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ABSTRACT

This paper focuses on exploring the potential of Climate resilient agriculture (CRA) for river basin-scale management. Our analysis is based on

long-term historical and future climate and hydrological datasets within a GIS environment, focusing on the Ajoy River basin in West Bengal,

Eastern India. The standardized anomaly index (SAI) and slope of the linear regression (SLR) methods were employed to analyse the spatial

pattern of the climate variables (precipitation, Tmax and Tmin) and hydrological variables (actual evapotranspiration (AET), runoff (Q), vapor

pressure deficit (VPD), potential evapotranspiration (PET), and climate water deficit (DEF)) using the TerraClimate dataset spanning from

1958 to 2020. Future climate trend analysis spanning 2021 to 2050 was conducted using the CMIP6 based GCMs (MIROC6 and EC-Earth3)

dataset under shared socio-economic pathway (SSP2-4.5, SSP5-8.5 and historical). For spatiotemporal water storage analysis, we relied

on Gravity Recovery and Climate Experiment (GRACE) from the Center for Space Research (CSR) and the Jet Propulsion Laboratory (JPL)

data, covering the period from 2002 to 2021. Validation was performed using regional groundwater level data, employing various machine

learning classification models. Our findings revealed a negative precipitation trend (approximately �0.04 mm/year) in the southern part,

whereas the northern part exhibited a positive trend (approximately 0.10 mm/year).
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HIGHLIGHTS

• The slope of the linear regression method was employed for the spatial distribution of the climatic and hydrological conditions

(1958–2020).

• Future climate trend analysis (2021–2100) has been executed through the CMIP6 (MIROC6 and EC-Earth3) SSP245, SSP585 and historical

dataset.

• A novel ensemble boosting machine learning algorithm was used for the validation of groundwater level.
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GRAPHICAL ABSTRACT
1. INTRODUCTION

Climate change is a major global concern for agricultural water management, it significantly threatening agricultural produc-
tivity (Guptha et al. 2022). The Intergovernmental Panel on Climate Change (IPCC) reported that climate change refers to
long-term change in climatic patterns. These changes are usually observed in the annual or seasonal variations of the climate

(IPCC 2013). Moreover, the IPCC’s fifth assessment report (AR5) also identified different climate-resilient pathways, e.g., miti-
gation and adaptation strategies (Werners et al. 2021). These pathways aim to provide a comprehensive view of the diverse
impacts of climate change on both natural and anthropogenic systems, including rural poverty, the environment, and
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2023.656/1357505/jwc2023656.pdf
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livelihoods (Sam et al. 2020; Pushpanjali et al. 2021). It is estimated that, around half of the world’s population, around 8

billion people, may experience severe water scarcity at some point during the year due to a combination of non-climatic
and climatic factors (IPCC 2019). Climate change is contributing to the likelihood of severe and prolonged droughts and
floods in various regions with high level of confidence (Pekel et al. 2016; Singha et al. 2022). The Fifth AR5 emphasizes

that natural disasters such as floods and droughts pose a significant threat to agricultural production, highlighting climate-resi-
lient strategies as a top priority for ensuring food security (Caretta et al. 2022). The over-exploitation of groundwater for
agricultural, domestic, and industrial purposes has accelerated the depletion of water storage worldwide (Arneth et al. 2019).

In the face of these challenges, both private and public organizations recognize adaptation a crucial measure to combat

with the effects of climate change on agriculture and water security-related issues (Rusia et al. 2018). Neglecting the need
for measures addressing climate change’s effects on the water cycle could lead to a projected decrease in global gross domes-
tic product (GDP) by 2050, particularly in low- and middle-income countries (Acevedo et al. 2020). Thusway, climate-resilient

agriculture (CRA) practices help farmers to manage natural hazards and mitigate the associated effects of climate change.
This domain of the CRA approach involves developing new strategies and practices to enhance the productivity of the
farm and land, reduce greenhouse gas emissions (GHGs) from agriculture, and increase farmers’ incomes (Singha et al.
2020). These practices also contribute to climate adaptability, poverty reduction, and food security amid changing climate
scenarios with the Sustainable Development Goals (SDGs) specially with numbers 1, 2, and 13 (Singh 2020). Recent studies
showed that, climate change’s impact on hydrology at the river basin scale has been assessed using various hydrological

models under CMIP5 and CMIP6 scenarios within the CRA domain (Karan et al. 2022). Amiri & Gocic (2023); Milan &
Amiri (2023) showed the long-term (1946–2019) water balance scenario through the various rainfall indices namely the stan-
dardized anomaly index (SAI), the standardized precipitation index (SPI), the rainfall anomaly index (RAI), the China Z
index (CZI), the percent of normal precipitation (PNP), and the modified China Z index (MCZI) over Serbia. Another

study of Amiri & Gocic (2021) showed the precipitation concentration degree (PCD), the precipitation concentration
index (PCI), the precipitation concentration period (PCP) and the seasonal PCI (SPCI), were analyzed using long-term pre-
cipitation data (1946–2019) for climate change applicability in Serbia. Topographical variation was directly correlated with

the precipitation variability. The maximum correlations are also found between the for latitude, and PCD and longitude and
the summer PCI at 0.73, and 0.75, respectively. Milan & Amiri (2023) estimated the precipitation trend analysis through the
polynomial fit equation in northwest Iran. The outcome showed that southwest part had incremental trend in the study period

(1991–2010).
The use of geospatial technology has both potential advantages and indirect implications for the establishment of a long-

term CRA framework. Various studies have used different multisensory remote sensing (RS) data sources, including the
Global Land Data Assimilation System (GLDAS), TerraClimate, and Gravity Recovery and Climate Experiment

