evaluation measures and
metrics of ‘explanation fidelity’ (Velmurugan et al., 2020). If a model
is transparent or intrinsically explainable such a need does not arise, as
such explanations are inherently truthful to the model and are evident
to be as such with experiments (Samek et al., 2019). However, intrinsic
explanations still need to be evaluated for explanation interpretabil-
ity (Stevens et al., 2022). Explanation interpretability can be evaluated
either using application- or human-grounded techniques or functionally
grounded techniques (Doshi-Velez and Kim, 2017).

Application- or human-grounded evaluation refers to evaluating
the explanation based on human-centric experiments. The primary
difference between application and human-grounded techniques is that
for application-grounded evaluations experiments are conducted with
an ‘expert’ team and human-grounded evaluations are conducted using
the opinions of laypeople. In these experiments, we can use qualitative
metrics (e.g.: usefulness, satisfaction, trust) as well as quantitative
metrics (e.g.: time consumed to grasp the explanation, recall of ex-
planation) (Narayanan et al., 2018). Functionally grounded metrics for
evaluating model interpretability are derived by further formulating the
attributes of an explanation that are evident to be important for humans
to grasp an explanation effectively. Such metrics include effective
complexity/conciseness, explanation (dis)agreement and explanation
continuity.

Effective complexity/conciseness (Nguyen and Martínez, 2020) eval-
uates the minimum number of features that are ‘required’ to explain
a model decision, where the intuition behind this metric is that the
lower the number of features that are used to explain, the easier
for the user to grasp and recall the explanation. There is a series of
metrics proposed to measure explanation agreement (Krishna et al.,
2022) that are used to evaluate the level of agreement between two
or more explanations, in terms of the top ‘k’ number of features each
explanation considers as important. The intuition behind this metric is
that users of explanations are mostly concerned about top ‘k’ features,
often k = 1 or k = 2. Explanation continuity (Montavon et al., 2018)
is defined as the prevalence of a continuous explanation function, and
in simpler terms, the requirement for similar inputs to have similar
explanations, which helps the users of the explanation to trust the
explanations as they do not drastically vary for similar inputs.

3. Approach

Fig. 1 depicts our approach for generating multi-level explanations
for process outcome prediction. The approach takes an event log as
the input, which is first truncated into process prefixes at the pre-
defined prediction points. Then, two sets of features are extracted
from these process prefixes: case-level features and event-level features.
Three independent model architectures are then trained with these
features where each of which make the outcome prediction along with

a different level of explanation.
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Fig. 1. Proposed approach: Three independent model architectures that use two levels of feature vectors to predict the process outcome and generate three levels of intrinsic
model explanations.
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1. Logistic regression model: trained with case-level features and
generating a global explanation with case-level feature attribu-
tion, which is an explanation generalizable for all the predic-
tions, generated using the features that are representative of a
given case. E.g.: Contribution of the number of times the activity
A was executed over the process trace towards the decision of
the model = 0.5.

2. Attention-based LSTM model: trained with event-level features
and generating local explanations with event-level feature attri-
bution, which is an explanation specific to a given prediction of
a given case, using the features that are specific to an individual
event. E.g.: Contribution of the execution of activity A at event
2 towards the prediction for case ID C = 0.2.

3. An ensemble architecture of the above two models which has
led to the design of eXplainable Dual-learning Deep network
(XD2-net): trained with event-level features, learning weights of
case-level features, and generating local explanation with case-
level feature attribution, which is an explanation specific to a
given prediction, using the features that are representative of the
entire process prefix and the case attributes of a given case. E.g.:
Contribution of executing activity_A 3 times over the process
trace towards the prediction for case ID C = 0.4.

detailed description of each component of this approach is as follows
see Fig. 2).

.1. Terminologies and notions

An event log refers to the recorded form of process execution,
hich has an entry per each event of each process execution instance.
he entries of an event log are arranged based on the concept of
process trace. A process trace captures the execution of a single

rocess instance, identified by a case identifier Case ID and ordered
y the execution order of process events. Each event recorded in the
vent log has a Case ID as the process instance identifier and event-
pecific attributes. The mandatory event attributes that must be present
n any event log are activity that was executed at the given event,
nd timestamp of the execution. Most event logs contain additional
vent-specific attributes that include the resource who executed the
ctivity, and an event transition label which indicates if a given activity
s in triage, in progress, or completed. Some event logs also record
ertain case-specific attributes as well, that remain static throughout
he process trace. A process prefix is a partial process trace, that has
he same beginning as the original trace but is truncated before the
nd of the trace. Formal mathematical definitions of the above are as
ollows, which will help us to formalize the construction of XD2-net.

efinition 1 (Trace van der Aalst, 2016). A trace is a non-empty
equence of unique events 𝑒𝑖 with a common case identifier 𝑐. Let

= |𝜏| and 𝜏 = [𝑒1,… , 𝑒𝑚] is defined as a process trace, where 𝑙 is o

4

he length of the process trace. For all 𝑖, 𝑗 ∈ {1,… , 𝑙}∶ 𝑐𝑒𝑖 = 𝑐𝑒𝑗 For
≤ 𝑖 < 𝑗 ≤ 𝑛: 𝑒𝑖 ≠ 𝑒𝑗 (i.e., each event appears only once), and 𝑡𝑒𝑖 ≤ 𝑡𝑒𝑗

i.e., the ordering of events in a trace should respect their timestamps).5

efinition 2 (Prefix van der Aalst, 2016). A prefix is a partial process
race with the same beginning as the original trace. Let 𝑚′ = |𝜌| and
= [𝑒1,… , 𝑒′𝑚] is defined as a process prefix, where 𝑚′ is the length of

he process prefix and 𝑚′ < 𝑚.

efinition 3 (Event-Specific Attributes). Let  be the set of case iden-
ifiers, and 𝑖 a set of values that belongs to a particular (dynamic)
vent-specific attribute, where 𝑖 ∈ [1, 2,… , 𝑛] if the event log records 𝑛

number of event-specific attributes.  is the set of events, and each event
has the above attributes. For any 𝑒 ∈  : 𝑐 ∈  is the case identifier of
event 𝑒, 𝑑𝑖𝑒 ∈ 𝑖 which is an attribute specific to the event 𝑒, which
belongs to the set of such attributes 𝐷𝑖.

emark. Examples of event-specific attributes are the activity per-
ormed at a given event, the resource who performed the activity for
given event, and the time at which the activity was completed for a

iven event.

efinition 4 (Case Specific Attributes). Let  be the set of case iden-
ifiers, and  𝑖 a set of values that belongs to a particular (static)
ase-specific attribute, where 𝑖 ∈ [1, 2,… , 𝑙] if the event log records
𝑙 number of case-specific attributes. Each case in  has the above
attributes. For a given 𝑐 ∈ , 𝑠𝑖𝑐 ∈  𝑖 which is the identifier that belongs
to the case-specific attribute 𝑆𝑖.

Remark. An example of case-specific attributes is loan application
category. Note that the case-specific attributes however should not be
confused with the case-level features (see below).

Finally, we introduce two more important concepts.

• Event-level features refer to the features that are derived from the
unique attributes associated with a specific event within a process
prefix. These features are constructed by capturing event-specific
attributes that provide a detailed description of the event itself.

• Case-level features are constructed by combining event-specific
and case-specific attributes to provide a comprehensive descrip-
tion of the process prefix and the associated case.

