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Abstract: The main goal of the present study is to investigate the capability of hybridizing the
imperialist competitive algorithm (ICA) with an intelligent, robust, and data-driven technique named
the light gradient boosting machine (LightGBM) to estimate the compressive strength of geo-polymer
concrete (CSGCo). The hyper-parameters of the LightGBM algorithm have been optimized based on
ICA and its accuracy improved. The obtained results from the proposed hybrid ICA-LightGBM are
compared with the traditional LightGBM model as well as four different topologies of artificial neural
networks (ANN) comprising a multi-layer perceptron neural network (MLP), radial basis function
(RBF), generalized feed-forward neural network (GFFNN), and Bayesian regularized neural network
(BRNN). The results of these models were compared based on three evaluation indices of R2, RMSE,
and VAF for providing an objective evaluation of the performance and capability of the predictive
models. Concerning the outcomes, the ICA-LightGBM with the R2 of (0.9871 and 0.9805), RMSE of
(0.4703 and 1.3137), and VAF of (98.5773 and 98.0397) for training and testing phases, respectively,
was a superior predictor to estimate the CSGCo compared to the LightGBM with the R2 of (0.9488
and 0.9478), RMSE of (0.9532 and 2.1631), and VAF of (94.3613 and 94.5173); the MLP with the R2 of
(0.9067 and 0.8959), RMSE of (1.3093 and 3.3648), and VAF of (88.9888 and 84.9125); the RBF with the
R2 of (0.8694 and 0.8055), RMSE of (1.4703 and 5.0309), and VAF of (86.3122 and 66.1888); the BRNN
with the R2 of (0.9212 and 0.9107), RMSE of (1.1510 and 2.6569), and VAF of (91.4168 and 90.5854);
and the GFFNN with the R2 of (0.9144 and 0.8925), RMSE of (1.1525 and 2.9415), and VAF of (91.4092
and 88.9088). Hence, the proposed ICA-LightGBM algorithm can be efficiently used in anticipating
the CSGCo.

Keywords: compressive strength; geo-polymer concrete; light gradient boosting machine; imperialist
competitive algorithm; machine learning

1. Introduction

In the last decade, there has been significant progress made by mankind toward a
range of vital goals related to its development. Building infrastructure can be able to
lead to the establishment of a community [1–3]. According to Murthy and Rai [4], the
buildings industry serves a crucial role in the evolution of civilization. Concrete is one
of the vital building components that should be used whenever any sort of structure is
being created. Compared to traditional concrete, which has been utilized extensively in
residential construction over the last three decades, eco-friendly concretes are a kind of
materials that totally replace cement with ground granulated blast furnace slag (GGBFS), fly
ash, and alkaline solutions [5,6]. After water, concrete is the second most significant possible
application on our planet. Furthermore, cement is the important binding component in the
elements of conventional concrete, and the manufacturing of one ton of cement results in
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the discharge of about one ton of CO2 into the atmosphere. When making geo-polymer
concrete, the cement can be substituted by GGBFS and fly ash. In concretes, the component
with the higher emissions is cement. Hence, using geo-polymer concrete can decrease
traditional concrete’s environmental impact by approximately eighty percent.

According to the Central Electricity Authority [7], emissions of CO2 are having a
significant effect on the temperature of the earth. In conclusion, sustainable development
is crucial for the future of buildings [8]. In terms of cost, a geo-polymer is more cost-
effective compared to normal concrete. It leads to a cost decrement that is between thirty-
five and forty percent lower than the original price. According to Verma and Dev [9],
geo-polymer concrete outclasses common concretes in points of both its strength and its
endurance. This makes it a potential replacement for traditional concrete. It is required
to employ a solution with alkaline contents for activating the pozzolanic compound that
is utilized in geo-polymer concrete so that it can be used to form bonds. The use of
fly ash, slag, or metakaolin components in geo-polymer concretes allows for the total
elimination of cement. As examples of alkaline materials, one may consider using sodium
hydroxides or silicates. Interactions and relationships formed using geo-polymer concretes
are unique in comparison to those that are produced using ordinary concrete. The term
“geopolymer” was first used to describe the relationship that was formed as a result of these
events. The effectiveness of geo-polymer concrete in experiments has been demonstrated
to be more effective than that of traditional concretes, which suggests that it might be
the best replacement for traditional concretes. It is achievable that this is the future of
environmentally responsible construction and infrastructure [8].