(GRACE), to assess the resiliency, reliability, vulnerability, and sustainability of river basin water management (Koudahe
et al. 2017; Bherea & Reddy 2022; Salehie et al. 2022; Sharma et al. 2022). Climate change, in particular, has implications
for how water resources are stored and managed. These problems are solved by implementing a CRA system, but changes in

the weather patterns resulting from climate change can raise questions about its operations. Despite the increasing number of
studies focused on improving the resilience of the agriculture sector, many questions still need to be answered regarding the
effects of climate change on this sector. Moreover, understanding the temporal and spatial distribution of rainfall is also

important in assessing the risks associated with various hydrological change events (Yang et al. 2020a, 2020b).
The lack of reliable climate data in various regions globally has hindered the development and implementation of climate

simulation models and statistical analyses related to water resources, hydrology, and ecology. Thus, our research aims to pro-

vide insights into CRA system and water security goals over a 90-year period, encompassing both historical (1958–2020) and
future (2021–2050) periods. Therefore, this study enquiring the various hydrometeorological conditioning factors and effects
of climate change on current and future performance for the suitable CRA system. Climate uncertainty provides an opportu-
nity to develop the CRA system under this framework. This type of initiatives can be applied to small- and medium-sized

enterprises to enhance entrepreneurship and livelihood strategies for owners, as well as cultivate the attitudinal traits of suc-
cessful proprietors. The United Nations is implementing the 2030 framework, consisting of 17 Sustainable SDGs, which serve
as an urgent call to action for all countries worldwide. This approach represents a novel contribution to the field of Eastern

Indian river basin management. What sets this research apart is its ability to provide precise and comprehensive methods for
identifying climate-resilient groundwater management strategies. The study’s primary focus is the development of a reliable
Climate Resilience Assessment approach, specifically tailored to address the challenges posed by climate change in real-world
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2023.656/1357505/jwc2023656.pdf
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scenarios. The study aims to identify groundwater vulnerability zones, which will play a crucial role in alleviating water stress

and preserving the hydrological ecosystem services and functions of the basin. Additionally, it will enhance the effectiveness
of CRA management strategies in the region. This approach apart is its practicality – it not only advances theoretical under-
standing but also offers tangible solutions. Furthermore, it underscores ways to mitigate groundwater vulnerability, providing

valuable insights for local practitioners. There have been limited studies on the changes in the hydrometeorological patterns
in Ajay river basins. These studies also filing that gap to building the CRA system that influence these changes. In addition,
few research on assessing the CRA system, only applied precipitation data and conventional statistical techniques, not apply
the multisensor datasets for areas lacking the measured through the novel machine learning (ML) techniques. The study’s
findings were able to quickly do real-time assessment of direct impact of climate uncertainty on the vulnerability of agricul-
tural productivity within the region. The novelty of this research, as well as the research gap filing it addresses, make
significant contributions to the fields of groundwater conservation and climate change management. Various space-based

multisensory datasets namely: TerraClimate, CMIP6, GLDAS, and GRACE, are employed for the measuring of water sustain-
ability conditions in the Ajay River Basin region. In addition, this study envisions quantifying groundwater storage (GWS)
resilience to analyze the future climate change resilience and its impact on achieving the SDGs at a river basin scale. The

outcomes of this research will aid in identifying water stress zones and the necessary adaptation strategies required in any
river basin.
2. MATERIALS AND METHODS

2.1. Study area

The Ajay River Basin lies in the eastern region of India and comprises between 23°200–24°300 North latitude and 86°150–88°100

East longitudes (Figure 1). The basin area covers around 6,081.49 km2, with an elevation range of 3–707 m above means sea
level. Originating from the Chhotanagpur plateau in the Santhal Pargana District of Jharkhand, the Ajay River and its asso-

ciated basin extend across Dumka, Giridhi, and Deoghar in Jharkhand, as well as Jamui and Munger districts in Bihar, and
Birbhum and Burdwan districts in West Bengal. The course of a river passes through different lithology, including the mega-
physiographic regions of the Bengal basin and the Chhotanagpur massif. The upper portion of the course of a river flows

through a unclassified gneissic structure. The middle reaches pass through Gondwana complex and the lower part of the
course is also underlain by sequences of sediment with quaternary structure (Bhattacharya 1972). The area under study
has undulating topography with gentle slopes toward the southeast and east, with varying elevations. The large portion of

pedocal soil that extends over the Ajay River Basin. The Katwa Surface is characterized by an alluvial soil that has already
Figure 1 | Study area map.
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undergone active soil formation in the lower part of the basin (Geological Survey of India 1985). The extreme variability of

the rainfall during the monsoon season significantly affects the hydrological conditions of the Ajay River Basin (Niyogi 1988).
This river basin experiences monsoonal rainfall around a mean of 1,278–1,322 mm annually (India Meteorological Depart-
ment (IMD) 2018). The summer and winter temperature varies from 25 to 37 °C and 10 to 24 °C, respectively. The Ajay River

flows through recent alluvium and is subjected to a moderate to high discharge. Flash floods in the Ajay River occur fre-
quently. Due to the availability of irrigation facilities, fertile alluvial soil, and ample soil moisture, this region is primarily
engaged in highly productive agricultural practices, including the cultivation of crops such as rice, potatoes, oilseeds, and var-
ious horticultural crops (Banerjee et al. 2021). The majority of the land in the basin is dedicated to cropland, covering an area

of 3,499.14 km2 of the total basin area (ST 1, URL: European Space Agency (ESA) https://esa-worldcover.org/en). The con-
centration of forest land is highest in the right bank around 13.17%, as opposed to the left bank.

2.2. Data

The historical monthly climatic data collected during the study were analyzed through the TerraClimate platform (1958–
2020) with a spatial resolution of 4,638.3 m. The TerraClimate dataset has been previously evaluated over surrounding
regions and countries and had very good accuracy (Filgueiras et al. 2022; Araghi et al. 2023). Terrestrial water storage

(TWS) data were acquired from the NASAs GRACE (2002–2021) mission with a spatial resolution of 111,320 m. The
GLDAS (2003–2021) datasets were analyzed in the Google Earth Engine (GEE) cloud API. The spatial resolution of the
GLDAS v2.2 datasets were 27,830 m. The historical and future climatic condition was assessed under 245, and SSP585 sce-

narios through CMIP6 GCMs (i.e. MIROC6 and EC-Earth3) (2021–2050) with a spatial resolution of 0.25°� 0.25°.
Additionally, Our analysis encompasses a total of 90 years of model outputs, including temperature and precipitation, span-
ning both the historical period (1958–2020) and the future period (2021–2050) for climate change analysis.

2.2.1. Groundwater level data

In total, 22 district-wise pre-monsoon groundwater level (mbgl) data (2018–2019) were collected from the Central Ground
Water Board (CGWB, India) (URL: http://cgwb.gov.in/GW-data-access.html). Inverse distance weighting (IDW) spatial
interpolation techniques were used for the spatial distribution of the groundwater level inventory mapping within the river

basin. Furthermore, this map was used for validation and sensitivity analysis in our study of CRA and water sustainability
in this region.

