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Abstract 
This paper investigates the effects of environmental complexity on project performance by means of 
simulation modeling. There are few works that prepare a bottom-up, mechanism-based account of project-
environment interactions. Rather, some statistical, top-down models have been developed which fall short 
of explaining how projects can handle uncertainties. This research is an attempt to fill this gap. The question 
is how environmental complexity affects project performance. The results of the model show that the 
complexity of environment can have positive effects on project performance. On the contrary, the results 
demonstrate that the internal complexity modeled as randomness in the activity times is detrimental to the 
project performance. To tackle environmental complexity, the model suggests that shorter memory cycles 
improve project performance in that projects give more priority to recent outcomes to offset effects of 
uncertainty. The results have been by empirical data from 18 infrastructure projects. 
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1. Introduction 

Projects are organized, goal seeking systems of people, technology and information. They have all 
characteristics of organizations except that they have comparatively a short life. This similarity facilitates 
application of organization theories and models for projects. Division of work, unity of commands, and 
teamwork are among management principles that have been widely adopted in project management. 
Projects as temporary organizations (Shenhar, 2001) are artificial entities that depend on their environments 
in a contingent way (Simon 1996). They are surrounded by physical, technological, cultural, and social 
environments that tended to be overlooked or underestimated; recently the importance of organization-
environment linkages has drawn the attention of organization scholars, because every organization is 
dependent on its environment for survival (Scott, 1998). As Godwyn and Gittel (2012) cite, “organizations 
succeed to the extent that their structures match the requirements of their environments”. In Herbert 
Simon’s (1996) terms, environments act like a mold and affect organizations as artifacts. It is difficult to 
define the concept of fitness to environment for organizations but in the real world the match between 
organizational strategic orientation and that the environment requires is a measure of fitness (Sastry, 1997). 
Dynamics of business environments give rise to some changes in the ways organizations are formed 
(Siggelkow & Rivkin, 2005) as well as their operations (Lin & Carley 2003); this is what is called adaptation 
(or fitness) to changes. 

To model project-environment interactions, three groups of models are generally used for advancing 
organization science: rational system, natural system and open system models (Scott, 1998; Thompson, 
2003). Rational models of organizations assume that organizations are instruments that can be designed 
and controlled to accomplish certain goals and therefore the variables of model should be few and simple; 
the environment is difficult to be considered in such models. By contrast, natural system models are based 
on an organic metaphor of organizations, where the organization is a collective, controlled by spontaneous, 
indeterminate evolutionary processes towards the goal of survival (Thompson, 2003). This view accords to 
open system models where developments in system theory has opened new rooms for modeling 
organizations based on cybernetics. In open system models, organizations are identified as open systems 
with high level of complexity, reactivity, and looseness of coupling among system components (Morel & 
Ramanujam, 1999; Thompson, 2003). “From an open systems perspective, environments shape, support, 
and infiltrate organizations” (Scott, 1998: 25). This conception of organizations is consistent with natural 
system modeling approach, where adaptation to the environment is crucial (Thompson, 2003). 

As a newer tradition, organizations are conceived as bounded-rational, problem-solving entities in 
Simon-March-Cyert stream of study (Thompson, 2003); instead of maximizing, organizations try to find 
feasible solutions for problems (March & Simon, 1993). In this conception, problems are deemed to be the 
course of actions that organizations should take to fulfill their own goals when confronting with the 
environmental influences (Chang & Harrington Jr, 2006; Thompson, 2003). The problem-solving behavior 
of organizations aim at acquiring intelligence which is achieved by search through the problem space 
(Masuch & Warglien, 1992). In projects, problem-solving is constrained by deadlines and limited budgets 
more strictly. 

To realize its intelligence, a project like any other intelligent system, must have a goal and some 
candidates for the goal; furthermore, it must modify its response according to the task environment (Newell, 
1980). In other words, a project acts like a complex adaptive system (Kuhn, 1974). In this paper, the project 
is conceived as an open information processor, interacting with the environment to achieve the objective of 
more fitness by virtue of learning. 

There are two types of interrelation between a project and its environment: the environment can be 
conceived as a pool of resources or a source of information (Scott, 1998). Since in the open-system view 
of projects the focus is on the degree of information uncertainty, the environment is deemed to be the source 
of information in this research and the project tries to decode the environment and gain intelligence. By 
determining constraints, contingencies, and variables, the environment sets the stage for project team 
problem-solving. 
As a source of information, the environment is subject to uncertainty. There are studies that differentiate 
between uncertainty and complexity (for example Daniel et al (2018)) but we use these terms 
interchangeably in this study. Scott (1998) proposes five dimensions for uncertainty in relation to the 
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environment: (1) degree of homogeneity-heterogeneity of environmental entities, (2) degree of stability-
variability of environmental entities, (3) degree of threat-security of the organization in the environment, 
(4) degree of interconnectedness-isolation to the environment, and (5) degree of coordination/non-
coordination with the environment. The relationship between uncertainty and project performance is under-
researched theoretically and empirically (Floricel, Michela, & Piperca, 2016). There is no thorough, 
empirically tested theoretical framework for analyzing changes and uncertainty for variety of projects 
(Shenhar, 2001) or understanding different approaches and their applicability to encounter uncertainty 
(Pich, Loch, & De Meyer, 2002). According to contingency theory, there is a direct link between 
environmental uncertainty and the internal structure of an organization for adaptation in that “the greater 
the uncertainty of the task, the greater the amount of information that has to be processed between decision 
makers during its execution” (Galbraith, 1973: 4). The amount of information needed to ensure effective 
performance of organizations is represented as f(u,n,c), where u is the degree of uncertainty concerning the 
task requirements such as resources needed, time to complete etc; n is the number of elements relevant for 
decision making; and c is interdependence and interrelatedness among the elements (Godwyn & Gittell, 
2012). However, the effects of uncertainty on project performance is not straightforward because 
uncertainty/complexity are multi-faceted. The concept of environmental uncertainty is modeled by taking 
into account different aspects of uncertainty as outlined above that will be discussed later. 
 
