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Abstract: High efficiency video coding (HEVC) has dramatically enhanced coding efficiency com-
pared to the previous video coding standard, H.264/AVC. However, the existing rate control updates
its parameters according to a fixed initialization, which can cause errors in the prediction of bit
allocation to each coding tree unit (CTU) in frames. This paper proposes a learning-based mapping
method between rate control parameters and video contents to achieve an accurate target bit rate and
good video quality. The proposed framework contains two main structural codings, including spatial
and temporal coding. We initiate an effective learning-based particle swarm optimization for spatial
and temporal coding to determine the optimal parameters at the CTU level. For temporal coding at
the picture level, we introduce semantic residual information into the parameter updating process to
regulate the bit correctly on the actual picture. Experimental results indicate that the proposed algo-
rithm is effective for HEVC and outperforms the state-of-the-art rate control in the HEVC reference
software (HM-16.10) by 0.19 dB on average and up to 0.41 dB for low-delay P coding structure.

Keywords: HEVC; learning-based rate control; PSO

1. Introduction

Multimedia technology has been upgraded from one generation to another to fulfill
daily needs such as television, telephones, computers, robots, etc. Numerous multimedia
applications have been utilized, including digital versatile disc (DVD), digital television
(TV) broadcasting, video telephony, video teleconferencing, video games, and other forms
of video-on-demand. According to [1], the resolution of television broadcasting has been
upgraded from standard-definition television (SDTV) to 8K ultra high definition (UHD),
which requires a very high bit rate to transmit or store. Furthermore, the video demand
on internet traffic is increasing, based on a statistical report in the “Cisco Annual Internet
Report (2018–2023)”, a Cisco White Paper in 2018 in [2]. Thus, it strongly needs an effective
video coding technique to reduce the network traffic load with good visual quality and a
lower bit rate.

In general, video properties have four redundancy criteria: spatial redundancy, tempo-
ral redundancy, perceptual redundancy, and statistical redundancy, which can be eliminated
by the video coding standard [3]. High efficiency video coding (HEVC) [4], an advanced
video coding standard released in 2013 by ITU-T and ISO/IEC, can effectively remove the
digital video redundancies and achieve a bit rate saving of about fifty percent at the same
visual quality by comparing with the previous standard (H.264/AVC [3,5,6]). HEVC is built
following the structure of the successful block-based hybrid video coding approach [7], the
same as the H.264/AVC video coding standard. In addition, several advanced techniques
are applied in HEVC to get efficient compressions, such as flexible partitioning using quad-
tree structure, prediction modes [8], sample adaptive offset (SAO) [9], and the cutting-edge
interpolation technique [10].
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Moreover, HEVC needs to have a functional encoder control, known as rate control, to
determine the optimum codec parameters to accomplish minimal rate–distortion (R–D)
score [11]. Many codec parameters include modes selection, quad-tree structure, motion es-
timation, and quantization parameter (QP). In common, the rate control algorithms [11,12]
are used to define the bit allocation and QP by fixing the other parameters to accomplish
the target bit with consistent visual quality. Specifically, rate control needs to manipulate
the number of bits from a constant bit rate (CBR) into each coding level, including the
group of picture (GOP) level, picture level, and basic units known as macroblocks (MBs)
in H.264/AVC. The QP is then regulated to achieve the pre-allocated bits for each coding
level, where the larger number of QP leads to a smaller number of allocated bits and vice
versa. Encoder controls typically implement a uniform bit allocation in a GOP structure
and initialize the fixed encoding parameters for any video contents to preserve a short-
term constant output bit rate in the CBR channel. As a result, this implementation faces
an infeasible problem of accurately adjusting encoding parameters for each GOP frame.
Accordingly, if the target bit is less than the output bits, the encoded bits will rack up in
the encoder buffer, causing a buffer overflow. The target bit is greater than the output
bits, which implies the buffer underflow. Hence, controlling the relationship between bit
rate and QP is essential for maintaining picture quality throughout the video sequence, as
buffer overflows and underflows have an undesired effect on video quality fluctuations.
Q-domain rate control is a direct estimation that attempts to model a correlation function
between bit rate and quantization; the bit allocation can be computed from the QP to
allocate for residual information but not for non-residual information. This model can work
well when the coding parameters are not very flexible. Another rate control algorithm
called ρ-domain rate control is developed [12,13] by introducing a linear function that
outputs the coding bit rate from the percentage of zeros among the quantized transform
coefficient. The model is effective only if the size of the transform is fixed. Both Q-domain
and ρ-domain rate controls are designed to assume a high correlation between bit rate
and quantization. This assumption is not valid for the current video codec because the
codec becomes progressively variable [4]. Thus, a robust rate control [11], named R–λ rate
control, has been released to achieve the best balance between bit rate and distortion. This
rate control attempts to improve the coding efficiency and rate control accuracy by using
the Lagrangian method, λ, for rate–distortion optimization (RDO).

Although the aim of R–λ rate control is for HEVC to enhance the coding efficiency
compared with the conventional methods, two difficulties still need to be solved in HEVC
reference software [14], including inaccurate bit allocation and inaccurate λ estimation. For
the bit allocation part, the bit consumption of each CU of the first picture is computed by
applying one to all initial encoder parameters at the basic unit level. In other words, all
CUs are encoded using the same rate control parameters as the picture level. In such a
case, the rate control will cause a bit consumption imbalance in the CU due to the spatial
characteristic of each CU and result in the error bits’ distribution affecting the overall
quality control. In addition, the inaccurate bit consumption at each coding level affects
the λ adjustment to accomplish the frame bit budget because λ and the bit allocation are
highly correlated. Specifically, according to the previous encoding results and the statistical
characteristics of the input source data, the encoder parameters are empirically inaccurate,
resulting from performance degradation at scene changes.