2.3. Methodology

In the current study, different climatic variables such as maximum temperature (Tmax), minimum temperature (Tmin), and pre-
cipitation, as well as the hydrological variables such as actual evapotranspiration (AET), potential evapotranspiration (PET),
runoff (Q), vapor pressure deficit (VPD), and climate water deficit (DEF), were analyzed for a period of 62 years (1958–2020)

to determine the annual climatological and hydrological characteristics of the study area. The GRACE solutions were
employed to estimate equivalent water thickness (EWT) provided by the Center for Space Research (CSR) and the Jet Propul-
sion Laboratory (JPL), at the University of Texas, Austin covering the period from 2012 to 2021. Similarly, the water balance
system was estimated using TWS and GWS data from the GLDAS v2.2 model for the years 2003–2021 (Bherea & Reddy

2022; Equations (1) and (2)):

DTWS ¼ DGWþ DSMþ DSWEþ DSW (1)

where ΔGW is the groundwater, ΔSM is the soil moisture, ΔSWE is snow water equivalent, and ΔSW is surface water.

DGWS ¼ DTWS� DRSM� DSWE� DCI (2)

where ΔTWS is terrestrial water storage, ΔRSM is the root zone soil moisture, ΔSWE is snow water equivalent, and ΔCI is
canopy interception.

The IDW interpolation method was used to develop the spatial distribution of climatic and water sustainability mapped
from the global TerraClimate, GRACE, and GLDAS datasets in the ArcGIS environment. The details workflow of the meth-
odological framework is represented in Figure 2.
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2023.656/1357505/jwc2023656.pdf
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Figure 2 | Workflow of details methodology for water sustainability.

Journal of Water and Climate Change Vol 15 No 1, 214

Downloaded fr
by guest
on 08 May 202
2.3.1. Statistical trend analysis and anomaly index

The linear regression derived (ee.Reducer.linear Fit) estimator was employed to show the long-term trends (1958–2020) of all
annual climatological and hydrological variables changes. Similarly, the SAI was used to identify the significance trends of
the hydrometeorological parameters. Furthermore, statistical significance analysis was computed using the ordinary least

square (OLS) regression method, which revealed a statistically significant relationship exceeding 99% (p, 0.001) between
GWL and hydrometeorological predictors. Metrics such as R2, Prob. χ2, and F statistic were used to assess the effectiveness
of OLS assumptions among the predictors, demonstrating an adjustment level exceeding 99% significance (Hidalgo-García &
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2023.656/1357505/jwc2023656.pdf
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Arco-Díaz 2022). The calculation for linear regression, SAI, and OLS were computed using the following equations (Bilginola

et al. 2015; Koudahe et al. 2017; Equations (3)–(5)):

Yi ¼ b0 þ b1xi þ 1i (3)

where Yi is the dependent variable, b0 is population Y -intercept, b1 is slope coefficient, xi is the independent variable, and 1i

is a random error:

SAI ¼ (x� m)
s

(4)

where x is the yearly average, μ is the long-term average, and σ is the standard deviation:

b̂ ¼ (X`X)�1X`y (5)

where b̂ is the OLS estimator, X represents the matrix regression of X, ` is a matrix transpose, and y is a trajectory of the

value of the response.
Climatological and hydrological trend analysis and anomaly indices are interpreted as follows: negative values indicate a

declining trend, while positive values suggest an increasing trend. SAI was analyzed for the TerraClimate parameters with

10-year intervals (i.e., 1960, 1970, 1980, 1990, 2000, 2010, and 2020), while GLDAS analysis covered the years 2005,
2010, 2015, and 2020. Monthly GRACE solution data (CSR and JPL) were averaged over the study area to provide the anom-
aly of ETW in centimeters during the period from 2012 to 2021. GRACE-based ETW heat maps were used to visualize the
regional water balance patterns. Additionally, the Pearson correlation coefficient was employed to quantify the relationships

among all hydrometeorological variables. These visualizations and assessments were generated using theMatplotlib library in
Anaconda Python 3 software.

The study also showed the intercomparison of the historical climatic trends (1958–2020) through the Mann–Kendall (MK)

test of the entire basin region (Dhar et al. 2014). The following equations are applied for the calculating the MK test (Mann
1945; Kendall 1975) (Equation (6)):

S ¼
Xn�1

i¼1

Xn
j¼iþ1

sgn dj � di
� �

(6)

where n denotes the number of sample location, di and dj are the data scores in time series i and j ( j. i), respectively, and
sgn(dj� di) represents the sign function. The standard normal test statistic ZS is calculated as (Equation (7)):

ZS ¼

S� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)

p , if S . 0

0, if S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)

p , if S , 0

8>>>>><
>>>>>:

(7)

where the variance is formulated using (Equation (8)):

Var Sð Þ ¼ n n� 1ð Þ 2nþ 5ð Þ �Pm
i¼1 ti ti � 1ð Þ 2ti þ 5ð Þ

18
(8)

where m represent the number of tied class and ti is the number of ties of extent i. A Positive ZS specified an increasing trend,
while a negative ZS reveals a decreasing trend.
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2023.656/1357505/jwc2023656.pdf



Journal of Water and Climate Change Vol 15 No 1, 216

Downloaded fr
by guest
on 08 May 202
2.3.2. Validation and sensitivity analysis

The current study employed tenML classification models, i.e. random forest (RF), support vector machine (SVM), Naïve Bayes
(NB), logistic regression (LR), neural network (NN), CatBoost (CAB), extreme gradient boosting (XGB), AdaBoost (ADB), deci-

sion tree (DT), quadratic discriminant analysis (QDA), and k-nearest neighbors (KNN), for the final GWS validation analysis.
RF
RF model used for both classification and regression problem. RF combines the training of a regression tree with the boost-

ing technique to produce a large number of efficient tree models (Breiman 2001). Each of the training trees is analyzed using a

randomly chosen set of variables by the voting classifier. The last predictor of the model is calculated by considering the
results of the other trained trees.

SVM

The non-linear problems are mapped into a higher dimensional space in SVM, which makes them easier to solve with the
help of the kernel functions (i.e. linear, radial, polynomial, and sigmoid) (Cortes & Vapnik, 1995). The selection of the appro-
priate kernel function is very important in order to develop prediction models that are derived from this framework.