3.2. Case-level and event-level feature construction

We begin our approach by generating prefixes through truncation
of process traces at predetermined prediction points, which are spe-
cific events in the process trace where predictions about the process

5 Event index numbers take precedence over timestamps where two events
ccur concurrently.
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outcome are made. Further details on our experimental approach for
determining the prediction points and prefix generation can be found
in Section 5. Once we have the prefixes, we move on to the feature
encoding phase. In this phase, from the generated prefixes we extract
two sets of features. The first set of features, called event-level features,
describes the characteristics of a particular event within a given prefix.
The second set of features, called case-level features, provides a holistic
description of the entire prefix and the associated case.

Event-level feature set consists of the process prefixes’ event-specific
attributes (e.g.: Activity label, Resource label) which are encoded into
a sequential feature vector and arranged as a 2-D feature vector per
case identifier, where the first dimension is the event and the second
dimension is the feature value. We can mathematically represent the
2-D event-level feature vector 𝑭 𝒅 as follows.

𝒅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑑11, 𝑑12, ...., 𝑑1𝑛

𝑑21, 𝑑22, ...., 𝑑2𝑛

......
𝑑𝑚1, 𝑑𝑚2, ...., 𝑑𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

here 𝑛 is the number of distinct event-specific features, and 𝑚 is the
refix length.

In contrast, the case-level feature vector (denoted by vector 𝑯)
onsists of an aggregated form of event-level feature vector 𝑭 𝒅−𝒂𝒈𝒈 and
case-specific feature vector 𝑭 𝒔.

The 2-D event-level feature vector is aggregated over the event
imension into an aggregated 1-D feature vector as follows. The aggre-
ation will be performed using an appropriate aggregation technique
or each feature, which can be sums, counts, averages, medians etc.

𝒅−𝒂𝒈𝒈 = 𝐴𝐺𝐺𝑚(𝑭 𝒅)

𝒅−𝒂𝒈𝒈 =
[

𝑑 − 𝑎𝑔𝑔1, 𝑑 − 𝑎𝑔𝑔2, ..., 𝑑 − 𝑎𝑔𝑔𝑛
]

The case-specific feature vector consists of the case-specific at-
ributes (e.g.: Loan application type, Age of the applicant), which are
ncoded into a 1-D feature vector (𝑭 𝒔) per case as follows.

𝒔 =
[

𝑠1, 𝑠2, ..., 𝑠𝑙
]

where 𝑙 is the number of case-specific
attributes.

The case-level feature is then constructed by adjoining the aggre-
gated event-level feature vector 𝑭 𝒅−𝒂𝒈𝒈, with the case-specific feature
vector 𝑭 𝒔, we denote the case-level feature vector 𝑯 as follows.

𝑯 = 𝑭 𝒅−𝒂𝒈𝒈 ⊕ 𝑭 𝒔

𝑯 =
[

ℎ1, ℎ2, ..., ℎ𝑘
]

where 𝑘 is the total number of case-level
features.

3.3. Model architecture

To derive each level of explanation that explains the process out-
come prediction, we deploy three models, as depicted in Fig. 1. On
the top is a logistic regression model, which takes the case-level fea-
ture vector as the input and makes the prediction along with global
explanations using case-level feature attribution. At the bottom is an
attention-based LSTM architecture, which takes the event-level feature
set (which ensures minimal information loss) as the input and makes
the prediction along with local explanations using event-level feature
attention weights (Sindhgatta et al., 2020a; Wickramanayake et al.,
2022a). In the middle is an ensemble model that takes both event-
level and case-level feature sets as the input to predict the outcome
of the process and generates local explanations using the case-level
feature set. The model employs a dual-learning mechanism as inspired
by the work in Alvarez-Melis and Jaakkola (2018) and takes the simpler
 a

5

Fig. 2. Model architecture of XD2-net.

case-level feature set for an explanation. It uses the attention-based
LSTM architecture as a computational back end, the transparent logistic
regression model for generating explanations. Moving forward, we
refer to this model as eXplainable Dual-learning Deep Network (XD2-
et). Further, despite XD2-net explaining the model prediction with the
ossy case-level feature set, it is expected to compensate for the loss
f information via the event-level feature set, which is fed to its LSTM
ack end.

XD2-net consists of two components. An LSTM-based computational
ngine that accepts an event-level feature vector and outputs a set of
eights that are equivalent to the number of case-level features (𝑘) and
decision layer that multiplies those weights with case-level features

nd gives the final output via a dense layer with the sigmoid activation
unction (where the final layer is equivalent to a logistic regression
odel).

omputation of feature weights: The LSTM-based computational en-
ine consists of two parts, a bi-directional LSTM combined with two
ttention mechanisms (𝛼 and 𝛽) and a final dense layer. The attention
echanism is introduced to improve the model performance, however,

ne can use the output of these attention layers (attention weights)
o examine the contribution of event-level features towards the model
utput as well (Sindhgatta et al., 2020a).

The bi-directional LSTM accepts the dynamic event-level feature
ector 𝑭 𝒅 . This feature vector carries the event-level information, pre-
erving the order of the event sequence. Bi-directional LSTM computes
he relationship between these events, both in forward and backward
irections. For each sequence that is passed through the bi-LSTM, 𝛼
ttention mechanism computes the importance of each event (𝑒) and
attention mechanism computes the importance of each attribute (𝑑)

n each event (𝑒). Then, the dynamic event-level feature vector 𝑭 𝒅
s element-wise multiplied by the two attention vectors and summed
cross the sequence length (prefix length) 𝑚 to generate the intermedi-
te vector 𝑭 𝒊𝒏𝒕. This intermediate vector then carries the information
𝒅
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about the original feature vector, the relative importance of each
feature value in a given event, and the relative importance of each
event.

𝑭 𝒊𝒏𝒕
𝒅 =

𝑚
∑

𝛼 ⊙ 𝛽 ⊙ 𝑭 𝒅

Then, we append the static feature vector 𝑭 𝒔, to the computed 𝑭 𝒊𝒏𝒕
𝒅

nd send this through a two-layer dense network with the activation
unction softmax and the weight matrix 𝑾 , to generate the interim
eights 𝜽.

⃗ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾 𝑇 (𝑭 𝒊𝒏𝒕
𝒅 ∪ 𝑭 𝒔))

where 𝜃 = [𝜃1, 𝜃2,… , 𝜃𝑘]

The non-linear relationships that are introduced by the bi-LSTM and
he dense network are expected to identify the distinguished patterns
hat exist in the input process prefixes that may not be captured at the
ase-level feature vector level.

inal prediction: The decision layer consists of the following compo-
ents. (1) A multiplication layer that multiplies the computed interim
eight vector 𝜽 with the case-level feature vector 𝑯 , (2) A dense layer

hat accepts the multiplied vector and uses a sigmoid function to predict
he probability of the outcome.

The complete model can be mathematically expressed as follows.

= 𝜽⊙𝑯 ;dot multiplication of the case-level feature vector and the
vector of their interim weights.

