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Abstract

Spatial and channel attentions, modelling the semantic in-
terdependencies in spatial and channel dimensions respec-
tively, have recently been widely used for semantic segmenta-
tion. However, computing spatial and channel attentions sep-
arately sometimes causes errors, especially for those difficult
cases. In this paper, we propose Channelized Axial Atten-
tion (CAA) to seamlessly integrate channel attention and spa-
tial attention into a single operation with negligible computa-
tion overhead. Specifically, we break down the dot-product
operation of the spatial attention into two parts and insert
channel relation in between, allowing for independently op-
timized channel attention on each spatial location. We fur-
ther develop grouped vectorization, which allows our model
to run with very little memory consumption without slowing
down the running speed. Comparative experiments conducted
on multiple benchmark datasets, including Cityscapes, PAS-
CAL Context, and COCO-Stuff, demonstrate that our CAA
outperforms many state-of-the-art segmentation models (in-
cluding dual attention) on all tested datasets.

1 Introduction
Semantic segmentation is a fundamental task in many com-
puter vision applications, which assigns a class label to each
pixel in the image. Most of the existing approaches (Yuan,
Chen, and Wang 2020; Yang et al. 2018; Fu et al. 2019; Li
et al. 2019) have adopted a pipeline similar to the one that
is defined by Fully Convolutional Networks (FCNs) (Long,
Shelhamer, and Darrell 2015) using fully convolutional lay-
ers to output the pixel-level segmentation results of input im-
ages. These approaches have achieved state-of-the-art per-
formance. After the FCNs, there have been many approaches
dedicated to extracting enhanced pixel representations from
the backbone. Earlier approaches, including PSPNet (Zhao
et al. 2017) and DeepLab (Chen et al. 2018), used a Pyra-
mid Pooling Module or an Atrous Spatial Pyramid Pooling
module to expand the receptive field to enhance the repre-
sentation capabilities. Recently, many works focus on using
the attention mechanisms to enhance pixel representations.
The first attempts in this direction included Squeeze and Ex-
citation Networks (SENets) (Hu, Shen, and Sun 2018) that
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Figure 1: Different dual attention designs: (a) Parallel dual
attention sums the results from spatial and channel atten-
tions directly, which may cause conflicts because spatial
and channel attentions are focusing on different aspects. (b)
Sequential dual attention performs spatial attention after
channel attention, where the spatial attention may override
correct features extracted by the channel attention. (c) Our
channelized attention seamlessly merges the spatial and
channel attentions into a single operation (see Sect. 4.2), re-
moving the potential conflicting issue caused by a or b.

introduced a simple yet effective channel attention module
to explicitly model the interdependencies between channels.
Meanwhile, spatial attention relied on self-attention pro-
posed in (Wang et al. 2018; Vaswani et al. 2017) to model



long-range dependencies in spatial domain, so as to pro-
duce more correct pixel representations. For each pixel in
the feature maps, spatial attention “corrects” its representa-
tion with the representations of other pixels depending on
their similarity. In contrast, channel attention identifies im-
portant channels based on all spatial locations and reweights
the extracted features.

Parallel dual attention (e.g., (Fu et al. 2019)) was pro-
posed to gain the advantages of both spatial attention and
channel attention. This approach directly fused their results
with an element-wise addition (see Fig. 1(a)). Although they
have achieved improved performance, the relationship be-
tween the contributions of spatial and channel attentions to
the final results is unclear. Moreover, calculating the two
attentions separately not only increases the computational
complexity, but may also result in conflicting importance
of feature representations. For example, some channels may
appear to be important in spatial attention for a pixel that be-
longs to a partial region in the feature maps. However, chan-
nel attention may have its own perspective, which is calcu-
lated by summing up the similarities over the entire feature
maps, and weakens the impact of spatial attention.

Sequential dual attention, which combines channel atten-
tion and spatial attention in a sequential manner (Fig. 1(a))
has similar issues. For example, channel attention can ignore
the partial region representation obtained from the overall
perspective. However, this partial region representation may
be required by spatial attention. Thus, directly fusing the
spatial and channel attention results may yield incorrect im-
portance weights for pixel representations. In Sect. 5, we de-
velop an approach to visualize the impact of the conflicting
feature representation on the final segmentation results.