2. Projects as Complex Systems	

Project management has been developed based on a reductionist approach by which systems are analyzed 
based on the properties of their parts. The rationale behind work breakdown structure or other breakdown 
structures (organization breakdown structure, risk breakdown structure, etc.) is rooted in a mechanistic view 
of the world. Projects as temporary organizations are collectives of intelligent, adaptive, and computational 
agents and thus are themselves intelligent, adaptive, and computational agents (Kathleen M. Carley, 2002; 
Kathleen M. Carley & Frantz, 2009). Traditional reductionist, Newtonian view of systems falls short of 
capturing the essence of complex systems (Bechtel & Richardson, 1993; Richardson, 2005). In a complex 
system like a project, as Carley (1994: XI) notes “rarely can generalized organizational behavior be 
explained by examining solely the characteristics of the component agents, the tasks or the situation 
networks in isolation”. A bottom-up modeling paradigm like Agent-based Modeling (ABM) that takes into 
accounts both components and behaviors of a complex system seems to offer this possibility. ABM 
improves descriptive realism because it maps “objects, actors, or other natural entities in the target system 
onto agents in a multi-agent system, so that the ‘boundary’ of the entities correspond to those of the agents 
and that the interactions between entities correspond to interactions between agents” (Moss & Davidsson, 
2001: 20). Therefore, processes of abstraction and application become easier and more transparent (ibid). 
ABM is highly suitable for distributed systems comprising of autonomous entities and, in particular, for 
evaluating the performance of decentralized decision policies (Paolucci & Sacile, 2005). Therefore, it seems 
that ABM is an appropriate modeling paradigm for projects. 

A review of the literature reveals that ABM has been principally developed either 
describing/explaining a system or phenomenon (Banal-Estañol & Rupérez Micola, 2011; Bunn & Oliveira, 
2007; Ma & Nakamori, 2005) or prescribing course of action for a special situation (i.e. optimization) 
(Akanle & Zhang, 2008; Anosike & Zhang, 2009). Among the explanatory applications of agent-based 
modeling, there are a few works that target theory building; one classical example is garbage can model 
(Cohen, March, & Olsen, 1972). Also, Siggelkow and Rivkin (2005) discuss the effects of environmental 
turbulence and complexity on the formal design of organizations by virtue of NK model. They define 
complexity as the degree of interdependence among the decisions a firm makes. 

To model quasi-realistic artifacts like projects, a modeler requires some knowledge about how to 
represent underlying phenomena and also some data for estimating parameters within these representations; 
becoming more mature through further validation, calibration and refinement, computational models of 
organizations are claimed to be powerful computational labs for validating existing organization hypothesis 
and generating new theories (Levitt, 2004). From the viewpoint of complex adaptive systems, project 
adaptation in response to complexity of environment is a key survival strategy. Complexity may be 
structural, originating from different components of projects (i.e. individuals, teams, and companies) and 
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their interactions or dynamic due to temporal emergence and unpredictable changes to external systems 
(Daniel & Daniel, 2018; Floricel et al., 2016). Another type of complexity is representational (Floricel et 
al., 2016) which relates to inability to represent the reality and absence of complete information (Floricel 
et al., 2016; Mitchell, 2007). Complexity in projects is attributed to factors like project size, scope, and 
experience with the technology (Mitchell, 2007) and is deemed to be negatively correlated with 
performance (Antoniadis, Edum-Fotwe, & Thorpe, 2011). There is complexity at program and portfolio 
level as well (Teller, Unger, Kock, & Gemünden, 2012) which is not the scope of this study. 

This paper is intended to act as a computational laboratory for investigating the interaction between 
projects and their environments. A learning conception of project-environment interactions within the 
framework of complex adaptive systems is presented in this research. The question is how projects react to 
the external sources of complexity compared to the internal ones. There are two meanings of learning: (i) 
improvement in outcomes (e.g. learning curves in economics) and (ii) a particular process of reacting to 
information involving: beginning with the taking of an action, monitoring the outcome, and interpretation 
and then modification of the propensity to repeat the action which has the elements of intelligence (March, 
2008). In this paper, the process conception of learning is considered, because it is consistent with 
behavioral theory of organizational learning and can be modeled as a reinforcement learning algorithm. 
The environmental complexity is defined based on Shannon’s famous information entropy which is claimed 
to be a thorough conception of complexity, because it contains appropriately all facets of environmental 
uncertainty including degree of uncertainty, number of decision elements, and interdependence or 
interrelatedness among decision elements, discussed in Godwyn and Gittell  (2012). 