(𝑦) = 1
1 + 𝑒−(𝑏+𝑤⊙𝐶)

; final output

During the training phase, the model trains by comparing the final
utput against the actual outcome for each training sample using binary
ross-entropy. Via training, the LSTM-based engine learns to identify
he patterns in the dataset and provide the best set of weights that aids
he final model decision.

xtraction of explanations: The case-level feature vector that enters
he final sigmoid activation function is multiplied by two weight vec-
ors; 𝜽 - the interim weight vector, and 𝑤 - the final dense layer weight

vector. Thus, the feature importance for each feature ℎ𝑖 is extracted by
ultiplying the 𝑖th weight of 𝜽 and 𝑤.

eature importance of ℎ𝑖 = 𝜃𝑖 ⊙𝑤𝑖

Out of these two sets of weights, whilst 𝑤 is static (once trained), 𝜽
s a computed vector of weights by the LSTM-based backend unique to
ach data instance provided to the model. Therefore, the final feature
mportance computed (𝜃𝑖 ⊙𝑤1

𝑖 ) is also instance specific (i.e., local).

. Experiments and evaluation

This section outlines our experimental setup and presents the find-
ngs from our empirical evaluation of the three prediction models
tilized in our proposed approach for explainable process outcome
rediction. The experimental source code can be obtained from the
ollowing link: https://github.com/bemali/XD2-Net.

During the experiments, we assessed the effectiveness of the logistic
egression, attention-based LSTM architecture, and XD2-net models in
erms of both the quality of predictions and explanations. These models
ere employed in the approach described in Section 3.

.1. Datasets and preprocessing

We evaluate model performance using three publicly available event
og datasets. These datasets capture processes in different application
omains. BPIC 2012 (van Dongen, 2012) and BPIC 2017 (van Don-
en, 2017) both represent a loan application process from a Dutch
6

inancial institution, where BPIC 2017 represents a more streamlined
ersion of the BPIC 2012 process.BPIC 2018 represents an agricul-
ural grant application process, with data for three consecutive years
rom 2016 to 2018. BPIC 2018 log is organized into eight sub-logs
ach representing a different documentation category. When all eight
ogs were combined, the process represented in BPIC 2018 displays
oncept drift, as a result of the geo-parcel document log replacing
ertain key activities in the year 2017 that were previously fulfilled
y the activities in parcel document and entitlement application logs
n previous years (Denisov et al., 2018). Concept drift pertains to
he phenomenon wherein the underlying data distribution undergoes
lterations over time, rendering a previously trained model inadequate
or generating precise predictions (Demšar and Bosnić, 2018). Within
he context of BPIC 2018 (full log), concept drift assumes a notable
egree of significance due to the dual occurrence of modifications in the
istribution of activity labels and the complete replacement of one set
f activities with another throughout the temporal progression.Thus,
or our experiment, we consider only the payment application log of
PIC 2018, which does not exhibit concept drift.

Our first step in transforming these event logs appropriate for
redicting outcomes was to determine a relevant outcome for each
rocess. Next, we truncated the process traces to only include the
vents that happened prior to the identified outcome. Additionally,
e performed distinct pre-processing procedures for each log. Below
utlines the measures we took to identify the outcomes and conduct
he particular pre-processing tasks.

PIC 2012: The loan application process has five outcomes, namely
_CANCELLED, A_DECLINED, A_APPROVED, A_ACTIVATED, and A_
EGISTERED. A_CANCELLED and A_DECLINED represent an unsuccess-

ul outcome, while A_APPROVED, A_ACTIVATED, and A_REGISTERED
epresent a successful outcome. In order to simplify the analysis, we
ombined A_CANCELLED and A_DECLINED into a single outcome call-
d A_UNSUCCESSFUL, and A_APPROVED, A_ACTIVATED, and A_
EGISTERED into a single outcome called A_SUCCESSFUL. The activity

abel for the log was determined based on the field ‘CONCEPT_NAME’,
nd only the events with the life cycle transition marked as ‘complete’
ere considered. We also merged O_CANCELLED and O_DECLINED
ctivities and removed three redundant activities from the log (Bautista
t al., 2013). Finally, for explainability purposes, we translated the
ctivity labels that were originally in Dutch into English.

PIC 2017: This log represents a more improved version of the same
rocess as BPIC 2012 log. In this process, there are three outcomes,
_DENIED, O_REFUSED and O_ACCEPTED. O_REFUSED outcome is a
edundant outcome which is always followed by A_DENIED, hence we
ombined the two outcomes together as A_DENIED.

PIC 2018 (application): This log has three sub-processes application,
bjection and edit. Out of these sub-processes, the application sub-
rocess is the primary process whereas the other two sub-processes
re outliers (Denisov et al., 2018). To arrive at the activity label, we
ombine the fields ‘subprocess’ and ‘activity2’. Except for 6 cases, all
he cases in this log end up in the outcome ‘application_finish payment’.
owever, most of the traces encounter the event ‘application_abort
ayment’ after the payment was initiated (activity ‘application_begin
ayment’). Thus, we chose if the application goes through the ac-
ivity ‘application_abort payment’ or directly goes into the outcome
application_finish payment’ as our outcome.

Table 1 provides some details of these preprocessed event logs.

.2. Prediction points and prefix generation

Each process trace that is present in the event log first needs to be
runcated to generate the prefixes that are used to train the model. The
oint at which the process trace is truncated to generate the prefix then
lso becomes the point at which the model makes the prediction. To

https://github.com/bemali/XD2-Net
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Table 1
Details of the event logs used in experiments.

Event Log Process # cases Avg.
case length

Max.
case length

Dynamic
attributes

Static
attributes

Predicted outcome Detailed
outcome

BPIC 2012 (van
Dongen, 2012)

Loan application 12 688 9 85 Activity
Resource
Timestamp

Loan amount A_SUCCESSFUL or
A_UNSUCCESSFUL

If the loan
application is
approved or
declined

BPIC 2017 (van
Dongen, 2017)

Loan application 20 980 14 47 Activity
Resource
Timestamp
Credit score

Loan amount
requested
Number of Term
Application type

O_ACCEPTED or
A_DENIED

If the loan offer
was accepted or
application was
denied

BPIC 2018
(Application)
(van Dongen and
Borchert, 2018)
payment appl.

Agriculture grant
application

43 704 16 52 Activity
Resource
Timestamp

Amount applied application_finish
payment or
application_abort
payment

If grant was paid
on time or not
determine an appropriate prediction point, we consider the following
criteria which are based on the traditional data mining criteria of
dataset size, feature representation and dataset balance that are used
in machine learning-based predictive analytics.

• Criterion 1 - a sufficient number of data samples: When the
prediction is made, there is a sufficient number of traces to train
the model effectively

• Criterion 2 - sufficient coverage of data variants: When the
prediction is made, the process is required to be progressed
well enough that there is sufficient information (diversity among
traces) to make predictions

• Criterion 3 - data balance: the traces are balanced between the
outcome targets. This criterion may not always be satisfied, as
there are certain processes that naturally exhibit an imbalance
in outcomes, regardless of the decision point. Traditionally, to
balance a dataset, under-sampling or oversampling techniques are
used, but each of these techniques has its own drawbacks. Heavy
under-sampling can introduce bias to the dataset and oversam-
pling techniques like SMOTE may not be suitable to impute new
samples for event logs that represent sequences of events, which
can end up generating samples that cannot exist in the actual
process.