NB
The NB classifier is a part of the group of posterior probabilistic classification systems that are based on Bayes’ Theory

(Mushtaq & Mellouk 2017). It assumes that all the variables are independent and can be studied separately. This allows
the system to perform faster and simpler analysis through the ‘parent node’ and ‘child’ node system.

LR
The LR model can also be utilized to analyze the link between a given variable and several independent ones (Kim et al.

2019). Due to the nature of a binary dependent variable, it can lead to various issues, like predicted values and errors in which

the ranges from 0 to 1. LR is a better alternative to performing a comprehensive analysis of such variable.
NN
Hidden layer-based NN used to take complex decision. The NN topology might be developed through a trial-and-error

approach to address the hidden layer’s number. The NN framework assigns varying weights to the inputs in order to perform
prediction calculations (Kumar et al. 2002). An error minimization method is then used to finetune the predictions in subse-
quent iterations.

CAB
The CatBoost algorithm was utilized to perform with gradient-enhanced DT algorithm (Prokhorenkova et al. 2018). It will

extracted variables as categorical type. The collected data is then randomly generated and presented with various random
sequence of feature combinations method.

XGB
One of the most popular implementations of the gradient boosting machine (GBM) algorithm is Xgboost (Chen & Guestrin

2016). It is regarded as a superior performer in supervised learning. It can be applied for both classification and regression

problems.
ADB
ADB model was implemented with the boosted decision trees that are dealing with binary classification issues (Freund &

Schapire 1995). It is perfect utilized with weak learners for the classification problems.
DT
The supervised MLas DT method is commonly used to split a set of factors into multiple decision trees. Generally, the DT

prediction tree structure used for classification regression and classification problem (Kadavi et al. 2019). The three nodes

that make up DT are the root node, internal node, and leaf node. The outcome is then displayed as root node, internal
node and leaf nodes in the dataset. The DT algorithm is utilized to divide the data into smaller classes.

QDA

The QDA is a flexible and classical classification method that allows groups to be distinguished according to covariance
matrix and mean vectors (Qin 2018). In the classical QDA framework, the sample covariance matrix is high-dimensional,
its singularity can occur.

K-nearest neighbor (KNN)
The kNN algorithm is widely used in supervised learning. It can predict new data points with accuracy of approximating

their proximity (Zhang & Zhou 2007). The assigned values for these predictions are based on the training set’s points.
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The KNN algorithm run with the following steps, namely first estimated the nearest neighbors of the k value, next classify

datapoints through the Euclidean distance measure and then sort the training sample and finally majority of the nearest
neighbors decided the final prediction.

All ML models were trained and tested using both calibration (70%) and validation (30%) datasets. The groundwater level

(district level) was the target variable, while all the hydrometeorological parameters (SAI of 2020) were considered indepen-
dent variables. The performance of each ML model was assessed using robust evaluation statistical metrics, including
accuracy, precision, recall, F1 score, and the area under the receiver operating characteristics curve (AUROC) (Singha &
Swain 2022; Equations (9)–(13)). The ML-based validation analysis was carried out by the sklearn library in python3:

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

(9)

Precision ¼ TP
TPþ FP

(10)

Recall ¼ TP
TPþ FN

(11)

F1Score ¼ 2� precision � recall
precisionþ recall

(12)

AUROC ¼
P

TPþ P
TN

TPþ TNþ FPþ FN
(13)

where TP is True Positive; TN is True Negative; FP is False Positive; FN is False Negative

Boruta feature selection techniques were employed to prioritize the sensitivity parameter of TWS sustainability. This ana-
lysis was carried out on the relevant dataset using the RF classifier with the BorutaPy library in Anaconda Python 3. This new
approach allows us to identify the most important variables in the CRA system (FAO, 2020).

3. RESULTS

3.1. Trend analysis of historical climatic and hydrological parameters

The present study examines the long-term trend maps (slope of the linear regression) for precipitation, Tmax, Tmin, AET, PET,
VPD, Runoff, DEF, TWS, and GWS variables over the study domain. In Figure 3, it is evident that the southern region exhi-
bits a more concentrated negative trend in precipitation (approximately �0.04 mm/year), while the northern region shows a

positive trend (around 0.10 mm/year) . The gradient of the Tmax and Tmin trend varies from north (maximum) to south (mini-
mum). The slope of the AET trends represent from south (positive∼ 0.080 mm/year) to north (negative∼�0.006 mm/year).
The rate of PET trends ranges from �0.033 to 0.064 mm/year, with most of the area experiencing a high VPD trend (around

0.00008 kPa/year), except for the southern part (around �0.00027 kPa/year). Turnoff trends are highest in the northern part
(around 0.027 mm/year), and the distribution of high and low DEF trend values varies from 0.007 mm to �0.039 mm across
the study area. Positive DEF trends are observed in the central part, while negative trends are concentrated in the upper and

lower regions. GLDAS v2.2 derived TWS and GWS trend values vary from �8.607 to �5.976 mm/year and �6.883 to
�4.886 mm/year, respectively. Conversely, the moderate to low TWS trends are found in the northern region. The spatial
direction of the GWS trends varies from the lower (high) to the upper part (low) of the region.

3.2. Trend analysis of future climatic conditions

Spatial pattern maps of the future precipitation, Tmax, and Tmin trends (SLR) were generated using the CMIP6 SSP2-4.5, SSP5-

8.5 and historical dataset (2021–2050) for the Ajay River Basin. All the scenarios are estimated through the two different type
of general circulation models (GCMs) models i.e. MIROC6 and EC-Earth3 ((Tatebe et al. 2019; Sahoo & Govind 2023).

