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Abstract
To solve complex real-world problems, heuristics and concept-based approaches can be used to incorporate information into 
the problem. In this study, a concept-based approach called variable functioning (Fx) is introduced to reduce the optimization 
variables and narrow down the search space. In this method, the relationships among one or more subsets of variables are 
defined with functions using information prior to optimization; thus, the function variables are optimized instead of modify-
ing the variables in the search process. By using the problem structure analysis technique and engineering expert knowledge, 
the Fx method is used to enhance the steel frame design optimization process as a complex real-world problem. Herein, 
the proposed approach was coupled with particle swarm optimization and differential evolution algorithms then applied for 
three case studies. The algorithms are applied to optimize the case studies by considering the relationships among column 
cross-section areas. The results show that Fx can significantly improve both the convergence rate and the final design of a 
frame structure, even if it is only used for seeding.

Keywords Engineering optimization · Problem structure · Gray-box optimization · Variable interaction analysis · 
Evolutionary computation

1 Introduction

Real-world optimization problems are often complex and 
difficult to solve due to factors like dimensionality, nonline-
arity, and existence of complex constraints. To deal with this 
level of complexity, many approaches, such as dimensional-
ity reduction, approximation, and problem decomposition, 

are common. Another way of dealing with complex prob-
lems is incorporating expert knowledge into the optimization 
process. For example, in the case of problem decomposition, 
knowledge of problem structure is needed, which might be 
known a priori or might be discovered automatically with 
relevant analysis techniques (Mei et al. 2016).

Recently, gray-box optimization has been coined to refer 
to the optimization process of problems for which the struc-
ture is known (Santana 2017). This is in contrast to black-
box optimization, where zero knowledge of the problem is 
assumed. Although this might be a reasonable assumption 
for simulation type problems, it is not a realistic assumption 
for a wide range of optimization problems. For example, the 
use of a deterministic crossover operator, which respects the 
problem structure, allows optimization of cast scheduling 
problems with up to a billion variables (Deb and Myburgh 
2017). Similar approaches have been used successfully with 
Traveling Salesman Problems (Whitley et al. 2010) and 
pseudo-boolean problems (Tintos et al. 2015).

In the context of evolutionary algorithms, two general 
approaches have been suggested to adapt an algorithm to the 
known characteristics of a given problem (De Jong 1988): 
1. To change the representation of the problem such that 
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the traditional variation operators remain applicable; and 
2. To devise new variation operators to work with the origi-
nal representation of the problem perceived as “natural”. In 
this work, we used the former approach to solve steel frame 
design optimization problems.

Frame design is one of the most popular optimization 
problems in structural engineering (Saka 2007). It is con-
sidered to be a complex problem considering the involve-
ment of elaborate finite element models and existence of 
several mechanical and geometric constraints relating to 
maximum and minimum stress, buckling, story and roof 
drifts. Furthermore, the existence of discrete or mixed-
type variables, due to the need for predefined cross-sec-
tions in the frame construction industry, also adds to its 
complexity.

Due to the wide practical applications and versatility 
of frame design optimization, an effective method of solv-
ing such problems can significantly reduce the construc-
tion cost. As a result, many researchers have attempted 
to optimize frame structure design as a complex, discrete 
problem using a variety of methods (Lamberti and Pap-
palettere 2011), including non-deterministic and stochastic 
algorithms (Hasançebi et al. 2010; Azad and Hasançebi 
2015). The objective of frame design is to minimize the 
frame weight (relating to cost) subject to complex nonlin-
ear constraints. For the steel frame structures, the design 
variables usually include the cross-sections of the beams 
and columns. In practice, these members must be chosen 
from a standardized set of cross-sections, which makes the 
problem discrete.

In this paper, we propose a method called variable func-
tioning (Fx) to change the problem representation with the 
aim of controlling its complexity and taming the curse of 
dimensionality by reducing the number of decision variables. 
In this method, the structural information of the problem is 
extracted using state-of-the-art variable interaction analysis 
methods from which functional mapping is performed to 
map the input space to a lower dimensional space based 
on the identified interaction patterns of original input vari-
ables. For the purposes of this paper, we adopted differential 
grouping (DG2) (Omidvar et al. 2017) to find the problem 
structure in the form of nonlinear relationships among the 
decision variables. This information can be visualized with 
heat-maps and/or variable interaction graphs to give further 
insight about the nature of the problem. The variable inter-
action information contains interesting patterns, which are 
otherwise hard to discover even by the experts. These pat-
terns are then used by the experts to devise a functional map 
that transforms the original complex problem into a simpler 
problem with fewer decision variables. Once the problem 
is reformulated, the resulting transformed problem can be 
optimized using any suitable optimizer.