Among practical models for project complexity, the framework introduced by Transportation Research 
Board (2013) addresses different facets of complexity more thoroughly. In their conception, project 
complexity is related to project types, engineering complexity, size, modality, jurisdictional control, 
financing approach, contract type, and delivery method and is defined in five dimensions: cost, schedule, 
technical, context, and financing. The factors associated with each dimension have been summarized in 
Table 1. 

 
Table 1: Complexity dimensions and associated factors (Transportation Research et al., 2013) 

Dimension Factors 
Cost Project estimates, uncertainty, contingency, project-related costs, Project cost 

drivers and constraints 
Schedule Time, schedule risk, prescribed milestones, resource availability 
Technical Scope of work, internal structure, contract, design, construction, technology, nature 

of constraints 
Context Stakeholders, project-specific issues, local issues, environmental conditions, legal 

and legislative requirements, global and national conditions, unexpected 
occurrences 

Financing public funding, bond and debt financing, loans and credit assistance, exploiting 
asset value, finance-driven project delivery methods 

 
To understand project complexity, each dimension of complexity should be assessed by scoring based a 
scale from 0 to 100. In the scaling scheme, dimensions with scores below 25 have low complexity, those 
with scores between 25 and 75 are average and those with scores more than 75 are highly complex. In the 
next section, the structure of the developed model is explained followed by some results and discussions. 
 
3. The computational model 

As a fusion of learning concepts in organization science and multi-agent systems, the developed model is 
founded on the behavioral approach to study the firm (Cyert & March, 1963; March, 2008). In Figure 1, 
the developed model is depicted. The project, hereinafter called  project, is comprised of two simple 
activities, each containing two roles connected in a simple network. There are four types of agents, each 
with different problem-solving capabilities. The initial layout seen in the figure is just an example as the 
computer program randomly assigns agents to the roles during initialization. Project manager hereinafter 
called PM, is responsible for improving performance. The environment consists of an agent, hereinafter 
called environment, challenging project by generating random problems. The objects generated by 



5 

environment are problems comprised of a string of bits, representing environment’s requirements. Accuracy 
of answers is a measure of effectiveness, while total processing time represents efficiency of project. 
Through solving different problems, PM and analyst agents learn how to improve their performance, 
respectively. PM has another RL algorithm in order for improving project as a whole by moving agents 
among roles. As Carley (2000) explains changes made in the design of organizations are actions for 
learning, therefore with changing positions (roles) of agents, PM tries to learn to improve project’s 
performance. 
 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
The dynamics of simulation is as follows: (1) environment generates random projects and sends them 

to project; (2) PM collects a problem and distributes it in the Activity 1. The agent at role one starts solving 
the problem through Task 1; (3) each agent receives the problem and depending on the task looks at certain 
bits to provide the solution from its memory and sends the solution to its successor. The duration of problem 
solving depends on the number of bits each agent processes; (4) PM provides the overall answer and passes 
it to environment; (5) according to a decision making rule, environment finds the current answer and updates 
PM and the other agents; (6) with a fixed frequency, PM tries to make some changes in project (based on 
a RL algorithm) to improve productivity (i.e. the ratio of accuracy of answers to total time spent).  

Problems are classification choice tasks comprised of seven ternary variables X0, X1, X2, X3, X4, X5, 
X6; each can take one or two or three as its value with equal probability. The size of problems can be 
selected more than seven, but it would increase the simulation time. The solution is “one” or “two” or 
“three” depending on the applied decision rule and cut-off values. The problem generation time is set at 
first and then is accumulated when a problem is processed at each role and pass through the network. The 
transfer time between agents is fixed at two simulation time units, called ticks. The difference between the 
generation time and the final time is a measure of efficiency. The performance measure defined here seems 
to be an appropriate measure because “the ratio of results achieved to resources consumed, is an appropriate 
and fundamental criterion for all of organizational decisions” (Simon, 1997: 277). Not every agent has 
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Figure 1: The Structure of the Computational Model 
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access to all bits of a problem due to division of work in a project. The assignment of problem bits is shown 
in Table 2. 
Project learning is modeled as a RL algorithm that operates based on a trial-and-error search and delayed 
reward. The appropriateness of RL comes from the fact that the overall objective of project managers is to 
align projects towards environmental requirements and thus the environment feedback plays a key role in 
the decision-making process within any organization. Pich et al (2002) apply the same idea to conceptualize 
projects based on payoff functions of actions within sequential decision making. PM tries to improve 
project by modifying activities 1 and 2, where it changes the agent roles within and between these activities. 
The list of its actions is presented in Table 3. For instance, assume the layout of a simulation run is DBCA, 
meaning agent D at Task 1; agent B at Task 2; agent C at Task 3; and agent A at Task 4. By taking action 
3 for example, PM changes the layout of project to DCBA. The consequence of each action (the reward) 
appears in the form of a rise or decline of average productivity, incremented by the following equation: 
 
