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Abstract—Generalized Labeled Multi-Bernoulli (GLMB) den-
sities arise in a host of multi-object system applications analo-
gous to Gaussians in single-object filtering. However, computing
the GLMB filtering density requires solving NP-hard problems.
To alleviate this computational bottleneck, we develop a linear
complexity Gibbs sampling framework for GLMB density com-
putation. Specifically, we propose a tempered Gibbs sampler that
exploits the structure of the GLMB filtering density to achieve
an O(T (P + M)) complexity, where T is the number of iter-
ations of the algorithm, P and M are the number hypothesized
objects and measurements. This innovation enables the GLMB
filter implementation to be reduced from an O(TP 2M) complex-
ity to O(T (P + M + log T ) + PM). Moreover, the proposed
framework provides the flexibility for trade-offs between tracking
performance and computational load. Convergence of the proposed
Gibbs sampler is established, and numerical studies are presented
to validate the proposed GLMB filter implementation.

Index Terms—Random finite sets, multi-object tracking,
generalized labeled multi-Bernoulli, tempered Gibbs sampling.

I. INTRODUCTION

THE aim of multi-object tracking (MOT) is to estimate
the number of objects and their trajectories from noisy

sensor data. The challenges are the unknown and time-varying
number of objects, accompanied by false alarms, misdetections,
and data association uncertainty, culminating in computational
bottlenecks for most real world applications. Notwithstanding
this, numerous solutions have been developed, with multiple
hypothesis tracking [1], joint probabilistic data association [2],
and random finite set (RFS) [3] being the most widely used ap-
proaches. The RFS approach, in particular, is gaining substantial
interest due to its versatile multi-object state space models [4],
and efficient solutions [5]. Various tractable RFS multi-object
filters have been devised ranging from the probability hypothesis
density localization filters [4], [6] to the generalized labeled
multi-Bernoulli (GLMB) tracking filter [7].
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The GLMB filter [7] is an analytic solution to the RFS
multi-object filter that provides tracks and their provisional iden-
tities/labels to meet MOT requirements [1]. The unique feature
of this formulation is the provision for principled trajectory esti-
mation (even with only single-scan filtering), capable of tracking
millions of objects, online [5]. Moreover, the GLMB family
of densities is furnished with elegant mathematical properties,
offering a versatile set of tools including, conjugacy [7], closure
under truncation with analytic truncation error [8], analytic
approximation of general labeled multi-object density with min-
imal Kullback-Leibler divergence [9], analytic Cauchy-Schwarz
divergence and void probabilities [10]. These properties en-
abled MOT with multiple sensors and scans [8], [11], [12],
non-standard models [9], [13], [14], [15], unknown system pa-
rameters [16], multi-object control solutions [10], [17], as well as
distributed implementations [18], [19], [20]. The GLMB filter is
also amenable to parallelization that reduces computation times.
For instance, in [5], spatial search was used to decompose the
filtering density into independent GLMBs that are processed in
parallel, while, in [21], a parallel centralized implementation for
multiple sensors was developed. The GLMB filter has also found
a host of applications from robotics [22], sensor networks [23],
[24], cell biology [14], [25] to audio/video processing [15], [26].

The main computational bottleneck in GLMB filtering is the
truncation of the multi-object filtering density [7]. Truncation by
discarding terms with small weights minimizes theL1-error [8],
and can be posed as a ranked assignment problem, solvable
by Murty’s algorithm [27] with cubic complexity in both the
number of measurements and hypothesized objects [28], [29].
A more efficient solution based on Gibbs sampling (GS) was
proposed in [30], which incurs anO(TP 2M) complexity, where
T , the number of iterates of the algorithm, dominates the number
of hypothesized objects and measurements P and M . GS is an
efficient Markov Chain Monte Carlo (MCMC) technique for
sampling from complex probability distributions, popularized
by the seminal work of Geman and Geman [31], which opened
up applications in many disciplines ranging from statistics, engi-
neering to computer science, and is still an active research topic.

Following the strategy of selecting significant GLMB compo-
nents by random sampling [30], a number of GLMB truncation
techniques have been developed. In [32], an approximate GLMB
filter with linear complexity in the number of hypothesized
objects was proposed by neglecting the standard data asso-
ciation requirement of at most one measurement per object.
While this technique can be modified to accommodate the data
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association requirement, the complexity reverts to quadratic in
number of hypothesized objects [32]. In [33], a herded Gibbs
sampling implementation of the labeled multi-Bernoulli (LMB)
filter [34]–a one-term approximation of the GLMB filter–was
developed. However, this implementation is slower than the
systematic-scan Gibbs sampling (SGS) GLMB implementa-
tion [30], not to mention that, compared to the (exact) GLMB
filter, the LMB filter is more prone to track fragmentation and
track switching. In [35] and [36], the cross-entropy method [37]
was applied, respectively, to multi-sensor GLMB filtering and
its distributed version, but with higher complexity than the SGS
implementation in [11].

To alleviate the computational bottleneck in GLMB filtering,
this article proposes a tempered Gibbs sampling (TGS) frame-
work for selecting significant GLMB components, with linear
complexity, i.e., O(T (P +M)). Similar to the widely known
random-scan Gibbs sampling (RGS), TGS randomly selects a
coordinate to update, but provides the mechanism to improve
mixing and sample diversity [38]. However, generic TGS in-
curs an O(TP 2M) complexity. To this end, we develop an
innovative decomposition of the conditionals that enables TGS
to be reduced to O(T (P +M)) complexity, with negligible
additional memory (compared to genericO(TP 2M)TGS). The
samples generated by the proposed TGS algorithm converge to
a tempered distribution (not necessarily the same as the original
stationary distribution). Furthermore, keeping in mind that TGS
is regarded as the combination of importance sampling and
MCMC, the importance-weighted samples indeed converge to
the original stationary distribution [38]. The drastic reduction in
computational complexity facilitates the development of multi-
object control solutions, which require fast computation of the
multi-object filtering density for online operations [39], [40],
[41], [42]. Moreover, our solution is not only restricted to GLMB
truncation, but amenable to a wide range of applications of the
ranked assignment problem [43].

The proposed TGS framework enables RGS to be imple-
mented with O(T (P +M)) complexity, whereas generic RGS
incursO(TPM). Further, we propose deterministic-scan Gibbs
sampling (DGS), an efficient algorithm using deterministic co-
ordinate selection, as opposed to RGS’s completely random
coordinate selection. DGS’s better mixing and sample diversity
compared to RGS are validated by numerical studies. In addition,
using DGS, we show how an exact implementation of SGS can
be accomplished with O(TPM) complexity. We also present
numerical studies in MOT to discuss the trade-offs between
tracking performance and computational load in the proposed
TGS framework. Due to the computation of the cost matrix,
the resultant GLMB filter implementation incurs an additional
O(PM) complexity. In summary, our main contribution is a
TGS framework for GLMB truncation that:
� Incurs a linear complexity of O(T (P +M)), with negli-

gible additional memory, by exploiting the structure of the
GLMB filtering density; and

� Admits as special cases, RSG, DGS, and SGS imple-
mentations, withO(T (P +M)),O(TM), andO(TPM)
complexities, respectively.