Additional information can be embedded in an optimiza-
tion process in a heuristic way to simplify or improve the 
process. Moreover, the heuristics can be very effective if 
they are applied correctly. There are some existing heuristics 
in the frame design optimization process, such as consider-
ing the symmetry of a problem to decrease the number of 
variables and number of finite elements in the model (Talata-
hari et al. 2015). Additionally, fabrication conditions should 
be imposed on the construction of structural elements. For 
instance, the same beam/column cross-section should be 
used for N consecutive stories, resulting in a reduction in 
the number of problem variables (Talatahari et al. 2015). 
However, unlike variable functions proposed in this paper, 
these methods are problem-specific and cannot be general-
ized to a wider range of problems. Variable functioning, on 
the other hand, is based on automatic variable interaction 
analysis, which can be applied to a wide range of problems. 
It is worth mentioning that the proposed method is compat-
ible with these ad hoc techniques and can be considered 
complementary.

The proposed approach is simple and can be coupled with 
any optimization algorithm, such as particle swarm opti-
mization (PSO) and differential evolution (DE) algorithms. 
The proposed method is explained along with an illustra-
tive example and then applied to three steel frame design 
optimization problems. The results show that the proposed 
approach can significantly improve both the convergence 
rate and the final solution of frame design optimization prob-
lems, even if it is only used in the initialization step and not 
through entire search optimization process.

The rest of this study is organized as follows. Section 2 
presents the formulation of the steel frame design problem 
along with the optimization algorithms and constraint han-
dling schemes used in this study. The proposed variable 
functioning approach and its application to steel frame 
design problem are explained in Sect. 3 by means of an illus-
trative example. Section 4 is devoted to the three case studies 
used for benchmarking. Finally, conclusions, discussions, 
and future insights are presented in Sect. 5.

2  Steel frame design optimization process

2.1  Problem formulation

The main variables in a steel frame design optimization 
problem are usually member sections, which are grouped 
based on the fabrication conditions and symmetry of the 
structure. Therefore, the optimization variables in a steel 
frame structure are the cross-sections of each group, as 
� = (x1,… , xng ) , where ng is the number of member groups. 
As it is mentioned, the objective of frame design problems 
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is usually the minimization of the frame weight (W), which 
can be formulated as:

where � is the material density; Li,j is the length of jth ele-
ment in the ith group; ng is the number of groups; nm is the 
number of members in the ith group; and � is the search 
space for the variables (cross-sections). Note that although 
other variables can be considered for steel frame design opti-
mization, this study only considers cross-sections as design 
variables. Even though the weight of the steel frames is 
considered as the objective function in this work, a more 
detailed optimization approach could take into account the 
cost-efficiency of the design examples. Despite the fact that 
the main concern of the current study is reducing the search 
space, it can also be readily applied to problems where 
minimizing the cost is considered the objective (Pavlovčič 
et al. 2004). In practice, cross-sections must be chosen from 
a predefined and standardized set of cross-sections (e.g., 
W-shapes), which makes the problem discrete. This problem 
is generally subject to stress constraints, maximum lateral 
displacement, and inter-story displacement constraints (Tal-
atahari et al. 2015). The stress constraints can be formulated 
as follows:

where �i and �a
i
 are the maximum stress and allowable stress 

in the ith member, respectively. Therefore, the number of 
stress constraints is equal to the number of members (ele-
ments) in the problem. The maximum lateral displacement 
and inter-story displacement constraints can be respectively 
formulated as follows:

where �T is the maximum lateral displacement; H is the 
height of the frame structure; R is the maximum drift index; 
dj is the inter-story drift; hj is the height of the jth floor; ns 
is the total number of stories; and RI is the inter-story drift 
index permitted by the standard design code in engineer-
ing practice. The allowed inter-story drift index is taken as 
1/300, based on the American Institute of Steel Construc-
tion (AISC) design code (AISC 2011). For the Load and 
Resistance Factor Design (LRFD), the interaction formula 