In order to overcome the aforementioned issues, we pro-
pose Channelized Axial Attention (CAA), which breaks
down the axial attention into more basic parts and inserts
channel attention into them, combining spatial attention and
channel attention together seamlessly and efficiently. Specif-
ically, when applying the axial attention maps to the input
signal (Wang et al. 2018), we capture the intermediate re-
sults of the dot product before they are summed up along
the corresponding axes. Capturing these intermediate results
allows channel attention to be integrated for each column
and each row, instead of computing on the mean or sum of
the features in the entire feature maps. We also develop a
novel grouped vectorization approach to maximize the com-
putation speed in limited GPU memory.

In summary, our contributions in this paper include:

• We are the first to explicitly identify the potential con-
flicts between spatial and channel attention in existing
dual attention designs by visualizing the effects of each
attention on the final result.

• We propose a novel Channelized Axial Attention, which
breaks down the axial attention into more basic parts and
inserts channel attention in between, integrating spatial
attention and channel attention together seamlessly and
efficiently, with only a minor computation overhead com-
pared to the original axial attention.

• To balance the computation speed and GPU memory us-

age, a grouped vectorization approach for computing the
channelized attentions is proposed. This is particularly
advantageous when processing large images.

• Experiments on three challenging benchmark datasets,
including PASCAL Context (Everingham et al. 2009),
COCO-Stuff (Caesar, Uijlings, and Ferrari 2018) and
Cityscapes (Marius et al. 2016), demonstrate the su-
periority of our approach over the state-of-the-art ap-
proaches.

2 Related Work
Spatial attention. Non-local networks (Wang et al. 2018)
and Transformer (Vaswani et al. 2017) introduced the self-
attention mechanism to examine the pixel relationship in the
spatial domain. It usually calculates dot-product similarity
or cosine similarity to obtain the similarity measurement be-
tween every two pixels in feature maps, and recalculates the
feature representation of each pixel according to its simi-
larity with others. Self-attention has successfully addressed
the feature map coverage issue of multiple fixed-range ap-
proaches (Chen et al. 2017; Zhao et al. 2017), but it has
also introduced huge computation costs for computing the
complete feature map. This means that, for each pixel in the
feature maps, its attention similarity affects all other pixels.
Recently, many approaches (Huang et al. 2020; Zhu et al.
2019) have been developed to optimize the GPU memory
costs of spatial self-attention.
Channel Attention. Channel attention (Hu, Shen, and Sun
2018) examined the relationships between channels, and
enhanced the important channels so as to improve perfor-
mance. SENets (Hu, Shen, and Sun 2018) conducted a
global average pooling to get mean feature representations,
and then went through two fully connected layers, where the
first one reduced channels and the second one recovered the
original channels, resulting in channel-wise weights accord-
ing to the importance of channels. In DANet (Fu et al. 2019),
channel-wise relationships were modelled by self-attention,
similar to the it is used in the spatial domain, except that it
computed the attention with a dimension of C × C rather
than (H ×W )× (H ×W ) (here, C represents the number
of channels, and H and W represent the height and width of
the feature maps, respectively).
Spatial Attention + Channel Attention. Combining spa-
tial attention and channel attention can provide fully opti-
mized pixel representations in a feature map. However, it is
not easy to enjoy both advantages seamlessly. In DANet (Fu
et al. 2019), the results of the channel attention and spatial
attention are directly added together. Supposing that there is
a pixel belonging to a semantic class that has a tiny region in
the feature maps, spatial-attention can find its similar pixels.
However, channel representation of the semantic class with
a partial region of the feature maps may not be important in
the perspective of entire feature maps, so it may be ignored
when conducting channel attention computations. Comput-
ing self-attention and channel attention separately (as illus-
trated in Fig. 1(a)) can cause conflicting results, and thus
weaken their performance when both results are summarized
together. Similarly, in the cascaded model (see Fig. 1(b)), the



Spatial 
Attention

Channel 
Attention

Main logits

Aux logits

Aux logits

... Main loss

Aux loss

Aux loss

... Channel 
Attention

Spatial 
Attention

Main logits

Aux logits

Main loss

Aux loss
Stop gradient

Visualization

(a) Visualize Parallel dual Attention

(b) Visualize Sequential dual Attention

Figure 2: Our designs for visualizing the effects of dual at-
tentions in parallel and sequential.
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Figure 3: Conflicting features in parallel dual attention de-
signs. Top: The bad spatial attention representation nega-
tively influences the good channel attention representation.
Bottom: The bad channel attention representation nega-
tively influences the good spatial attention representation.
See the boxed areas.

spatial attention module after the channel attention module
may pick up an incorrect pixel representation enhanced by
channel attention, because channel attention computes chan-
nel importance according to the entire feature maps.