TABLE I
SUMMARY OF FREQUENT NOTATIONS

We validate the proposed approach via a series of comprehensive
numerical experiments, with considerations for computational
efficiency, tracking accuracy, and sample diversity.

The rest of this article is organized as follows. Section II
provides the necessary background on GLMB filtering and
SGS-based GLMB truncation. In Section III, we present linear
complexity GS for GLMB filtering density truncation. Numeri-
cal studies are presented in Section IV, and concluding remarks
are given in Section V.

II. PRELIMINARIES

This section presents the necessary background for the de-
velopment of the main result of this article. We first outline the
basics of generalized labeled multi-Bernoulli (GLMB) filtering
in Section II-A, and then summarize the Gibbs sampling (GS)
approach to GLMB truncation in Section II-B. Throughout this
article, single-object states and multi-object states are respec-
tively represented by lower case letters (e.g., x) and upper case
letters (e.g., X). Further, boldfaced symbols denote labeled
states or distributions (e.g., x, X , π). Frequently used notations
are summarized in Table I.
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A. GLMB Filtering

1) Multi-object State: In GLMB filtering, the system state to
be estimated at each time is the set X of labeled states of the
underlying objects, called the multi-object state [7]. Each labeled
single-object statex ∈X is an ordered pair (x, �) in the product
space X× L, where X is a (finite dimensional) state space, and
L is a discrete space called the label space. Let Bτ denote the
label space of objects born at time τ , then the space L of all
labels up to time k is given by the disjoint union �kτ=0Bτ . The
state x of an object varies with time, while its label or identity
� (usually consists of the object’s time of birth and an index to
distinguish those born at the same time) is time-invariant. The
trajectory of an object is a sequence of consecutive labeled states
with a common label.

The cardinality |X| (i.e., number of elements) of the multi-
object state X varies with time due to the appearance and
disappearance of objects. In addition, a multi-object state X
at any time must have distinct labels. More concisely, let L(x)
denote the label of x, and for any finite X ⊂ X× L, define the
label set L(X) � {L(x) : x ∈X} and distinct label indicator
Δ(X) � δ|X|[|L(X)|]. Then for X to be valid multi-object
state, we require Δ(X) = 1.

In Bayesian estimation, the single-object state and the mea-
surement are modeled as random variables. Hence, for multi-
object estimation, the multi-object state and measurement are
modeled as Random Finite Sets (RFSs). In the following we
describe the so-called standard multi-object models for the
dynamics and observations in a multi-object system.

2) Multi-object Dynamic: For simplicity, we omit the time
subscript “k”, and use the subscript “+” for the next time k + 1
when there is no ambiguity. Each element x = (x, �) of the
current multi-object state X either survives with probability
PS(x) and evolves to state x+ = (x+, �+) at the next time
according to the transition density fS,+(x+|x, �)δ�[�+], or dies
with probability 1− PS(x) [7]. The term δ�[�+] in the transition
density ensures the object retains the same label. In addition to
the surviving objects, new objects can be born. New born objects
are usually modeled by an LMB RFS, where an object with state
x+ = (x+, �+) is born at the next time with probabilityPB,+(�+),
and the state density fB,+(x+, �+). The multi-object state X+ at
the next time is the union of surviving objects and new born
objects, described by the multi-object Markov transition density
f+(X+|X) [7]. It is assumed that, conditional on the current
multi-object state, objects survive and move independently of
each other, and that new born objects and surviving objects are
independent [3].

3) Multi-object Observation: Each element x ∈X is either
detected with probability PD(x) and generates an observation
z at the sensor with likelihood g(z|x), or misdetected with
probability 1− PD(x). In addition to the detections, the sensor
also receives clutter, modeled by a Poisson RFS with intensity
function κ. The multi-object observation Z is the union of
detections and clutter. It is assumed that conditional on the
multi-object state, objects are detected independently from each
other and that clutter and detections are independent.

The association of objects with sensor measurements (at time
k) is described by a positive 1-1 mapping γ :L→{-1:|Z|}, i.e.,
a mapping where no two distinct arguments are mapped to the
same positive value [7]. The (extended) association map1 γ spec-
ifies that object (with label) � generates measurement zγ(�) ∈ Z,
with γ(�) = 0 if it is undetected, and γ(�) = −1 if it does
not exist. The positive 1-1 property ensures each measurement
comes from at most one object. Let L(γ) � {� ∈ L : γ(�) ≥ 0}
denote the set of live labels2 of γ, and Γ denote the space of all
association maps, then the multi-object likelihood function can
be written as [11]

g(Z|X) ∝
∑
γ∈Γ

δL(γ)[L(X)][ψ
(γ◦L(·))
Z (·)]X , (1)

where γ ◦ L(·) = γ(L(·)) and

ψ
(j)
{z1:M}(x) =

{
PD(x)g(zj |x)

κ(zj)
, j > 0

1− PD(x), j = 0
. (2)

4) The GLMB Filter: All statistical information about the
underlying state is contained in the filtering density–probability
density of the current state conditioned on all measurements
up to (and including) the current time. Given the multi-object
filtering densityπ at the current time, the propagation to the next
time step is given by [3]

π+(X+|Z+) ∝ g (Z+|X+)

∫
f+ (X+|X)π(X) δX. (3)

Under the standard multi-object system model, the multi-
object filtering density takes on the GLMB form [7]:

π (X) = Δ (X)
∑
ξ∈Ξ

[
p(ξ)

]X ∑
I∈F(L)

w(ξ,I)δI [L (X)], (4)

where Ξ is some finite discrete space, p(ξ)(·, �) is a probability
density on X, and w(ξ,I) is a non-negative weight satisfying the
condition

∑
(ξ,I)∈Ξ×F(L) w

(ξ,I) = 1. To obtain a multi-object
state estimate from the GLMB density (4), we first find the most
probable cardinality n∗ from the cardinality distribution

Pr(|X| = n) �
∑

(ξ,I)∈Ξ×F(L)
δn[|I|]w(ξ,I), (5)

and then the highest-weighted component (ξ∗, I∗)with cardinal-
ity |I∗| = n∗, see [7]. The state estimate for each object � ∈ I∗
can be taken as the mean (or mode) of p(ξ

∗)(·, �). Alternatively,
the entire trajectory of object � ∈ I∗ can be estimated as de-
scribed in [8], [17].

For compactness, we write a GLMB density in terms of its
parameters:

π �
{(
p(ξ), w(ξ,I)

)}
(ξ,I)∈Ξ×F(L). (6)

1Originally called extended association maps, herein referred to as association
maps for brevity.