Exploratory data analysis is employed to determine if the criteria are
et by analysing the number of process traces by the end outcome (to

ssess criteria 1 and 3) and the number of process variants (to assess
riterion 2) along the process trace. After establishing the prediction
oint (event 𝑚) to generate a prefix, we sort all events in the process
race by activity index or timestamp. We then truncate the process trace
t event 𝑚, where 𝑚 < 𝑙 (trace length), by considering only the first 𝑚

events.
The number of cases belonging to each outcome for every log,

categorized by prefix length, is shown in Fig. 3. However, for BPIC
2012, prefixes shorter than 5 events show an unbalanced distribution
of outcomes (criterion 3), and prefixes shorter than 20 events have
insufficient cases for model training (criterion 1). Additionally, prefixes
shorter than 5 events make up a small fraction of the total variants in
the event log as depicted in Fig. 4 (criterian 2). Therefore, prediction
points 5 to 20 are chosen for generating prefixes in BPIC 2012.

Similarly, for BPIC 2017, prediction points 12 to 20 are used, and
for BPIC 2018, prediction points 12 to 28 are utilized. This method
ensures that there is sufficient data for training the model and that the
selected prefixes are representative of the overall event log.

4.3. Preprocessing of prefixes

At each prediction point, the generated prefix set is split into two
parts: training (70% of cases) and validation (30% of cases). In cases
7

where the datasets are unbalanced with regards to the distribution of
the prediction target (outcome), the majority target was undersam-
pled to balance the training set. Since prediction points with minimal
outcome imbalance are selected, undersampling will have a minimal
impact on the training dataset size. The test set was not balanced to
evaluate the model performance.

For larger organizations, the ‘resource’ attribute may contain many
labels representing the ‘name’ or ‘ID’ of each individual involved in
the process. However, many of these resources can be combined into a
few roles based on the tasks they perform. To accomplish this, a role
discovery algorithm is used to cluster resources based on the frequency
of a particular activity they perform, resulting in a smaller number of
roles from the numerous resource labels in the event log (Zhao and
Zhao, 2014).

4.4. Feature selection and encoding

For the experiments, we construct two feature sets for each event
log. An event-level feature set (for XD2-net and LSTM models) and a
case-level feature set (for XD2-net and logistic regression models).

4.4.1. Event-level feature vectors
The event-level feature vector consists of the event-specific at-

tributes of the event log, which change over the execution of a given
process trace of a given case.

To construct the event-level feature vector, the event-specific at-
tributes of the activity label, resource label (now converted to a role
label), timestamp and any relevant secondary event-specific attribute
available in the log (e.g.: event-level credit score in BPIC 2017) were
considered. With the timestamp attribute, two temporal attributes are
generated; ‘time elapsed’ - the total time elapsed from the beginning
of the trace to a particular event and ‘task duration’ - the time gap
between the completion of a given event and the completion of the pre-
vious event. Further, All categorical attributes were one-hot-encoded to
convert into numerical features, and all numerical features were min–
max normalized. For a given trace, the event-specific feature vector is
arranged as a sequence of features, arranged by the order of the events,
hence representing a two-dimensional feature vector for a given case
identifier.

4.4.2. Case-level feature vector
Construction of the case-level feature vector is started with the

already constructed event-level feature vector. First, the event-level
feature vector is aggregated along the event dimension, resulting in a
flat feature vector. For the aggregation of the features, we use count of
occurrence as the aggregation method for activity labels and role labels
representing the number of times a particular activity has occurred or
a particular role was involved in the process over the entire process
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Fig. 3. Number of cases with each outcome by the prefix length.
Fig. 4. Number process variants by the prefix length.
refix. For the time elapsed feature, we used the maximum value
epresenting the overall time elapsed in the process at the point of
rediction and the rest of the numerical features were aggregated by
ean representing the average value of that particular feature (e.g.:
verage task duration). Therefore, this part of the case-level feature
ector represents an aggregation encoded feature vector (Teinemaa
t al., 2019). Next, we construct the case-specific feature vector with
he case-specific attributes present in the log (e.g., requested loan
mount in BPIC 2012/2017 and requested grant amount in BPIC 2018).
ll categorical case-specific attributes were one-hot-encoded to convert

nto numerical features and all numerical features were min–max nor-
alized. The constructed feature vector is a one-dimensional vector for
given case identifier.

Then to arrive at the final case-level feature vector, the case-specific
eature vector was appended to the aggregated event-level feature
ector. This will facilitate the final explanation to include the contribu-
ion of those case-specific attributes as well as event-specific attributes
owards the decision.

.5. Model development and training

We deploy the logistic regression model, directly from the scikit-
earn library (Pedregosa et al., 2011). The deep neural networks were
eveloped using Tensorflow (Abadi et al., 2015) and Keras (Chollet
t al., 2015) libraries and hyperparameter optimized for each dataset,
sing KerasTuner (O’Malley et al., 2019) library. The logistic regression
odel was optimized for the best possible performance by changing

he maximum number of iterations. Prefixes that are generated at each
rediction point are bucketed together and for each bucket, an instance
or each of the three models is constructed and trained separately.

.6. Evaluation criteria and metrics

There are two criteria used to evaluate a model explanation: fidelity

nd interpretability, as noted in Zhou et al. (2021). Fidelity pertains to

8

the faithfulness of the explanation in relation to the model. Since our
approach extracts explanations intrinsically from the model, fidelity is
not assessed. Rather, we focus on evaluating the interpretability of our
explanations, which refers to the ease with which they can be under-
stood by people. Additionally, it is crucial for intrinsically explainable
models to maintain a reasonable level of predictive accuracy, ensuring
that the design of the explainability features does not adversely affect
the model’s predictive performance. Thus, we evaluate our models
using three metrics.

4.6.1. Evaluation of accuracy
AUC-ROC stands for ‘‘Area Under the Receiver Operating Char-

acteristic Curve’’. It is a performance metric used to evaluate the
performance of binary classification models. The Receiver Operating
Characteristic (ROC) curve is a plot of the true positive rate (TPR)
against the false positive rate (FPR) for different threshold values of
a binary classifier’s prediction probability. The AUC-ROC is the area
under this curve, which provides a measure of the classifier’s ability
to discriminate between positive and negative classes. The AUC-ROC
ranges from 0 to 1, where a score of 0.5 indicates a classifier that
performs no better than random chance, and a score of 1 indicates a
perfect classifier. We measure the accuracy of the predictions made by
each model with AUC-ROC, instead of using the traditional accuracy
measure, which measures the classification accuracy based on a single
threshold.

4.6.2. Evaluation of interpretability of explanations
In this study, we assess the quality of explanations by contrasting

the global case-level explanations generated by the logistic regression
model with the globally aggregated case-level explanations produced
by XD2-net. Our methodology leverages the logistic regression model
to generate a case-level global explanation while using XD2-net to
generate case-level local explanations. However, as XD2-net generates

local explanations for individual instances, these explanations can be
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Fig. 5. Global explanation generated by logistic regression vs. the globally aggregated explanation of XD2-net - prediction point 5.
Fig. 6. Global explanation generated by logistic regression vs. the globally aggregated explanation of XD2-net - prediction point 15.
aggregated to produce cohort or global explanations that offer a general
explanation for either a selected cohort of instances or all instances.
Figs. 5 and 6 depict the comparison of the global explanations gen-
erated by logistic regression and XD2-net for prediction points 5 and
15 for BPIC 2012 respectively. Both explanations employ a feature
importance-based explanation that is similar in terms of their feature
space.

To compare the quality of explanations, we evaluate the globally
aggregated local case-level explanations created by XD2-net against the
real global case-level explanation produced by the logistic regression
model. To globally aggregate the XD2-net case-level explanations, we
utilize two aggregation methods: mean and median (of the feature
importance values). We then compare each of these globally aggregated
explanations to the global explanation generated by the logistic regres-
sion model to assess how well they function as global explanations that
can elucidate all the predictions.