                                                                       rt+1= rt+ α[rt- rt]                                                                    (1) 
where α is step-size parameter and rt is the productivity level of current run. Each action has a numeric 
preference level (pt(a)), incremented in each decision-making stage according to the following equation: 
 
                                                                  pt+1 a = pt a + β[rt- rt]                                                              (2) 

where β is another step-size parameter. The preference of selecting successful actions rises gradually, which 
in turn increases the probability of their own selection according to the Gibbs distribution: 
 

                                                                        Pr at=a}= 
ept(a)

∑ ept(b)n
b=1

                                                               (3) 

The default parameters of the simulation are shown in Table 4. These show agent A processes data 
quickest but has a poor ‘memory’ for the consequences of past decisions, in contrast to agent D who is slow 
at decisions making but has a perfect memory. Cut-off values determine the correct answers of each 
problem. For all scenarios, they are set so that the probability of correct answers being “one”, “two”, or 
“three” be equal to 0.33. This guarantees that by changing decision rules, indifference of environment agent 
is maintained. For instance, the probability distribution of Linear decision rule is: 
 

YLinear= Xi

6

i=0

 

Pr YLinear=k1+2k2+3k3 = 
7!

k1!k2!k3!
 (

1

3
)
7

 

where k1, k2, and k  represent the number of “one”s, “two”s, and “three”s in the problem bits. Therefore, 
the lower cut-off can be calculated as follows: 
 

Pr YLinear≤Lower cut-off  =
1

3
  

yields
⎯  Lower cut-off=13 

The upper cut-off value for Linear decision rule is calculated in the same way. For other decision rules, the 
cut-off value requires to be modified, because their probability function is different. The specifications of 
some arbitrary decision rules tested in this research (including entropy and cut-off values) are shown in 
Table 5. As another example, cut-off values of Nonlinear rule are calculated here:  

 

Pr (YNonlinear=1k12k23k3) = 
7!

k1!k2!k3!
 (

1

3
)
7

 

Pr YNonlinear≤Lower cut-off  =
1

3
  →Lower cut-off =36 
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     Table 2: Problem decomposition structure                        Table 3: PM Actions used for RL 

Action Description 

1 Swap agents at Task 1 and Task 2. 

2 Swap agents at Task 3 and Task 4. 

3 Swap agents at Task 2 and Task 3. 

4 Swap agents at Task 1 and Task 4. 

5 Swap agents at Task 2 and Task 4. 

6 Swap agents at Task 1 and Task 3. 

7 No change 

 

Table 4: Default parameters of simulation runs 

Problem Solving Time (simulation ticks/bit): Agent A = 1, Agent B = 2, Agent C = 3, Agent D = 4, PM = 1 

Ratio of Memory Negligence (between 0 and 1) Agent A = 0.3, Agent B = 0.2, Agent C = 0.1, Agent D = 0, PM = 0.3 

Transfer Time between Agents (simulation ticks) 2 (constant for all activities) 

Simulation Run Time (ticks) 8,000,000 

Action Preference Step-size Parameter (β) 0.2 

Reward Step-size Parameter (α) 0.1 

 

Table 5: Specifications of different decision rules 

Decision rules Entropy Lower cut-off Upper cut-off 

Linear: Y ∑ X  3.1564 13 15 

Semi-Linear: Y  X  X X X X  X X  4.0932 12 16 

Nonlinear: Y ∏ X  3.1564 36 108 

Third Degree: Y  X  X X X X X X  4.9667 13 21 

Mixed Third Degree: Y  X  X X X X X X  4.5889 12 17 

Weighted Linear: Y  X  2X 2X 3X 4X  3X 2X  4.5256 31 36 

 

4. Results and discussions 

There are two sources of complexity in the model that are discussed here: environment’s complexity and 
time complexity modeling the internal complexity of project. Also, the effects of learning parameters (i.e. 
α and β) are investigated in this section. 
 
4.1 Effects of Environment’s complexity 

To examine the effects of complexity, project is exposed to different levels of environmental complexity, 
represented as decision rules. Environment’s complexity has some counterintuitive effects on the 

Task 1 x0, x1, x2 

Task 2 x5, output of Task 1 

Task 3 x3, x4, output of Task 2 

Task 4 x6, output of Task 3 

PM output of Task 3, output of Task 4 
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performance. As seen in Figure 2, there exists a productivity gap between less complex solutions like 
Linear, Semi-Linear, and Nonlinear decision rules at the one hand and more complex decision rules such 
as Weighted Linear or Third Degree on the other hand. Discovering the cause of this pattern is complicated 
but the reason may be that when a less complex decision rule (with less entropy) is applied, solution space 
of the decision rule is smaller or put another way the difference among the frequency of solutions becomes 
greater according to Shannon (2001) (i.e. some solutions happen more frequently) and thus project should 
be more accurate in predicting these values. In other words, less complexity/randomness of the decision 
rules means less variation in the search space and thus finding correct answers require more prediction 
power. However, the knowledge level gained by project is bounded to agents’ capabilities and consequently 
it has limited capabilities in targeting correct answers. In fact, since agents’ learning in this model is 
incomplete there is always a degree of error and as a result, PM’s prediction accuracy is limited. That is 
why project has poorer performance with less complex decision rules, contrary to the intuitive expectation. 
Likewise, when the entropy of a decision rule rises, the range of decision rule is more than before (i.e. 
search space is bigger) and it is more probable for PM to hit the targets, considering its learning errors. 