2Note the distinction from L(X), the labels of a labeled set.
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Given a current GLMB filtering density of the form (6), its
propagation to the next time is the GLMB [8], [30]

π+=
{(
p
(ξ,γ+)
Z+

, w
(ξ,γ+,I+)
Z+

)}
(ξ,γ+,I+)∈Ξ×Γ+×F(L+)

, (7)

where the new parameters are given by

p
(ξ,γ+)
Z+

(·, �) = p̄
(ξ,γ+(�))
+ (·, �)ψ(γ+(�))

Z+
(·, �)

ψ̄
(ξ,γ+)
Z+

(�)
, (8)

w
(ξ,γ+,I+)
Z+

∝ δL(γ+)[I+]
∑

I∈F(L)
w(ξ,I)1F(I�B+) (I+)w

(ξ,I,γ+)
Z+

, (9)

p̄
(ξ,j)
+ (·, �) =

⎧⎨⎩
∫
f+(·|x,�)PS(x,�)p(ξ)(x,�)dx

P̄
(ξ)
S (�)

, � ∈ I, j ≥ 0

fB,+ (·, �) , � ∈ B+, j ≥ 0
,

(10)

P̄
(ξ)
S (�) =

〈
PS (·, �) , p(ξ) (·, �)

〉
, (11)

ψ̄
(ξ,γ+)
Z+

(�) =
〈
p̄
(ξ,γ+(�))
+ (·, �) , ψ(γ+(�))

Z+
(·, �)

〉
, (12)

w
(ξ,I,γ+)
Z+

= 1Γ+ (γ+)
∏

�∈I�B+

η
(ξ,I)
Z+ ,�

(γ+(�)), (13)

η
(ξ,I)
Z+,�

(j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− P̄ (ξ)

S (�), � ∈ I, j < 0

P̄
(ξ)
S (�)ψ̄

(ξ,j)
Z+

(�), � ∈ I, j ≥ 0

1− PB,+(�), � ∈ B+, j < 0

PB,+(�)ψ̄
(ξ,j)
Z+

(�), � ∈ B+, j ≥ 0

. (14)

Note that each component (ξ, I) of the GLMB filtering den-
sity at time k generates a (very large) set {(ξ, I, γ+, I+) : I+ ∈
F(L+), γ+ ∈ Γ+} of children components to the next time. Due
to the terms δL(γ+)[I+] and 1F(I�B+)(I+) in (9), we only need to
consider components with I+ ⊆ I � B+ and L(γ+) = I+. While
this is a big reduction, in general the total number of GLMB com-
ponents with non-zero weights still grows super-exponentially
with time. Implementing the GLMB filter requires truncating the
GLMB filtering density. Truncation by keeping the most highly
weighted components minimizes the L1 truncation error [8].

B. Gibbs Sampling for GLMB Truncation

Truncating the children of the GLMB component (indexed by
(ξ, I)) amounts to selecting the γ+’s with significant w(ξ,I,γ+)

Z+
.

For a given component (ξ, I), let us enumerate I = {�1:R},B+ =
{�R+1:P }, and Z+ = {z1:M}, and abbreviate

ηi(j) � η
(ξ,I)
Z+,�i

(j), (15)

where i ∈ {1:P}, and j ∈ {-1:M}. Let π be a (discrete) prob-
ability distribution on {-1:M}P defined by

π(γ+) ∝ 1Γ+(γ+)

P∏
i=1

ηi(γ+(�i)). (16)

Note that due to the factor 1Γ+(γ+), any sample from (16) is
a valid association map. Further, it follows from (13) that the

probability of sampling γ+ is π(γ+) ∝ w(ξ,I,γ+)
Z+

. Hence, truncat-
ing the contribution from the parent component (ξ, I) can be
accomplished by sampling from π.

GS is a computationally efficient Markov Chain Monte Carlo
(MCMC) technique for sampling from complex probability
distributions whose conditionals can be computed/sampled at
low cost. In GLMB truncation, we aim to maximize the number
of distinct significant samples, rather than focusing on the actual
distribution of the samples as per MCMC inference. All distinct
samples can be used regardless of their distribution, because each
distinct sample constitutes a term in the approximant (the larger
the weights, the smaller the approximation error) [30]. Hence,
it is not necessary to discard burn-ins and wait for samples from
the stationary distribution.

Systematic-scan GS (SGS) is the classical approach that sam-
ples from the stationary distribution π by constructing a Markov
chain with transition kernel [31], [44]

π(γ′+|γ+) =
P∏
i=1

πi(γ
′
+(�i)|γ′+(�1:i-1), γ+(�i+1:P )),

where the i-th conditional, defined on {-1:M}, is given by

πi(γ
′
+(�i)|γ′+(�1:i-1), γ+(�i+1:P )) ∝ π(γ′+(�1:i), γ+(�i+1:P )).

This means, for a given γ+, the next state γ′+ of the chain is
generated one component after another, by sampling γ′+(�i) from
πi(·|γ′+(�1:i-1), γ+(�i+1:P )), i = 1, 2, . . . , P .

For GLMB truncation, the conditionals are the categorical
distributions given by [30, Proposition 3], which is restated in a
slightly different form as follows.

Proposition 1: For each i ∈ {1:P}, let �ī denote �1:i-1,i+1:P .
Then the i-th conditional, defined on {-1:M}, is given by

πi(·|γ+(�ī)) =
π̃i(·|γ+(�ī))

〈π̃i(·|γ+(�ī)), 1〉
, (17)

where

π̃i(j|γ+(�ī)) �
{
ηi(j), j < 1

ηi(j)(1− 1{γ+(�ī)}(j)), j ∈ {1:M} . (18)

Remark 1: The above result shows that the conditionals are
completely characterized by the P × (M + 2) cost matrix in
Fig. 1(a) (which can be pre-computed from the measurement
Z+) and the values of γ+ on �ī, i.e., {γ+(�ī)}. Specifically, the
unnormalized i-th conditional is simply given by the i-th row
after entries with (positive) indices contained in {γ+(�ī)} have
been zeroed (or masked) out, as illustrated in Fig. 1(b). Since
evaluating 1{γ+(�ī)}(j) (and hence the mask 1− 1{γ+(�ī)}(j))
for each j incurs an O(P ) complexity, computing πi(·|γ+(�ī))
requires an O(PM) complexity.

Remark 2: If γ+ is positive 1-1 on {�ī} and γ+(�i) is set to
any j ∼ πi(·|γ+(�ī)), then γ+ is also positive 1-1, i.e., a valid
association map. Multiplication by the mask 1− 1{γ+(�ī)}(j)
ensures that any j violating the positive 1-1 condition has zero
probability of being sampled.

Selecting significant GLMB components can be performed
with O(TP 2M) complexity via SGS as shown in [30]. Not-
ing that P (the number of hypothesized objects) is strongly
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Fig. 1. Computing the unnormalized i-th conditional. Multiplying the i-th row
of the matrix in (a) with a masking function (that depends onγ+) and normalizing
the resulting function in (b) yields the i-th conditional.

correlated with M (the number of measurements), this com-
plexity translates roughly to a cubic complexity, i.e., O(TP 3)
or O(TM3). Nonetheless, SGS has been extended to address
multi-dimensional ranked assignment problems in multi-scan
and multi-sensor GLMB filtering [8], [11], [12].