We employ two functionally grounded (computational) metrics,
namely agreement and effective complexity, to evaluate the interpretabil-
ity of the explanations (Zhou et al., 2021). These metrics assess how
9

well the explanations could be understood by humans. The agreement
measure evaluates the extent to which two explanations agree on
the top features that explain a prediction (Krishna et al., 2022). It
is based on the observation that people usually focus on the top k
features when understanding an explanation rather than considering
all the features. The effective complexity measure assesses the minimum
number of features needed to explain a model decision in a way
that does not affect the prediction if only those features are used for
the prediction task (Nguyen and Martínez, 2020). If an explanation
has low effective complexity, it can reduce the cognitive load on the
human trying to understand it, thus enhancing the interpretability of
the explanations (Abdul et al., 2020). However, we acknowledge that
the interpretability of an explanation ultimately depends on how well
a human user trusts and understands it Lopes et al. (2022), and these
computational metrics can provide only an initial insight into how
human-friendly the explanations are.

Explanation agreement: The feature agreement between the globally
aggregated XD2-net explanations and the global explanation generated
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Fig. 7. Model accuracy: XD2-net, Logistic regression and attention-based LSTM.
by the Logistic Regression is evaluated using two metrics proposed
in Krishna et al. (2022). The agreement between the two explanations
is evaluated based on the top 5 features identified by each of them.

• Feature agreement (of top k features) measures the agreement
of features within top k features identified by each explanation.
Given two explanations 𝐸𝑎 and 𝐸𝑏, the feature agreement metric
can be formally defined as:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐸𝑎, 𝐸𝑏, 𝑘)

=
|𝑡𝑜𝑝_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐸𝑎, 𝑘) ∩ 𝑡𝑜𝑝_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐸𝑏, 𝑘)|

𝑘

• Rank agreement (of top k features) measures the agreement of
features and their respective ranks within the top 𝑘 features
identified by each explanation. Given two explanations 𝐸𝑎 and
𝐸𝑏, the rank agreement metric can be formally defined as:

𝑅𝑎𝑛𝑘_𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐸𝑎 , 𝐸𝑏 , 𝑘) =

| ∪ {𝑠|𝑠 ∈ 𝑡𝑜𝑝_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐸𝑎 , 𝑘) ∧ 𝑠 ∈ 𝑡𝑜𝑝_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐸𝑏 , 𝑘) ∧ 𝑟𝑎𝑛𝑘(𝐸𝑎 , 𝑠) = 𝑟𝑎𝑛𝑘(𝐸𝑏 , 𝑠)}|
𝑘

Effective complexity: To evaluate the effective complexity of the expla-
nation, we evaluate how many (most significant) features by minimum
will be required by the model to predict the outcome at the same level
of prediction confidence as the original prediction. Mathematically, this
metric is defined as follows Nguyen and Martínez (2020); Let 𝑎(𝑖) be
the attributions ordered increasingly w.r.t. their absolute value, and
𝑥(𝑖) the corresponding features. Let 𝑀𝑘 = 𝑥𝑁−𝑘,… , 𝑥𝑁 be the set of
top k features. Given a chosen tolerance 𝜖 > 0, the effective complexity
is defined as

𝑘∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈1,…,𝑁

|𝑀𝑘|𝑠.𝑡.𝐸(𝑙(𝑦∗, 𝑓−𝑀𝑘
)|𝑥∗𝑀𝑘

) < 𝜖

The original formula is designed to evaluate local-level explanations
using feature perturbation as the experimentation mechanism. The
formula is defined to find the minimum number of important features
denoted by 𝑘 where, the set of minimum important features required
to explain the prediction, 𝑀𝑘, the original prediction of the model with
all features present denoted by 𝑦∗, the prediction function with the 𝑀𝑘
important features fixed (to the original values) and the non-important
features perturbed is denoted by 𝑓−𝑀𝑘

, the error function between 𝑦∗

and the result of 𝑓−𝑀𝑘
denoted by 𝑙, and the expected value of the error

function between 𝑦∗ and the result of 𝑓−𝑀𝑘
for all possible perturbations

of the non-important feature set denoted by 𝐸. The objective is to
determine the minimum value of 𝑘 such that 𝐸(𝑙(𝑦∗, 𝑓 )|𝑥∗ ) is less
−𝑀𝑘 𝑀𝑘

10
than a pre-determined threshold 𝜖, removing the maximum number of
non-important features, 𝑁 − 𝑘.

To adapt this formula for global-level explanations, we conduct an
ablation. The features of the global explanation are arranged based
on their importance, and a feature ablation study is performed by
removing the features one by one from least to most important, re-
training each model, and measuring the deviation of the retrained
model’s prediction confidence (probability) for a given instance from
the original prediction confidence for the same instance using Root
Mean Squared Error (RMSE) as the metric. The effective complexity of
the explanation is then measured as the minimum number of features
required to maintain the RMSE below a certain threshold 𝜖 compared
to when computed with the total number of features.

4.7. Results

This section provides a detailed analysis of the results obtained from
the experiments, which includes the accuracy of the model predictions,
along with the explanation agreement and the effective complexity
of the global explanations. Furthermore, the results section includes
an in-depth interpretation of the observed patterns and relationships
between the performance metrics and the nature of the datasets and
explanations.

4.7.1. Model accuracy
The accuracy of outcome prediction by the three evaluated models

is depicted in Fig. 7, along with the properties of the training log
that can aid in the interpretation of performance. In the best case, we
expect the deep learning-based models will outperform the simple and
transparent logistic regression model, and the acceptable worst case
will be for all three models to display a similar level of accuracy. In the
results, we observe that the model’s performance improves when there
is an increase in either or both of the following factors: (1) the number
of available data points for training (i.e., the number of cases), and
(2) the diversity of information (i.e., the number of process variants).
Conversely, we also notice a decrease in model performance when there
is a low number of cases or variants. Another pattern we notice is
deep learning-based architectures (XD2-net and attention-based LSTM)
tend to perform better with a high number of training samples, even if
there are fewer variants (BPIC 2018 prediction points 12 to 16 versus
BPIC 2012/BPIC 2017). In the experiments, all three models exhibit
comparable performance in the worst case, but if provided with a

significantly larger dataset for training, the deep learning-based models
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Fig. 8. Explanation agreement for BPIC 2012: For prediction points 5,10 and 20 there is a weak feature agreement between the two explanations with none of the explanations
agreeing in terms of how the top 5 features are ranked, whereas for prediction point 15, the two explanations agree with each other much better.
Fig. 9. Explanation agreement for BPIC 2017: For prediction point 15, XD2-net mean aggregated global explanation agrees with logistic regression explanation for the top one
feature, whereas for prediction point 20, both XD2-net global explanations agree with logistic regression explanation for the top fourth feature.
a

outperform the transparent logistic regression model (the best case), in
addition to their ability to generate local explanations that can explain
a single prediction. Depending on specific requirements in terms of
explainability and performance, one or more of these architectures can
be chosen based on the nature of the dataset.