3.2.1. MIROC6 general circulation model (GCM)

In Figure 4(c), the future precipitation pattern shows a negative trend in the lower part of the basin (around �0.000042 mm/

year) and a positive change in the upper part (around 0.000027 mm/year) through the SSP2-4.5 scenario. This indicates that
the lower region will likely have lower infiltration rates, potentially providing adequate abstraction for water storage. Conver-
sely, the upper part is expected to experience higher runoff and flash flood hazard events in the upcoming decades. Similar
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Figure 3 | Trend analysis of historical climatic and hydrological parameters: (a) precipitation, (b) Tmax, (c) Tmin, (d) AET, (e) PET,(f) VPD,
(g) runoff, and (h) DEF, (i) TWS, and (j) GWS in the study area.
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Figure 4 | Spatial pattern maps of the future: (a) Tmax, (b) Tmin, and (c) Precipitation, for the MIROC6 CMIP6 model (SSP2-4.5) in the study area
(2021–2050).
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inconsistencies are observed in the variability trends of average annual Tmax and Tmin across the study area. Variability in Tmax

and Tmin is notably higher in the northern part (0.035–0.037 °C/year) compared to the southern part (0.030–0.033 °C/year)
(Figure 4(a) and 4(b)). These findings suggest that the southern part is more likely to experience high AET and PET, increasing
the likelihood of water stress conditions and a higher probability of drought hazards during 2021–2050 in the lower Ajay

River Basin.
Based on the SSP5-8.5 scenario in MIROC6 model, the linear trends of Tmin and Tmax value varies between 0.013 to

0.034 °C/year and –0.021 to 0.012 °C/year. The recorded trend of the annual precipitation ranges form 0.000026 mm/year
in the northern part to 0.000031 mm/year in the southeast (Figure 5(c)).

The historical trend (1958–2020) of Tmax and Tmin ranges from �0.021 to 0.007 °C/year (Figure 6(a) and 6(b)). Similarly, the
historical trend of MIROC6 model showed the negative trend of precipitation in the southern part of the region around
�0.0000026 mm/year) and a positive change in the northern part around 0.00000063 mm/year).

3.2.2. EC-Earth3 general circulation model (GCM)

According to the EC-Earth3 model (SSP2-4.5) (Sahoo & Govind 2023), the trend of Tmax and Tmin ranges form 0.003 °C/year
in the north to 0.025 °C/year in south (Figure 7(a) and 7(b)). Therefore, the trend of the annual precipitation ranges recorded
form �0.0000015 mm/year in the south of the basin to 0.0000074 mm/year in the north (Figure 7(c)).

Figure 8(a) and 8(b) showed similar trend of Tmax and Tmin variable in the study area. Maximum and minimum Tmax and
Tmin found in north and south of the basin. Figure 8(c) showed the positive precipitation trend ranges from 0.0000016 to
0.0000041 mm/year with the EC-Earth3 SSP5-8.5.
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Figure 5 | Spatial pattern maps of the future: (a) Tmax, (b) Tmin, and (c) Precipitation, for the MIROC6 CMIP6 model (SSP5-8.5) in the study area
(2021–2050).
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The historical EC-Earth3 model calculated the Tmax and Tmin is notably higher in the northern part (�0.013+ 0.010 °C/

year) compared to the southern part (0.016–0.018 °C/year) (Figure 9(a) and 9(b)). Similarly the spatial trend of the precipita-
tion ranges form 0.0000067 mm/year in the low northwest to 0.0000097 mm/year in southeast in the study area.

3.3. SAI analysis of climatic and hydrological parameters

Supplementary material, Figures S1–S10 show the spatial distribution of long-term SAI maps for the Ajay River Basin. The pre-

cipitation showed a similar pattern to SAI: high in the southern part and low in the northern part except for the years 1980,
2010, and 2020. Negative SAIs were observed for the years 1980, 2000, and 2010, while positive SAIs were noted for 1990
and 2020 (Supplementary material, Figure S1). The spatial pattern of the Tmax is very low in 1990 (�0.105 to�0.087) compared

to other years (Supplementary material, Figure S2(d)). The SAI of Tmin over the study domain specified that southern part has
higher Tmin value (i.e., 1960, 1970, 1980, 1990 and 2020) compared to other years (Supplementary material, Figure S3). Sup-
plementary material, Figure S4 shows the positive SAI of AET for the years, e.g., 1990, 2000, and 2020, while that only
negative SAI recorded in 1960. SAI of PET displayed a relatively consistent pattern across the region, withmaximum PET iden-

tified over the southern part in 1980, 1990, 2010, and 2020, and minimum PET found in the northern part in 1960 and 1970
(Supplementary material, Figure S5). Negative runoff was observed in 1980, 2000, and 2010, while positive values were
recorded for 1970, 1990, and 2020 (See Figure 6). The positive SAI of DEF value was observed in 1960 and 2010, while

more negative values were found during 1990, 2000, and 2020, respectively. Negative DEF (.0.005) was recorded during
1970–1980 in the northern part of the basin, while positive DEF values (below�0.02) were seen in the southern part. This indi-
cates temporal and spatial variation in water suitability (Supplementary material, Figure S7).
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Figure 6 | Spatial pattern maps of the future: (a) Tmax, (b) Tmin, and (c) Precipitation, for the MIROC6 CMIP6 model (historical) in the study area
(1958–2020).
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In Supplementary material, Figure S8, the majority of the basin had SAI values greater than 0.005 for VPD in 1960 and

2010, with mostly negative SAIs occurring from 1970 to 1990. In 2020, the SAI of VPD was highest in the lower part and
lowest in the upper part of the basin. Supplementary material, Figure S9(a)–(f) display the SAI of GWS, with maximum
values (.0.3) observed over the northern part during 2005, 2015, and 2020. Completely negative SAI of GWS was seen

only in 2010 (Supplementary material, Figure S9(b)). Similarly, positive SAI of TWS was observed during 2005, with
higher positive values, and during 2020, it had the highest positive value (around 1) in the southern part of the study
domain (Supplementary material, Figure S10(d)). Based on SAI maps of GWS and TWS, the spatial pattern of water avail-
ability exhibited a declining trend from 2015 to 2020 in the southern part, except in 2015. In 2020, the earlier years showed

very low precipitation, AET, runoff, TWS, and GWS values in the southern part, whereas Tmax, Tmin, PET, VPD, and DEF
exhibited the opposite conditions (Supplementary material, Figure S11).

The annual precipitation, Tmax, and Tmin time series were analyzed using the MK trend test of the study area domain (1958–

2020). It was used to identify potential trends in the data. Table 1 shows MK test statistic (S), calculated ZS values, p value and
tau conditions. Based on the S score, precipitation had 47, Tmax had 229.01 and Tmin had 713.05. According to the significant
analysis (p , 0.05), all the three climatic parameters are significant. The results of trend agreement with the critical Z and tau

values for the precipitation, Tmax and Tmin were recognized i.e. 2.216, �9.71, 4.22 and 0.013, �0.054, 0.365, respectively.