The RL algorithm is compared with random changing of agents among roles, called Random-Action 
algorithm. The comparison of RL performance versus Random-Action for various decision rules reveals 
that there is an interaction between PM actions defined as RL in this research and the environmental 
complexity. Figure 3 depicts an example where Linear as the least complex and Third Degree as the most 
complex decision rules are compared. The difference between RL and Random-Action algorithm, where 
PM randomly changes agents among roles is less with Linear rule in comparison to that of Third Degree 
rule. It means that RL algorithm performs more efficiently with more complex problems. The same trend 
is seen for Mixed Third Degree and Semi-Linear rules (See Figure 4). These results highlight the importance 
of leadership in complex environments. When the environment is more complex, intelligent behaviors of 
project managers (here modeled as RL) can be more productive for organizations. 
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Figure 2: Comparison of the performance level for different decision rules 

 

Figure 3: Comparison of performance levels with Linear and Third-Degree rules 
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Figure 4:: Comparison of performance levels with Mixed Third Degree and Semi-Linear rules 

Some empirical studies support the results presented in Figure 2 ,3, and 4 in that under certain conditions 
project team can take advantage of complexity and improve their performance by quick iteration and 
problem solving cycles and capability development (Iansiti & MacCormack, 1997; MacCormack, Verganti, 
& Iansiti, 2001; Pich et al., 2002). Successful taming of project complexity depends on organization’s 
experience and problem solving capacity (Pich et al., 2002), flexibility (Mitchell, 2007) and knowledge 
production processes (Floricel et al., 2016). However, different dimensions of complexity may necessitate 
different approaches (Mitchell, 2007; Sommer & Loch, 2004). Mitchell and Nault (2007) in their empirical 
study found that greater uncertainty only partially lead to extra work. Floricel (2016) reports that complexity 
enhances innovation performance whereas there is no significant effect on completion, operation and value 
creation perforamnces.  

4.2 Effects of learning memory 

The learning algorithm has two step-size parameters: α and β. They represent the time horizon that previous 
experiences are considered. High levels of α and β stress the effects of recent PM actions, while low values 
consider PM actions over a longer period of time. In fact, they act as PM’s memory. The results of default 
parameters for various decision rules with high step-size parameters (α = 0.8 and β = 0.9) are compared in 
Figure 5. As it is seen in this figure, the productivity level of Mixed Third-Degree rule with higher entropy 
is more than the others but the difference among the rest of decision rules is not statistically significant. 
The same thing happened in the default scenario with low α and β shown in Figure 2. Results with medium 
step-size parameters (α = 0.4 and β = 0.5) show a similar trend as depicted in Figure 6. To sum up, the 
results show that learning memory parameters do not have any effect on PM’s taking advantage of 
environmental complexity by intelligent behavior through RL.  

The comparison of results of a single decision rule with various step-size parameters reveals interesting 
findings. As shown in Figure 7 and Figure 8 for Mixed Third Degree and Linear rules, project performs 
better with the high levels of α and β. When high step-size parameters are used, the dependence of 
productivity levels to far past experiences diminishes that in turn facilitates effective handling of 
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environment’s complexity. This reflects in higher performance for more complex rules with high α and β, 
in comparison to the results acquired with the low levels of α and β. The implication of these results is that 
by emphasizing the recent results project can, to some degree, take advantage of more complex decision 
rules. 
 

Figure 5: The comparison of different rules at high α and β 

Figure 6: The comparison of different rules at medium α and β 
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4.3 Effects of time complexity 

Aside from the environmental complexity modelled as the decision rules, another source of complexity is 
related to problem solving and transfer times. Remembering the productivity function being the ratio of 
correct answers over total time, time complexity affects the denominator. Thus far, all time parameters of 
the model have been determistic. As an attempt to examine effects of time complexity, all time parameters 
changed into random. Exponential distribution function is the most random among probability functions 
with the same mean but because of its hyperbolic shape, the frequency of lower-than-mean values is larger 
in comparison to other values that may affect project’s performance. Therefore, to avoid any bias, it is more 
plausible to apply uniform distribution which is the second most random probability function and has equal 
probablity for each value. 
The experimental setting used has two independent variables: decision rules with three levels versus time 
complexity with two levels. The dependent variable is project’s performance. The result of equality of error 
variance test for 10 runs show that there is no evidence to reject the constancy of variance hypothesis with 
the significant level of 0.234. As can be seen in Table 6, the null hypotheses of equal performance among 
different decision rules and time complexity cannot be accepted at α=5%. It means that there is a significant 
difference between the random and the deterministic scenarios. However, there is no interaction effects 
between decision rules and time complexity. 

