
Recurrent Neural Networks and Universal Approximation of Bayesian Filters

Adrian N. Bishop Edwin V. Bonilla
University of Technology Sydney CSIRO’s Data61

Abstract

We consider the Bayesian optimal filtering prob-
lem: i.e. estimating some conditional statistics
of a latent time-series signal from an observation
sequence. Classical approaches often rely on the
use of assumed or estimated transition and obser-
vation models. Instead, we formulate a generic
recurrent neural network framework and seek to
learn directly a recursive mapping from observa-
tional inputs to the desired estimator statistics.
The main focus of this article is the approxi-
mation capabilities of this framework. We pro-
vide approximation error bounds for filtering in
general non-compact domains. We also consider
strong time-uniform approximation error bounds
that guarantee good long-time performance. We
discuss and illustrate a number of practical con-
cerns and implications of these results.

1 INTRODUCTION

Optimal filtering (Bain and Crisan, 2008) is concerned with
estimating some statistics of a latent random signal (or
state) Xt at the current time t ∈ N, conditioned on some
observations Yτ collected thus far, i.e., 0 ≤ τ ≤ t. When
the signal transition and observation models are linear with
additive Gaussian noise, the solution is given by the cel-
ebrated Kalman filter (Kalman, 1960). In general non-
linear, non-Gaussian, settings, there is no tractable finite-
dimensional optimal filter and approximations are needed.
Nonlinearity and high state-dimensionality, typical in ap-
plications, make the filtering problem challenging.

We consider a data-driven approach to learning an opti-
mal estimator. More specifically, we consider scenarios in
which latent signal and observation data may be collected
by computer simulations (if a good model is available), ac-
tual experiments (otherwise) or some combination thereof.
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We provide a framework for optimal filtering using general
recurrent neural net (RNN) structures that may be trained by
minimizing the empirical mean-square error between the
sampled signal data and the network output, with the net-
work taking as input only the current observation at each
time. The output of the RNN acts as a recursive state es-
timator. We study a number of interesting approximation
capabilities of this estimator with respect to the true opti-
mal nonlinear filter (e.g. the true conditional expectations).

Summary of contributions: We propose a generic RNN-
based architecture and methodology for optimal (Bayesian)
filtering in general state-space models. This formulation is
kept generic so as to facilitate a study of the approxima-
tion capabilities and limitations of RNNs in applications to
Bayesian filtering. Firstly: We show that a generic RNN-
based estimator can approximate the optimal estimate of
the signal to any desired accuracy on a fixed finite time
interval of interest. We note that almost no assumptions
on the state-space model are needed in this case. Further-
more, the model may not even be known if experimental
data is available to generate signal training data. However,
the approximation capability in this setting relies strictly
on the assumption of a finite horizon of interest. Sec-
ondly: We study the time-uniform universal approxima-
tion of Bayesian filters with RNNs. For a particular class of
models, we show the approximation error can be bounded,
to any desired accuracy, uniformly for all time; i.e. imply-
ing that approximation errors do not accumulate over time.
This result has important practical implications, e.g. it may
influence network design, and it allows one to train on a
signal-observation sequence of (short) finite length while
permitting the filtering algorithm to run indefinitely (as is
typical in applications). Thirdly: We discuss and illustrate
a number of practical consequences of both results and con-
trast these with each other and with other methodologies.

Background and related work in filtering: Optimal fil-
tering and related problems in learning and inference in
dynamical systems are of interest across many fields of
study, including control and signal processing (Anderson
and Moore, 1979; Bain and Crisan, 2008), geophysics
Evensen (2009), machine learning (Van Der Merwe et al.,
2000; Ghahramani and Jordan, 1995), and statistics (Pitt
and Shephard, 1999; Andrieu et al., 2010). A comprehen-
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sive review of the methodology in this area is beyond the
scope of this paper. We simply note in passing some popu-
lar model-based approximations for nonlinear filtering such
as the extended Kalman filter (EKF) (Anderson and Moore,
1979) and the unscented Kalman filter (UKF) (Julier and
Uhlmann, 2004), and Monte Carlo integration methods for
filtering, termed particle filters (Gordon et al., 1993; Pitt
and Shephard, 1999), and ensemble Kalman filter (ENKF)
(Evensen, 2009) methods. There are some adaptions of
these model-based methods to data-driven, likelihood-free,
filtering, e.g., employing approximate Bayesian computa-
tion within Monte Carlo (Jasra et al., 2010; Martin et al.,
2019) or using Gaussian processes (Ko and Fox, 2009).

Neural network approaches to optimal nonlinear filtering
were considered in early work in Lo (1994); Parisini and
Zoppoli (1994); V. T. and Shin (1994); Alessandri et al.
(1999); Parlos et al. (2001). The article Haykin et al. (1997)
provides a good early summary and survey. These works
naturally considered very simple networks, e.g. one layer
and just a handful of sigmoidal-type activation functions;
e.g. see Lo (1994). However, convergence and approxima-
tion error results were also given in Lo (1994); Parisini and
Zoppoli (1994) and also in Parisini et al. (1997); Alessandri
et al. (1999). We generalize, strengthen, and add to these
early results in a number of ways in this work; e.g. in par-
ticular with our main result on time-uniform approximation
bounds with observations on non-compact domains.