3 Exploring Conflicting Features
As we have analyzed earlier in Sect. 2, computing spatial
and channel attentions separately can cause conflicting fea-
tures. In our experiments, to illustrate this feature conflict-
ing issue faced by existing dual attention approaches, we
designed a simple way to visualize the effects of spatial at-
tention and channel attentions on pixel representation.

3.1 Visualizing Conflicts
For a parallel dual attention design such as DANet (Fu et al.
2019), since it has two auxiliary losses for each of spatial
attention and channel attention, we directly use their log-
its during inference to generate corresponding segmentation
results and compare them with the result generated by the
main logits. For a sequential dual attention design, we add
an extra branch that directly uses the pixel representation ob-
tained from channel attention to perform the segmentation
logits. Note that, since the original sequential design does
not have independent logits after the channel attention mod-
ule, we stop the gradient from back-propagating to the main
branch, to ensure that our newly added branch has no effect
on the main branch.

Image Ground Truth Channel Attention 
Spatial Attention 

&Prediction

Figure 4: In sequential dual attention designs, the spatial at-
tention representation (the 4th column) ignores the correct
channel attention representation (the 3rd column).

3.2 Examples of Conflicting Features
To visualize the impact of the feature conflicting issue in the
existing dual attention designs (see Sect. 2), we present ex-
amples of the segmentation results obtained with the con-
flicting features in the parallel dual attention design (see
Fig. 3) and the sequential dual attention design (see Fig. 4).
As observed from Fig. 3, the parallel design of dual atten-
tion directly sums up the pixel representations obtained from
spatial attention and channel attention. With this approach,
the advantages of the pixel representations obtained from
one can be weakened by the other.

The sequential way of combining the dual attentions
avoids taking their average but still has its own problem. As
shown in Fig. 4, the pixel representation obtained from the
spatial attention ignores the correct representation obtained
from the channel attention, and worsens the prediction.

4 Methods
4.1 Preliminaries
Formulation of the Spatial Self-attention Following
Non Local (Wang et al. 2018) and Stand Alone Self Atten-
tion (Ramachandran et al. 2019), a 2D self-attention opera-
tion in spatial domain can be defined by:

yi,j =
∑

∀m,n

f(xi,j ,xm,n)g(xm,n). (1)

Here, a pairwise function f computes the similarity between
the pixel representation xi,j (query) at position (i, j) and the
pixel representation xm,n (key) at all other possible positions
(m,n). The unary function g maps the original representa-
tion at position (m,n) to a new domain (value). In our work,
we use the similarity function (Wang et al. 2018) as f , i.e.,

f(xi,j ,xm,n) = softmaxm,n(θ(xi,j)
T
θ(xm,n)), (2)

where θ is a 1 × 1 convolution layer transforming the fea-
ture maps x to a new domain to calculate dot-product sim-
ilarity (Wang et al. 2018) between every two pixels. Note
that, following a common practice (Li et al. 2020), we use
the same 1× 1 convolution weights for both query and key.
Then, these similarities are used as the weights (Eq. (1)) to
aggregate features of all pixels, producing an enhanced pixel
representation yi,j at position (i, j).
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Figure 5: The detailed architecture of the proposed CAA (Row Attention). We present the way to apply channel attention
seamlessly in (b). We mark the independent spatial dimension in bold style. This allows channel attention to also consider
spatial unique information. Note that, in our design, the “value” for row attention is obtained from the result of column attention.
See Eq. 11 for details.

Formulation of the Axial Attention From the above
equations, we can see the computational complexity of the
self-attention module is O(H2W 2), which requires large
computation resources and prevents real-time applications,
such as autopilot. Several subsequent works (Huang et al.
2020; Ho et al. 2019) focused on reducing the computational
complexity while maintaining high accuracy. In this work,
we adopt axial-attention to perform spatial attention. In ax-
ial attention, the attention map is calculated for the column
and row that cover the current pixel, reducing the computa-
tional complexity to O(HW 2 +H2W ).