3.4. Temporal distribution of current water storage conditions

Supplementary material, Figure S12 represents the spatial-temporal variability of monthly EWT anomalies during 2002–2021
in the Ajay River Basin. The ETW values from both the CSR and JPL products varies form �37.97 to 38.30 cm. Temporal
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Figure 7 | Spatial pattern maps of the future: (a) Tmax, (b) Tmin, and (c) Precipitation, for the EC-Earth3 CMIP6 model (SSP2-4.5) in the study
area (2021–2050).
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variability in high EWT is evident in the early years during the pre-monsoon. It signifies a recurrent fluctuations in water

resources in the study region. However, water consistency was higher in 2007 and 2008. EWT values were typically above
the mean level (indicating positive changes) from July to November (post-monsoon) and below the mean level (indicating
negative changes) from December to June (pre-monsoon) across the region. Both GRACE products (CSR and JPL solutions)

exhibited regular variation in seasonal EWT variability. In recent years, the EWT trend had gradually declined. For example,
it was generally above the mean level in post-monsoon, while lower than the mean level in pre-monsoon. he JPL-derived EWT
showed a lower mean level from March to May (2006–2021), while the CSR-derived EWT showed this from April to May

(2009–2021). These findings collectively suggest that water availability has increased in recent years in the region, although
the EWT results from the two products were not entirely consistent for this region. Both GRACE products exhibited an
increase in purple color in recent years, indicating a poor EWT. Based on the EWT heat maps, the historical years character-

ized high availability of water during 2002–2008, while recent years have shown a decreasing trend in EWT from 2009 to
2021, with concentrations in 2013 and 2021 (Figure 10).

3.5. Correlation of hydrometeorological parameters

The study further scrutinizes the association among different climatic and hydrological input parameters using the statistical
Pearson correlation matrix, OLS, and Boruta feature importance technique. The GWS and TWS have a positive correlation

with AET, runoff, and precipitation as well as an anticorrelation with the DEF, PET, Tmax, Tmin, and VPD parameters, respec-
tively (Supplementary material, Figure S13). The correlation of AET is very strong with runoff and precipitation (above 0.85).
Similarly, DEF showed strong positive correlations with the VPD (0.99), PET (0.97), Tmax (0.99), and Tmin (0.99) parameters,
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Figure 8 | Spatial pattern maps of the future: (a) Tmax, (b) Tmin, and (c) Precipitation, for the EC-Earth3 CMIP6 model (SSP5-8.5) in the study
area (2021–2050).

Table 1 | Mann–Kendall trend test for the climatic data (1958–2020)

z S p tau

Precipitation 2.216 47 0.027 0.013

Tmax �9.714 229.01 0.000 �0.054

Tmin 4.223 713.05 0.000 0.365
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as well as an inverse relationship with AET (�0.94), runoff (�0.93) and precipitation (�0.96). Based on OLS evaluation, the

GWS, runoff, precipitation, PET, DEF, and AET are statistically significant over .99% (p , 0.001), while TWS and Tmin are
statistically significant over, 95% (p , 0.05) (Table 2). The coefficient range value varies from �3.91 to 3.56 while the values
of R2 (0.93), F statistic (1311), and Durbin–Watson (1.396), Prob. χ2 (0.00) indicated a good concordance among the input

parameters with satisfactory results.

3.6. Validation and sensitivity analysis

This study used in situ district wells of groundwater level data for validation purposes. Figure 11 represents the average depth
to groundwater level for the period of pre-monsoon (2018–2019). The average depth of groundwater level was around 10.91
mbgl. It was observed that the groundwater level of the study area varies between 6.631 and 15.78 mbgl. According to the
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Figure 9 | Spatial pattern maps of the future: (a) Tmax, (b) Tmin, and (c) Precipitation, for the EC-Earth3 CMIP6 model (historical) in the study
area (1958–2020).
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groundwater level map, the lower part of the basin had a high fluctuation rate of groundwater level from 12.70 to 15.78 mbgl,
while the upper part had a moderate to low fluctuation rate groundwater level from 6.631 to 9.670 mbgl. In this study, the

groundwater level data was assigned with the threshold value of 10.91 mbgl (mean value) which specified the probability
range in the binary alignment (‘0’∼ moderate to a very low level, .10.91 mbgl, and ‘1’∼ moderate to a very high level,
,10.91 mbgl). In total 960 randomly selected field locations were used for model validation.

The optimal scores obtained after the validation of the ten ML models are presented in Table 3. The performance of each
ML model was evaluated using various statistical metrics (Table 2). Based on the AUROC results, the ADB and RF models
reached the best score (0.999), followed by the LR (0.998), NN (0.998), SVM (0.997), CAB (0.995), QDA (0.995), KNN

(0.995), NB (0.994), XGB (0.991), and DT (0.980) models, respectively (Supplementary material, Figure S14(a)). ADB and
XGB model are the best performers with 99% train and test accuracy compared to other ML models. The combined precision
and recall values were higher than 95% for the XGB, ADB, CAB, RF, and KNN models. Based on the F1 score (around 98%),
the XGB, ADB, and KNN models were the top three performers.

According to the Boruta technique, all the hydrometeorological factors were confirmed as the most prioritized decision for
the water storage analysis (Table 4). The Boruta feature importance, based on RF, was employed for parameter sensitivity
analysis with 99% accuracy. The results of the Boruta method revealed that precipitation had the lowest mean importance

at 5.8, while AET had the highest mean importance at 15.84. In contrast, the AET showed the highest importance for the
sensitivity analysis of the groundwater suitability followed by the Tmin, VPD, GWS, DEF, TWS, Tmax, PET, precipitation,
and runoff parameters, respectively (Supplementary material, Figure S14(b)).
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Figure 10 | Monthly equivalent water thickness (EWT) variation from 2002 to 2021 obtained by GRACE datasets: (a) Center for Space
Research (CSR) and (b) Jet Propulsion Laboratory (JPL) in the Ajay River Basin.
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4. DISCUSSION

Having a deep understanding of the various aspects of climatic variables that can affect natural resources is also important for

effective environmental management. Therefore, climate change studies have a significant insights at the local level for redu-
cing natural hazards. Salehie et al. (2022) assessed EWT for the water sustainability approach as more reliable through the
GRACE and GLDAS v2.2 datasets. According to this approach, our study showed the early years has a high reliability of
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Table 2 | OLS analysis results for hydrometeorological parameters

Parameters β ρ Std err.