Other work has used machine learning to improve the opti-
mization of calculating the initial state in a variational data
assimilation framework (Frerix et al., 2021) and inference
in state-space models (see, e.g., Murphy, 2012, Ch. 18).
Some approaches have developed approximate inference
techniques in parametric settings (Ghahramani and Hinton,
2000; Fox et al., 2008). Later methods have used non-
parametric models such as Gaussian processes (Frigola
et al., 2014; Doerr et al., 2018; Nickisch et al., 2018; Ia-
longo et al., 2019) or flexible modern neural network-based
frameworks (Krishnan et al., 2017; Gu et al., 2015; Karl
et al., 2016; Haarnoja et al., 2016; Becker et al., 2019). Fi-
nally, we note that learning time-series models with neural
networks is closely related to the filtering discussed here;
e.g., it may be considered a special case in which the ob-
served data is just the signal process with no noise, see,
e.g., Karl et al. (2016); Rangapuram et al. (2018).

The purpose of this work is not the development of new
(RNN-based) methodology for Bayesian filtering. Instead,
we study the universal approximation capability of (rather
generic) RNN-based approximations of the optimal filter,
both on finite time intervals and uniformly in time. In later
sections, when we can easily reference specific technical
details and conditions, we discuss the results of this arti-
cle, and (briefly) contrast these with other approximation
methods as in Heine and Crisan (2008); van Handel (2009);
Whiteley (2013); Douc et al. (2014); Crisan et al. (2020).

2 DISCRETE-TIME BAYESIAN
FILTERING

Let X ⊆ Rdx and Y ⊆ Rdy with the Borel σ-algebra
B(X). Consider a Markov chain (Xt)t∈N taking values in
X with Markov kernel K : X × B(X) → [0, 1]. Consider
a process (Yt)t∈N defined on Y, conditionally independent
given (Xt)t∈N, with a transition density g : X × Y → R
with respect to the Lebesgue measure. The process Xt

is thought of as being observed via the process Yt. The
process (Yt)t∈N is itself not a Markov chain, but the pair
(Xt, Yt)t∈N is a Markov chain on X × Y. Denote1 by Pµ

the law of (Xt, Yt)t∈N under which the pair (Xt, Yt)t∈N
is a Markov chain on X × Y with X0 having measure
µ ∈ P(X). The space of all probability measures on X
is P(X). Expectation with respect to Pµ is denoted by Eµ.

Filtering involves computing the regular conditional dis-
tribution πµt (A) := Pµ(Xt ∈ A |Y1, . . . , Yt), for all
A ∈ B(X). The distribution πµt ∈ P(X) is called the filter-
ing distribution. From Bayes’ rule,

πµ0 = µ,

πµt = Ψ(πµt−1, Yt) (2.1)

where, for some ν ∈ P(X) and y ∈ Y, the function Ψ :
P(X)× Y→ P(X) is defined by,

Ψ(ν, y)(A) :=

∫
A
g(x, y) (νK)(dx)∫
g(x, y) (νK)(dx)

, ∀A ∈ B(X) (2.2)

where (νK)(dx) :=
∫

K(x′, dx) ν(dx′). The mapping Ψ is
time-invariant. The process (πµt )t∈N on P(X) is a Markov
process when X0 has measure µ ∈ P(X) (Stettner, 1989).

For a finite-dimensional integrable function x 7→ ρ(x),
x ∈ X, taking values in some Euclidean space, the filtering
problem is often stated in terms of a point-valued estimate,

πµt (ρ) :=

∫
ρ(x)πµt (dx) = Eµ[ρ(Xt) |Y1, . . . , Yt] (2.3)

For example, one may want to estimate just the conditional
mean and covariance of Xt, if they exist.

2.1 Bayesian Filtering as Optimal State Estimation

A closely related problem to that of filtering is state estima-
tion. Going forward, we assume (Xt, Yt) are jointly square
integrable and any measurable function preserves square
integrability, e.g. E[‖ρ(Xt)‖2] < ∞. Then, consider the
measurable function ρµt := ρµt (Y1, . . . , Yt); being the solu-
tion of the optimization problem,

ρµt := argmin
f

Eµ
[
‖f(Y1, . . . , Yt)− ρ(Xt)‖2

]
(2.4)

1Superscripts often denote initial conditions for random pro-
cesses, but are also indices (e.g. over data, parameters, etc), and
also just powers in some places. The use and case should be clear.
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where f is any measurable function of (Y1, . . . , Yt). The
solution to (2.4) is related to the optimal filtering problem
by ρµt = πµt (ρ), as defined in (2.3). Note ρµt is square
integrable (as it may be viewed as the orthogonal projection
onto the closed subspace of square integrable functions).

We think of ρµt as the optimal estimate of the state ρ(Xt).
This estimate is intractable in all but the most pathological
situations. It is desirable in practice to design an approx-
imation of ρµt . We denote a computable estimate by ρ̂νt
where ν ∈ P(X) is a known, assumed, or estimated distri-
bution of X0 such that ρ̂ν0 := ν(ρ) is also computable.

We emphasise here that the solution to (2.4), as given by
ρµt = πµt (ρ), see (2.3), is not generally given in the form of
a recursion, even though the recursion (2.1) on the level of
the conditional distribution exists.

To close this section, note πµt (ρ) makes sense in more gen-
eral settings than outlined for (Xt, Yt) thus far (e.g. beyond
independent, time-invariant, Markov settings); as does the
solution to (2.4). Recursions of the form (2.1) also hold un-
der more general models, see Tong and van Handel (2012).

2.2 Sufficient Coordinates and Recursive Filtering

The recursion in (2.1) is on the level of probability mea-
sures and is generally infinite dimensional and intractable.
Informally, e.g. neglecting existence and other structure,
we may define a (generally infinite dimensional) vector
state of sufficient statistics on a (separable) Banach space S.
For the filtering distribution πµt ∈ P(X) we may consider,
for example, the conditional moments,

Sµt :=

∫ [ x
vec(xx>)

...