Based on these considerations, we propose a learning-based mapping method between
R–λ parameters and video content to achieve accurate target bit rates and preserve good
video quality. We use a feedback re-encoding method for the intra-picture and inter-picture
to distribute R–λ parameters adaptively related to picture pattern changes. Additionally,
the convolutional neural network (CNN) model [15] is used to capture the powerful spa-
tial representation of the local coding tree units (CTUs). This CNN model is trained on
the ImageNet dataset [16]. By incorporating the CNN model with the R–λ rate control
algorithm, we can accurately obtain the expected number of bits per CTU. Our problem
is a constrained optimization problem, where, by obtaining the optimal encoder control
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parameters to minimize the distortion subject to a constraint, the actual bit rate consump-
tion is less than the target bit rate. To solve the constrained optimization problem, there
are two optimization methods, namely the gradient-based method [17,18] and the non-
gradient-based method (known as the evolutionary algorithm) [19–24]. The gradient-based
method is effective only when the constraints and objective or penalty function can be
derived. Since our model aims to map the high-dimensional feature space of the CTU to
the R–λ parameter with the goal of R–D optimization, which cannot directly derive the
gradient information from the penalty function, the evolutionary algorithm (EA) is chosen
to optimize the parameters of our model. There are several EAs such as evolution strategies
(ES) [19], simulated annealing (SA) [20], genetic algorithm (GA) [21], and particle swarm
optimization (PSO) [22]. Due to the simplicity and convergence speed characteristics of all
EAs [24], PSO is the most powerful one and has been successfully implemented to solve
various constrained optimization problems [25–28]. Comprehensively, PSO takes the value
of the objective function and uses primitive mathematical operators to solve the social
behavior of model parameters. Therefore, PSO is implemented in our model to find the
best solution for mapping the characteristics of CTU and rate control parameters. Further-
more, we feed the semantic residue information to adjust the current parameters of rate
control updating cross-picture. The main contributions of this paper can be summarized in
three aspects:

(i) We propose a learning-based neural network to define the mapping between video
contents and rate control parameters to assign CTU budgets correctly;

(ii) We introduce a particle swarm optimization algorithm to finalize the optimal pa-
rameters at the basic unit level to maintain the bit budget and obtain good visual
video quality;

(iii) We enhance the rate control parameter updating by considering the semantic residue
information of the actual inter-picture into rate control.

The rest of the paper is organized as follows. In the next section, we briefly summarize
related work. Then, the learning-based parameters of R–λ are described. After that, the
experimental results are given. Finally, concluding remarks are provided.

2. Related Works

In this section, we briefly review the existing rate control models: R–Q model, ρ-
domain-based Rate-GOP, R–λ models, and deep learning based rate control.

2.1. R–Q Model

The R–Q model [29] has extended to HEVC encoder control, known as a pixel-wise
unified R–Q model (URQ); the quadratic R–Q model is defined as in (1),

R = aQ−1 + bQ−2 (1)

where R presents as the target bit rate, Q is the quantization parameter, and a and b are
the parameters related to the video characteristic. The bit allocation of the URQ model
is proposed similarly to the rate control model in H.264/AVC, where the target bit is
computed based on the mean absolute difference (MAD) corresponding to the quantization
step. As a result, compared with the earlier HEVC video coding standard (HM6.0) [14], the
visual quality of the URQ model is slightly improved. However, some issues have been
discussed regarding Q-domain rate control [30,31], such that QP is an integer data type
that may not be adjusted accurately to achieve a bit budget.

2.2. ρ-Domain-Based Rate-GOP

The enhanced R–Q model known as ρ-domain-based Rate-GOP is proposed in [32] by
presenting a new relationship one-to-one quantized transform coefficient with target bit
rate. It is formulated as in (2):

Ri = θi(1− ρi) (2)



Sensors 2023, 23, 3607 4 of 20

where θi and ρi denote a parameter related to the video pattern and the percentage of zero
transform coefficients of frame i, respectively. Additionally, the mapping between non-zero
transform coefficients and QP is determined following the quadratic function to properly
allocate the bit to non-zero transform units. Consequently, the ρ-domain-based Rate-GOP
can significantly achieve better video quality than the Q-domain rate control. Although
this indirect relationship between R and Q technique is advantageous, it is still difficult to
adapt its estimation to the variable block size transform in HEVC.

2.3. R–λ Model

To overcome the limitations of the R–Q model mentioned above, a new type of encoder
control with the hierarchical bit allocation for every picture in a GOP is proposed in [11],
called R–λ rate control. First, the author proposed a hyperbolic function as a model to
express the characteristics of the R–D relationship, as in (3):

D(R) = C · R−K (3)

where C and K are parameters related to video content. Then, to minimize (3), λ is
determined as the slope of the model in (4).

λ = −∂D
∂R

= C · K · R−K−1 (4)

⇔ λ = α · Rβ ≡ γ · Dτ . (5)

Therefore, λ can indicate the trade-off between bit rate and distortion. If λ is large, the
lower bit rate will cause higher distortion. On the other hand, small λ results in a higher
bit rate with lower distortion. In addition, a hierarchical bit allocation method [33] is used
to allocate different picture weights corresponding to each picture position in the GOP to
improve coding efficiency. Furthermore, the QP can be computed by giving λ for each
coding level as in (6).

QP = 4.2005 · ln(λ) + 13.7122. (6)

The rate control can obtain stable buffer occupation and codec improvements through the
hierarchical bit allocation method and the novel relationship between λ and R. As a result,
R–λ rate control is generally used in the advanced video coding standard. However, the
R–λ model mainly considers the bit rate by ignoring the characteristics of the video content.
Furthermore, the model initializes its parameters by sharing the same fixed constant from
the frame to all CTU levels. These aspects can cause video quality degradation.