VPD �0.4421 0.041 0.216

Tmax 0.541 0.082 0.311

GWS 3.4739 0.000*** 0.987

TWS �3.1759 0.001** 0.95

Tmin 0.8163 0.017* 0.95

Runoff 3.5603 0.000*** 0.95

Precipitation �2.1895 0.000*** 0.95

PET 2.0466 0.000*** 0.217

DEF �3.9187 0.000*** 0.217

AET �2.6534 0.000*** 0.217

Prob. χ2¼ 0.000 F¼ 1311 R2¼ 0.933 Durbin–Watson¼ 1.396

β, coefficient; std. err., standard error; robust standard errors; F, statistical; R2, linear regression.

*p , 0.05, **p , 0.01, and ***p , 0.001.

Figure 11 | The average depth to ground water level for the period of pre-monsoon, 2018–2019.
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water resources during the pre-monsoon season. indicated less reliability in water sustainability, and vice versa. Dhar (2010)
conducted a study on future (2040 and 2050) water availability and agricultural crop production in the context of climate

change scenarios in the Ajay River Basin. Their research identified declining trends of precipitation, ET, soil moisture, and
GWS in the southern part of West Bengal (Katwa and Gheropara). This outcome is comparable with the higher linear
trend of the different climatic and hydrological variability in this region. The CMIP6 model provided quantitative insights

into the potential impacts of the climate change cycle on future water storage conditions, droughts, and flood events from
the upper to lower basins (Yang et al. 2020a, 2020b). In our study, the standardized TWS anomaly index helped identify
drought-prone areas using hydrological datasets derived from GRACE and GLDAS. The findings indicate that the middle
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Table 3 | Performances matrices of ML models

ML classifiers Train accuracy Test accuracy Precision Recall F1 Score AUROC

SVM 0.966 0.972 0.990 0.936 0.963 0.997

Naïve Bayes 0.951 0.944 0.905 0.955 0.929 0.994

Neural Net 0.951 0.948 0.913 0.955 0.933 0.998

Logistic Regression 0.958 0.951 0.921 0.955 0.938 0.998

QDA 0.963 0.955 0.908 0.982 0.943 0.995

CatBoost 0.970 0.976 0.972 0.964 0.968 0.995

Nearest Neighbors 0.990 0.986 0.982 0.982 0.982 0.995

Decision Tree 0.994 0.965 0.924 0.991 0.956 0.980

Random Forest 0.996 0.979 0.981 0.964 0.972 0.999

AdaBoost 0.999 0.986 0.973 0.991 0.982 0.999

XGBoost 0.999 0.986 0.973 0.991 0.982 0.991

Table 4 | Boruta feature importance analysis and selection of hydrometeorological parameters

Parameters Mean importance Median importance Minimum importance Maximum importance Decision

VPD 15.22 14.98 14.2 16.42 Confirmed

Tmax 13.59 13.47 12.97 14.82 Confirmed

GWS 14.48 14.57 12.72 16.73 Confirmed

TWS 13.97 13.92 12.32 15.37 Confirmed

Tmin 15.38 15.36 14.21 16.76 Confirmed

Runoff 5.8 5.82 4.52 6.8 Confirmed

Precipitation 6.93 7.11 6.27 7.49 Confirmed

PET 10.41 10.36 9.86 11.1 Confirmed

DEF 14.4 14.32 13.72 15.68 Confirmed

AET 15.84 15.73 15.17 16.78 Confirmed
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to upper regions of the river basin have very little water storage because of variations in precipitation and very significant

groundwater level depletion as a result of human activity. Due to population pressure and extensive groundwater use for agri-
culture, one of the main issues is groundwater depletion. However, these datasets are valuable for implementing drought
mitigation strategies in sustainable river basin planning (Deliry et al. 2022).

Based on the SAI of precipitation in the early years (2020), which showed low values, we observed a simultaneous high rate
of DEF, and a declining trend in GWS and TWS in the southern most part of the area. The downstream portion of the river
basin had an abundance of surface water, which resulted in significant water storage. The present work highlights that high

runoff trends occur in the southern part (e.g., Gushkara, Gonna, Pratappur, Bhatkunda, Ausgram, Kurumba, Gopalpur,
Bhedia, Debshala, and Basudha). These areas are primarily agrarian blocks in West Bengal and are characterized by high
water consumption for domestic and agricultural purposes. Conversely, the variability and uncertainty of rainfall negatively

impact irrigation scheduling as well as basin-scale groundwater discharge and recharge rates (Sahoo et al. 2021). Similarly,
high DEF trends were observed in the middle part of the basin (e.g., Madhupur, Haripur, Lokepur, Sikandarpur, Amba, Char-
akamra, Banamalipur, Khajuri, Beniganj, Babuijore, and Chhotagholjor). Higher PET values are associated with higher
temperatures in this study domain. Relative temperature leads to higher values of AET and PET across the region. Our

research findings indicate a strong positive correlation between precipitation and runoff, AET, TWS, and GWS, while an
inverse correlation exists with Tmax, Tmin, VPD, and DEF. A similar study on precipitation revealed significant effects at
the p , 0.05 level with AET for river basin hydrology-related research (Desai et al. 2020).
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Due to agricultural and hydrological droughts, the combined effects of TWS, GWS, precipitation, rising temperature, DEF,

runoff, PET, and AET factors result in deteriorating climatic hydrological conditions throughout the research domain.
Padhiary et al. (2019) reported that surface runoff and AET dynamics can determine the climate change adaptation and
CRA status of the local livelihood condition. Furthermore, the low TWS and GWS trends are found in the northern part

(i.e., Salaria, Patwabad, Rampur, Burhai, Dhamni, Kushaha, Madhupur, and Thari blocks) of the study area. Because ground-
water is used for agriculture, the northern border of the region has a high groundwater stress zone due to strong trends in
VPD, Tmax, and Tmin and low trends in precipitation. This region belongs to hard crystalline rocks (gneissic complex) that
is abstracted negligible recharge for the GWS distribution (Banerjee et al. 2021). Chandra et al. (2019) showed that hard crys-

talline rocks with fracture networks are the major factors for steady sources of sustainable aquifer reserves. However,
moderate TWS and GWS have occurred in the Bindapathar, Pahargara, Dimjuri, Geria, Pagla, Sima, Pindargaria, and Dal-
beria blocks of the basin. The majority of the basin area comprises agricultural land (57.54%) that required more irrigation

and domestic purpose. Singha & Swain (2022) employed that water availability of the basin region is delineated by the land
use pattern and hydrological condition that is strongly allied with climatic variability. Several studies reported that the lower
part of the basin specified as more vulnerable to flood hazards that affect agricultural activity (Roy & Mistri 2016).