]
πµt (dx) (2.5)

as in Rudenko (2010). A recursive Bayes filter may then
take the form,

Sµt = Ψ(Sµt−1, Yt) =: Ψt(S
µ
t−1) (2.6)

on S for some measurable function Ψ : S × Y → S. The
subscript t in Ψt succinctly indexes the observational input;
highlighting the recursion on S. In this notation, we write
the composition Sµt = ΨtΨt−1 · · ·Ψτ+1(Sµτ ) for τ < t ∈
N. If such a representation exists, then Ψ is time-invariant.

We may claim that a finite-dimensional recursive optimal
filter exists if and only if S is finite dimensional and we
can transform between Sµt and πµt in some standard way.
In the linear-Gaussian setting a finite-dimensional state Sµt
and recursion (2.6) exists from which πµt follows (Ander-
son and Moore, 1979). See also Sawitzki (1981); Dickin-
son and Sontag (1985); Levine and Pignie (1986). If Sµt is
finite, then it is a special case of πµt (ρ) for some x 7→ ρ(x).

3 GENERIC RNN-BASED STATE
ESTIMATORS

We introduce a generic RNN architecture for state estima-
tion. Consider a network with L ∈ N layers, in the form,

ρ̂νt = W(L,L−1)s
(L−1)
t + b(L) (3.1)

s
(l)
t = σ

(
W(l,l−1)s

(l−1)
t + b(l) +

∑L−1
k=l W(l,k)s

(k)
t−1

)
,

l ∈ {1, . . . , L− 1} (3.2)

s
(0)
t := Yt (3.3)

where σ(·) is a vector-valued activation function acting
component-wise on its argument. Component-wise, i.e.
on scalar inputs, we assume σ(·) := max{0, ·} here, i.e.
we consider only rectified linear activation units (RELUs).
The parameter θ := [(W(l,l−1),W(l,k)),b(l)] consists of
appropriately sized real matrices and vectors. The generic
notation for the RNN-approximated state estimator is,

ρ̂νt = Ψ̂θ(st−1, Yt) := Ψ̂θ
t (st−1) (3.4)

where st is a stacked vector of the s
(l)
t . The parameter θ

is time-invariant and takes values in a high-dimensional
Euclidean space. The recursion (3.4) is on the level of
the internal network state st−1 which we suggest captures
in some sense a finite-dimensional approximation of suffi-
cient statistics as in (2.6), enough to approximate πµt (ρ).
Assumption 1. The process (Xt, Yt)t∈N is jointly square
integrable and x 7→ ρ(x), and y 7→ Ψ̂θ(·, y), are finite-
dimensional, square integrable, and take values in some
Euclidean space. The assumption on Ψ̂θ is provable.

Common specialisations of (3.1), (3.2), (3.3) involve feed-
back solely from the last activation layer to the first layer;
and feedback from the output of each layer to itself, see
Pascanu et al. (2014). Our results are proven under com-
mon simplifications of (3.1), (3.2), (3.3).

The ideal RNN-approximated estimator is based on opti-
mizing θ according to the following cost functional,

C(θ) :=
1

T

T∑
t=1

Eµ
[
‖Ψ̂θ(st−1, Yt)− ρ(Xt)‖2

]
(3.5)

on a finite horizon T ∈ N. In practice, suppose some data
DT,N := (X

(n)
t , Y

(n)
t ), t ∈ {1, . . . , T}, n ∈ {1, . . . , N}

with finite N ∈ N, is independently sampled according
to the law Pµ. The data may be collected via computer
simulations (if a good model Pµ is available), real-world
experiments, or some combination. Practically, a network
is trained by minimizing, over θ, the empirical loss,

θ∗ := argmin
θ

CN (θ), (3.6)

CN (θ) :=
1

NT

N∑
n=1

T∑
t=1

‖Ψ̂θ(st−1, Y
(n)
t )− ρ(X

(n)
t )‖2



Recurrent Neural Networks and Universal Approximation of Bayesian Filters

with s0 given. The loss CN (θ) is a sample version of (3.5)
and CN (θ) −→N→∞ C(θ). In practice, we might define
ρ̂ν0 := ν(ρ) and set s0 commensurately, dependent on the
network. We may also consider s0 as a model parameter
and optimise its value (Lo, 1994). The approximation the-
orems consider the initialisation as part of the result.

4 APPROXIMATION THEOREMS

4.1 A General Approximation Theorem

Theorem 1. Let Assumption 1 hold. Let Ψ̂θ(st−1, Yt) de-
note a generic multilayer RNN, as in (3.1), (3.2), (3.3), tak-
ing as input elements in the sequence (Yt)t∈{1,...,T}. Then
for any ε > 0, there exists a finite real parameter vector θ∗,
and an initialisation vector s0, such that,

1

T

T∑
t=1

Eµ
[
‖πµt (ρ)− Ψ̂θ∗(st−1, Yt)‖2

] 1
2 ≤ ε (4.1)

Proof. Note πµt (ρ) = E [ρ(Xt) |Y1, . . . , Yt]. This is an ex-
tension of Lo (1994), who considers single-layer networks
with observations on compact domains. Instead we use
Kidger and Lyons (2020) and consider deep RNNs on non-
compact domains. We construct a network of the form,