For convenience, we call the attention values calculated
along the Y axis “column attention”, and the attention val-
ues calculated along the X axis “row attention”. Similar to
Eq. 2, we define axial similarity functions by:

Acol(xi,j ,xm,j) = softmaxm
(
θ(xi,j)

T
θ(xm,j)

)
, m ∈ [H]1, (3)

Arow(xi,j ,xi,n) = softmaxn
(
φ(xi,j)

T
φ(xi,n)

)
, n ∈ [W ]. (4)

Note that we use different feature transformations (θ, φ) for
the row and column attention calculations.

With the column and row attention maps Acol and Arow,
the final value weighted by the column and row attention
maps can be represented by:

yi,j =
∑
∀n

(
Arow(xi,j ,xi,n)(

∑
∀m

Acol(xi,j ,xm,j)g(xm,n))

)
. (5)

4.2 Channelized Axial Attention
In order to address the feature conflicting issue of the exist-
ing dual attention designs, we propose a novel Channelized
Axial Attention (CAA), which seamlessly combines the ad-
vantages of spatial attention and channel attention.

1We use i ∈ [n] to denote that i is generated from [n] =
{1, 2, ..., n}.

As mentioned in the above sections, feature conflicts may
be caused by the different interests of spatial and channel at-
tentions. Ideally, channel attention should not ignore the re-
gional features that are interesting to spatial attention. Con-
versely, spatial attention should consider channel relation as
well.

Thus, we propose to compute channel attention within
spatial attention. Specifically, we firstly break down spa-
tial attention into more basic parts (Sect. 4.2). Then, spa-
tially varying channel attention is generated with αi,j,m,n
and βi,j,n. In this way, channel attention is incorporated into
spatial attention and spatial attention will not be ignored
when small objects exist, seamlessly and effectively com-
bining spatial and channel attention together.

Breaking Down Axial Attention. For convenience, we
firstly define two variables αi,j,m,n and βi,j,n to represent
the intermediate weighted features as follows:

αi,j,m,n = Acol(xi,j ,xm,j)g(xm,n) (6)

βi,j,n = Arow(xi,j ,xi,n)
∑
∀m

αi,j,m,n. (7)

Thus, Eq. (5) can be rewritten as:

yi,j =
∑
∀n

βi,j,n =
∑
∀n

Arow(xi,j ,xi,n)

(∑
∀m

αi,j,m,n

)
. (8)

Eqs. (6), (7) and (8) show that the computation of the
dot product is composed of two steps: 1) Reweighting: re-
weighting features on selected locations by column attention
as in Eq. (6) and row attention as in Eq. (7), and 2) Summa-
tion: summing the elements along row and column axes in
Eq. (8). Note that, this breakdown is also applicable to reg-
ular self-attention (see Table 3 and Appendix).

Spatially Varying Channel Attention. With the interme-
diate results αi,j,m,n and βi,j,n in Eqs. (6) and (7), channel
relation can be applied inside spatial attention, seamlessly



combining them into one operation. In addition, channel at-
tention is now independently conducted on each column or
row (on each pixel in regular self-attention) and provides
spatial perspective for the channel relation modeling, re-
sulting in our spatially varying channel attention. Enhanced
with spatially varying channel attentions, now Ccol and Crow
are written as:

Ccol(αi,j,m,n) = Sigmod

(
ReLU(

∑
∀m,j(αi,j,m,n)

H ×W
ωc1)ωc2

)
αi,j,m,n,

(9)

Crow(βi,j,n) = Sigmod

(
ReLU(

∑
∀i,n(βi,j,n)

H ×W
ωr1)ωr2

)
βi,j,n, (10)

where Sigmod(·) is the learned channel attention, and ωc1,
ωc2, ωr1 and ωr2 are the learned relationships between dif-
ferent channels according to αi,j,m,n and βi,j,n.