Moreover, this region is characterized by high TWS, GWS, and precipitation trends and moderate to low VPD, runoff, and
DEF trends due to climate uncertainty. Climate change-induced severe floods and droughts have a definite impact on GWS
and groundwater-dependent ecosystems (Swain et al. 2022). Our current study indicates a positive correlation between GWS,

TWS, precipitation, AET, runoff, and an inverse correlation with temperature in the context of environmental and climate
change studies (Sharma et al. 2022). The GWS, runoff, precipitation, PET, DEF, and AET are in good agreement of
.99%; while TWS and Tmin are ,95% significance level for the groundwater resource availability of the study area. The sta-
tistical significance of the study’s hydrological parameters for groundwater resource availability was evaluated using ML

validation analysis. Groundwater level sampling locations were divided into a 70:30% ratio for ML model validation, with
associated matrix evaluations. The OLS and Boruta feature importance methods were employed to minimize errors in cli-
mate-resilient strategies for this region (Lawal et al. 2023). The Boruta feature importance analysis highlighted that AET is

highly sensitive in basin hydrology compared to runoff (Desai et al. 2020).
5. RECOMMENDATION FOR CLIMATE-RESILIENT AND CLIMATE-ADAPTATION STRATEGY

• The current study also highlights climate-resilient groundwater management strategies based on the United Nations’ SDGs.
We recommend that groundwater management and planning should incorporate ecosystem and biodiversity-based
approaches, as well as community-driven adaptation solutions (Datta et al. 2022).

• Various long-term strategies and plans are needed to sustainably replenish groundwater resources, effectively turning them
into drought reserves.

• It is important to consider the incorporation of climate models’ projections, socio-economic factors, and hydrogeological

aspects. Additionally, the use of multi-model scenarios should be prioritized instead of a single scenario or a single climate
model (McDonald et al. 2022).

• A range of groundwater and agroecosystem-based sustainability approaches should be emphasized. These include securing

ecological veracity, land use improvement, selecting suitable groundwater recharge sites, raising public awareness, purifying
saline groundwater, recycling wastewater, improving groundwater recharge, promoting rainwater harvesting, implementing
irrigation, and managing organic-plastic ponds and wetlands to build CRA strategy in the study area (Rao et al. 2019).

• Utilizing geospatial technology for micro-level planning, along with the creation of informative charts and maps, and enga-
ging in cooperative community-based programs and workshops, early warning systems for weather forecasting, and
initiatives like the Pradhan Mantri Krishi Sinchayee Yojana (PMKSY), Mahatma Gandhi National Rural Employment
Guarantee Act (NREGA), and collaboration with NGOs should be promoted for surface and subsurface water conservation

strategies (Samuel et al. 2022).

• In the northern part of the basin, the increasing number of water storage structures should be considered as part of groundwater
resources management. These structures can be designed to regulate water flow and facilitate irrigation during severe droughts.

• Implementing climate-resilient and climate-smart agricultural practices, including crop rotation, diversification, mixed
cropping, planting rescheduling, cropping pattern adjustments, irrigation scheduling, and micro-irrigation, can enhance
rainfed agriculture systems for smallholder farmers.
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• Encouraging afforestation and the adoption of water preservation actions can help reduce the AET, PET, soil erosion, and

runoff losses in the basin. These measures can also help increase soil moisture storage as well as the TWS condition. Pre-
cision agricultural practices should be properly managed to ensure agricultural production can withstand the impacts of
climate change.

6. CONCLUSIONS

The aim of the study was to understand the long-term spatiotemporal trends in hydrology (1958–2020), climatic (1958–2050),
total water availability (2002–2021), and groundwater levels (2010–2017) changes. Various multi-satellite images, including

TerraClimate, CMIP6, GRACE, GLDAS, MODIS, as well as in situ data from the CGWB of India (CGWB, India), were uti-
lized to assess GWS in the Ajay river basin, India. The spatial trends of the SAI and SLR method were applied to analyze
climatic and hydrologic trends. Projections from NEX GDDP CMIP6 SSP2-4.5, SSP5-8.5 and historical (i.e., MIROC6 and

EC-Earth3) were used to examine future climate trends (2021–2050). The GRACE-derived JPL and CSR and GLDAS 2
CLM data were utilized for analyzing GWS, TWS, and EWT. Statistical correlation, OLS analysis, and Boruta sensitivity ana-
lysis were conducted to prioritize and understand the relationships among the observed parameters. The study found that

GRACE-derived EWT measurements in recent years have indicated a reduction in water resource reliability, suggesting a
declining trend in post-monsoon periods. Linear trends in annual precipitation and Tmax values ranged from �0.04 to
0.10 mm/year and 0.005–0.007 °C, respectively. Additionally, TWS and GWS exhibited higher values in the southern part

compared to the northern part. A declining trend in TWS was observed in the northern part, while a high GWS value
was noted in the southern part. In 2020, early-time precipitation, AET, runoff, TWS, and GWS were concentrated at
lower levels in the southern region, whereas Tmax, Tmin, PET, VPD, and DEF exhibited inverse conditions in this region.
The study’s findings underscore the direct impact of climate uncertainty on the vulnerability of agricultural productivity in

the north-western part of the region. These findings also offer insights into various climate resilience practices that can be
applied to sustainable agriculture. However, further research is needed to comprehensively assess the potential impacts of
climate change on groundwater practices among smallholder farmers and households by considering cultural and behavioral

aspects of the local community. Also, we implemented the meteorological forcing datasets for improvement of the CRA adop-
tion strategy. Different stakeholders’ perceptions, and community involvement are considered for the CRA. Future studies are
explored to encompass the findings of the current study to a superior range of environments crossways the globe. The study’s
reported observed data shortage issues and inadequate field validation are its drawbacks.
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