ρ̂νt = W(L,L−1)s
(L−1)
t + b(L) (4.2)

s
(l)
t = σ(W(l,l−1)s

(l−1)
t + b(l)),

l ∈ {2, . . . , L− 1} (4.3)

s
(1)
t = σ(W(1,0)Yt + W(1,1)s

(1)
t−1 + b(1)) (4.4)

with W(2,1) = W(2,1.5)W(1.5,1) and b(2) = b′(2)+b(1.5).
Consider the first layer and a half,

s
(1.5)
t = W(1.5,1)s

(1)
t + b(1.5) (4.5)

with s
(1.5)
t being the effective input then to layer 2. We

seek at any time t ∈ {1, . . . , T} the state,

s
(1.5)
t =

[
t ρµ0

>
Y >t Y >t−1 . . . Y

>
1 0 0 . . . 0

]>
(4.6)

with s
(1.5)
T = [T ρµ0

>
Y >T . . . Y >1 ]. Let W(1.5,1) = I and,

W(1,0) =


[0 0 ··· 0]

0
I
0
...
0

, (4.7)

W(1,1) =


1 0 0 0 0 0 0 ··· 0 0 0 0
0 I 0 0 0 ··· 0
0 0 0 0 0 ··· 0
0 0 I 0 0 ··· 0
0 0 0 I 0 ··· 0

0 0 0 0
. . . . . . 0

 (4.8)

where I in W(1,0) and all but the first I in W(1,1) denotes
a dy-dimensional identity matrix, and the first I in W(1,1)

is the size of ρµ0 . And let,

b1 =
[
1 [0 · · · 0]> [b · · · b]> 0 · · · 0

]>
, (4.9)

b(1.5) =
[

0 −b −b · · · −b
]>

(4.10)

Initialise,

s0 = s
(1)
0

=
[
0 [ρµ0 + [b · · · b]>]> [0 · · · 0] b . . . b

]>
(4.11)

With this network construct and with b > 0 large enough
we find ∀t ∈ {1, . . . , T} the state s

(1.5)
t is given by (4.6)

over a domain on which Pµ places most mass, as desired,
see Kidger and Lyons (2020, proof of Theorem 4.16).

There is no more feedback in the network constructed in
this proof and the state s(1.5)t can thus be viewed as an input
for the feedforward neural network from layers 2 to L.

We define a target function, for the feedforward network
from layers 2 to L, by,

f(t, ρµ0 , Y1, . . . , YT )

=


ρµ0 if t = 0
Eµ [ρ(X1) |Y1] if t = 1

...
Eµ [ρ(XT ) |YT , · · · , Y1] if t = T

(4.12)

This function is (Borel) measurable. We now apply clas-
sical universal approximation theorems on f . See Kidger
and Lyons (2020, proof of Theorem 4.16) for an easy to
follow construction immediately applicable here.

The preceding theorem holds only on those finite time hori-
zons t ∈ {1, . . . , T}, owing to the special structure of the
constructed network in the proof. The finite time T ∈ N
may be arbitrary, but the size of the resulting network (in
theory) grows with T . We discuss further the results of
this work later. Next we show that, for a particular class
of models, the approximating network size is not gener-
ally a function of time and the approximation error remains
bounded uniformly for all time; i.e. implying that approxi-
mation errors do not accumulate over time.

4.2 Recursive Filters, Approximations, and
Time-Uniform Approximation Error Bounds

The main result is presented in this subsection. We con-
sider a finite-dimensional statistic of interest πµt (ρ) =: Sµt
that evolves recursively as per (2.6). We may consider
a finite-dimensional truncation of an infinite-dimensional
sufficient statistic in place of Sµt if necessary. See Sawitzki
(1981); Dickinson and Sontag (1985) for general finite-
dimensional filtering results and Goodman (1975); Segall
(1976); Marcus (1979); Daum (1986) for models, which
may lead naturally to finite-dimensional truncated repre-
sentations of statistics. We need some assumptions.
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Assumption 2. Observation process (Yt)t∈N is stationary.

Assumption 3. The map s 7→ Ψ(s, ·) is Lipschitz with fi-
nite Lipschitz constant, and there exist real finite constants
C > 0, 0 < κ < 1 independent of τ, t ∈ N such that,

Eµ
[ ∥∥Ψt · · ·Ψτ (Ss0τ−1)−Ψt · · ·Ψτ (Ssτ−1)

∥∥2 ] 1
2

≤ C κ(t−τ) Eµ
[
‖Ss0τ−1 − Ssτ−1‖2

] 1
2 (4.13)

for any initial points s0, s ∈ S and all τ ≤ t.

This (4.13) is an “eventually (exponentially) contracting on
average”-type property of the optimal filter (2.6). With
(4.13), trajectories eventually come together on average, at
an exponential rate; but they may never converge to a fixed
point or invariant measure. The latent signal need not be
ergodic nor admit an invariant measure for this condition
to hold; but under general conditions if the signal is (ex-
ponentially) ergodic, then one expects so is the Bayesian
filter (2.1) or (2.6). Results of this type (but often not as
strong as the assumption) have been widely studied, and
we reference: Atar and Zeitouni (1997); Budhiraja and
Ocone (1999); Chigansky and Liptser (2004); Oudjane and
Rubenthaler (2005); Kleptsyna and Veretennikov (2007);
Crisan and Heine (2008); van Handel (2008); Tong and van
Handel (2012); Gerber and Whiteley (2017). Although the
details differ and are challenging, known results support the
intuition that sufficiently informative observations or suffi-
ciently contractive latent signals may generally translate to
results like in Assumption 3. This idea is well exemplified
with linear-Gaussian models, discussed later, see Bishop
and Del Moral (2017). The following is the main result.