A diverse variety of properties and variables may have an effect on the amount
of strength possessed by geo-polymer concrete, involving both parameters related to
concrete structure and external parameters. Temperature, length, various methods of
curing, humidity, and air confinement all have vital roles in the external variables, whilst
the characteristics of the components and the diverse composition are accounted for in
the parameters related to concrete structure [10]. According to Borges et al. [11], the
chemistry of the binders and the dimensions of their particulates are essential elements
in both the beginning of the response and its development later on, when it becomes
more pronounced; however, the proportions of these two parameters additionally have
an essential role in the capability to manage the strength in line with the regulations. The
slag percentage improvement in the formulation enhances the naturally cured geo-polymer
concrete compressive strength [12–15]. Because of the higher surface area available, the
smaller fragments of fly ash and slag respond quickly, which increases the initial strength of
the concrete [16]. According to Verma and Dev [17], the ratio of liquid to binder additionally
serves an essential role in the reaction and makes it difficult to determine the strength.
The geo-polymer process necessitates the presence of water; however, this water will
dissipate as the process hardens and is thus not necessary for the outcome of the process.
Because of this, just a relatively small quantity of water is needed for the reaction with all
of the elements of geo-polymer concrete. Strength in geo-polymer concrete is inversely
proportional to the amount of liquid used in the mixture [18]. Given the superior suitability
of Sulphonated-Naphthalene-Formaldehyde-based superplasticizers for bodies of geo-
polymer concrete, choosing and employing superplasticizers in geo-polymer concrete
serves an essential part in the formation of bonds [19]. When it involves establishing the
geo-polymer process, the potency and concentration of the alkaline solution are of the
utmost importance. Concrete’s performance and strength are strongly impacted by the
response that occurs, which is closely corresponded to the molarity of sodium or potassium
hydroxide [19]. Oven-cured materials are readily obtained stronger than atmospheric-
cured samples, according to research by Chouksey et al. [20] and Verma [21]; hence, cured
temperature and circumstances are also highly beneficial when it comes to achieving the
desired design strength. In addition to this, geo-polymer concrete is exceptionally resistant
to the damaging effects of harsh environments [18,22,23]. Therefore, geo-polymer concrete
could involve a period of environmentally responsible growth in the building sector. The
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use of geo-polymer concrete may take various forms in a variety of contexts around
the globe.

In order to determine the compressive strength of geo-polymer concrete, many at-
tempts have been conducted in a laboratory (which is also called direct determination).
However, sample preparation and test conducting is time consuming and costly [24–27]
and because of that some researchers [28–32] tried to propose machine learning models
to solve this problem. In addition, these techniques have been successfully used in the
other applications of civil engineering [33–41]. Therefore, the authors decided to use a
novel hybrid model of LightGBM mixed with the imperialist competitive algorithm (ICA)
for prediction of the compressive strength of geo-polymer concrete. The following sec-
tions will discuss the background and details of this novel technique and its performance
with details.

2. Materials and Methods
2.1. LightGBM

LightGBM is a decision tree structure that utilizes an original boosting system. Within
the conventional GBDT, LightGBM integrates 2 novel strategies: gradient-based one-side
sampling (GOSS) and exclusive feature bundling (EFB) [42]. Hence, it demonstrates a
quicker training rate, greater precision, and better efficiency in comparison to the GBDT
and extreme gradient boosting (XGBoost) [43]. In the context of the GOSS approach, it
becomes feasible to eliminate a substantial portion of samples by utilizing modest gradients.
This allows LightGBM to construct its models using the available data, calculating an
information gain more efficiently. The GOSS approach can be more precise and successful
than the conventional GBDT method whenever used for a small-scale dataset because a
dataset with huge gradients is more significant for information acquisition. Concerning the
EFB, it permits the bundling of features that are incompatible with one another in order to
lower the total number of characteristics. Furthermore, the application of the pre-sorting
technique is the stage of the classic GBDT technique that consumes an enormous amount
of time. This approach begins by enumerating all of the potential features based on the
ranking values of features and then proceeds to locate the best-dividing part, which requires
a significant amount of time and computer memory [44]. LightGBM, on the other hand,
employs the histogram algorithm and leaves growing techniques as an alternative to the
conventional pre-sorting approach in order to lessen the amount of memory used and
the amount of time spent on the process, hence accelerating computing. The Light-GBM
algorithm’s framework is represented in Figure 1, which may be found here. The LightGBM
technique yields algorithmic controlling and optimizing with the main hyper-parameters
shown in Figure 2.