Thus, instead of directly using αi,j,m,n and βi,j,n as in
Eq. (8), for each column and row, we obtain the channel-
ized axial attention features, where the intermediate results
αi,j,m,n and βi,j,n are weighted by the spatially varying
channel attention defined in Eqs. (9) and (10) as:

yi,j =
∑
∀n

Crow

(
Arow(xi,j ,xi,n)(

∑
∀m

Ccol(αi,j,m,n))

)
. (11)

Note that the spatially varying channel attention keeps a
W dimension after averaging H ×W during the channel at-
tention (Fig. 5). Now each row has its own channel attention
thanks to the breaking down of spatial axial attention.

Going Deeper in Channel Attention. Similar to the work
in (Hu, Shen, and Sun 2018), we use two fully connected
layers, followed by ReLU and sigmoid activations respec-
tively, to first reduce the channel number and then increase
it to the original channel number.

To further boost performance, we explore the design of
more powerful channel attention modules for our channel-
ization since our attention module keeps the spatial dimen-
sion, and thus contains more information than a regular SE
module (1× 1× C ×WorH vs 1× 1× C, see Fig. 5).

We experimented with increased depth and/or width of
hidden layers to enhance the capacity of spatial varying
channel attention. We find that deeper hidden layers allow
channel attention to find a better relationship between chan-
nels for our spatially varying channel attention. Moreover,
increasing layer width is not as effective as adding layer
depth (see Table 1).

Furthermore, in spatial domain, each channel of a pixel
contains unique information that can lead to a unique seman-
tic representation. We find that using Leaky ReLU (Mass,
Hannun, and Ng 2013) is more effective than ReLU in
preventing the loss of information along deeper activa-
tions (Sandler et al. 2018). Apparently, this replacement only
works in spatially varying channel attention.

Grouped Vectorization. Computing spatial attention row
by row and column by column can save computation but it
is still too slow (about 2.5 times slower on a single V100
with feature map size = 33 × 33) even with parallelization.
Full vectorization can achieve a very high speed but it has
a high requirement on GPU memory (about 2 times larger

GPU memory usage than no vectorization on a single V100
with feature map size = 33×33) for storing the intermediate
partial axial attention results α (which has a dimension of
H ×H ×W × C) and β (which has a dimension of W ×
H ×W × C) in Eqs. (6) and (7). To enjoy the high speed
benefit of vectorization with limited GPU memory usage,
in our implementation we propose grouped vectorization to
dynamically batch rows and columns into multiple groups,
and then perform vectorization for each group individually.

5 Experiments
To demonstrate the effectiveness for accuracy of the pro-
posed CAA, comprehensive experimental results are com-
pared with the state-of-the-art methods on three bench-
mark datasets, i.e., PASCAL Context (Everingham et al.
2009), COCO-Stuff (Caesar, Uijlings, and Ferrari 2018) and
Cityscapes (Marius et al. 2016).

Using similar settings as in other existing works, we mea-
sure the segmentation accuracy using mean intersection over
union (mIOU). Moreover, to demonstrate the efficiency of
our CAA, we also compare the floating point operations
per second (FLOPs) of different approaches. Experimental
results show that our CAA outperforms the state-of-the-art
methods on all tested datasets.

5.1 Implementation Details
Architecture Our network is built on ResNet-101 (He
et al. 2016) pre-trained on ImageNet, and then followed
by our CAA module (or axial + SE for ablation study), as
well as the image-level block and auxiliary head in (Zhang
et al. 2019; Fu et al. 2019) . The original ResNet results in
a feature map of 1/32 of the input size. Following other
works (Chen et al. 2018; Li et al. 2019), we apply dilated
convolution at the output stride = 16 for ablation experi-
ments if not specified. We conduct experiments with the out-
put stride = 8 to compare with the state-of-the-art methods.

Naive Upsampling Unless otherwise specified, we di-
rectly bi-linearly upsampled the logits to the input size with-
out refining using any low-level and high resolution features.

Training Settings We employ stochastic gradient descent
(SGD) for optimization, where the polynomial decay learn-
ing rate policy (1 − iter

maxiter )
0.9 is applied with an initial

learning rate = 0.01. We use synchronized batch normaliza-
tion with batch size = 16 (8 for Cityscapes) during training.
For data augmentation, we only apply the most basic data
augmentation strategies as in (Chen et al. 2018), including
random flip, random scale and random crop.