III. LINEAR COMPLEXITY GS FOR GLMB FILTERING

This section presents efficient linear complexity GS for
selecting significant components in GLMB filtering. We
begin with the widely-known random-scan GS (RGS) in
Section III-A. Section III-B then presents tempered GS (TGS),
a recent generalization that can overcome the drawbacks of
RGS, but incurs an O(TP 2M) complexity. In Section III-C,
we develop a decomposition of the conditionals (of the sta-
tionary distribution) allowing TGS to be implemented with a
linear complexity ofO(T (P +M)). Salient special cases of the
proposed linear complexity TGS, including deterministic-scan
GS (DGS), are discussed in Section III-D. For completeness,
the linear complexity TGS-based GLMB filter implementation
is discussed in Section III-E.

A. RGS for GLMB Truncation

Whereas SGS generates the next iterate γ′+ by traversing and
updating all P coordinates of the current iterate γ+, RGS only
selects one coordinate at random to update [45], [46]. This means
the transition kernel π(γ′+|γ+) is given by 1

P πi(γ
′
+(�i)|γ+(�ī))

when γ+ and γ′+ differ at most in the i-th coordinate and
0 otherwise. A generic RGS implementation would incur an
O(TPM) complexity because computing the conditionals re-
quires O(PM). Further, RGS is inefficient in the sense that
it generates less distinct significant samples than SGS, for the
same number of iterates of the chain, leading to poorer GLMB
approximations and tracking performance.

The two main factors affecting the efficiency of RGS are
mixing time and sample diversity. Intuitively, mixing time is the
number of iterations required for subsequent states to be treated
as samples from the stationary distribution π. Sample diversity
refers to the proportion of distinct samples in a given number
iterates of the chain. While the actual distribution of the samples
is not relevant for GLMB truncation, fast mixing is necessary for
efficient generation of distinct significant samples. Furthermore,
even if the chain converges to the stationary distribution, sample
diversity can be poor due to frequent revisiting of previous states
from successive iterations. RGS’s notorious slow-mixing [38],
[45], [47], together with observed poor sample diversity means
that it could take many iterations for significant GLMB
components to be generated.

B. Tempered Gibbs Sampling

Similar to RGS, TGS also generates the next iterate γ′+ by
randomly selecting a coordinate to update. However, TGS pro-
vides an additional mechanism to improve mixing and sample
diversity [38]. Specifically, a coordinate i ∈ {1:P} is chosen
according to the distribution

ρ(i|γ+) ∝ φi(γ+(�i)|γ+(�ī))

πi(γ+(�i)|γ+(�ī))
, (19)

where φi(·|γ+(�ī)) is a bounded proposal, defined on {-1:M},
with the same support as πi(·|γ(�ī)). Further, given the selection
of the i-th coordinate, its state is updated by sampling from the
proposal, i.e.,

γ′+(�i) ∼ φi(·|γ+(�ī)), (20)

(note that TGS reduces to RGS in the special case φi = πi). The
proposalφi controls sample diversity, and determines coordinate
selection that can influence mixing [46], [48], [49]. The transi-
tion kernel of TGS is given byφ(γ′+|γ+) ∝ ρ(i)φi(γ′+(�i)|γ+(�ī))
when γ+ and γ′+ differ at most in the i-th coordinate and 0
otherwise.

In GLMB truncation, we are not interested in the importance
weights since the goal is to generate distinct samples with signif-
icant GLMB weights (which are different from the importance
weights). While TGS can circumvent the drawbacks of RGS
by using fast mixing proposals that yield diverse samples, these
may not be significant (in GLMB weights) because the tempered
stationary distribution could be very different from π. One way
to generate diverse and significant samples is to use proposals
that approximate the conditional πi, but are more diffuse, which
can be achieved with a mixture consisting of the conditional and
its tempered version, i.e.,

φi(j|γ+(�ī)) = απi(j|γ+(�ī)) +
(1− α)πβ

i (j|γ+(�ī))〈
πβ
i (·|γ+(�ī)), 1

〉 , (21)

where α, β ∈ (0, 1], and for any function f, fβ(·) � [f(·)]β .
This popular proposal preserves the modes of the conditional
πi(·|γ+(�ī)) to capture significant samples, and at the same
time, increases sample diversity via the more diffuse tempered
term [38], [50]. Moreover, the state informed coordinate selec-
tion strategy of TGS provides faster mixing [38], [51], [52].



1986 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Algorithm 1: Tempered Gibbs Sampling [38].

Input: γ+, β, [ηi(j)]Pi=1
Output: γ′+

1 Compute ρ(·|γ+);
2 Sample n from ρ(·|γ+);
3 Sample γ′+(�n) from φn(·|γ+(�n̄));

While the TGS kernel (Algorithm 1) avoids traversing all
coordinates, it still incurs an O(P 2M) complexity (and hence
generating T iterates incurs O(TP 2M) complexity) because:
� Computing the conditionals πi(·|γ+(�ī)) for all i ∈ {1:P}

incurs O(P 2M) complexity since each conditional re-
quires performing the positive 1-1 checks using the set
inclusion 1{γ+(�ī)}(j), which incurs an O(PM) complex-
ity;

� Computing the proposals φi(·|γ+(�ī)) for all i ∈ {1:P}
incurs O(PM) complexity due to β-th power operations
and normalizations; and

� Computing the coordinate selection probabilities ρ(i|γ+)
for all i ∈ {1:P} and sampling the coordinate incurs
O(P ) complexity, while sampling from φn(·|γ+(�n̄)) in-
curs O(M) complexity.

Nonetheless, it is possible to further exploit the particular
structure of the problem through the positive 1-1 constraint to
implement this kernel with O(P +M) complexity.

C. Linear Complexity TGS

To reduce the complexity of computing and sampling from
the coordinate distribution ρ(·|γ+), note that the proposal (21)
can be rewritten in terms of the unnormalized conditional as

φi(j|γ+(�ī)) =
απ̃i(j|γ+(�ī))

ν
(1)
i (γ+)

+
(1− α)π̃β

i (j|γ+(�ī))

ν
(β)
i (γ+)

, (22)

where ν(β)i (γ+) =
〈
π̃β
i (·|γ+(�ī)), 1

〉
is the normalizing constant

for π̃β
i (·|γ+(�ī)) (hence ν(1)i (γ+) is the normalizing constant for

π̃i(·|γ+(�ī))). Further, the unnormalized conditional π̃i(·|γ′+(�ī))
at the next GS iteration differs from π̃i(·|γ+(�ī)) at no more than
two points on its domain {-1:M}. Fig. 2 provides an illustration.

Proposition 2: Suppose that, γ′+ and γ+ differ only at the n-th
coordinate, i.e., γ′+(�n̄) = γ+(�n̄) and γ′+(�n) �= γ+(�n). Then,
for i ∈ {1:P}, j ∈ {-1:M}, and β > 0,

π̃β
i (j|γ′+(�ī))− π̃β

i (j|γ+(�ī)) =

1{n̄}(i)1{1:M}(j)η
β
i (j)

(
δγ+(�n)[j]− δγ ′+(�n)[j]

)
.