2.2. ICA

The first imperialist competitive algorithm (ICA) was created by Atashpaz-Gargari
and Lucas [45], as a metaheuristic algorithm to address or handle different minimizing
or maximizing problems. ICA operates in a manner similar to that of other metaheuristic
algorithms; it takes into account the swarm of the world, or the number of countries, and
treats each country as a potential answer. The construction of the method proceeds by
selecting a random number of countries to use as beginning results. The members of the
population in ICA are represented by different countries; from this group, the strongest
nations, or those with the greatest amount of strength, are chosen to take on the role as
imperialists. The other nations fulfill the function of imperialists’ swarms in this scenario.
The countries in the ICA that have the lowest operating costs are the most powerful
because they are able to acquire ownership or manage over the most swarms. As a rule,
the ICA is composed of three basic mechanisms or operations, and they are assimilation,
revolution, and competition. The assimilation mechanisms lead the swarms toward the
goal of becoming imperialists in order for them to attain more authority and power, a
higher cultural level, and an improved economic situation. If the swarms are successful
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in attaining a location that is superior to that of their imperialists during the first two
operators, then they will be in a location to assume control of the empire. Last but not least,
throughout the course of the rivalry, the imperialists will also have a good possibility of
acquiring more colonies. Throughout the course of the competition, the empire that is the
least powerful will eventually fall, while the empires that are the most powerful will be able
to acquire ownership of further colonies, leading to a rise in their authority and strength.
The process described above is continued until either the most powerful empire or no
empire at all can successfully govern all nations (Figure 3). Under these circumstances,
the remaining empires will succumb to their inherent weakness, which will result in their
transformation into colonies.
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3. Data Analysis

Fly ash, sodium silicate, sodium hydroxide, fine aggregates, coarse aggregates, super-
plasticizers, and water are the components that are used in the production of geo-polymer
concretes. Prior to the manufacturing of concrete on an enormous scale, labs consistently
conduct quality inspections to ensure that the raw ingredients are of an acceptable standard.
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Fly ash is almost always acquired from the chemical industry, whereas alkaline solutions
and superplasticizers are usually sourced from the power plant that is geographically
located closest to the facility. Both coarse and fine aggregates are sourced from resources
that are readily accessible in the area. Water gets utilized in accordance with the require-
ments that are necessary in that region and are accessible. The production of the alkaline
solutions occurs before 20–24 h of the mixture. Since combining in mixers consumes more
than hand combining, geo-polymer concrete cannot be prepared as quickly as traditional
concrete. M-sand has a wide range of potential applications in geo-polymer concretes. The
adequate-graded pieces in it provide superior outcomes compared to regular sand because
of this.

In order to determine what materials were present in the data cases, an X-ray flu-
orescence spectroscopy (XRF) analysis was performed on fly ash as well as additional
pozzolanic components. Due to this, the proportions of alumina, silica, and sodium oxide
in the mixture had to be determined. When obtaining chemicals from various companies,
one would be given the amount of minerals or a minimum analysis of the chemical solu-
tions. Laboratory testing was used to identify the size of the particles, bulk density, and
other required characteristics. All of these trials had to be performed first before any more
progress could be made with the mixed composition of the concretes.

In this study, 11 input parameters were used for predicting CSGCos, and the required
database was gathered from research conducted by Verma [8]. The study being discussed
right now is intended to identify a plan that helps engineers in improving various parts
of geo-polymer concrete that are available for building operations. Parameters (both
inputs and outputs) were given numerical values, and their descriptive statistics are
shown in Table 1. In this study, a total of 61 laboratory tests were conducted in order
to acquire the required data. The fly ash, rest period, curing temperature, curing period,
NaOH/Na2SiO3, superplasticizer, extra water added, molarity, alkaline activator/binder
ratio, coarse aggregate, and fine aggregate were considered as the input parameters that
would be utilized in order to train the artificial intelligence models, whereas the CSGCo was
imported into the models as the target of artificial intelligence modeling. The histogram
chart of parameters is illustrated in Figure 4. This figure shows that the number of CSGCo
in the range of 40–45 MPa is 22 cases. Furthermore, the heatmap correlation coefficient of
parameters is displayed in Figure 4. Generally, the correlations between two parameters are
determined with the Pearson correlation coefficient (r, r ∈ [−1, 1]). The Pearson correlation
coefficient is specified applying the below equation [46]:

r =

n
∑

i=1
(xi − xm)(yi − ym)√

n
∑

i=1
(xi − xm)

2 ×
n
∑

i=1
(yi − ym)

2

Table 1. Inputs and target of this study and their ranges.