Figure 7: The performance of Mixed Third-Degree rule with different learning parameter levels 
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Table 6: Tests of Between-Subjects Effects 
Source  Type III Sum of 

Squares 
d. f. 

Mean 

Square 
F Value Significance. 

Corrected Model  .221a 5 .044 9.901 .000 

Intercept  50.291 1 50.291 11242.519 .000 

Decision Rule  .030 2 .015 3.327 .043 

Random Time  .190 1 .190 42.487 .000 

Decision Rule * Random 

Time 

 .002 2 .001 .182 .834 

Error  .242 54 .004   

Total  50.754 60    

Corrected Total  .463 59    

 a. R Squared = .478 (Adjusted R Squared = .430) 

 

Figure 8: The performance of Linear rule with different learning parameter levels 
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Figure 9: Performance of different factors 

Figure 9 reveals a profound effect of time complexity on productivity. It seems that time complexity, 
unlike the environmental complexity, impinges on performance. By having deterministic times, activities 
A and B are more standardized, causing the cognitive map of PM to be formed more quickly than random 
times. The natural outcome of this quick convergence is reflected in the productivity gain. The dynamics 
of change for different decison rules depicted in Figure 10, Figure 11, Figure 12, and Figure 13 suggest that 
determinstic time scenarios always outperforms random scenarios with no exception. This implies that 
decreasing internal complexity of an organization by standardizing business processes bears fruit and 
ameliorates performance. 
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Figure 10: The Performance of Linear rule with different time complexities 

 

Figure 11: The Performance of Semi-Linear rule with different time complexities 
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Figure 12: The Performance of Nonlinear rule with different time complexities 

Figure 13: The Performance of Weighted Linear rule with different time complexities 
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5. Validation 

Validation is the process of substantiating that a simulation model is an accurate representation of its 
referent and depends on objectives of modelling and the subject (Balci, 1994; Casti, 1997). When the 
subject of simulation is abstract (i.e. a concept), defining any quantitative measure seems to be impossible. 
Rather, this requires validation based on expert judgment, which is called face validation (Balci, 1994; 
Zacharias , MacMillan , & Van Hemel 2008). Zacharias et al (2008: 318) suggest that “in evaluating the 
usefulness of a broad conceptual model, the yardstick is often not how well supported the model is, but 
how much interesting research it inspires”. Any specific project hasn’t been simulated in this research; 
rather the developed model represents theoretically how projects could interact with their environment to 
deal with complexity. To validate the results, we have used the complexity framework presented in Table 
1 by which 18 project have been studied. The complexity scores of these projects are presented in Table 7. 
Complexity dimensions is aggregated at the project level based on the number of complex dimensions. If 
less than two dimensions are complex (i.e. with scores more than 75) the project is deemed to have low 
complexity; projects with three complex dimensions have average complexity and project four or more 
complex dimensions are highly complex.  

Table 7: Case project names and complexity scores (Transportation Research, National Academies of 
Sciences, & Medicine, 2014) 

Project Name Country 
Complexity Dimension 

Remarks 
Cost Schedule Technical Context Financing 

Capital Beltway 
USA 

10 25 85 40 95 
Low 
complexity 

Detroit River 
International 
Crossing 

Canada- 
USA 75 85 70 95 100 

High 
complexity 

Doyle Drive 
USA 

80 75 80 75 95 
High 
complexity 

Green Street 
Road 
Rehabilitation 

CANADA 
85 70 100 40 25 

Low 
complexity 

Heathrow T5 
UK 

45 55 80 95 85 
Average 
complexity 

Hudson-Bergen 
Light Rail 

USA 
45 55 85 50 50 

Low 
complexity 

I-40 Crosstown 
USA 

55 70 35 100 60 
Low 
complexity 

I-95 New Haven 
Harbor Crossing 

USA 
25 85 40 75 70 

Low 
complexity 

I-595 Corridor 
USA 

10 70 85 60 100 
Low 
complexity 

Intercounty 
Connector 

USA 
70 85 55 85 85 

Average 
Complexity 
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James River 
Bridge/ I-95 
Richmond 

USA 
60 95 90 90 50 

Average 
Complexity 

Lewis and Clark 
Bridge 

USA 
25 55 85 100 10 

Low 
complexity 

Louisville 
Southern 
Indiana Ohio 

USA 
100 55 85 90 95 

High 
complexity 

New Mississippi 
River Bridge 

USA 
75 90 75 95 60 

High 
complexity 

North Carolina 
Tollway 

USA 
75 90 85 75 95 

High 
complexity 

Northern 
Gateway Toll 
Road 

NZ 
55 60 70 75 90 

Low 
complexity 

T-REX SE I-
25/I-225 

USA 
100 85 90 95 95 

High 
complexity 

TX SH161 
USA 

70 75 60 90 95 
Average 
Complexity 

 

As seen in Table 8, there are highly complex projects which were very successful. This demonstrates the 
importance of adaptability. The adaptation has been modelled as a reinforcement learning algorithm but in 
real projects it is manifest in different project management practices. Some of the best practices for 
adaptation that have been worked in the case projects are summarized in Table 9. 
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Table 8: Case projects’ performance names and complexity scores (Transportation Research et al., 2014) 

Project Name 
Complexity 
Level 

Project outcome/benefits Project Successful? 