A distortion-based Lagrange multiplier is proposed in [34] to enhance the compressed
video quality in HEVC. The authors used the equivalent of distortion D and λ instead of
R–λ. Two main objective functions control the λ adjustment: mean square error (MSE) and
absolute error. MSE is calculated from the original and reconstructed video content, while
the absolute error is computed by subtracting between the actual and target bit budget.
This technique is designed for the non-hierarchical structure of rate control. It can enhance
the video quality by an average of 0.23 dB in the low-delay P configuration compared with
non-hierarchical R–λ rate control. The R–λ model with a hierarchical structure achieves a
higher video quality of 0.26 dB than the R–λ model without a hierarchical structure [11].
This ability of the hierarchical structure in R–λ makes it a common approach as the default
HEVC general test condition in [35]. A video quality enhancement of the compressed video
worked on R–λ with a hierarchical structure is proposed in [36]. The authors introduced
a simple rate control parameter-sharing in a GOP structure (PS-GOP), achieving a higher
video quality of 0.07 dB on average and up to 0.17 dB compared to the default HEVC
reference software (HM-16.10) [14].

An inter-block dependency-based CTU-level rate control for HEVC is established
in [37], known as the RCA model. This proposed RCA is inspired by the temporal-
dependent RDO, which is formulated as the fusion between inter-block dependency and
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R–D characteristics. This proposed model has achieved a considerable PNSR enhancement.
However, the spatial coding units have not been taken into consideration, which would
result in parameter propagation errors at the early stage.

2.4. Deep Learning-Based Rate Control

A deep reinforcement learning-based rate control for the dynamic video sequences
is designed in [38] to capture the experience gained from the various factors, including
brightness, variance, and gradient of each coding unit during the coding process. The
proposed model is structured following the Markov decision process in a continuous
discrete space to obtain better PSNR and lower-quality fluctuation. Nevertheless, the
reinforcement approach has limitations, including a high number of interactions required
to learn an optimal policy and difficulty generalizing to new, unseen environments.

Under a random access configuration, a deep convolution features-driven rate control
for the HEVC encoders is proposed [39]. The method involves utilizing a pre-trained VGG-
16 model to extract perceptual features, which addresses the problem of the rate control
estimation. However, the model has not generalized the visual characteristic mapping to
the rate control parameter.

Hence, we propose effective R–λ parameters associated with the video content to
improve the compressed video quality and maintain the bit budgets at the encoder side.
The following section presents the proposed framework in detail.

3. Learning-Based Rate Control

This section introduces a learning-based rate control algorithm, which creates a re-
gression map for the R–λ parameter. The proposed framework is designed, as shown in
Figure 1. The green boxes represent the modification rate control model using the feature
translation technique and the convolution feature map. First, the input video is fed into
the convolution feature map to extract the high dimensional feature space, which contains
essential features representing the CTU in the scene. Then, the proposed model learns to
translate the input feature space to rate control parameters to get the optimal trade between
the target bit rate and distortion rate. Additionally, the dashed lines from the inter- and
intra-prediction are indicated to send the convolution feature representation of the video
coding with the coding mode, whether intra- or inter-prediction to the Encoder Control
block. Figure 2 shows the convolution feature map module and the regression map repre-
sentations module, which are constructed to generate the R–λ parameters. The regression
map is designed as learning-based particle swarm optimization (LB-PSO). Furthermore,
the parameter updating for inter-coding is performed by considering residue information.
The details of each part are presented in the following subsections.
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Figure 1. Learning-Based Rate Control Diagram for High Efficiency Video Coding.

Figure 2. Overview of proposed learning-based particle swarm optimization.
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3.1. Convolutional Feature Map

The convolutional feature map (fully convolutional networks—FCNs) is introduced at
the first stage to obtain the meaningful spatial representation of CTU pictures for the input
of our LB-PSO model. In general, the early layers of convolutions in the deep convolutional
networks demonstrate the input image’s local or low-level feature information. In contrast,
the deeper layers of convolutions indicate the high-level feature information that provides
more global information about the image [40]. Additionally, the last fully connected (FC)
layer of deep nets is designed to define the high-level feature information into object classes.
Since FCNs do not include the FC layer, a relationship between the input image and the
final feature output layer is preserved and expressed as data compression, which encodes
the raw-pixel representation of the input image to high-level information. This information
provides the global feature G representing the input image characteristic. G is fed into
our LB-PSO model to generate the R–λ parameters. A pre-trained residual networks
(ResNets) [15] model without the FC layer is used to extract the powerful convolutional
feature. However, the original input size of ResNets is incompatible with the maximum
size of CTUs. The adaptive average pooling (AAP) is then applied to the last convolution
layers to ensure the compatibility of input and output dimensions. Figure 2 demonstrates
the overall layout of our convolutional feature map architecture.

Suppose a tth frame contains a total K CTUs, then Gt = {g0, g1, . . . , gK}t. Precisely, G
is a parameter representing the high-dimensional features required as input to the proposed
LB-PSO model. To obtain G for re-feedback coding of each coding structure in HEVC,
i.e., intra- or inter-pictures, we define G as in (7):

gt
k =

St
k, if intra-picture.∣∣∣St
k − St−NGOP

k

∣∣∣
(t mod c)

, otherwise.
(7)

where k ∈ K, and c (c > 0) is a constant to determine the frame index for re-feedback
coding on (t mod c). NGOP is the total number of pictures in a GOP. St

k and St−NGOP
k

represent the convolutional feature information (spatial representation) of kth CTU ob-
tained from the original frame forg at t position and reconstruction frame frec at t− NGOP
position, respectively.