Type Parameter Sign Unit Min Mean Max Standard Deviation

Input

Fly ash FA (kg/m3) 298 401.92 430 39.13
Rest period RP (h) 0 14.16 72 14.78
Curing temperature CT (◦C) 40 71.80 100 18.66
Curing period CP (h) 24 27.93 48 8.96
NaOH/Na2SiO3 NaOH/Na2SiO3 - 0.3 0.40 0.5 0.03
Superplasticizer Su (kg/m3) 0 4.11 10.5 4.38
Extra water added EW (kg/m3) 0 5.74 35 13.07
Molarity M - 8 12.66 18 2.77
Alkaline activator/binder ratio AAB - 0.25 0.38 0.45 0.05
Coarse aggregate CA (kg/m3) 875 1223.91 1377 158.90
Fine aggregate FAg (kg/m3) 533 605.56 875 121.05

Target Compressive strength CS (MPa) 17.5 38.71 47.92 7.08
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Figure 4. Histogram plot and frequency of inputs and output.

In which n, xm, and ym refer to the number of raw data samples, average value across
all x data, and average value across all y data, respectively. If r is more than zero (r > 0),
this means there is a positive linear correlation between the two parameters; the closer r is
to one (r ' 1) represents a stronger positive linear correlation. On the other hand, if r is
less than zero (r < 0), this signifies that there is a negative linear correlation between the
two parameters; the closer r is to minus one (r ' −1) represents a stronger negative linear
correlation [47].

Based on Figure 4, the coarse aggregate, curing temperature, and fly ash denote
a positive linear correlation with the CSGCo, whereas the rest period, curing period,
NaOH/Na2SiO3, superplasticizer, extra water added, molarity, alkaline activator/binder
ratio, and fine aggregate demonstrate a negative linear correlation with CSGCo. Moreover,
based on the absolute value of the Pearson correlation coefficient, it can be seen in Figure 5
that the curing period, superplasticizer, extra water added, and fine aggregate have a
significant negative linear correlation and the coarse aggregate has a significant positive
linear correlation with CSGCo, and the correlations of the rest inputs to CSGCo is weak
to medium.
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4. Pre-Analysis and Data Preparation

The following is the most important part of this paper: following the presentation
of the basis of the gathered datasets and a summary investigation of the properties of
the dataset, the compressive strength of geopolymer concrete data was divided into two
main categories, the training set, which contains eighty percent of the whole concrete data
(49 data samples), and the testing set, which contains twenty percent of the concrete data
(12 data samples). After that, the LightGBM algorithm is fitted using the data from the
training part. During this interim period, the ICA metaheuristic algorithm was used in
order to determine the optimal values for the LightGBM model’s hyper-parameters. The
RMSE is the objective function of ICA. This is the difference between the actual compressive
strength of geopolymer concrete data on the training set and the obtained compressive
strength of geopolymer concrete with the LightGBM technique utilizing the inputs of
the training set. The following description provides an outline of the framework of the
objective function.

Fobj = RMSE
(

Fr, F̂r
)

In which Fr and F̂r are respectively measured and predict the compressive strength
of geopolymer concrete. In this equation, F̂r = LightGBM(h1, h2). fit(trainingset), in which
h1 and h2 show the hyper-parameters of learning_rate and colsample_bytree in the Light-
GBM algorithm and the LightGBM is fitted on the training data points.

In the last step of the process, the possible solutions of the ICA method are evaluated
on the testing set using various statistical indices, which allows for the determination of
the best hyper-parameters for the LightGBM system. In addition, the cosine amplitude
approach is used to further elaborate the sensitivity analysis of the compressive strength
of geopolymer concrete to the effective parameters. This analysis is based on the well-
established LightGBM model, which has optimal values for its hyper-parameters.
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5. Prediction Results
5.1. Hyper-Parameters’ Tuning