5.2 Results on PASCAL Context
The PASCAL Context (Mottaghi et al. 2014) dataset has 59
classes with 4,998 images for training and 5,105 images for
testing. We train our CAA on the training set for 40k itera-
tions. In the following, we first present a series of ablative
experiments to show the effectiveness of our method. Then,
quantitative and qualitative comparisons with other state-of-
the-art methods are presented.



Layer Counts # of Channels mIOU (%) FLOPs

- - 50.27(±0.2) 68.7G

1 128 50.75(±0.2) +0.00024G
3 128 50.85(±0.2) +0.00027G
5 128 51.06(±0.2) +0.00030G
7 128 50.40(±0.3) +0.00043G

5 64 50.12(±0.2) +0.00015G
5 256 50.35(±0.4) +0.00098G

Table 1: Results without using channelization (Row 1) and
using channelization with different layer counts and channel
numbers. Numbers in parentheses indicate standard devia-
tions (see Sect. 5.2).

Effectiveness of the Proposed Channelization We first
report the impact of adding channelized axial attention and
with different depth and width in Table 1, where ‘-’ for the
baseline result indicates no channelization is performed.

As can be seen from Table 2, our proposed channelization
improves the mIOU over the baseline regardless of the layer
counts and the number of channels used. In particular, the
best performance is achieved when the Layer Counts = 5
and the number of Channels = 128.

We also compare our model with the sequential design of
“Axial Attention + SE”, as shown in Table 2. We find the
sequential design brings only marginal contributions to per-
formance, showing that our proposed channelization method
can combine the advantages of both spatial attention and
channel attention more effectively. In Table 5, results ob-
tained with other backbones are provided to demonstrate the
effectiveness and robustness of CAA.

Axial Attention + SE + Our Channelization

50.27(±0.2) 50.37(±0.2) 51.06(±0.2)

Table 2: Result comparison between axial attention, axial
attention + SE and channelized axial attention.

Channelized Self-Attention In this section, we conduct
experiments on the PASCAL Context by applying channel-
ization to the original self-attention. We report its single-
scale performance in Table 3 with ResNet-101. Our chan-
nelized method can also further improve the performance of
self-attention by 0.67% (51.09% vs 50.42%).

Impact of the Testing Strategies We compare the perfor-
mance and computation cost of our proposed model against
the baseline and DANet (Fu et al. 2019) with different test-
ing strategies in Table 4. Using the same settings as in other
works (Fu et al. 2019), we add multi-scale, left-right flip and
auxiliary loss during inference. The accuracies of CAA are
further boosted with output stride = 8 since the channel at-
tention can learn and optimize three times more pixels.

Comparison with the State-of-the-art Finally, in Ta-
ble 6, we compare our approach with the state-of-the-art
approaches. Like other similar works, we apply multi-scale
and left-right flip during inference. For a fair comparison,

Attention Base Eval OS Channelized mIOU (%)

Axial Attention 16 50.27
16 X 51.06

Self Attention 16 50.42
16 X 51.09

Table 3: Ablation study of applying our Channelized At-
tention on self-attention with ResNet-101. Eval OS: Output
strides (Chen et al. 2018) during evaluation.

Methods OS MF Aux mIOU (%) FLOPs

ResNet 16 - - 59.85G
-101 8 - - 190.70G

DANet 8 +101.25G
8 X X 52.60 -

Axial 16 50.27(±0.2) +8.85G
Attention 16 X 52.01(±0.2) -

8 51.24(±0.2) +34.33G
8 X 52.51(±0.2) -

Our 16 51.06(±0.2) +8.85G
CAA 16 X 53.09(±0.3) -

8 52.73(±0.1) +34.33G
8 X 54.05(±0.1) -

Our 16 X 51.80(±0.2) +8.85G
CAA 16 X X 53.52(±0.2) -

+ 8 X 53.48(±0.3) +34.33G
Aux loss 8 X X 54.65(±0.4) -

Table 4: Comparison results with different testing strate-
gies. OS: Output stride in training and inference. MF: Ap-
ply multi-scale and left-right flipping during inference. Aux:
Add auxiliary loss during training. “+” refers to the extra
FLOPs over the baseline FLOPs of ResNet-101.

we only compare with the methods that use ResNet-101 and
naive upsampling in the main paper. More results using al-
ternative backbones are included in Table 5.