Specifically, if the encoding mode is intra coding, the spatial representation will directly
input to the LB-PSO model. Otherwise, we compute the semantic residue information
by applying the absolute difference between the current spatial representation St

k of the
original CTU and the previous spatial representation St−NGOP

k of the reconstructed CTU
before feeding it to the LB-PSO model to accurately generate rate control parameters on the
changes between consecutive CTUs. In addition, the reconstructed frame at t− NGOP is
chosen in the proposed method because a group of pictures in a video allows for exploits
of the temporal redundancy in the video. The proposed model can be adapted following
the NGOP.

3.2. Learning-Based Particle Swarm Optimization Network
3.2.1. LB-PSO Estimator

Our LB-PSO is proposed to define the optimal mapping φ from the spatial–temporal
representation of CTU gk to rate control parameters yk, yk = {α, β}k. We introduce a
feedforward network with one hidden layer to determine yk. This feedforward network
can be computed as in (8):

yk = φ(hk; Wφ, bφ) = WT
φ hk + bφ (8)

where Wφ provides the weights of a mapping function φ, bφ is a bias, and hk represents the
output of the hidden layer. Precisely, hk is designed by applying a rectified linear activation
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function to the output of a linear transformation composed of the weights Wh and bias bh
parameters to trigger a non-linear transformation. Thus, hk can be derived as in (9):

hk = max{0, WT
h gk + bh} (9)

From (8) and (9), our complete mapping model can be reformulated as in (10):

yk = WT
φ max{0, WT

h gk + bh}+ bφ (10)

The model parameters M = {Wφ, Wh, bφ, bh} are optimized by utilizing swarm intelligence
to exchange information between particles about R–D cost function, J. On the other hand,
the model parameters regulate its trajectory concerning its best previous position and the
best previous position reached by any member of its neighborhood. To target the swarm
intelligence rule, the cost function J is determined by two objective functions, including a
reconstruction error (MSE) of visual quality and smooth L1 error of bit allocation. The cost
function J can be defined as in (11):

J =
1
N

N−1

∑
j=0

( forgj − frecj)
2 + ηsmoothL1(RT − RA) (11)

smoothL1(U) =


U2

2
, if |U| < 1

|U| − 1
2

, otherwise
(12)

where N is the total number of pixels in a picture and η is a penalty coefficient. RT and RA
are the target and actual bit on the picture level, respectively.

According to the cost function design, the model parameters are updated after all
CTUs are fully encoded. This cost function is aimed at the model learning to achieve the
trade-off between distortion and bit allocation. The next section introduces the complete
process of the parameters update.

3.2.2. Parameter Updating

In this subsection, we present the parameter update of the encoder controller corre-
sponding to the intra/inter coding mode. In addition, the inter coding mode is classified
into two sets of coding frames: a core frame and a common one. A core frame is encoded
by activating the re-feedback coding to adjust the bit budget at the CTU coding level. In
contrast, the common frame is coded by applying the default Lagrangian multiplier to de-
termine the bit budget at the CTU coding level. For both intra coding and core frame of inter
coding, the bit budget at the CTU coding level is computed using Equations (4) and (10).
Additionally, the model parameters M in Equation (10) individually parameterize its value
according to its movement in a search space.

Let P be the total size of the population, Vi be the velocity (position change) of i-th
particle, Bi be the best previous model parameters of i-th particle, and Bg be the best model
parameter in the swarm. Then the swarm is manipulated on each iteration n according to
the following two equations:

Vn+1
i = aVn

i + c1rn
i1(Bn

i −Mn
i ) + c2rn

i2(Bn
g −Mn

i ), (13)

Mn+1
i = Mn

i + Vn+1
i , (14)

where i = 1, 2, . . . , P, and a is the inertia weight of velocity V, which is used to control
the trade-off between the swarm’s global and local exploration capabilities. c1 and c2 are
two positive acceleration constants, named the PSO’s cognitive and social parameters,
respectively. ri1 and ri2 are the random numbers, generated from a uniform distribution
within the range [0, 1]. The performance of each model parameter Mi in the swarm is
measured according to the cost function J. The lower cost function indicates a better Mi.
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After finalizing the best Mi to preserve the minimal cost function J at the CTU coding level,
the CTU is encoded.

For the picture level of inter coding, the rate control parameters are adjusted by
considering the residue score of the semantic residue information. The probability of
residue score Qt on a picture at time t can be computed as

Qt = ∑
k∈K

∑
j∈Sk

At
k(j)

St
k(j)

(15)

At
k(j) =


0, if t− NGOP ≤ 0∣∣∣∣∣St

k(j)− S
t×
⌊

t
NGOP

⌋
k (j)

∣∣∣∣∣, otherwise
(16)

where b.c represents the rounded result. Additionally, in the GOP regarding the spatiotem-
poral information of the video sequence, the picture levels generally have different pairs
of encoder controller coefficients αp and βp. Therefore, the rate control parameters can be
updated by (17)–(21). The Lagrangian multiplier, λ, is defined as

λ = αpold · Rβpold (17)

If the GOPid equals 0, a pair of rate control parameters can be formulated as in (18) and (20).

αpnew = αpold + δα · (ln(λr − λc)) · αpold + ζQt (18)

βpnew = βpold + δβ · (ln(λr − λc)) · ln(bppr) +
ζ

2
Qt (19)

Otherwise, a pair of rate control parameters can be computed as in (19) and (20).

αpnew = αpold + ζQt (20)

βpnew = βpold +
ζ

2
Qt (21)

where δα and δβ are the default constant in HEVC reference software. λr represents the real
λ value, λc is a computed λ value from the real cost bppr with the previous rate control
parameters αpold and βpold at picture level, and ζ is the residue penalty constant.

For the quantization parameter (QP), it can be determined as in (21).