Theorem 2. Let Ψ̂θ(st−1, Yt) denote a generic multilayer
RNN, as in (3.1), (3.2), (3.3), taking as input elements in the
sequence (Yt)t∈N. Suppose Assumptions 1, 2 and 3 hold.
Then for any ε > 0, there is a finite real parameter θ∗, and
an initialisation vector s0, such that,

Eµ
[ ∥∥∥Ss0t − Ψ̂θ∗(st−1, Yt)

∥∥∥2] 1
2

≤ ε (4.14)

for all s0 ∈ S and all t ∈ N. This is a time-uniform bound.

Proof. We construct a RNN in the special form,

Ŝs0
t = W(L,L−1)s

(L−1)
t + b(L) (4.15)

s
(l)
t = σ(W(l,l−1)s

(l−1)
t + b(l)),

l ∈ {2, . . . , L− 1} (4.16)

s
(1)
t = σ(W(1,0)Yt + W(1,L−1)s

(L−1)
t−1 + b(1)) (4.17)

Only the output of the last activation layer is fed back to the
input of the first layer. With no loss of generality, we write,

Ŝs0
t = Ψ̂t(st−1) = Ψ̂t(Ŝ

s0
t−1) (4.18)

The notation Ŝt = Ψ̂t(Ŝt−1) and the network structure
highlights the recursive nature of this approximation, in
line with (2.6). This feedback structure is quite different
to that used in the proof of Theorem 1, as discussed later.

Consider the error,

Ss0t − Ŝ
s0
t = Ψt · · ·Ψ2Ψ1(s0)− Ψ̂t · · · Ψ̂2Ψ̂1(s0) (4.19)

for any s0 ∈ S and with s0 = s
(L−1)
0 in this case. Let

s
(L−1)
0 = s0. We expand this error as a telescopic sum as,

Ss0t − Ŝ
s0
t =

t∑
τ=1

(
Ψ̂t · · · Ψ̂τ+1Ψτ

(
Ψτ−1 · · · (s0)

)
− Ψ̂t · · · Ψ̂τ+1Ψ̂τ

(
Ψτ−1 · · · (s0)

))
(4.20)

This expansion formula is easy to check, e.g. try t ∈ {3, 4}.
Note Ss0τ−1 = Ψτ−1 · · · (s0), and we then have,

Eµ
[ ∥∥Ss0t − Ŝs0t

∥∥2 ] 1
2

=

≤
t∑

τ=1

Eµ
[ ∥∥Ψ̂t · · · Ψ̂τ+1Ψτ

(
Ss0τ−1

)
−Ψ̂t · · · Ψ̂τ+1Ψ̂τ

(
Ss0τ−1

)∥∥2 ] 1
2

(4.21)

Assume now there exists real finite constants C > 0, 0 <
κ < 1 independent of τ ≤ t ∈ N such that,

Eµ
[ ∥∥∥Ψ̂t · · · Ψ̂τ (Ŝs0τ−1)− Ψ̂t · · · Ψ̂τ (Ŝsτ−1)

∥∥∥2 ] 1
2

≤ C κ(t−τ) Eµ
[
‖Ŝs0τ−1 − Ŝsτ−1‖2

] 1
2 (4.22)

for any initial points s0, s ∈ S and all τ, t ∈ N. That
is, we assume the approximated filter inherits the hypoth-
esised stability of the optimal filter (maybe with different
constants, but the specifics of the constants won’t matter).
We verify this assumption later. Applying this condition,

Eµ
[ ∥∥Ss0t − Ŝs0t

∥∥2 ] 1
2

≤ Eµ
[ ∥∥Ψt

(
Ss0t−1

)
− Ψ̂t

(
Ss0t−1

)∥∥2 ] 1
2

+C

t−1∑
τ=1

λ(t−τ−1)Eµ
[ ∥∥Ψτ

(
Ss0τ−1

)
− Ψ̂τ

(
Ss0τ−1

))∥∥2 ] 1
2

(4.23)

we get a sum of one-step RNN-based approximation errors,
with each term weighted by the stability factor of Ψ̂t.

Let S′ be some random variable with measure η′ ∈ P(S).
We consider Eµ[‖Ψτ (Ss0τ−1) − Ψ̂τ (Ss0τ−1)‖] for any τ ∈
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{1, . . . , t}. Applying the triangle inequality twice we get,

Eµ
[ ∥∥Ψτ (Ss0τ−1)− Ψ̂τ (Ss0τ−1)

∥∥2 ] 1
2

≤ Eµ
[ ∥∥Ψτ (Ss0τ−1)−Ψτ (SS

′

τ−1)
∥∥2 ] 1

2

+Eµ
[ ∥∥Ψτ (SS

′

τ−1)− Ψ̂τ (SS
′

τ−1)
∥∥2 ] 1

2

+Eµ
[ ∥∥Ψ̂τ (SS

′

τ−1)− Ψ̂τ (Ss0τ−1)
∥∥2 ] 1

2

(4.24)

From (4.13) and (4.22), with the latter to be verified, the
first and third terms in the last inequality satisfy,

Eµ
[ ∥∥Ψτ (Ss0τ−1)−Ψτ (SS

′

τ−1)
∥∥2 ] 1

2

+ Eµ
[ ∥∥Ψ̂τ (SS

′

τ−1)− Ψ̂τ (Ss0τ−1)
∥∥2 ] 1

2

≤ c λτ Eµ
[ ∥∥s0 − S′∥∥2 ] 1

2

(4.25)

for all τ ∈ {1, . . . , t} and some finite c > 0, 0 < λ < 1.
Let C0 := cEµ[‖s0 − S′‖2]

1
2 <∞.

It follows by a (non-trivial, but classical) result of Elton
(1990) and an extension in Debaly and Truquet (2021),
that given Assumption 3 and stationarity of the observa-
tion sequence (Yt)t∈N, there exists a random S∞ such that
(Sηt )t∈N with η := Law(S∞) ∈ P(S) is stationary in S.