As shown in this table, our proposed CAA outperforms all
listed state-of-the-art models that are trained with an output
stride = 8. Our CAA also performs better than EMANet and
SPYGR that are trained with output stride = 16. Note that,
in this and the following tables, we report the best results of
our approach obtained in experiments.

In Fig. 6, we show some results obtained by our CAA
model, FCN, and Dual attention. Our model is able to han-
dle previous failure cases better, especially when some class
A covering only a smaller region is surrounded by another
class B covering a much larger region.

5.3 Results on the COCO-Stuff 10K
Following the other works (Fu et al. 2019), we evaluate our
CAA on COCO-Stuff 10K dataset (Caesar, Uijlings, and
Ferrari 2018), which contains 9,000 training images and
1,000 testing images with 171 classes. Our model is trained
for 40k iterations. As shown in Table 7, our proposed CAA
outperforms all other state-of-the-art approaches by a large
margin of 1.3%, demonstrating that our model can better



Backbone OS AA C mIOU (%)

ResNet-50 16 X 49.73
(He et al. 2016) 16 X X 50.23

Xception65 16 X 52.42
(Chollet 2017) 16 X X 52.65

EfficientNetB7 16 X 57.24
(Tan and Le 2019) 16 X X 57.93

8 X X 58.40

Table 5: Ablation study of other backbones. All results are
obtained in single scale without flipping. OS: Output strides
during evaluation. AA: Axial Attention. C: Channelized.

Methods Backbone mIOU (%)

ENCNet (Zhang et al. 2018) ResNet-101 51.7
ANNet (Zhu et al. 2019) ResNet-101 52.8
EMANet (Li et al. 2019) ResNet-101 53.1
SPYGR (Li et al. 2020) ResNet-101 52.8
CPN (Yu et al. 2020) ResNet-101 53.9
CFNet (Zhang et al. 2019) ResNet-101 54.0

DANet (Fu et al. 2019) ResNet-101 52.6

Our CAA (OS = 16) ResNet-101 53.7
Our CAA (OS = 8) ResNet-101 55.0

Table 6: Comparisons with other state-of-the-art approaches
on the PASCAL Context test set. For a fair comparison, all
compared methods used ResNet-101 and naive upsampling.

handle complex images with a large number of classes.
COCO-Stuff 10K results in Fig. 7 compare FCNs (Long,

Shelhamer, and Darrell 2015), DANet (Fu et al. 2019), and
our CAA (output stride = 8, ResNet-101). As it can be seen,
our CAA can segment common objects such as building, hu-
man, or sea very well.

5.4 Results on the Cityscapes
The Cityscapes dataset (Marius et al. 2016) has 19 classes.
Following previous works (Fu et al. 2019), we train 80k iter-
ation on the fine set with a crop size of 769×769. We report
our results on the test set in Table 8. Results show our CAA
is also working well on high-resolution images.

In Fig. 8, we compare the results on Cityscapes valida-
tion set predicted by DANet and our CAA. Key areas of
difference are highlighted with white boxes. Results show
that many errors produced by DANet no longer exist in our
CAA.

5.5 Effectiveness of Our Grouped Vectorization
In sec. 4, we introduced the grouped vectorization to split
tensors into multiple groups so as to reduce the GPU mem-
ory usage when preforming channel attention inside spatial
attention. As we use more groups in group vectorization, the
proportionally less GPU memory is needed for the compu-
tation. However, longer running time is required. In this sec-
tion, we conduct experiments to show the variation of the
inference time (seconds/image) when different numbers of
groups are used.

Image Ground truth FCN Dual Attention Ours

Figure 6: Examples of the segmentation results obtained on
the PASCAL Context dataset using FCN, DANet and CAA.

Methods Backbone mIOU (%)

SVCNet (Ding et al. 2019) ResNet-101 39.6
EMANet (Li et al. 2019) ResNet-101 39.9
SPYGR (Li et al. 2020) ResNet-101 39.9
OCR (Yuan, Chen, and Wang 2020) ResNet-101 39.5

DANet (Fu et al. 2019) ResNet-101 39.7

Our CAA ResNet-101 41.2

Table 7: Comparisons with other state-of-the-art approaches
on the COCO-Stuff 10K test set. For a fair comparison, all
compared methods use ResNet-101 and naive upsampling.