QP = 4.2005 · ln(λ) + 13.7122 (22)

Figure 3 provides the model flowchart of the learning-based PSO method, named
LB-PSO. LB-PSO initially randomizes the group of particle parameters. Then, the rate
control coefficients are computed using the LB-PSO estimator. Subsequently, the LB-PSO
model’s best local and global parameters have reallocated if the current position is better
than the stored position according to its cost function, J. After that, the velocity V and
position M are calculated following Equations (13) and (14). Finally, the best particle for the
LB-PSO model is determined to generate the best rate control coefficients for the current
input CTU context.
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Figure 3. Learning-based particle swarm optimization flowchart.

4. Experimental Results

To evaluate the performance of the proposed learning-based particle swarm optimiza-
tion, the experiments are conducted on various videos, including static and dynamic scenes.

4.1. Experiment Setting

In the experiment, the proposed algorithm is implemented on HEVC reference soft-
ware [14] and is compared with the PS-GOP [36] and the state-of-the-art R–λ rate control
(RC-HEVC) [11]. According to HEVC common parameter setting [3], the largest size of a
CTU produces high-efficiency coding performance. Specifically, the largest feasible size
of a CTU in HEVC is a 64 × 64 block size. We have also designed the model to adapt
bit allocation for CTUs related to their spatial information, which is extracted using a
pre-trained CNN model. Since we have implied CNN feature extraction on the largest size
of a CTU in HEVC, we transform YUV420 format to a true color (64 × 64 × 3) CTU as
the input in the feature extraction block. The proposed algorithm and baseline methods
are simulated in the same reference software HM-16.10. Precisely, the experiments are
conducted under the low-delay P main profile configurations, and the encoder parameters
are set according to the standard setting in [35] by enabling the rate control as True. In
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addition, there are 100 iterations in every decision-making process for each rate control
parameters prediction in the proposed LB-PSO. There are fifteen test video sequences
with four video resolutions, including two videos of 240p (wide quarter video graphics
array—WQVGA) [41], three videos of 480p (wide video graphics array—WVGA) [41],
five videos of 720p (HD) [42], three videos of 1080p (full HD) [41], and two videos of 4k
resolution [43]. Table 1 briefly summarizes the characteristics of the test video sequence. In
addition, the test video sequence is encoded at four target bit rates corresponding to the
video resolution. Since the goal of rate control is not only to improve the visual quality of
the video for a given bit rate but also to achieve the bit rate closest to the target bit rate,
both peak signal-to-noise ratio (PSNR) and bit rate error (BRE) are used as the criteria for
determining the performance of the rate control algorithm. The PSNR and BRE can be
computed as in (22) and (23).

PSNR = 10 log

 (2n − 1)2

1
N ∑N−1

j=0

(
forgj − frecj

)2

 (23)

BRE =
(RT − RA)

RT
× 100% (24)

where n represents bit depth.

Table 1. Characteristics of Test Video Sequences and Bit Rate.

Resolution Name of Video Sequence Frame Rate (fps) Bit Rate (kbps)

3840 × 2160 HoneyBee 120 1000, 2000,
3000, 4000Jocky 120

1920 × 1080
ParkScene 24 1000, 2000,

3000, 4000Cactus 50
BQTerrace 60

1280 × 720

FourPeople 60

384, 512,
850, 1200

KristenAndSara 60
Vidyo1 60
Vidyo3 60
Vidyo4 60

832 × 480
BasketballDrillText 50 384, 512,

768, 1200PartyScene 50
BQMall 60

416 × 240 BlowingBubbles 50 256, 384,
512, 1200BQSquare 60

4.2. Experimental Results and Analysis

(1) R–D performance and Bit Rate Accuracy: The first experiment was conducted on the
low video resolution (WQVGA), which contains two video sequences with different frame
rates, including BlowingBubbles and BQSquare. These two videos have various dynamic
characteristics, such as a moving camera, moving objects, and illumination changes. Table 2
describes the proposed method’s PSNR and BRE performance compared with the baseline
methods. Our learning-based method outperforms all the baseline methods as we achieve
the highest PSNR value with the same bit rate.
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Table 2. The Performance of PSNR and BRE of Video Sequence with Resolution of 416 × 240.

Name of Video
Sequence

Target Bit
Rate

RC-HEVC PS-GOP Proposed Method

Bit Rate PSNR BRE Bit Rate PSNR BRE Bit Rate PSNR BRE

BlowingBubbles

256 256.06 29.69 −0.02 256.08 29.79 −0.03 256.02 29.99 −0.01
384 384.05 31.14 −0.01 384.00 31.26 0.00 384.02 31.44 −0.01
512 512.06 32.26 −0.01 512.05 32.38 −0.01 512.04 32.51 −0.01
1200 1200.18 35.64 −0.02 1200.05 35.71 0.00 1200.15 35.73 −0.01

BQSquare

256 256.04 30.31 −0.02 256.01 30.42 −0.01 256.02 30.60 −0.01
384 384.03 31.53 −0.01 384.03 31.67 −0.01 384.03 31.78 −0.01
512 512.03 32.45 −0.01 512.03 32.56 −0.01 512.02 32.64 0.00
1200 1200.06 35.20 0.00 1200.04 35.33 0.00 1200.04 35.37 0.00

Average 32.28 −0.01 32.39 −0.01 32.51 −0.01

Specifically, our method’s average PSNR enhancement is 0.23 dB and 0.12 dB com-
pared with RC-HEVC and PS-GOP, respectively. Our approach also performs the maximum
PSNR improvement (max) of 0.30 dB and 0.20 dB compared to RC-HEVC and PS-GOP.
Figure 4a illustrates the R–D performance curve of the BQSquare test sequence. The
learning-based approach obtains a better R–D performance than the baselines method. In
addition, the average BRE of RC-HEVC, PS-GOP, and our methods are 0.01%, indicating
that all approaches can effectively achieve the target bit rate. However, the proposed
method has the lowest BRE at a lower target bit rate (256 kbps). It is noticed that the
RC-HEVC has poor visual quality on these WQVGA with dynamic scenes compared to all
approaches. As a result, even if the scene has dynamic properties, our algorithm can con-
structively achieve the target bit rate with the good visual quality of the WQVGA sequence.