With η′ = η, note SS
′

τ ∼ η, ∀τ ∈ N by stationarity. Then,

Eµ
[ ∥∥Ŝs0t − Ss0t ∥∥2 ] 1

2 ≤
(
C + 1− κ

1− κ

)
×(

C0 + Eµ
[ ∥∥Ψ

(
S, Y

)
− Ψ̂

(
S, Y

)∥∥2 ] 1
2

)
(4.26)

where S has distribution η, and Y is distributed according
to the invariant law of the stationary observation sequence.

Bounding Eµ[‖Ψ(S, Y )− Ψ̂(S, Y )‖2] is then achieved via
classical universal approximation results for feedforward
neural networks. In particular, applying Kidger and Lyons
(2020, Theorem 4.16) we know a network exists such that,

Eµ
[ ∥∥Ψ

(
S, Y

)
− Ψ̂

(
S, Y

)∥∥2 ] 1
2 ≤ ε (4.27)

for any ε > 0, with the added property that the Lipshitz
constant of Ψ̂(·, y) is less than or equal to that of Ψ(·, y).
The Lipschitz property follows from the main result in Eck-
stein (2020), see also Neumayer et al. (2022), when com-
bined with Kidger and Lyons (2020, Proposition 4.9) in the
proof of Kidger and Lyons (2020, Theorem 4.16).

Any ε > 0 that solves ε ≥ (ε + C0) C+1−κ
1−κ is enough for

the desired result (4.14).

It remains to establish the assumed (4.22). However, this
follows directly from the fact that the Lipshitz constant of
the chosen Ψ̂(·, y) is less than or equal to that of Ψ(·, y). In
which case, (4.22) holds whenever (4.13) holds.

4.3 Discussion

Practical consequences: The results above have relevant
practical implications. For example, Theorem 2 implies
that RNN approximations to the optimal filter may be ac-
curately applied on test sequences indefinitely, even when
trained on finite-length data sequences (maybe only a hand-
ful of training time steps). This is desirable in online fil-
tering applications. In particular, the approximation errors
made at each step do not accumulate unbounded over time.

Note that Theorem 2 is divorced from any training proce-
dure and is an idealised result. In practice, one is unlikely
to know what a suitable sufficient statistic looks like and
may only be interested in finding a small number of opti-
mal conditional moments (e.g. maybe just the mean and
covariance). A loss function used in practice for training
a network might then only account for a small subset of
the sufficient statistics required to define an optimal filter-
ing recursion. This does not limit the theory. The recur-
sion on the (wide) final activation layer may propagate a
much higher-dimensional statistic defining the optimal fil-
ter than is carried forward through a linear output layer. In
practice one may also consider a deeper feedforward net-
work appended after the feedback layer, so as to compute
other conditional functions. While these design and train-
ing ideas are not pertinent to the stated approximation ca-
pability results, they may be relevant in practical network
design and in the design of loss functions and (e.g. hierar-
chical) training schemes.

The feedback in (4.2), (4.3), (4.4), used in the proof of The-
orem 1, acts to memorise the observations, and the network
otherwise seeks to approximate (non-recursive) solutions
to (2.4), as in (2.3). Conversely, the time-uniform result
in Theorem 2 is based on a network that directly approx-
imates the optimal filtering recursion itself. This distinc-
tion offers some insight into the contrast between mem-
orisation versus recursive state feedback in RNNs. Con-
trasting these two structures may influence network design
and training in some applications; e.g. in models with long
time-dependencies, or if the signal is not well understood,
or perhaps to counter the effects of finite truncation in the
number of sufficient statistics. Although the network (4.2),
(4.3), (4.4) involves a memorisation over the entire finite in-
terval of interest, in practice Eµ [ρ(Xτ ) |Yτ , · · · , Y1] may
depend only weakly on observations in the distant past, e.g.
as recognised and exploited in so-called fixed-lag smooth-
ing methods, see Moore (1973). Thus, a smaller network,
e.g. for (4.12), with a combination of recursion and mem-
orisation may provide good longer-time performance.

Limitations: Unfortunately, (4.14) cannot be expected to
hold, in general domains, under much weaker assumptions.
For example, consider a linear-Gaussian signal/observation
model that is controllable and observable, but with an un-
stable latent signal. The Kalman filter is stable in this case
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and Assumption 3, i.e. (4.13), holds. However, in this case,
the transition of Xt is not ergodic and Pµ(Yt ∈ ·) places
most mass on sets of ever increasing distance from the ori-
gin. Thus, Assumption 2 does not hold, and its not possible
to uniformly control the one-step approximation error as
needed in the latter parts of the proof of Theorem 2.

In general, there are limited circumstances in which a
finite-dimensional recursive filter of sufficient statistics ex-
ists. Even if such a filter exists, the square-integrability
assumption on the sufficient statistic itself may be limit-
ing. However, there may be natural finite-dimensional trun-
cations of infinite-dimensional representations in the form
(2.6), e.g. see Goodman (1975); Marcus (1979). For ex-
ample, a Taylor-series truncation of the optimal filter, up to
any finite order, can be approximated with this framework
(with the most basic truncation being the so-called EKF, see
Goodman (1975); Anderson and Moore (1979), based on a
first-order Taylor expansion).