Fig. 9 shows the results of three different input resolu-
tions. As shown in this graph, when splitting the vector-
ization into smaller numbers of groups, e.g., 2 (or 4), our
grouped vectorization achieves similar inference speed but
requires one half (or one quarter) of the original spatial com-
plexity. For example, separating into 4 groups has similar
inference speed with no separation (i.e., 1 group).

5.6 Stronger Backbone on the PASCAL Context
In this section, we report the performance of our CAA with
EfficientNet-B7 (Tan and Le 2019) in Table 9. The “sim-
ple decoder” used in our method merges the low level fea-
tures from output stride = 4, during the final upsampling (see
(Chen et al. 2018) for details). Note that, the listed meth-
ods were not trained under the same settings, or using the
same backbone. Our method outperforms the state-of-the-
art transformer-based hybrid models, including SETR (Six-
iao et al. 2021) and DPT (Ranftl, Bochkovskiy, and Koltun
2021).

5.7 Results on the COCOStuff-164k
Segformer (Xie et al. 2021) used COCOStuff-164k (164,000
images), i.e., the full set of COCOStuff-10k to validate



Image Ground truth FCN Dual Attention Ours

Figure 7: Examples of the results obtained on the COCO-
Stuff 10K dataset with our proposed CAA in comparison to
the results obtained with FCN, DANet and the ground truth.

Methods Backbone mIOU (%)

CFNet (Zhang et al. 2019) ResNet-101 79.6
ANNet (Zhu et al. 2019) ResNet-101 81.3
CCNet (Huang et al. 2020) ResNet-101 81.4
CPN (Yu et al. 2020) ResNet-101 81.3
SPYGR (Li et al. 2020) ResNet-101 81.6
OCR (Yuan, Chen, and Wang 2020) ResNet-101 81.8

DANet (Fu et al. 2019) ResNet-101 81.5

Our CAA ResNet-101 82.6

Table 8: Comparisons with other state-of-the-art approaches
on the Cityscapes Test set. For a fair comparison, all com-
pared methods use ResNet-101 and naive upsampling.

its performance for the first time. In this section, we use
“EfficientNet-B5 + CAA” to verify the robustness of our
CAA on COCOStuff-164k. Table 10 shows that our method
outperforms Segformer and SETR (Sixiao et al. 2021) by a
large margin, indicating that our CAA maintains its superior
performance well on large-scale training data.

6 Conclusion
In this paper, we have proposed a novel and effective Chan-
nelized Axial Attention, effectively combining the advan-
tages of the popular spatial-attention and channel attention.
Specifically, we first break down spatial attention into two
steps and insert channel attention in between, enabling dif-
ferent spatial positions to have their own channel attentions.
Experiments on the three popular benchmark datasets have
demonstrated the effectiveness of our proposed channelized
axial attention.
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Figure 8: Examples of the segmentation results obtained
on the Cityscapes validation set with our proposed CAA
in comparison to the results obtained with DANet and the
ground truth.

Figure 9: Inference time (seconds/image) tested on three dif-
ferent input resolution when applying different numbers of
groups in our proposed grouped vectorization.

Methods mIOU (%)

CTNet (Li, Sun, and Tang 2021) + JPU 55.5
SETR-MLA (Sixiao et al. 2021) 55.83
ResNeSt-269 (Zhang et al. 2020) + DeepLab V3+ 58.9
HRNetV2 + OCR + RMI 59.6
DPT (Ranftl, Bochkovskiy, and Koltun 2021) 60.46

Our CAA (EfficientNet-B7, w/o decoder) 60.12
Our CAA (EfficientNet-B7 + simple decoder) 60.50

Table 9: Result comparison with the state-of-the-art ap-
proaches on the PASCAL Context test set for multi-scale
prediction. Note that, the listed methods were not trained
under the same settings, or using same backbone.

Methods mIOU (%)

ResNet-50 + DeepLabV3+ (Chen et al. 2018) 38.4
HRNetV2 + OCR 42.3
SETR (Sixiao et al. 2021) 45.8
Segformer-B5 (Xie et al. 2021) 46.7

Our CAA (EfficientNet-B5) 47.30

Table 10: Result comparison with the state-of-the-art ap-
proaches on the COCO-Stuff-164K test set.
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