Figure 4. Rate–Distortion curves: (a) BQSquare, (b) PartyScene, (c) FourPeople, (d) ParkScene.
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Next, the WVGA sequences were tested, such as BasketballDrillText, PartyScene, and
BQMall. The scene properties are similar to the above experiments, but these WVGA se-
quences are more challenging than WQVGA because they involve multi-object movement,
camera movement, and higher resolution. The outcomes of PSNR and BRE are summa-
rized in Table 3, where the proposed learning-based method works much better. It reaches
0.41 dB and 0.33 dB of visual quality better than RC-HEVC and PS-GOP, respectively.
Concisely, our approach has no error bit consumption on average and performs 0.23 dB
and 0.16 dB on average higher than RC-HEVC and PS-GOP, respectively. On one side of the
R–D curve, our proposed method is significantly higher than the competitive methods, as
shown in Figure 4b. Based on the outcomes of all approaches in Tables 2 and 3, the R–λ rate
control and PS-GOP are unsuitable for such dynamic scenes and cameras. Consequently, it
can indicate that the λ adjustment and quality control are not correctly estimated.

Table 3. The Performance of PSNR and BRE of Video Sequence with Resolution of 832 × 480.

Name of Video
Sequence

Target Bit
Rate

RC-HEVC PS-GOP Proposed Method

Bit Rate PSNR BRE Bit Rate PSNR BRE Bit Rate PSNR BRE

BasketballDrillText

384 384.03 30.82 −0.01 383.99 30.93 0.00 384.02 30.99 −0.01
512 512.05 31.94 −0.01 512.00 32.01 0.00 511.99 32.08 0.00
768 768.04 33.46 −0.01 768.04 33.52 −0.01 768.05 33.60 −0.01
1200 1200.10 35.15 −0.01 1200.07 35.20 −0.01 1200.07 35.32 −0.01

PartyScene

384 384.01 26.40 0.00 384.00 26.49 0.00 383.97 26.80 0.01
512 512.02 27.27 0.00 512.01 27.37 0.00 511.96 27.68 0.01
768 768.09 28.61 −0.01 768.02 28.68 0.00 768.02 29.01 0.00
1200 1200.06 30.15 −0.01 1200.02 30.20 0.00 1200.03 30.53 0.00

BQMall

384 384.01 30.68 0.00 384.13 30.77 −0.03 384.00 30.85 0.00
512 512.01 31.86 0.00 512.05 31.92 −0.01 512.03 32.00 −0.01
768 768.01 33.50 0.00 768.01 33.59 0.00 768.01 33.66 0.00
1200 1200.04 35.28 0.00 1200.03 35.33 0.00 1200.01 35.39 0.00

Average 31.26 −0.01 31.33 −0.01 31.49 0.00

After testing the WVGA sequences, the HD videos containing video conferencing and
online teaching test sequences were simulated. The HD videos are FourPeople, Kriste-
nAndSara, Vidyo1, Vidyo3, and Vidyo4. These videos have the characteristics of a static
camera with multiple objects moving. Figure 4c shows an overall outgrowth of the R–D
curve of FourPeople from the low bit rate to the high bit rate. Although the scene is used
with a static camera, the proposed method’s R–D performance is noticeably greater than
the competitive methods. Additionally, the PSNR and BRE evaluations of these HD video
sequences are recorded in Table 4, where the average PSNR enhancement value of our
method is approximately 0.17 dB (max = 0.30 dB) and 0.08 dB (max = 0.21 dB) in comparison
with the RC-HEVC and PS-GOP.
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Table 4. The Performance of PSNR and BRE of Video Sequence with Resolution of 1280 × 720.

Name of Video
Sequence

Target Bit
Rate

RC-HEVC PS-GOP Proposed Method

Bit Rate PSNR BRE Bit Rate PSNR BRE Bit Rate PSNR BRE

FourPeople

384 383.97 37.02 0.01 383.99 37.12 0.00 383.99 37.32 0.00
512 511.97 38.10 0.01 512.00 38.24 0.00 511.99 38.38 0.00
850 849.98 39.84 0.00 849.99 39.94 0.00 849.98 40.06 0.00
1200 1200.08 40.81 −0.01 1199.96 40.87 0.00 1200.05 40.97 0.00

KristenAndSara

384 384.06 39.17 −0.02 384.08 39.32 −0.02 384.12 39.37 −0.03
512 512.07 40.03 −0.01 512.09 40.17 −0.02 512.11 40.20 −0.02
850 850.12 41.31 −0.01 850.09 41.43 −0.01 850.12 41.47 −0.01
1200 1200.18 42.04 −0.01 1200.16 42.12 −0.01 1200.16 42.16 −0.01

Vidyo1

384 384.00 38.95 0.00 383.98 39.06 0.01 384.00 39.11 0.00
512 512.01 39.86 0.00 511.93 39.95 0.01 511.99 40.01 0.00
850 849.96 41.19 0.00 849.88 41.26 0.01 850.01 41.32 0.00
1200 1200.00 41.93 0.00 1199.96 42.00 0.00 1200.01 42.07 0.00

Vidyo3

384 384.01 37.85 0.00 384.00 38.00 0.00 384.02 38.01 −0.01
512 512.02 38.82 0.00 512.01 38.95 0.00 512.01 38.97 0.00
850 850.01 40.22 0.00 850.01 40.33 0.00 850.01 40.37 0.00
1200 1200.02 41.00 0.00 1200.03 41.08 0.00 1200.00 41.12 0.00