Capital Beltway 
Low 
complexity 

 14 miles of two new lanes in 
each direction 

 First time introduction of 
High Occupancy Vehicles 
(HOV) lanes to the Capital 
Beltway and reliable transit 
options to the Beltway and 
Tysons Corner, Virginia 

 Congestion-free network for 
carpools, vanpools, transit, 
and toll-paying motorists 

 Replacement of more than 
$260 million of aging 
infrastructure, including 
more than 50 bridges and 
overpasses 

 Construction of carpool 
ramps connecting I-95 with 
the Capital Beltway to create 
a seamless HOV network 

Source: ("Capital Beltway 
High Occupancy Toll (HOT) 
Lanes," 2019) 

Yes 

Detroit River 
International 
Crossing 

High 
complexity 

In progress - 

Doyle Drive 
High 
complexity 

 Sustainable design 

 Greenroads® 
Certification 

 Safer Roadway 

 Presidio Access 

 Enhanced Views 

 Context Sensitive Design 

Except sustainability in 
which the project was 
partially successful, the 
project achieved its 
objectives in other 
aspects ("Presidio 
Parkway Re-envisioning 
Doyle Drive," 2019). 

Green Street 
Road 
Rehabilitation 

Low 
complexity 

 Superior structural 
performance 

Yes, all objectives 
exceeded; approximately 
55% cost saving 
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 Improved road structural 
systems 

 More-sustainable 
infrastructure solutions 

 An improved life-cycle 
performance of the road 
structure 

 Reduction in construction 
time, energy requirements, 
construction-generated 
emissions, and climate risk 
during construction 

 Significant cost saving 

 Freeing more landfill space 

Heathrow T5 
Average 
complexity 

 Set new standards in 
delighting the traveller 

 Develop and deliver T5 to 
new industry standards of 
health, safety, and security 

 Earn the proactive support 
and trust of key stakeholders 

 Achieve exceptional 
performance to ensure value 
for money, on time delivery 
and an efficient and 
productive T5 

 Leave behind a legacy of 
quality (Basu, Little, & 
Millard, 2009) 

Yes. Design and 
construction 
performance targets 
were achieved 
(Transportation 
Research et al., 2014). 
The project won multiple 
awards however in the 
operation phase luggage-
processing system failed 
(Transportation 
Research et al., 2014) 

Hudson-Bergen 
Light Rail 

Low 
complexity 

 Regeneration of Hoboken 
waterfront area bordering the 
Hudson River 

 encouraging housing 
development over a 
previously run-down 
industrial land ("Hudson-
Bergen - Railway 
Technology,") 

No. Cost overrun as 
much as $ 67 million 

I-40 Crosstown 
Low 
complexity 

 combined road and bridge 
improvement 

 careful planning to minimize 
disruption 

 on-time delivery (Shane, 
Gransberg, & Busch, 2011) 

No. Little cost overrun 
but there was schedule 
delay (Transportation 
Research et al., 2014). 
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I-95 New Haven 
Harbor Crossing 

Low 
complexity 

 Replacement the existing 
bridge with a new signature 
structure 

 Improving traffic congestion 
and preventing it from 
continuing during the off-
peak hours 

 Remedying the structural 
deficiencies of the existing I-
95 bridge (Q-Bridge) over 
New Haven Harbor 
(Transportation Research et 
al., 2014). 

 Operational and safety 
improvements on I-95 to 
reduce abnormally high 
accident rates. 

 Capacity improvements 
along this section of I-95 to 
ease traffic congestion ("I-95 
New Haven Harbour 
Crossing Improvement 
Program," 2019) 

No. Estimated finish date 
was 2016 but the project 
was finished in third 
quarter of 2018.  

I-595 Corridor 
Low 
complexity 

 reconstruction and widening 
of the I-595 mainline and all 
associated improvements ("I-
595 Corridor Roadway 
Improvements- US 
Department of 
Transportation," 2019) 

 deliver responsive, cost 
effective, on-time and 
environmentally safe 
transportation solution ("I-
595 Express," 2019) 

Yes. The project was 
scheduled to finish in 
March 2014 and it was 
finished on time and 
within the budget; the 
project won a number of 
awards ("What a 
successful P3 looks like: 
Florida I-595 Corridor," 
2019). 

Intercounty 
Connector 

Average 
Complexity 

 providing a limited access, 
multimodal facility between 
existing and proposed 
development areas in 
Montgomery and Prince 
George’s counties. 

 to increase community 
mobility and safety. 