Since the filter is in practice learnt from data, and large neu-
ral networks are seemingly able to accurately capture com-
plex high-dimensional maps, a RNN algorithmic framework
offers distinct advantages in Bayesian filtering and time-
series inference (e.g. over existing methods like model-
based filters like the EKF/UKF, or Monte Carlo/particle
methods). For example, a RNN may capture much higher-
order finite truncations of some infinite optimal filtering
statistic than is possible in other approaches, with less (test-
time) computational burden. Conversely, Theorem 2 sheds
some light on the theoretical limitations, viz. Assumption
2, of (at least naive versions of) this method in approxi-
mating recursive filter models; though contrast these with
Theorem 1 on finite intervals.

The broad approach to prove Theorem 2 follows from re-
sults in the particle filtering community due to Del Moral
and Guionnet (2001). Related work is focused on the trans-
fer of stability from the optimal filter to the (particle) ap-
proximations; with deep technical methods aimed at prov-
ing and applying conditions like in Assumption 3, see, e.g.,
Heine and Crisan (2008); van Handel (2009); Whiteley
(2013); Douc et al. (2014) and the stability literature ref-
erenced earlier. See also Crisan et al. (2020). The setup
and proof of Theorem 2 takes a simpler view in terms of
Assumption 3, so as to maximise the pedagogical value of
these proof methods in problems involving RNNs, where
they may not be known. This approach also offers some
insight into the specific formulation and obstacles native
to the generic neural approximation, e.g. as per Assump-
tion 2. The details here contrast with other approximations:
e.g. with particle approximations the one-step error may
be controlled easier over longer horizons without Assump-
tion 2. However, general theoretical results with particles
may still be limited by comparable assumptions, as in van
Handel (2009); Douc et al. (2014). Indeed, in Bishop and
Del Moral (2020) it is proven that the basic bootstrap parti-

cle filter of Gordon et al. (1993) is incapable of tracking an
unstable linear-Gaussian signal; in which setting Assump-
tion 2 fails to hold, although Assumption 3 still holds.

Extensions: A trained RNN-based estimator will apply in
practice under more complicated models than posited ear-
lier; e.g., non-independent, non-Markov or time-varying.

Exponential ergodicity of the latent signal is in general set-
tings likely sufficient for Theorem 2 to hold; i.e. this prop-
erty implies asymptotic stationarity of the observations,
and likely transfers to the filter so conditions like Assump-
tion 3 hold. Next we study a special case in which Assump-
tion 2 can be relaxed to just asymptotic stationarity.

4.4 Extension to Asymptotically Stationary
Observations: Kalman Filtering Case Study

We examine a mild, but useful relaxation of Assumption 2;
and illustrate where problems may arise when this assump-
tion does not hold. Consider a linear-Gaussian model,

Xµ
t = FXµ

t−1 + Vt (4.28)
Yt = HXt +Wt (4.29)

where F and H are real matrices, andX0 has Gaussian dis-
tribution µ ∈ P(X) with meanX0 and covariance C0. The
random sequences (Vt)t∈N, (Wt)t∈N are mutually indepen-
dent zero-mean Gaussian with covariance matrices Q ≥ 0
and R > 0, also independent of X0. If the model is de-
tectable and stabilisable, see Anderson and Moore (1979),
then Assumption 3 holds. We assume even more later.

We define the filter state S(X0,C0)
t := (Xt,Ct) ∈ S via a

slight abuse of notation. The form of the true Kalman filter
for the model (4.28), (4.29) is given by,

Xt := Eµ [Xt |Y1, · · · , Yt]
= (F−K∗tHF)Xt−1 + K∗tYt (4.30)

Ct := Covµ [Xt |Y1, · · · , Yt] = Covµ
[
Xt −Xt

]
= (I−K∗tH)

(
FCt−1F

> + Q
)

(4.31)

where Covµ[·] denotes the relevant covariance, and,

K∗t =
(
FCt−1F

> + Q
)
H>×[

R + H
(
FCt−1F

> + Q
)
H>
]−1

(4.32)

Corollary 1. Consider a linear-Gaussian signal and ob-
servation model (4.28), (4.29). Assume the spectral radius
of F is strictly < 1. Let Ψ̂θ(st−1, Yt) denote a RNN, as in
(3.1), (3.2), (3.3), taking as input elements in the sequence
(Yt)t∈N. Then for any ε > 0, there is a finite real parameter
θ∗, and an initialisation vector s0, such that,

Eµ
[ ∥∥∥S(X0,C0)

t − Ψ̂θ∗(st−1, Yt)
∥∥∥2] 1

2

≤ ε (4.33)

for all t ∈ N and all (X0,C0) ∈ S
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The observation sequence is neither Markov nor stationary
in general, and the hypotheses of the corollary here do not
call for these conditions.

Proof. Stacking (4.30) and (4.29) we may write,[
Xt

Xt

]
=

[
F−K∗tHF K∗tHF

0 F

] [
Xt−1
Xt−1

]
+

[
K∗t 0
0 I

] [
Wt

Vt

]
(4.34)

The transition matrix for the given stacked system has spec-
tral radius < 1 (its eigenvalues are the union of those of
the diagonal blocks). We consider a RNN approximation of
(4.34) and (4.31), treating this pair as the filter of interest.
Assumption 3 holds for the pair (4.34), (4.31). The added
noise process for the stacked system is stationary and thus
Assumption 2 holds. Theorem 2 can now be applied. That
is, there is a RNN that may approximate the system (4.34),
(4.31) with (Wt, Vt) as an input. Suppose that we substi-
tute Yt for the input Wt, drop the input Vt, and set to zero
the affine feedback map of X̂t. The result is a sub-network
approximation of the desired (4.30), (4.31). By enforcing
an accurate enough network approximation of (4.34), the
result (4.33) holds for the sub-network approximation of
the desired (4.30) when swapping the input from Wt to Yt.
This follows because,

Eµ[‖Yt −Wt‖2]
1
2 ≤ Eµ[‖HFtX0 + H

∑t−1
k=1F

kVk‖2]
1
2

≤ ‖H‖‖Ft‖ (trace(C0) + ‖X0‖2)
1
2

+
‖H‖ trace(Q)

1
2

1− ‖F‖
(4.35)

is just a finite constant (and ‖Ft‖ even goes to zero).