When learning soft computing techniques, one of the most essential duties is called
hyper-parameter tuning. This reduces the likelihood of the algorithm being overfitted,
improves its capacity to generalize, and reduces the model’s overall level of complexity.
In the current research, the applied dataset was randomly classified into a training part
including 80% of the geo-polymer concrete data and a test part including 20% of the geo-
polymer concrete data in order to develop the LightGBM method. The correctness of the
LightGBM model that was produced is evaluated with the help of the testing part, whereas
the contribution of the training part is utilized to develop the algorithm in the first place.
As was said before, in order to create the LightGBM method, two-tuple hyper-parameters,
namely learning_rate and colsample_bytree, require their values to be adjusted. These
values can be found in the model’s configuration file. Consequently, the ICA was used
so that these two hyper-parameters could be optimized. The Ncountry, Ndecade, and
Nimp values in the ICA were adjusted to 270, 350, and 25, respectively, and the number
of iterations was set to 500. The ranges for the two hyper-parameters that define the
bounds are (0.012, 0.55) and (0.15, 1.0), respectively, for learning_rate and colsample_bytree.
Nevertheless, the generalization efficiency of the hybrid LightGBM system was evaluated
using a ten-fold cross-validation approach, which was employed throughout the training
phase of this study. ICA-LightGBM’s learning outcomes are illustrated in Figure 6, which
can be seen here. It is clear that the ICA-LightGBM system did not begin to converge
again before around 300 iterations were completed. In the end, the values acquired for the
two hyper-parameters that were determined to be optimum are learning_rate = 0.32 and
colsample_bytree = 0.97, respectively.
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5.2. Evaluation of the Proposed Model

The most crucial thing to accomplish is to assess the capability of the developed models
once the training of the model has been completed and the optimum hyper-parameters have
been obtained. As a result, in order to evaluate the efficacy of the method, the coefficient of
determination (R2), the root mean squared error (RMSE), and the variance accounted for
(VAF) were used as assessment measures. When executing a regression employment, these
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three indices are usually employed as indicators for measuring the success of the artificial
intelligence models, which can be derived using the following formulas [48–51]:

R2 = 1−


n
∑

i=1
(Oi − Pi)

2

n
∑

i=1
(Pi − Pi)

2

 (1)

RMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2 (2)

VAF = 100 ·
(

1− var(Oi − Pi)

var(Oi)

)
(3)

In this equation, Oi represents the actual values, Pi represents the projected values,
Pi is the average of the projected values, and n is the number of datasets. Notable is
the fact that the values one, zero, and one hundred for R2, RMSE, and VAF, respectively,
demonstrate a model with the highest efficiency and accuracy.

In light of this, the results of the calculations for the three evaluation indices of the ICA-
LightGBM technique are as follows: on the training part, the R2 value is 0.9871, the RMSE
value is 0.4703, and the VAF value is 98.5773; on the testing part, the R2 value is 0.9805,
the RMSE value is 1.3137, and the VAF value is 98.0397. It is clear that the constructed
ICA-LightGBM technique possesses outstanding precision and can accurately forecast the
CSGCo. Furthermore, it was discovered that the model’s superiority on the testing part
somewhat outperformed that on the training part. In Figure 7, you can see a comparison
between the CSGCo that was anticipated using the ICA-LightGBM model and the CSGCo
that was really measured. From a logical point of view, most of the projected CSGCo values
are quite close to the actual CSGCo values.
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6. Results and Discussion

In this study, the performance of the hybrid ICA-LightGBM algorithm was evaluated
in predicting CSGCo. The accuracy of this model was acceptable and can be reliably used
for prediction aims. However, the accuracy of the ICA-LightGBM algorithm should be
compared with the other artificial intelligence techniques so that its prediction performance
can be proven. In this regard, the well-known methods were considered for evaluating
ICA-LightGBM accuracy. The artificial neural networks were successfully trained in solving
engineering problems. This method has different structures and architectures based on
training algorithms, hidden layers, hidden neurons, and the learning rate. Therefore,
we employed four main architectures involving a multi-layer perceptron neural network
(MLP), radial basis function (RBF), generalized feed-forward neural network (GFFNN),
and Bayesian regularized neural network (BRNN). The accuracy and performance of these
models in anticipating the CSGCo were obtained. Nevertheless, their efficiency, capability,
and success in predicting need to be investigated and compared. According to evaluation
metrics used for ICA-LightGBM, the performance of the LightGBM, MLP, RBF, GFFNN,
and BRNN was obtained and is summarized in Table 2. Furthermore, the scatter plot
of the measured and the predicted values of CSGCo using ICA-LightGBM, LightGBM,
MLP, RBF, GFFNN, and BRNN for both training and testing parts are demonstrated in
Figures 8–13. Based on Table 2, the LightGBM model is capable of predicting values better
than MLP, RBF, GFFNN, and BRNN techniques. However, the optimized LightGBM model,
i.e., ICA-LightGBM, has the most accurate results on the basis of the RMSE 0.4703 and
1.3137 for training and testing phases, respectively. As shown in Figures 8–13 that illustrate
the scatter plot of actual and estimated CSGCo in two phases of training and testing, it can
be found that all the developed models estimated the CSGCo with an acceptable accuracy.
However, the ICA-LightGBM model with an R2 of 0.9805 for the testing part was more
accurate than the LightGBM with an R2 of 0.9478, MLP with an R2 of 0.8959, RBF with
an R2 of 0.8055, BRNN with an R2 of 0.9107, and GFFNN with an R2 of 0.8925. It can be
concluded that the ICA-LightGBM model is a superior model in predicting CSGCo.