4.7.2. Explanation agreement
In explanation agreement, we evaluate to what extent would the

two globally aggregated explanations from XD2-net agree with the
global explanation extracted from the logistic regression. We compare
the top 5 important features (based on the feature importance value)
for XD2-net mean aggregated global explanation and XD2-net median
aggregated global explanation against the logistic regression global
explanation, to evaluate the feature and rank agreement based on the
previously defined formula.

Figs. 8, 9, and 10 depict the feature and rank agreement between
XD2-net explanations and logistic regression explanation for BPIC 2012,
2017 and 2018 logs respectively. The blue bars depict the feature and
rank agreement of mean-aggregated XD2 explanations, and the green
bars depict the feature and rank agreement of median-aggregated XD2
explanations. The 𝑥-axis of each bar graph shows the top 5 features

11
based on the feature importance, and the 𝑦-axis shows the agreement.
The experiment was done for a chosen set of prediction points that
cover the total range of prediction points for which the outcome
prediction was performed. An agreement value of 1 indicates that there
is a perfect agreement between the top features identified by each of
the explanations, whereas a value between 0 and 1 indicates that only
a fraction of the top features agree with each other.

Based on the explanation agreement results for different decision
points for each of the logs, we can observe that in most of the instances,
the explanation agreement between the logistic regression explana-
tion and XD2-net mean aggregated global explanation vs. explanation
greement between logistic regression explanation and XD2-net median

aggregated global explanation do not vary significantly. For all the
instances we can see that at least one feature out of the top 5 features
agrees between the logistic regression and XD2-net explanations, and in
7 out of 10 instances, one of the top 2 features show such agreement.

4.7.3. Effective complexity
In this evaluation, we observe what the effective complexity (i.e. the
number of minimum most important features required to explain the
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Fig. 10. Explanation agreement for BPIC 2018: For prediction point 20, the explanation agreement between the XD2-net explanations and logistic regression explanation is better
compared to the other decision points.
Fig. 11. Evaluation of effective complexity for BPIC 2012: Global explanation extracted from logistic regression shows a better (lower) effective complexity when 𝜖 = 0.1, whereas
he globally aggregated explanations extracted from XD2-net show a better effective complexity for 𝜖 = 0.2.
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rediction) of the global explanations generated by the logistic regres-
ion model and the globally aggregated local explanations generated by
he XD2-net is. We assess the number of features each explanation re-
uires to maintain an error (RMSE) between the original prediction and
he revised prediction with fewer features below a specific threshold
𝜖). We evaluate what the effective complexity for 𝜖 = 0.1 and 𝜖 = 0.2
s. Provided that a model prediction is the probability of the process
utcome which is a number between 0 and 1, we do not perform the
valuation beyond the point where RMSE = 0.5, which indicates a
erious error in the prediction. We perform this comparison on all three
atasets and a chosen set of representative prediction points that cover
 t

12
he entire range of prediction points utilized to predict the process
utcome. Figs. 11, 12, and 13 depict the change of RMSE of the revised
odel prediction when each of the explainable models is retrained and

etested with least important features being removed one by one.
In BPIC 2012 log-related experiments (Fig. 11), we can see that

t prediction point 5, all three explanations can go up to an effective
omplexity of 2 minimum features whilst maintaining an error between
he original prediction and the prediction with top 2 features (RMSE)
𝜖 = 0.1. However, for prediction points 10, 15 and 20 the globally

ggregated XD2-net local explanations cannot reduce any features from
he original explanation if the 𝜖 = 0.1 (black horizontal line in the
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Fig. 12. Evaluation of effective complexity for BPIC 2017: For prediction point 15, Global explanation extracted from logistic regression shows a better effective complexity for
oth thresholds of 𝜖, whereas, for prediction point 20, the globally aggregated explanations extracted from XD2-net show better effective complexity for both thresholds.
Fig. 13. Evaluation of effective complexity for BPIC 2018: Except for prediction point 15, Global explanation extracted from logistic regression shows a better effective complexity
or both thresholds of 𝜖.
raphs), whereas for the global explanation extracted from logistic
egression can reach an effective complexity of 16 (out of 20) features
or the prediction point 10, 16 (out of 21) features for the prediction
oint 15 and 7 (out of 21) features for the prediction point 20. For a
ore relaxed 𝜖 = 0.2 (grey horizontal line in the graphs), the effective

omplexity for globally aggregated XD2-net local explanations can go
up to 3 features for prediction points 10 and 15, and 4 features for
prediction point 20. For BPIC 2017 and 2018 logs also for different
13
prediction points, we observe different results for effective complexity
between logistic regression and XD2-net global explanations, where
some instances XD2-net shows better effective complexity in global
explanations (prediction point 20 in BPIC 2017 and prediction point 15
in BPIC 2015), whereas in other instances global explanation extracted
from logistic regression model performs better.

However, a notable pattern is the rate of change in prediction error
(RMSE) when the least important features are removed progressively
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Fig. 14. The two prediction points are chosen on the basis of how many applications have been moved to the loan offer sent (O_SENT) stage.
s less for globally aggregated XD2-net local explanations, compared to
he inherently global explanation extracted from the logistic regression.
his effect is most visible in prediction point 15 of BPIC 2012 and pre-
iction point 25 of BPIC 2018. This could potentially be due to the fact
hat globally aggregated XD2-net local explanations not being able to
epresent true global explanations that are applicable to all predictions.
s a result, removing a feature based on its aggregated importance may
ffect the prediction of different data points (i.e. process prefixes) in
istinct ways.

. Analysis of explanations

In this section, we analyse the multi-level explanations generated to
nswer ‘how’ and ‘why’ a particular prediction was made for the BPIC
012 log. BPIC 2012 represents a process of loan application in a Dutch
inancial institution (van Dongen, 2012). It has two key outcomes, the
oan application getting a successful outcome (A_SUCCESSFUL) or an
nsuccessful outcome (A_UNSUCCESSFUL). We choose this event log
o demonstrate the explanation as it is an easily understood process
hat does not require highly specific domain knowledge.

hat are the different levels of explanations to demonstrate: Global expla-
ation with case level feature attribution gives a high-level understanding
f how the model makes the prediction, which is generalizable for all
he samples. A global explanation with case-level attributes is directly
enerated by the logistic regression model, as well as globally aggregat-
ng the local explanations generated by XD2-net. Local explanation with
case level feature attribution gives an understanding of why a particular
decision was given to a particular trace, using aggregated case-level
features. We can generate these explanations with XD2-net. If a process
analyst wants to investigate further the reason why a certain decision
was made upon a certain process trace, he can use Local explanation
with event level feature attribution, which tells him how specific events
and those event-specific attributes influenced the model decision. These
14
explanations can be generated using the attention-based LSTM mech-
anism. With the multiple levels of explanations, we primarily try to
answer the following questions.

• How is the decision made if a loan application gets unsuc-
cessful in general? - This question is answered by the case-level
global explanations generated by the logistic regression model

• Why did a particular application get unsuccessful or suc-
cessful? - This question is answered by the local explanations
generated by XD2-net, which gives a specific explanation for the
particular application with case-level features. The event-level
explanations that are extracted from attention weights of the
LSTM network help to explore this explanation further.

• What is the difference between two similar loan applications
(in terms of the requested loan amount) which got opposite
outcome predictions? - Comparative analysis of local (case-level
and event-level) explanations.