We remark that it is just the one model property (i.e. the
spectral radius of F being< 1) that ensures the observation
sequence is asymptotically stationary, and that Assumption
3 is satisfied. This supports the more general notion that
exponential ergodicity of the latent signal is sufficient for
Theorem 2 to hold, as noted just before this subsection.
Note Assumption 3 holds under just model detectability
and stabilisability conditions (Anderson and Moore, 1979)
(which can hold when the signal is unstable; but which are
implied when the spectral radius of F is < 1).

We have mildly relaxed the Assumption 2 that (Yt)t∈N is
stationary used in Theorem 2. To see where things may
go wrong, consider an identity approximation of a scalar
observation Yt given by σ(Yt + b) − b for a sufficiently
large scalar bias b > 0. If Yt is stationary, then there is a
b such that Eµ[‖Yt − (σ(Yt + b) − b)‖2] ≤ ε for any ε >
0. However, suppose Xt is unstable and Yt moves to the
negative; then there is a time τ = τ(b) ∈ N such that with
exponentially large probability we have σ(Yt+b)−b = −b
for all t > τ . The approximation error for all t > τ grows
on average and a time-uniform bound is impossible.

5 EXAMPLE

We consider a simple scalar example to illustrate the re-
sults, conditions, and some of the discussion points. Let,

Xt = αXt−1 + Vt,

Yt = Xt + βWt (5.1)

where X = R, α ∈ {0.98, 1.001}, β ∈ {1, 2} and Vt, Wt

are independent standard Gaussian white noises, indepen-
dent of X0 which is zero mean Gaussian with variance 25.

The Kalman filter S(X0,C0)
t := (Xt,Ct) is optimal and

Assumption 3 holds in all cases considered (by satisfac-
tion of the classical detectability and stabilisability condi-
tions). If |α| < 1, then Xt is ergodic and Assumption 2
holds. Here, |α| < 1 is an explicit provable threshold on
the satisfaction of Assumption 2. We also have the ground-
truth comparison in the optimal Kalman filter. We can thus
study the requisite condition for time-uniform approxima-
tion (e.g. moving from α = 0.98 to just α = 1.001).

We train a RNN based on (3.6) with ρ(x) = x, i.e. neglect-
ing the variance. We use Ntrain samples over horizons of
length Ttrain. This training loss function is consistent with
prior discussion noting that in practice one is unlikely to
know the nature of sufficient statistics, nor desire them all
as outputs, nor be willing to train on loss functions with all
of them. We also consider a basic particle filter implemen-
tation (Gordon et al., 1993) with 1000 particles.

We compute ( 1
Ntest

∑Ntest

n=1 (X
(n)

t − X̂(n)
t )2)

1
2 where X̂(n)

t

is the n-th mean state estimate of the particle or RNN ap-
proximation from Ntest = 1000 independent test exam-
ples. The test horizon is Ttest = 2000 in all cases.

In Fig 1 (α = 0.98, β ∈ {1, 2}) and Fig 2 (α = 1.001,
β = 2) we plot the errors for different parameters. For
each case we consider a RNN in the form (4.15), (4.16),
(4.17) with L = 3 and 7 RELUs on both hidden layers.

In each case in Fig 1 we train with just Ttrain = 20, and
Ntrain = 5000. With α = 0.98, Corollary 1 holds, and the
RNN-based method outperforms the particle filter (which
does not handle accurate observations β = 1 well here).

In Fig 2 we consider Ttrain = 20, Ntrain = 5000 (as be-
fore), and also Ttrain = 200, Ttrain = 1000, Ttrain = 2000
(in the latter two cases we reduce Ntrain = 1000).

These examples reflect on a number of discussion points:
1) training on an output/cost function of interest, but of
lower dimension than the sufficient statistic required to de-
fine the optimal filter; 2) when the conditions of Theorem
2/Corollary 1 are met, we may train on finite-length (often
very short, maybe one or a handful of steps, depending on
the ergodicity) but apply the filter indefinitely at test time
with no unbounded accumulated growth of error; 3) differ-
ing capabilities and particulars of differing approximation
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Figure 1: Root mean square errors.

Figure 2: Root mean square errors (log vertical scale).

schemes (e.g. particle vs neural in this case); 4) if either as-
sumption is unmet, we may learn networks that work well
on the length of the training data, e.g. as in Theorem 1, but
eventually the error may start to accumulate.

6 CONCLUSION

We consider a generic recurrent neural network framework
that approximates directly a recursive mapping from ob-
servational inputs to some desired Bayesian filter statistics.
The focus of this article is the approximation capability of
this framework. We provide approximation error bounds
for filtering in general non-compact domains. The main re-
sult of this work is a couple of conditions on the underlying
observation sequence and on the optimal filter that when

satisfied allow one to approximate the optimal Bayesian
filter to any desired accuracy over an indefinite or infinite
time horizon. When applicable, this strong, time-uniform
approximation result ensures good long-time filtering per-
formance in practice. We discuss and illustrate a number
of practical concerns and implications of these results; and
we contrast the fixed horizon and time-uniform results with
each other. With respect to the time-uniform universal ap-
proximation result, we explore the mechanisms by which
the required conditions manifest in practice, their necessity,
and we discuss their appearance in similar results based on
different filtering approximation schemes.
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