Proof: See Appendix (Section A). �
Remark 3: Given successive TGS iterates γ+ and γ′+ that

differ at the n-th coordinate, Proposition 2 (with β = 1) states
that their n-th conditionals are the same, i.e., πn(·|γ+(�n̄)) =
πn(·|γ′+(�n̄)). Moreover, for i �= n, the unnormalized i-th con-
ditional π̃i(·|γ′+(�ī)) is the same as π̃i(·|γ+(�ī)), except at:

Fig. 2. Difference between unnormalized conditionals in successive TGS
iterations. If γ′+ differs from γ+ only at then-th coordinate, i.e., γ+(�n) = j > 0
and γ′+(�n) = j′ > 0, with j �= j′, then for i ∈ {n̄}, π̃i(·|γ′+(�ī)) is the same
as π̃i(·|γ+(�ī)) on {-1:M} except at j (gray) and j′ (red).

1) j = γ+(�n) > 0, where ηi(j) is added to π̃i(j|γ+(�ī)) so
that π̃i(j|γ′+(�ī)) = ηi(j) (because this j is now freed up);
and

2) j = γ′+(�n) > 0, where−ηi(j) is added to π̃i(j|γ+(�ī)) so
that π̃i(j|γ′+(�ī)) = 0 (because this j is now taken).

This also means the normalizing constant for π̃i(·|γ′+(�ī)) can be
computed from that of π̃i(·|γ+(�ī)) by simply adding ηi(γ+(�n))
when γ+(�n) > 0, and subtracting ηi(γ′+(�n)) when γ′+(�n) >
0. Consequently, the unnormalized conditional π̃i(·|·) and its
normalizing constant can be propagated to the next given TGS
iteration with at most two additions.

The above discussion also holds for the tempered unnormal-
ized conditional π̃β

i (·|·), and is stated more concisely in the
following.

Corollary 1: Suppose that the successive TGS iterates γ+ and
γ′+ differ at the n-th coordinate. Then, for β > 0,

π̃β
n(·|γ′+(�n̄)) = π̃β

n(·|γ+(�n̄)),〈
π̃β
n(·|γ′+(�n̄)), 1

〉
=

〈
π̃β
n(·|γ+(�n̄)), 1

〉
,

and for i ∈ {n̄}, j ∈ {-1:M},

π̃β
i (j|γ′+(�ī)) =

⎧⎪⎨⎪⎩
ηβi (j), j = γ+(�n) > 0

0, j = γ′+(�n) > 0 ,

π̃β
i (j|γ+(�ī)), otherwise〈

π̃β
i (·|γ′+(�ī)), 1

〉
=

〈
π̃β
i (·|γ+(�ī)), 1

〉
+ ηβi (γ+(�n))1{1:M}(γ+(�n))

− ηβi (γ′+(�n))1{1:M}(γ′+(�n)).
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Algorithm 2: TGS+.

The above result means propagating each tempered condi-
tional and its normalizing constant to the next iterate of the
Markov chain can be performed with a constant time complexity.
Consequently, O(T (P +M)) complexity TGS can be devel-
oped for selecting significant GLMB components. The pseu-
docode in Algorithm 2, herein referred to as TGS+, outlines
the steps for generating iterates γ(1)+ , . . . , γ

(T )
+ , from initial chain

state γ(0)+ , and initial coordinate distribution ρ(·|γ(0)+ ). Note that:
� Sampling n from the categorical distribution ρ(·|γ(t-1)+ ),

defined on P categories, incursO(P ) complexity (line 3);
� Computing the proposal φn(·|γ(t-1)+ (�n̄)) incurs O(M)

complexity (line 4) since π̃i(·|γ(t-1)+ (�ī)), ν
(1)
i (γ

(t-1)
+ ), and

ν
(β)
i (γ

(t-1)
+ ) were generated as by-products of computing

ρ(·|γ(t-1)+ ) in the previous iteration;
� Sampling γ

(t)
+ (�n) from φn(·|γ(t-1)+ (�n̄)) incurs O(M)

complexity (line 5);
� Computing ρ̃(·|γ(t)+ ) for the (t+ 1)-th iteration is only

needed when γ
(t)
+ (�n) �= γ

(t-1)
+ (�n), and requires O(P )

complexity (lines 7–11), because for each i ∈ {1:P}, eval-
uating (19) from the available πi(γ

(t)
+ (�i)|γ(t)+ (�ī)) and

φi(γ
(t)
+ (�i)|γ(t)+ (�ī)) only requires a constant time com-

plexity (Corollary 1); and
� Normalizing ρ̃(·|γ(t)+ ) incurs O(P ) complexity (line 12).

TGS+ also requires the initial coordinate distribution ρ(·|γ(0)+ )
as an input, which can be pre-computed via the initializa-
tion routine described in Algorithm 3. The recursive construct
(lines 2–6, 9–12) reduces the O(P 2M) complexity [30] to an
O(PM) complexity. Specifically, for each i ∈ {1:P}, comput-
ing π̃i(γ

(0)
+ (�i)|γ(0)+ (�ī)), ν

(1)
i (γ

(0)
+ ), ν(β)i (γ

(0)
+ ) and ρ̃(i|γ(0)+ )

incurs O(M) complexity.

Algorithm 3: Initialization.

Proposition 3: Starting from any positive 1-1 initialization,
the Markov Chain {γ(t)+ }∞t=1 generated by the TGS kernel (Al-
gorithm 2) is ergodic, and converges to a stationary distribution
(not necessarily π). Additionally, taking into account the impor-

tance weight w(t) ∝ P/
〈
ρ(·|γ(t)+ ), 1

〉
, the weighted samples

converge to the stationary distribution π in the sense that for any
bounded function h : Γ+ → R

lim
T→∞

T∑
t=1

w(t)h(γ
(t)
+ ) =

∑
γ+∈Γ+

π(γ+)h(γ+), (23)

where the coordinate probability distribution ρ(·|γ(t)+ ) is given
by (19). Further, the variance of the importance weights is stable,
i.e., does not grow with the number of coordinates.

Proof: See Appendix (Section B). �
Remark 4: In TGS, the variance of the weights does not

grow with the number of coordinates, and hence the algorithm
scales gracefully with P . Combining tempering with impor-
tance sampling is a strategy used to improve slow mixing in
generic MCMC [38]. However, the variance of the weights
grows exponentially with the number of coordinates [53], [54],
which means that the performance of a generic MCMC method
deteriorates with large values of P . Unlike generic temper-
ing in MCMC, TGS only tempers the conditional of the se-
lected coordinate, but still inherits the benefit of improved
mixing [38].
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Algorithm 4: RGS+.