It is crucial to highlight that despite the three models generating
explanations to elucidate the same phenomena, they are trained inde-
pendently, leading to potential differences among their explanations
and resulting in non-alignment in explaining the same prediction.
For instance, when comparing the global case-level explanation for
a specific outcome (i.e., loan application getting unsuccessful in our
demonstration) with the local case-level explanation for a particular
case with the same outcome prediction, there may be inconsistencies.
In the subsequent demonstration, we illustrate how each of the three
questions is addressed by the respective explanations.

We demonstrate these three levels of explanations at two prediction
points, one very early in the process (prediction point 5) and another
very late in the process (prediction point 15) to depict how differently
the model makes decisions at each prediction point. We also support
our explanation through the relevant process graphs and exploratory
data analysis to evaluate the validity/further strengthen the message
conveyed by the explanations. As per Fig. 14, prediction point 5 occurs
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Fig. 15. Global explanation generated by logistic regression model identifies the activity W_INVESTIGATING_FOR_FRAUD and Average TASK_DURATION to be the top features
that influence the decision of A_UNSUCCESSFUL.
much early in the process, and not many traces have progressed too far
in the process, with none of the traces having moved to the loan offer
stage. In fact, the applications at prediction point 5 represent those that
are accepted and evaluated for completeness. As a result, the predictive
model may not make a very good prediction due to the insufficiency of
the information. For such a model, the model explanations could serve
as a debugging tool that can help the data-scientists can understand the
reason for poor model performance (Wickramanayake et al., 2022b)

Prediction point 15 is an advanced stage of the application process,
and the model has a rich set of information to make the decision
with, where 95% of the eligible traces have been moved past the
loan offer sent stage. At this stage, model explanations can help the
process scientists to understand the process attributes that lead towards
a desired outcome (Mehdiyev and Fettke, 2021).

5.1. Explaining outcome predictions at an early stage of the process

At prediction point 5, our answers to the three questions stipulated
above are based on the explanations that are generated with the limited
amount of information that is available for the three models, given
the process is at an early stage by this point. While these explanations
may not offer compelling reasons for business users to understand the
reasoning behind specific outcome predictions, they can be valuable
for data scientists to enhance the performance of the model itself (see
Fig. 15).

Case level - Global explanations: How does the model make the
decision if an application gets an unsuccessful outcome in general?
The global explanation with logistic regression reveals that the occur-
rence of the activity W_INVESTIGATING_FOR_FRAUD (once or multiple
times) and a high average TASK_DURATION are key features that
significantly impact the likelihood of an application being unsuccessful.
On the other hand, the occurrence of the A_ACCEPTED activity and
the involvement of Role_0 are influential factors towards an application
being successful. From a business perspective, these observations align
with expectations, making logical sense in terms of their impact on
the decision-making process. A high average event duration means
15
the bank is taking more time to process the application, likely due
to the application having issues. W_INVESTIGATING_FOR_FRAUD has
a very high bearing on the decision, as 100% of such applications
do get unsuccessful, however, the number of such applications is not
substantial.

Case level and event level - Local explanations: Why did the applica-
tion 200775 get unsuccessful? Fig. 16 depicts the local explanation
for the application (case ID) 200775, which is an unsuccessful appli-
cation. This explanation consists of the local case-level explanation
generated by XD2-net along with the prediction confidence of XD2-net
(top right), the local event-level explanation generated by attention-
based LSTM model along with the prediction confidence (bottom right)
and the process model that depicts the process path taken by the
entire trace with the part that the predictive model cannot see (due to
prefix truncation) greyed out (left). In this explanation, local case-level
and local event-level explanations tell which features influenced the
model prediction (primary explanations), and the process model helps
to validate and support the explanation.

For this specific application which got an unsuccessful outcome
prediction, the case-level local explanation suggests the occurrence of
the activity W_COMPLETE LEADS thrice is the main contributing factor.
As per the process model, we can observe that this is an application
that got declined early in the process without even being subjected to
a successful loan offer. It has gone through W_COMPLETE LEADS three
times. The event-level explanation identifies three equally important
features for the decision, W_COMPLETE_LEADS at event 5 (final event
before prediction), TIME_ELAPSED at event 5 to be 0.4 days and the
involvement of role_1 and event 5. Overall, the event-level explanation
identifies the last event of the prefix to be the most influential towards
the decision.

Case level and event level - Local explanations: Why did the appli-
cation 189466 get successful? This specific process trace appears to
be exceptionally efficient, as per the process map, indicating minimal
issues with the application. Unlike the previous instance, where the
first 5 events took nearly half a day to execute (which is more than

a business day in general), in this case, they occurred within an hour,
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Fig. 16. Local explanations suggest three occurrences of W_COMPLETE_LEADS activity influence the prediction of A_UNSUCCESSFUL outcome for the loan application 200 775
with a 0.9 confidence.
Fig. 17. Local explanations suggest the low average TASK_DURATION influences the prediction of A_SUCCESSFUL outcome for the loan application 189 466.
uggesting a smooth process flow. The case-level explanation further
eveals that a low average TASK_DURATION positively impacts the
ecision for loan application approval, while a high loan amount
equested (EUR 32,000) has a negative influence on the decision.
owever, the local event-level explanation seems to rely solely on the

irst event of the trace, which may not provide substantial insights into
he prediction decision (see Fig. 17).

hat is the difference between two similar loan applications (in
erms of the requested loan amount) which got opposite outcome
redictions? Case IDs 185461 and 200775 both correspond to loan
16
applications with loan request amounts ranging from 5000 to 6000
Euros, considered as low loan request amounts. In the case where
the outcome prediction is A_SUCCESSFUL, the case-level explanation
highlights that the low loan amount requested (EUR 6K) and the
short average event duration (0 days) are contributing factors to the
prediction. Conversely, for case ID 200775, the explanation suggests
that the occurrence of the W_COMPLETE_LEADS activity three times
has influenced the model’s prediction of A_UNSUCCESSFUL.

At the event level, the explanation for case ID 185561 focuses
primarily on the very first event, while for case ID 200775, event 5,
during which the W_COMPLETE_LEADS activity occurs, is found to
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Fig. 18. Low average TASK_DURATION and low Loan amount requested influence the prediction of outcome A_SUCCESSFUL for Case ID 185461 whereas the occurrence of
W_COMPLETE_LEADS three times influences the prediction of A_UNSUCCESSFUL for Case ID 200775, despite both applications being of similar loan amounts (EUR 6000).
Fig. 19. Low average TASK_DURATION influences the prediction of outcome A_SUCCESSFUL for Case ID 201332 whereas the occurrence of W_COMPLETE_LEADS once influences
he prediction of A_UNSUCCESSFUL for Case ID 183661, despite both applications being of similar loan amounts (EUR 20,000).
e most influential in the decision for the application to receive an
nsuccessful outcome prediction (see Fig. 18).

When comparing two loan applications with loan amounts re-
uested exceeding EUR 20,000, and having opposite outcome pre-
ictions (as shown in Fig. 19), the explanations exhibit similarities
o the previous comparison. However, in this case, the high loan
mount requested is observed to have a negative impact towards the
_SUCCESSFUL outcome prediction.

.2. Explaining outcome predictions at a later stage of the process

Given the availability of additional information at prediction point
5, it is anticipated that the model explanations would be more insight-
ul and informative.

ase level - Global explanations: How does the model make the
ecision if an application gets unsuccessful in general? As per the
lobal explanation derived from logistic regression, the features that
onsistently hold high influence towards an application being unsuc-
essful are the occurrence of the O_CANCELLED activity (indicating
17
cancellation of the loan offer) and a high Average TASK_DURATION.
On the other hand, the features that significantly impact a successful
outcome for the application are the occurrence of the O_SENT activity
(indicating a loan offer has been sent to the customer) and the occur-
rence of the O_SENT_BACK activity (indicating customer acceptance of
the loan offer).