Vidyo4

384 384.01 38.68 0.00 384.01 38.73 0.00 384.01 38.86 0.00
512 512.02 39.47 0.00 512.01 39.53 0.00 512.02 39.67 0.00
850 850.02 40.67 0.00 850.01 40.74 0.00 850.02 40.86 0.00
1200 1200.02 41.39 0.00 1200.05 41.45 0.00 1200.02 41.54 0.00

Average 39.92 0.00 40.02 0.00 40.09 0.00

The last experiment was applied on full HD and 4k video test sequences. The first
three videos, ParkScene, Cactus, and BQTerrace, were used for the full HD experiment. The
last two sequences, HoneyBee and Jocky, were used for 4k videos. This last test contained
all types of scenarios. The ParkScene and Jocky videos have a moving camera and multiple
object motions, while the BQTerrace video stacks the camera motion with a static camera.
Furthermore, the Cactus video consists of a static camera and the rotation of the objects.
The HoneyBee video has multiple object motions and a static camera. According to Table 5,
the overall PSNR evaluation of the proposed method on the BQTerrace sequence at a low
bit rate is the highest compared to the other sequences. In contrast, the ParkScene sequence
has the highest PSNR at a high bit rate. The reason is that the scenes containing a dynamic
camera have significant movement changes; thus, the state-of-the-art R–λ rate control
cannot update the encoding controller correctly. In addition, PS-GOP uses parameter
sharing in GOP, which is not enough to adapt to encoder parameters following frame
characteristics. Reasoning from this fact, our method establishes a novel mapping between
frame features and R–λ coefficient parameters. We provide a computationally feasible
solution using LB-PSO to produce optimal R–D for good visual quality and to maintain
the target bit rate. Figure 4 shows the overall R–D curve on different video resolutions.
Consequently, our method has achieved the highest outcomes of all competitive methods.
From Table 2 to Table 5, the average PSNR improvement is 0.19 dB (max = 0.41 dB) and
0.10 dB (max = 0.33 dB) compared with RC-HEVC and PS-GOP, respectively.
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Table 5. The Performance of PSNR and BRE of Video Sequence with Resolution of 1920 × 1080
and 4k.

Name of Video
Sequence

Target Bit
Rate

RC-HEVC PS-GOP Proposed Method

Bit Rate PSNR BRE Bit Rate PSNR BRE Bit Rate PSNR BRE

ParkScene

1000 999.96 33.20 0.00 999.84 33.21 0.02 999.86 33.32 0.01
2000 2000.01 35.30 0.00 1999.89 35.41 0.01 2000.10 35.49 0.00
3000 2999.95 36.60 0.00 2999.91 36.68 0.00 2999.98 36.76 0.00
4000 4000.11 37.52 0.00 4000.09 37.57 0.00 4000.11 37.66 0.00

Cactus

1000 1000.01 31.62 0.00 1000.02 31.75 0.00 1000.02 31.74 0.00
2000 2000.04 33.77 0.00 2000.03 33.85 0.00 2000.03 33.87 0.00
3000 3000.09 34.96 0.00 3000.03 35.01 0.00 3000.03 35.04 0.00
4000 4000.06 35.70 0.00 3999.95 35.77 0.00 4000.07 35.81 0.00

BQTerrace

1000 1000.05 31.62 −0.01 1000.01 31.73 0.00 1000.17 31.97 −0.02
2000 2000.13 33.03 −0.01 2000.02 33.11 0.00 2000.04 33.25 0.00
3000 3000.15 33.67 0.00 3000.01 33.78 0.00 3000.08 33.82 0.00
4000 4000.53 34.10 −0.01 4000.05 34.20 0.00 4000.04 34.15 0.00

HoneyBee

1000 1000.01 38.24 0.00 1000.00 38.25 0.00 1000.03 38.31 0.00
2000 2000.01 38.63 0.00 2000.00 38.65 0.00 2000.01 38.66 0.00
3000 3000.01 38.75 0.00 3000.01 38.78 0.00 3000.01 38.78 0.00
4000 4000.40 38.81 −0.01 4000.01 38.83 0.00 4000.02 38.83 0.00

Jocky

1000 999.98 32.30 0.00 1000.01 32.40 0.00 1000.00 32.40 0.00
2000 2000.03 35.55 0.00 2000.01 35.60 0.00 2000.00 35.61 0.00
3000 3000.00 36.95 0.00 3000.04 36.97 0.00 3000.06 36.99 0.00
4000 4000.00 37.68 0.00 3999.99 37.69 0.00 4000.02 37.71 0.00

Average 35.40 0.00 35.46 0.00 35.51 0.00

The PSNR performance of our proposed model is extensively compared with other
state-of-the-art rate control methods for both the dynamic scene and interview scene as
shown in Table 6. Our proposed model achieves the highest PSNR for all bit rates in both
types of video sequences. This indicates that the inter coding approach should not only
consider the inter-block dependency coding structure but also the rate control coefficient.

Table 6. PSNR Comparisons at different bit rates with other state-of-the-art rate control schemes.

Name of Video Sequence Bit Rate BA [44] BAF [45] RCA [37] Proposed Method

FourPeople

384 36.30 36.81 37.07 37.32
512 37.49 38.19 38.31 38.38
850 39.76 39.98 40.03 40.06
1200 40.52 40.69 40.89 40.97

BasketballDrillText

384 30.82 30.81 30.89 30.99
512 31.87 31.86 31.91 32.08
850 33.41 33.44 33.52 33.60
1200 34.91 34.96 35.19 35.32

Additionally, Figure 5 shows a graph of the PSNR difference between consecutive
frames. The plot shows that the performance of the proposed method adaptively achieves
better results on frame reconstruction from the start of encoding compared to RC-HEVC
and PS-GOP. This demonstrates the effective interaction of spatiotemporal features in the
rate control model and the crossed LB-PSO model to decide on appropriate rate control
coefficients to acquire the target bit rate and perform well in PSNR. Furthermore, Figure 6
indicates the details of the rate fluctuation performance of the proposed method compared
to the baselines. This rate fluctuation describes successive frames’ historical bit allocation
performance to understand the bit flow in the video codec. Therefore, LB-PSO can control
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bit allocation better than the baselines, and it can carry out lower bit allocation and produce
higher PSNR in most consecutive frames, as shown in Figures 5 and 6.