D. Salient Special Cases

1) Random-scan GS: Under the proposed TGS framework,
settingβ = 1 in the proposal (21) translates to uniformly random
coordinate selection. This special case, described by Algorithm
4, is indeed RGS, herein referred to as RGS+ to distinguish
it from generic O(TPM) complexity RGS. Since ρ(·|γ+) is a
uniform distribution, it requires no computation. However, the
masking steps for π̃i(·|γ+(�ī)) are still needed. Nonetheless the
complexity of RGS+ reduces to O(T (P +M)) because:
� Sampling n uniformly from {1:P} incursO(P ) complex-

ity (line 3);
� Sampling γ

(t)
+ (�n) from π̃n(·|γ(t-1)+ (�n̄)) incurs O(M)

complexity (line 4); and
� Computing [π̃i(·|γ+(�ī))]

P
i=1 (based on Corollary 1) takes

O(P ) complexity (lines 6–7).
2) Deterministic-scan GS: The other extreme of complete

randomness, namely deterministic coordinate selection can also
be accommodated by TGS+. The simplest deterministic scan
is to traverse the coordinates according to the periodic sequence
1, 2, . . . , P , i.e., the selected coordinate at t-th iteration is given
by c(t) = 1 + mod(t-1, P ). To realize this in the TGS frame-
work, a proposal of the form

ϕi(j|γ(t)+ (�ī)) = δc(t)[i]φi(j|γ(t)+ (�ī)) + ε(1− δc(t)[i]),
where ε is a very small positive number. Note that the corre-
sponding coordinate distribution is given by

ρ(i|γ+) ∝
δc(t)[i]φi(γ

(t)
+ (�i)|γ(t)+ (�ī))

πi(γ
(t)
+ (�i)|γ(t)+ (�ī))

+
ε(1− δc(t)[i])

πi(γ
(t)
+ (�i)|γ(t)+ (�ī))

.

Hence, in the limiting case as ε tends to zero, only coordinate
c(t) can be selected at the t-th iterate.

In principle, this special case hasO(T (P +M)) complexity.
However, since the coordinate is effectively selected according
to the prescribed sequence c(t), the sampling step is not needed.
Moreover, using the recursive construct in the initialization
(Algorithm 3), it is possible to implement this so-calledDGS+

special case as described in Algorithm 5, which only incurs
an O(TM) complexity. A similar approach based on the re-
verse scan order, i.e., P, P − 1, . . . , 1, is possible by setting
c(t) = P −mod(t-1, P ) in Algorithm 5 (line 3).

Note that in the literature, the terms “Systematic-scan GS”,
“Sequential-scan GS”, and “Deterministic-scan GS” all refer

Algorithm 5: DGS+.

Algorithm 6: SGS+.

to “SGS”. The proposed DGS+ is clearly not the same as
SGS, but is closely related to it. Specifically, the sequence
of every P -th iterate of DGS+, with α = 1 or β = 1, is
indeed a sequence of SGS iterates. However, this approach
to SGS (summarized in Algorithm 6), referred to as SGS+,
has to traverse P coordinates to generate one iterate. Hence,
for T iterations of DGS+, SGS+ effectively has T/P it-
erations. This also means that the complexity per iteration
increases by P , and consequently SGS+ incurs an effective
O(TPM) complexity, a drastic reduction from O(TP 2M) as
in [30].

Remark 5: Apart from the forward-scan coordinate selection
discussed above, other deterministic scan orders are possible.
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For efficiency and sample diversity, it is important that the
periodic coordinate sequence c(t) scans all P coordinates in
one period.

E. TGS-GLMB Filter Implementation

The TGS-based implementation of the GLMB filter is the
same as the SGS-based implementation in [30, Algorithm 2],
with two key changes:
� SGS-based truncation is replaced by the proposed
O(T (P +M)) TGS algorithm (Algorithm 2); and

� There is an additional O(PM) complexity step for com-
puting the initial coordinate distribution (Algorithm 3).

Thus, the resulting GLMB filter implementation incurs an over-
all complexity of O(T (P +M) + PM + T log T ). The addi-
tional factor of T log T arises from the need to remove duplicates
from the TGS output. Noting that in practice, the number T
of iterates is large, typically T (P +M) >> PM , nonetheless
log T is small, and P +M >> log T . This is a substantial
reduction from the O(TP 2M) complexity of the SGS-based
implementation.

IV. EXPERIMENTAL RESULTS

This section presents numerical studies for GLMB filtering
with truncation via the proposed TGS based schemes and the
new recursive implementation of SGS:

1) TGS+: O(T (P +M)) TGS (Algorithm 2);
2) RGS+: O(T (P +M)) RGS (Algorithm 4);

3)
−−−→
DGS+: O(TM) forward-scan DGS (Algorithm 5);

4)
←−−−
DGS+: O(TM) backward-scan DGS (Algorithm 5);

5) SGS+: O(TPM) SGS (Algorithm 6);
6) RGS: O(TPM) RGS (Section III-A); and
7) SGS: O(TP 2M) SGS (Algorithm 2a in [30]).

Note that, although all methods use the same initialization (Algo-
rithm 3), only TGS+ requires ρ(·|γ+), whereas RGS+/SGS+

do not require the tempering related steps. No parallel imple-
mentations are used in our experiments.

A common linear Gaussian setup on a square 3 km× 3 km
surveillance region over 100 time steps is used throughout
this section. The number of objects is time varying due to
various births and deaths. The single-object state is a 4D vec-
tor [x, ẋ, y, ẏ]T of 2D position and velocity which follows a
constant velocity model with sampling period 1 s and process
noise standard deviation σp = 5 ms−2 on each axis. Existing
objects have a constant survival probability of PS = 0.99. New
objects appear according to an LMB birth density withNB = 50
components. Each LMB component has a fixed birth probabil-
ity PB,+(�i) = 0.01 and Gaussian birth density fB,+(x, �i) =

N (·;m(i)
B , RB) for i ∈ {1, . . ., NB}, where the means m(i)

B =
[x(i), 0, y(i), 0]T are uniformly spaced in the surveillance re-
gion, and RB = diag([10, 10, 10, 10]T)2. This implies a mean
birth rate of λB = 0.5 per scan, combined with the constant
death or survival probability, results in a total of approximately
NX = 50 trajectories, or a peak of approximately 33 objects
simultaneously. Observations are noisy 2D positions with noise
standard deviation σm = 10 m on each axis. All objects have

TABLE II
PARAMETER SETTINGS

a constant detection probability of PD = 0.86. Clutter follows
a Poisson model with a mean rate of λc = 90 returns per scan
and a uniform density on the observation space. Each of the
GS implementations are run for T = 5000 iterations, and the
TGS+/

−−−→
DGS+/

←−−−
DGS+ use default mixture and tempering pa-

rameters of α = β = 0.5.
The effects of individually varying key parameters affecting

T ,P , andM are also examined. In addition to numerical studies
with the default parameters described above, further experiments
are also carried out according to Table II with varying number
of GS iterations, total number of trajectories (or peak number of
objects), plus detection and clutter rates. The effects of different
mixture rates and tempering levels for TGS+ are also studied.

Evaluations are undertaken for computation time, tracking
accuracy, and (association) sample diversity via (i) measured
wall-clock times, (ii) OSPA [55] and OSPA(2) [5] metrics, and
(iii) the number of unique solutions per scan during GLMB
filtering. Results on the tracking accuracy and sample diversity
of RGS/SGS are the same as per RGS+/SGS+ and hence
omitted. Note that each Monte Carlo trial generates random
births, motions, deaths (see the example in Fig. 3) and mea-
surements according to the multi-object model parameters. All
empirical averages are then reported over 1000 Monte Carlo
runs using MATLAB R2020a on a dual CPU machine with dual
64-Core AMD EPYC 7702 CPUs and 1 TB RAM.