 To facilitate the movement 
between economic centres of 
people and goods 

 To provide cost-effective 
transportation infrastructure 
to serve existing and future 
development that reflects 
local land use objectives; 

The project was planned 
to finish in late 2011 
(excluding last two 
sections) and finished on 
time. Sections 4 and 5 
completed in 2014. 
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 To help restore the natural, 
human, and cultural 
environments changed by 
past development impacts 

 To enhance homeland 
security (Transportation 
Research et al., 2014) 

James River 
Bridge/ I-95 
Richmond 

Average 
Complexity 

 Restore bridge’s condition to 
maintain long-term safety 

 Increase bridge capacity 
(Kozel, 2003) 

Yes. The project was 
completed on time and 
with a minimum cost 
overrun due to 
unexpected work and 
early finish bonus 
(Transportation 
Research et al., 2014) 

Lewis and Clark 
Bridge 

Low 
complexity 

 To build a new bridge on 
Ohio river 

 to stimulate the economy of 
the entire region ("Lewis and 
Clark Bridge Spans Ohio 
River between Kentucky and 
Indiana," 2017) 

Yes. The delivery was on 
time and within budget 
(Junyong Ahn, 2011). 

Louisville- 
Southern Indiana 
Ohio 

High 
complexity 

 to increase cross-river 
mobility by improving safety 

 to alleviate traffic congestion 
and connecting highways 

Yes. The project was 
finished in 2016. 

New Mississippi 
River Bridge 

High 
complexity 

 to reduce high crash rate on 
the existing bridge 

 To reduce congestion on the 
existing bridge 
(Transportation Research et 
al., 2014) 

The project was 
completed in 2014. 

North Carolina 
Tollway 

High 
complexity 

 to provide commuters with 
improved accessibility and 
connectivity to the Research 
Triangle Park 

 To relieve the heavy 
congestion on the existing 
north-south routes between 
Raleigh and Durham 
("Triangle Expressway 
Project, North Carolina," 
2019). 

Yes; the project was 
finished in late 2012 
("Triangle Expressway 
Project, North Carolina," 
2019). 

Northern 
Gateway Toll 
Road 

Low 
complexity 

 To bypass usual congestion 
spots. 

Yes; the road was 
opened in January 2009 
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 More direct route between 
Auckland and Northland; 
straighter and 4km shorter. 

 Safer passing opportunities. 

 Easy payment options with 
electronic toll collection 
("SH1 Northern Gateway 
Toll Road (NGTR)," 2019). 

(Transportation 
Research et al., 2014). 

T-REX SE I-
25/I-225 

High 
complexity 

 Minimize inconvenience to 
the public 

 Meet or stay under the total 
T-REX Project budget of 
$1.67 billion 

 Provide a quality project 

 Meet or beat the scheduled 
fully operational target date 
of June 30, 2008. 

Yes; the project was 
finished in September 
2006 on schedule and 
within budget 
(Administration, 2007; 
Transportation Research 
et al., 2014) 

TX SH161 
Average 
Complexity 

 to improve the transportation 
network in the region 

 to serve as a major link 
within the Dallas-Fort Worth 
regional transportation 
network 

 to reduce congestion along 
adjacent corridors ("FHWA - 
Center for Innovative 
Finance Support - Project 
Profiles," 2019) 

The project was 
completed on schedule 
and on budget in late 
2012 ("State Highway 
161 Design-Build 
Texas," 2019). 

 

Table 9: Best practices for adaptation (Transportation Research et al., 2014) 

Complexity Dimension Best practices 

Cost 
Flexibility in contracts, choosing the right contract type, considering risks 
involved in the low-bid process, thorough and in-depth risk analysis, 
partnering, existence of a dispute resolution process, value engineering 

Schedule 

Disciplined project management, including incentives and disincentives in 
contracts, Resource-loaded scheduling with Primavera, existence of a 
dispute resolution process, planning for risk management, detailed 
reporting 

Technical 

Taking proactive actions like hiring a consultant for contract formation 
and risk analyses and forming dispute resolution board, selection of right 
people and right contractors, decentralized QA/QC, minimize inspection 
and testing entities, procuring a consultant coordinator, embracing 
innovation, Learning from previous experiences,  

Context Reducing inconvenience to the Public, developing an aggressive 
marketing campaign, creating a culture of quality and trust, Proper 
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collaboration, cooperation, and coordination with multiple entities, 
existence of a dispute resolution process 

Financing 
Considering different revenue-generating options, Analysing funding 
options in early stages, updating project costs frequently, reducing number 
of funding companies, using cash flow software 

  

6. Conclusions 

In this paper, an agent-based model is presented by which the effects of the environmental complexity on 
project performance is investigated. The developed model can reveal the dynamics of environmental 
complexity on project performance, something missing in the prevalent empirical studies in this area. It has 
been found that projects can take advantage of complexity to improve their own performance. It seems that 
more complex environments as defined in this research offer possibilities to projects to learn more 
appropriately in that the search space is bigger and predictive accuracy of learning is less critical. The 
learning memory of project plays a key role in adaptation in that by taking into account the performance 
for a short time (i.e. high α and β), project can adapt more efficiently with environment. Concerning the 
internal complexity modeled as random process times, the results demonstrate that internal complexity 
within the framework of this research seems to exacerbate project performance. Put another way, the 
performance of an project comprised of standardized business processes seems to be more satisfactory. The 
results of this research have been validated by data gathered from 18 projects. The empirical data show that 
project complexity is not always detrimental to performance and there are cases of highly complex project 
which have been executed well by means of different best practices like flexibility in contracts or highly 
coordinated stakeholders. 
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