Table 2. The obtained statistical metrics for evaluation of developed models.

Evaluation Metrics R2 RMSE VAF

Part Train Test Train Test Train Test
ICA-LightGBM 0.9871 0.9805 0.4703 1.3137 98.5773 98.0397
LightGBM 0.9488 0.9478 0.9532 2.1631 94.3613 94.5173
MLP 0.9067 0.8959 1.3093 3.3648 88.9888 84.9125
RBF 0.8694 0.8055 1.4703 5.0309 86.3122 66.1888
BRNN 0.9212 0.9107 1.1510 2.6569 91.4168 90.5854
GFFNN 0.9144 0.8925 1.1525 2.9415 91.4092 88.9088
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For more comparison, a Taylor diagram and Violin plot relevant to the accuracy of the
models, respectively, are displayed in Figures 14 and 15. From Figure 14, the ICA-LightGBM
symbol was closest to reference data in both training and testing phases (measured data)
and this shows that the best model is ICA-LightGBM. Furthermore, Figure 15 shows that
the results of the ICA-LightGBM model are very close to the measured values.
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In the last step of this study, the most and least impactful parameters on determination
of CSGCo were specified. To do this, a sensitivity analysis technique was employed named
the Cosine Amplitude Method (CAM) [50]. The CA method measures the strength of
the relationship between every two effective parameters on CSGCo. In this regard, the
following equation is utilized [52]:
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In which rij is the intensity impact between xi (input) and xj (output). The sensitivity
results and impactful parameters were determined. From Figure 16, the CA parameter has
the most effect on CSGCo with a strength of 0.993, while the least effect is related to the EW
parameter with a strength of 0.269. Noteworthily, the influence of the parameters based on
the rij value can be prioritized in ascending order as EW < Su < RP < CP < FAg < M < AAB
< CT < NaOH/Na2SiO3 < FA < CA with an impact of 0.269, 0.579, 0.644, 0.895, 0.937, 0.959,
0.974, 0.977, 0.98, 0.983, and 0.993, respectively.
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7. Conclusions

Determination and prediction of the CSGCo is a crucial issue in civil and construction
fields. Hence, the accurate estimation of CSGCo can increase safety. The main contribution
of the current research is to optimize hyper-parameters of the LightGBM algorithm using
ICA to model the CSGCo. In addition, four various architectures of ANNs such as MLP,
RBF, GFFNN, and BRNN models were applied to predict CSGCo. The inputs of all models
were FA, RP, CT, CP, NaOH/Na2SiO3, Su, EW, M, AAB, CA, and FAg, while the CSGCo was
considered as the target. For the training of models, 61 data samples were gathered from
the literature and split into two phases of training and testing sets. The trained models were
evaluated by using three statistical indicators, i.e., R2, RMSE, and VAF, and the accuracy
level and performance degree of the ICA-LightGBM, LightGBM, MLP, RBF, GFFNN, and
BRNN models were analyzed. The obtained results indicated that the precision of the
models denoting R2 values as 0.9871, 0.9488, 0.9067, 0.8694, 0.9212, and 0.9144 for training
models and 0.9805, 0.9478, 0.8959, 0.8055, 0.9107, and 0.8925 in testing models for ICA-
LightGBM, LightGBM, MLP, RBF, GFFNN, and BRNN, respectively, showed a superior
capability in the application of the ICA-LightGBM model in anticipating the CSGCo. It can
be concluded that the ICA algorithm can be used as a powerful and robust optimizer to
improve the LightGBM predictor.
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