A. Computation Time

Fig. 4 shows (in log scale) the measured wall-clock times aver-
aged per scan (lower is better). It is imperative to examine both
average and maximum times particularly for latency sensitive
real-time applications [56]. As expected, the results in Fig. 4(a)
and (b) show increasing computation times with increasing
numbers of trajectories and iterations. The results in Fig. 4(c) and
(d) show generally flat trends of computation times with varying
rates of detection and clutter, since the plots use the same default
values for the number of iterations and number of trajectories.
In all cases, it can be seen that all linear complexity GS im-
plementations have similar run times, but all are significantly
faster than the higher complexity methods SGS+/RGS/SGS.
Further, RGS+/SGS+ show better computational efficiency
thanRGS/SGS. Of the linear complexity truncation strategies,
TGS+ is generally the most expensive, due to the additional
calculations involved with tempering and coordinate selection.
The deterministic scan

−−−→
DGS+/

←−−−
DGS+ have more similar run
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Fig. 3. Examples of randomly generated ground truths (©/�: start/end).

Fig. 4. Experimental results for computation time.

times toRGS+, depending on the fraction of time spent in sam-
pling versus overheads. Nonetheless, TGS+/

−−−→
DGS+/

←−−−
DGS+

are observed to have improved tracking accuracy and improved
sample diversity, when compared toRGS+, as will be seen and
further discussed in the next subsections.

B. Tracking Accuracy

Fig. 5 shows the OSPA and OSPA(2) metrics via overlay bar
charts (lower is better). Specifically, an average OSPA error
(taken over all time steps) and a single OSPA(2) error (computed
over the entire scenario window) are calculated with parameters
p = 1 and c = 100 m. In essence, the OSPA distance captures
the error between two sets of point estimates (i.e., single-scan),
whereas the OSPA(2) distance captures the errors between two
sets of track estimates (i.e., multi-scan), both in a mathematically
consistent and physically intuitive manner.

The resultant OSPA and OSPA(2) for varying numbers of
trajectories and iterations are shown in Fig. 5(a) and (b). For
a relatively small number of objects, the average filtering and
tracking errors for all GS variants are virtually identical. As
the number of objects is gradually increased, as expected, the
corresponding errors for SGS+ (the most expensive variant)
exhibit the smallest increase of all variants. Conversely but
also as expected, the errors for RGS+ show the largest in-
crease, due to slow mixing and insufficient diversity. The er-
rors for TGS+ are significantly better than those for RGS+,
even though both have the same linear complexity, due to
the combination of tempering with smart coordinate selection.
The errors for

−−−→
DGS+/

←−−−
DGS+ are higher than that of TGS+

but are generally lower than for RGS+. The plots for vary-
ing numbers of iterations similarly indicate that SGS+ gen-
erally has the lowest error, while RGS+ has the highest, and
TGS+/

−−−→
DGS+/

←−−−
DGS+ are comparatively robust. The effect of

varying the detection and clutter rate is shown in Fig. 5(c) and (d).
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Fig. 5. Experimental results for tracking accuracy.

Fig. 6. Experimental results for sample diversity.

ThoughSGS+ generally outperformsTGS+/
−−−→
DGS+/

←−−−
DGS+,

the gap appears to narrow as the SNR increases. Again, TGS+

outperforms
−−−→
DGS+/

←−−−
DGS+ which are better thanRGS+ in all

cases.
Overall, the results suggest that TGS+/

−−−→
DGS+/

←−−−
DGS+ gen-

erally outperformRGS+ on tracking accuracy, even though they
have similar complexities. In addition, there is small disparity
between

−−−→
DGS+/

←−−−
DGS+, suggesting that scan order can influ-

ence results. Unsurprisingly, it is observed that SGS+ generally
outperforms TGS+, due to a significant disparity in complexity
and hence running times. Consequently, the proposed linear
complexity TGS+ based solutions have the potential to offer
a robust trade-off between tracking performance and computa-
tional load.

C. Sample Diversity

The average number of unique samples over the entire sce-
nario is shown in Fig. 6 (higher is better). A higher number of

unique samples means a higher number of association hypothe-
ses, or mixture components in the estimated GLMB filtering
density, which generally results in a lower GLMB truncation
error.

The trend in Fig. 6(a) confirms that the number of unique
samples follows the increase with the number of trajectories,
which is necessary to capture the corresponding increase in the
diversity of the components in the filtering density. In the case
of the lowest number of objects, it can be seen in Fig. 5(a) that
even though all the GS variants have the same tracking accuracy,
they generally produce different numbers of unique solutions.
This is due to the fact that a small number of samples is still
sufficient to capture the GLMB filtering density. As the number
of objects increases, it can be seen that SGS+ produces more
than twice the number of unique samples of TGS+, but incurs a
significant increase in time complexity, which is expected due to
the exhaustive traversal of all coordinates in SGS+. In addition,
the informed (single) coordinate selection in TGS+ produces
more unique samples than RGS+ even though both have the
same complexity. Note also from Fig. 6(a) that the number of
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Fig. 7. Experimental results for mixture rate and tempering level.

unique samples from
−−−→
DGS+/

←−−−
DGS+ is also higher than that

fromRGS+ but lower than that fromTGS+. The relative trends
in the number of unique samples are generally consistent with
those of the tracking error shown in Fig. 5(a).

Examination of Fig. 6(b) confirms that the number of iter-
ations directly influences to the number of unique samples. It
can also be seen that TGS+ produces up to twice the number
of unique samples as RGS+. While

−−−→
DGS+/

←−−−
DGS+ produce

slightly fewer unique samples than TGS+, there is also a
corresponding reduction in the observed run times. As expected,
SGS+ outperforms the other linear complexity variants, but at
a significant increase in computational complexity. Again, it is
observed in general that the relative increase in the number of
unique samples is consistent with the increasing running times in
Fig. 4(b) and with the decreasing OSPA and OSPA(2) values in
Fig. 5(b). Inspection of the curves for increasing detection rates
in Fig. 6(c) shows a decreasing trend due to lower number of
components required to accurately represent the GLMB filtering
density in higher SNR. Inspection of the curves for increasing
clutter rates in Fig. 6(d) shows the converse trend.

It can be seen that TGS+/
−−−→
DGS+/

←−−−
DGS+ generally outper-

form RGS+ on increased sample diversity, and that the former
has the same (or smaller) complexity than the latter. Compared
to RGS+, the experimental results in general suggest that the
use of tempering and/or state informed coordinate selection can
significantly improve slow mixing and sample diversity, but
nonetheless retain the benefit of linear complexity. Furthermore,
the improvement in tracking accuracy of each method levels off
once enough significant samples have accumulated.