Case level and event level - Local explanations: Why did the ap-
plication 202596 get unsuccessful? In Fig. 21, an application that
received an unsuccessful outcome prediction due to the loan offer being
cancelled after 7 follow-up attempts, with a total process duration of 11
days. The case-level explanation attributes the most influential feature
for the prediction to be the occurrence of the W_FOLLOWUP_OFFER ac-
tivity seven times. However, the event-level explanation differs slightly,
indicating that the total time taken by the process up to the predic-
tion point (event 15) has the highest influence, along with the last
occurrence of the W_FOLLOWUP_OFFER activity and its associated role.

While both explanations agree that the W_FOLLOWUP_OFFER ac-
tivity influences the A_UNSUCCESSFUL prediction, the event-level ex-
planation specifically identifies the last occurrence of this activity as
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Fig. 20. Global explanation generated by logistic regression model identifies the activity O_CANCELLED and high Average TASK_DURATION to be the top features that influence
he decision of A_UNSUCCESSFUL.
Fig. 21. Local explanations suggest the occurrence of W_FOLLOWUP_OFFER activity to influence the prediction of A_UNSUCCESSFUL outcome.
the most influential. Notably, this explanation contradicts the glob-
al explanation for unsuccessful loan applications (as shown in Fig. 20).
The global explanation recognizes the occurrence of the W_FOLLOWUP
_OFFER activity as only marginally influential towards the A_
UNSUCCESSFUL prediction, and it is not listed among the most influ-
ential features.

Case level and event level - Local explanations: Why did the ap-
plication 180703 get successful? The loan application underwent
swift processing without any instances of O_CANCELLED activity. Ac-
cording to the case-level explanation, the key factors that influenced
the decision of A_SUCCESSFUL outcome were the low average TASK_
DURATION and the low loan amount requested. However, the oc-
18
currence of W_COMPLETE_PREACCEPTED_APPLICATIONS activity six
times had a detrimental impact on the decision. In contrast, the local
event-level explanation provided limited information, identifying only
the first event in the trace as influential in the decision (see Fig. 22).

What is the difference between two similar loan applications (in
terms of the requested loan amount) which got opposite outcome pre-
dictions? Loan applications with Case IDs 193497 and 197008 have
requested loan amounts ranging from 5000 to 6000 Euros, as depicted
in Fig. 23 (top half). Case ID 193497 was successful (A_SUCCESSFUL)
based on the case-level explanation, which cited its low average task
duration and requested loan amount as influencing factors. On the
other hand, Case ID 197008 was unsuccessful (A_UNSUCCESSFUL) due
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Fig. 22. Low loan amount requested and the low average TASK_DURATION are factors that influence the prediction of A_SUCCESSFUL for the loan application with ID 180703.
to the presence of W_FOLLOWUP_OFFER activity occurring five times
(indicating delays in the customer acceptance of the loan offer) and
W_COMPLETE_PREACCEPTED_APPLICATIONS activity occurring four
times (indicating issues of the original application submitted).

The event-level explanation for the A_SUCCESSFUL prediction did
not yield much insight, whereas the event-level explanation for the
A_UNSUCCESSFUL prediction revealed that the most influential factor
was the total time elapsed of 15.8 days at event 15. Notably, even
for loan applications with higher requested loan amounts, the expla-
nations for the outcomes were similar to those with lower loan amount
requests. Thus, the explanation for the outcomes of loan applications
with higher requested loan amounts appeared to be consistent with the
explanation for the outcomes of applications with lower loan amount
requests.

5.3. Limitations

This approach proposes three levels of explanations: a case-level
global explanation generated by the logistic regression model, a case-
level local explanation generated by the XD2-net, and an event-level
local explanation generated by the attention-based LSTM model. De-
spite explaining the same phenomena, these explanations are generated
by three independent models that are fed with different feature sets and
trained independently. As a result, there is a problem where these three
explanations may not complement each other in explaining the same
prediction, because although each individual explanation is faithful to
the model from which it is extracted, they may not be faithful to each
other.

Moreover, it is important to note that the explanations generated
by any of these methods simply reveal how each model arrives at
its decision and may not align with domain knowledge. The inherent
explanations for a model’s behaviour stem from its trained weights
and outputs. Even if a particular feature lacks practical significance,
it may still be considered important by the model if it contributes
to optimizing classification accuracy. Therefore, these explanations
may necessitate further interpretation, customized for the end-users, to
facilitate their understanding.
19
6. Conclusion and future work

We have presented an approach for generating multi-level intrinsic
explanations for process outcome predictions. The approach draws
upon two levels of feature vectors: case-level and event-level, and three
model architectures: logistic regression, attention-based LSTM, and an
ensemble architecture XD2-net. Using three publicly available datasets,
we have tested the applicability of the approach as well as examined
the multi-level explanations generated by the approach through an
elaborate case study.

One limitation of our work is that despite introducing three levels
of explanations to elucidate the same phenomena using three intrin-
sically explainable models, these explanations may not be able to
complementarily explain the same prediction due to the independent
training of the models. To address this drawback, we have devised
two strategies. First, we plan to extract event-level local explanations
directly from the attention-based LSTM backend of the XD2-net itself.
Second, we aim to develop an ensemble architecture that makes a
voting-based final prediction to connect the XD2-net and the logistic
regression model. This approach will allow us to extract all three levels
of explanations from the same ensemble model, facilitating the use of
the three explanations in a complementary manner.

Secondly, in this work, we have limited our evaluation of expla-
nation interpretability only to functionally grounded techniques. As
one of our key future contributions to the research of this work part
of we have devised a plan based on a framework for user-evaluation
of explanations (Chromik and Schuessler, 2020) to conduct a human-
oriented user evaluation to evaluate the understandability (Lopes et al.,
2022) aspect of our explanations. Finally, we have limited the feature
construction method of the case-level feature set to simple aggregation
of event-level features over the event axis, of which the information
is only limited to the overall frequency of activities and associated
roles, total time taken by the process up to the prediction point and
averages of other numerical features considered. In future work, we
expect to enrich the explanations generated by XD2-net by introducing
techniques of generating case-level feature construction with domain-

informed methods. Another direction is to develop a counterfactual
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Fig. 23. Low loan amounts requested and low average TASK_DURATION influences A_SUCCESSFUL decisions whereas many occurrences of W_FOLLOWUP_OFFER and
W_COMPLETE_PREACCEPTED_APPLICATIONS activities together with long process durations influence A_UNSUCCESSFUL decisions.
generation algorithm that is customized for the dual learning architec-
ture of XD2-net. We also expect to expand this architecture to other
reas of business process prediction such as next activity prediction and
rocess remaining time prediction. Considering the inherent capacity of
D2-net to generate intrinsic local explanations, an intriguing avenue

or further investigation involves the utilization of these explanations to
ain insights into the presence of concept drift within a dataset (Demšar
nd Bosnić, 2018). In principle, local explanations are dedicated to
xplaining predictions of individual traces, which makes it possible to
20
reveal discrepancies between predictions of different traces that could
result from the presence of concept drift. This prospect has potential as
a future step in the research.
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