Figure 5. Comparison of PSNR difference between consecutive frames.

Figure 6. Rate fluctuation performance comparison.

(2) Bit Heatmaps and Visual Quality: To indicate the performance of bit allocation at
the CTU level, the heatmap visualization and the subjective results of the reconstructed
frame are illustrated in Figures 7 and 8. Since there is no modification of the intra coding
of PS-GOP, Figure 7 shows only the comparison between state-of-the-art RC-HEVC with
our proposed learning-based approach. The bit consumption is highlighted by red color
intensity on each CTU, while the blue acts as a mask to cover the frame. If the red intensity
is low, the allocated bits are consumed less. The patch image is extracted from the frame to
illustrate the greatest difference in bit consumption at the CTU level of RC-HEVC and our
proposed method. Figure 7b,c reveal that the bit allocation performance of RC-HEVC on the
plane space CTU is slightly high, leading to less bit budget for the necessary spatial CTU.
On the contrary, our proposed method obtains smoother bit allocation on non-important
spatial images (low-frequency components), providing more budget to important CTU
features. Additionally, the visualization of the human face of the proposed learning-based
approach on the intra-picture shows more details with a smoother look than that of RC-
HEVC, as shown in the green box of Figure 7c,d. According to these results, our LB-PSO
can obtain better bit allocation by using the information from the mapping encoder control
parameters with the input convolution feature map of each spatial CTU instead of the fixed
initialization of R–λ rate control.
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Figure 7. Bit heatmaps and reconstructed frame of intra coding at 384 kbps: (a) original frame,
(b,d) RC-HEVC, and (c,e) proposed method.

Figure 8. Bit heatmaps and reconstructed frame of inter coding at 384 kbps: (a) original frame,
(b,e) RC-HEVC, (c,f) PS-GOP, and (d,g) proposed method.
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For inter coding, the PS-GOP is added in comparison. Similarly, the color repre-
sentation is defined the same as the intra coding. Regarding bitmaps, Figure 8b shows
that RC-HEVC has a problem with bit allocation on the essential features. Due to hand
movement, RC-HEVC should provide higher bit allocation in these necessary parts; on the
contrary, it allocates fewer bits to these blocks. Furthermore, PS-GOP attempts to allocate
the amount of bit budget to the hand movement area to keep the visual quality of the action
consistent. However, the bit budget on large hand motion blocks is still small, as shown in
Figure 8c.

Regarding residual semantic information, our proposed method can correctly regulate
the bit budget responding to the motion information in the scene, as illustrated in Figure 8d.
On the other hand, our proposed method obtains the accurate bit allocation of each CTU
corresponding to its spatial–temporal characteristics. Furthermore, the visual quality
visualization of this hand movement is shown in Figure 8e–g. In particular, RC-HEVC has
a considerable distortion in this hand movement area, while PS-GOP is slightly better than
RC-HEVC. Although PS-GOP is better than RC-HEVC, PS-GOP still has higher distortion
compared with our proposed method. As a result, the proposed method achieves better
hand and cup shapes than the competitive methods. According to our experimental results,
we can conclude that the proposed learning-based R–λ parameter outperforms other
competing methods by achieving the highest PSNR while maintaining the target bit rate.

(3) Computational Complexity: We compare the computational time of the proposed
method with RC-HEVC and PS-GOP. Regarding computational time in an average of sec-
onds per frame, as indicated in Table 7, our LB-PSO achieves 53.30 s/frame, 97.79 s/frame,
and 351.10 s/frame on WVGA, HD, and full HD resolution, respectively. We also com-
pare our computational complexity with other baseline methods. Table 6 shows that our
computational time is higher than the baseline methods. This is because our framework
is designed as online training using the integration of the forward pass network with
particle swarm optimization. However, we obtained a significantly higher PSNR value
and achieved the target bit rate. Furthermore, our bit allocation was assigned correctly
compared to baseline approaches.

Table 7. Computational Complexity.

Intel Core i9-7960× CPU @ 2.80 GHz

Resolution HM-16.10 (s/frame) PS-GOP (s/frame) Proposed Method (s/frame)

WVGA 24.10 23.75 53.30
HD 45.18 44.92 97.79
Full HD 166.15 165.47 351.10
Average 78.48 78.04 167.40

5. Conclusions

In this paper, we proposed novel learning-based R–λ parameters for HEVC. The
proposed framework is embedded with a deep convolution neural network feature map
and LB-PSO, which brings advantages to rate control parameters estimation corresponding
to spatial–temporal CTUs. LB-PSO is designed to obtain the feasible rate control coefficient
parameters solution to optimize the R–D relationship. Experimental results clearly show
that our proposed learning-based approach obtains an accurate target bit rate with 0.19 dB
on average to 0.41 dB and 0.10 dB on average to 0.33 dB maximum PSNR improvement
than the state-of-the-art RC-HEVC and PS-GOP, accordingly. Due to the bit allocation, our
algorithm can achieve an operational bit distribution to each CTU on both intra and inter
coding. In other words, our method is effective and robust for determining the bit budget
for the CTU of the frame. For future work, CTU partitioning will be considered together
with R–λ parameters to increase coding efficiency.
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