D. Mixture Rate and Tempering Level

Fig. 7 shows the experimental results for TGS+, in 2D
histograms, with varying mixture and tempering parameters, α
and β. Recall from (21) that higher values α or β weaken the
effect of tempering. Note from the averaged wall-clock times
over all scenarios shown in Fig. 7(a) that weak tempering or
mixing slightly reduces computation time. More unique solu-
tions require slightly longer run times due to the removal of
duplicated samples. Tracking accuracy (in OSPA(2)) generally

improves with stronger tempering or mixing (low values of α
or β) as shown in Fig. 7(b). However, tracking performance
may degrade with excessive tempering that over flattens the
significant modes of the original distribution. From the average
number of unique samples shown in Fig. 7(c), observe that
stronger tempering or mixing can increase sample diversity,
although excessive tempering can reduce sample diversity for
a low memory budget implementation since the samples are no
longer a good representation of the stationary distributions. It is,
however, difficult to determine the optimal choices of α and β
because they are heavily scenario-dependent.

V. CONCLUSION

A linear complexity Gibbs Sampling (GS) framework for
GLMB filtering density computation has been developed.
Specifically, we use the recently developed tempered GS ap-
proach to generate significant component of the GLMB filtering
density based on measurements received. Our so-called TGS+

framework tailors tempered GS to exploit the structure of the
problem for scalable GLMB filtering, and offers trade-offs be-
tween tracking accuracy, computational efficiency, and memory
load. Further, this framework enables the SGS algorithm in [30]
to be implemented with one order of magnitude reduction in
complexity, although this is still higher than linear. Comprehen-
sive numerical experiments compare the performance of the lin-
ear complexityTGS+, and the two special cases of deterministic
and completely random-scan GS, namely DGS+ and RGS+.
Our results indicate that, of the linear complexity solutions,
TGS+ provides the best tracking accuracy. DGS+ is simple to
implement and slightly faster, with a very small degradation in
tracking performance. WhileRGS+ is the cheapest, its tracking
performance degrades significantly. Optimizing TGS+ could
yield better balance between computational load and tracking
accuracy, and is a prospective venue for investigation.

Due to the effectiveness of the proposed approach, extension
to the multi-dimensional assignment problem [37] could alle-
viate the computational bottlenecks in multi-scan and/or multi-
sensor truncation. The recent multi-sensor multi-scan GLMB
smoother proposed in [12] extends the SGS solution to the
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multi-dimensional assignment problem. While this is the first
solution to address multi-dimension assignment problems of
such large scale, we envisage that its time complexity can be
drastically reduced using our proposed TGS approach.

APPENDIX

A. Proof of Proposition 2

Proof: If i = n, then π̃i(j|γ′+(�ī)) = π̃i(j|γ+(�ī)), because
γ′+(�n̄) = γ+(�n̄). Suppose i �= n, then we have the following.

1) For j < 1, it follows from Proposition 1 that
π̃i(j|γ′+(�ī)) = ηi(j) = π̃i(j|γ+(�ī)).

2) For j > 0, note that n ∈ {̄i} implies γ+(�n) ∈ {γ+(�ī)},
and γ′+(�n) ∈ {γ′+(�ī)}, i.e.,

1γ+(�ī)(γ+(�n)) = 1, (24)

1γ ′+(�ī)(γ
′
+(�n)) = 1. (25)

Further, since γ′+ and γ+ are positive 1-1 and differ only at the
n-th coordinate wherein γ′+(�n) �= γ+(�n), we have

{γ+(�ī)} = ({γ′+(�ī)}\{γ′+(�n)}) ∪ {γ+(�n)}, (26)

{γ′+(�ī)} = ({γ+(�ī)}\{γ+(�n)}) ∪ {γ′+(�n)}, (27)

and hence γ+(�n) /∈ {γ′+(�ī)}, and γ′+(�n) /∈ {γ+(�ī)}, i.e.,

1γ ′+(�ī)(γ+(�n)) = 0, (28)

1γ+(�ī)(γ
′
+(�n)) = 0. (29)

Now, apply Proposition 1 to each of the following cases.
(a) j = γ+(�n):

π̃i(j|γ′+(�ī))=ηi(j)(1− 1γ ′+(�ī)(j))=ηi(j), using (28);
and
π̃i(j|γ+(�ī)) = ηi(j)(1− 1γ+(�ī)(j)) = 0, using (24).

(b) j = γ′+(�n):
π̃i(j|γ′+(�ī))=ηi(j)(1− 1γ ′+(�ī)(j)) = 0, using (25); and
π̃i(j|γ+(�ī))=ηi(j)(1− 1γ+(�ī)(j))=ηi(j), using (29).

(c) j �= γ′+(�n) and j �= γ+(�n): it follows from (26), (27)
that j ∈ {γ′+(�ī)} iff j ∈ {γ+(�ī)}, i.e., 1γ ′+(�ī)(j) =
1γ+(�ī)(j). Hence, π̃i(j|γ′+(�ī)) = ηi(j) (1− 1γ ′+(�ī)(j))
= π̃i(j|γ+(�ī)).

Raising the unnormalized conditionals in (a), (b), and (c) to the
power of β > 0, and taking their difference, i.e., π̃β

i (j|γ′+(�ī))−
π̃β
i (j|γ+(�ī)), give the desired result. �

B. Proof of Proposition 3

Proof: Recall from (19) that ρ(i|γ+) ∝ φi(γ+(�i)|γ+(�ī))
πi(γ+(�i)|γ+(�ī))

and

let �(γ+) =
1
P

∑P
i=1 ρ(i|γ+). Since Γ+ is a discrete space then

π(γ+) ∈ [0, 1]. Furthermore, note from [30] the assumption that
ηi(j) ∈ (0,∞) and from (16) it follows for any positive 1-1 γ+ ∈
Γ+ that π(γ+) ∈ (0, 1). By similar reasoning it follows from (21)
for any positive 1-1 γ+ ∈ Γ+ that φi ∈ (0, 1). Hence, �(γ+) ∈
(0,∞) for any positive 1-1 γ+ ∈ Γ+.

In [30], it was shown that the standard Gibbs sampler (i.e.,
SGS) is π-irreducible. It was also shown in [57] that the TGS

extension to generate the Markov Chain {γ(t)+ }∞t=1 is π�-
irreducible. Hence, it follows from [38, Proposition 1] that
TGS is reversible with respect to π�. Furthermore, since the
importance weight is w(t) = [�(γ

(t)
+ )]-1 see [38, (1)],

lim
T→∞

∑T
t=1 w

(t)h(γ
(t)
+ )∑T

t=1 w
(t)

=
∑
γ+∈Γ+

π(γ+)h(γ+),

for any bounded test function h. The convergence result follows

noting that [�(γ
(t)
+ )]-1 ∝ P/

〈
ρ(·|γ(t)+ ), 1

〉
. The stability of the

importance weights follows from [38, Proposition 2], i.e., the
variance of the weights does not grow with the number of
coordinates. Specifically,

var(w(t)) ≤ max
i,γ

(t)
+

πi(γ
(t)
+ (�i)|γ(t)+ (�ī))

φi(γ
(t)
+ (�i)|γ(t)+ (�ī))

− 1.

�
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