(1)minimize
�∈�

W(�) =

ng∑
i=1

�

(
nm∑
j=1

Li,j

)
xi,

(2)v�
i
=
|||||
�i

�a
i

|||||
− 1 ≥ 0,∀i ∈ {1,… , nm}

(3)v� =
�T

H
− R ≥ 0,

(4)vd
j
=

dj

hj
− RI ≥ 0,

constraints (AISC 2001, Equation H1-1a,b) are formulated 
as follow:

where Pu is the required strength (tension or compression); 
Pn is the nominal axial strength (tension or compression); 
�c is the resistance factor ( �c = 0.9 for tension, �c = 0.85 
for compression); Mux and Muy are the required flexural 
strengths in the x and y directions, respectively; Mnx and Mny 
are the nominal flexural strengths in the x and y directions 
(for two-dimensional structures, Mny = 0 ), respectively; and 
�b is the flexural resistance reduction factor ( �b = 0.9 ). The 
effective length factors of members (K) are required to com-
pute the allowable compression and Euler buckling stresses.

2.2  Algorithms

Metaheuristics are the global and stochastic optimiza-
tion algorithms generally inspired by nature. Based on the 
sources of information, metaheuristics can be divided into 
two classes: swarm intelligence (Slowik and Kwasnicka 
2018) algorithms that mimic a swarm behavior, and evo-
lutionary computation (Eiben and Smith 2015) algorithms 
that use evolutionary mechanism, such as crossover, muta-
tion, and selection. Both classes of metaheuristics have been 
widely used for simulation optimization (such as FE analy-
sis). Also, they have been successfully applied in complex 
frame design optimization problems (Saka 2007; Gholizadeh 
and Poorhoseini 2016; Ghasemi and Farshchin 2011).

In this study, the particle swarm optimization (PSO) 
algorithm is used as a classical swarm intelligence, and a 
differential evolution (DE) algorithm is applied for frame 
optimization as an acclaimed evolutionary algorithm to 
couple with the proposed variable functioning approach. It 
should be noted that finding the best algorithm(s) is not the 
purpose of this study and these two algorithms have been 
used to represent two classes of metaheuristics.

The PSO algorithm, initially suggested by  Kennedy 
(1995), mimics the social behavior of bird flocks and fish 
schools. As one of the best-established swarm intelligence 
algorithms, PSO has been applied to many structural optimi-
zation problems. Since it is population-based, particles for-
age the search space to find the best solutions. DE Storn and 
Price (1997) is a population-based evolutionary optimization 
algorithm, which uses three operators (selection, mutation, 
and crossover) to lead the solution toward the global opti-
mum. PSO and DE algorithms were used in this study for 

(5)vI
i
=

⎧
⎪⎨⎪⎩

Pu

2𝜙cPn

+
�

Mux

𝜙bMnx

+
Muy

𝜙bMny

�
−1 ≤ 0,

Pu

𝜙cPn

< 0.2

Pu

𝜙cPn

+
8

9

�
Mux

𝜙bMnx

+
Muy

𝜙bMny

�
−1 ≤ 0,

Pu

𝜙cPn

≥ 0.2,
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steel frame design optimization. Note that this study does 
not propose a new optimization algorithm. Instead, the aim 
of this study is to show how the proposed method works with 
global optimization algorithms to reduce the search space, 
or more specifically the design space of steel frame design.

2.3  Constraint handling

The constraint handling is based on feasibility rules pro-
posed by Deb (2000) as follows: 

1. If both solutions are feasible, the one with the better 
objective function value is preferred.

2. A feasible solution is preferred to an infeasible one.
3. If both solutions are infeasible, the one with a smaller 

amount of constraint violation is preferable. The amount 
of constraint violation is also normalized according 
to Becerra and Coello (2006):

where nc is the number of constraints; gi(�) is the ith con-
straint of the problem; and gmax i is the largest violation of 
the ith constraint so far. Based on the rules, a fitness func-
tion is proposed by Deb (2000) to penalize the solutions that 
violate the constraint(s). The penalized fitness function is 
formulated as follows:

where fmax is the objective function value of the worst fea-
sible solution in the population. Using this strategy, infeasi-
ble solutions are only compared based on their normalized 
constraint violation. Note that other constraint handling 
schemes, such as the Automatic Dynamic Penalisation 
method (e.g., Montemurro et al. (2013)), which may per-
form better but needs to be evaluated since it depends on the 
optimization algorithm, problem as well as the implementa-
tion details of the proposed approach. In both DE and PSO 
algorithms, solutions may go out of the defined boundaries. 
In DE, if a component of a solution violates either upper or 
lower bounds, it is returned to the violated bound. In PSO, 
however, if the solution is returned to the boundary, it has 
a high probability of violating the boundary again. This is 
because the inertia of the previous motion contributes to 
the current motion. Therefore, when a particle component 
violates a boundary, its related velocity component ( � ) is 
reversed to return the solution to the boundary and also over-
come the problem. This boundary constrained handling can 
be formulated as follows:

(6)G(�) =

nc∑
i=1

gi(�)

gmax,i

,

(7)fp(�) =

{
f (�) if G(�) ≥ 0

fmax + G(�) otherwise,

3  Variable functioning

3.1  Methodology

Most real-world problems are complex and often include with 
black/gray box models. Optimization of such problems is dif-
ficult because the systems typically lack much information. 
In such cases, embedding information and knowledge can be 
very helpful to boost the optimization process. This informa-
tion can be obtained from different sources, such as statistical 
tests, engineers’ knowledge, expert systems, etc.

Such knowledge can be utilized as additional information 
even before the search process and can be adapted to signifi-
cantly improve the optimization process. In this section, an 
approach is proposed and explained for incorporating informa-
tion from different sources to narrow down the search space 
and potentially reduce the problem dimension. The next sec-
tion particularly focuses on applying the proposed approach 
on a steel frame design optimization problem.

Here, engineering domain knowledge is embedded into 
the steel frame optimization process and can also be used in 
similar problems.

In an optimization problem, one (or more) objective 
function(s) should be optimized with respect to some variable 
vector � = (x1,… , xn) , which can be simply formulated as:

Considering the relationship among a set of variables, a 
general relationship could be defined using a mathemati-
cal function � ∶ ℝ

m
→ ℝ

q . For example, if the first q vari-
ables, (x1,… , xq) , have a functional relationship that can be 
expressed with � , they can be replaced by a function with m 
variables � = (y1,… , ym) . Now, the optimization problem 
can be represented as:

or simply

where m is the number of variables in the functioning rela-
tionship ( � ). Using the new formulation ( f̂  ), the optimiza-
tion results always satisfy the defined relationship for the 
first q variables. Now, if m < q , the problem dimension 
is also reduced, which reduces the search space and thus 
simplifies the problem. If more than one set of variables 

(8)v
(t+1)

i,j
=

{
v
(t+1)

i,j
feasible

−v
(t+1)

i,j
infeasible.

(9)Optimize
�∈�

f (x1,… , xn).

(10)optimize
�∈��∧�∈��

f (�(�), xq+1,… , xn),

(11)optimize
�∈𝛺�∧�∈𝛺�

f̂ (y1,… , ym, xq+1,… , xn).
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has functioning relationships, the generalized form of the 
approach for any number of functions can be formulated 
as follow:

where s is the number of functioning relationships and 
each functioning relationship �i(�i) ∶ ℝ

mi → ℝ
qi . From the 

general formulation, 
∑s

j=1
mj <

∑s

j=1
qj indicates the prob-

lem dimension is reduced and is equal to their difference, ∑s

j=1
(qj − mj) . The proposed approach can be coupled with 

any generalized optimization algorithm, as it only alters 
optimization problem formulation.

Several approaches have been proposed recently to group 
decision variables of a black-box problem, such as adap-
tive monotonicity checking (Munetomo and Goldberg 1999; 
Chen et al. 2010), variable partitioning (Ray and Yao 2009), 
and min/max variance decomposition (Liu and Tang 2013). 
However, all these methods still have a low grouping accu-
racy. This drawback has resulted in several recent studies on 
variable interaction learning (Chen et al. 2010), statistical 
learning decomposition (Sun et al. 2012), and meta-mod-
eling decomposition (Mahdavi et al. 2014). For instance, 
(Omidvar et al. 2014) proposed differential grouping (DG) 
to determine the nonseparable groups. This method was later 
extended as DG2 (Omidvar et al. 2017), which has shown 
superior performance concerning grouping accuracy meth-
ods and does not have any parameters to tune (Omidvar et al. 
2017).

3.2  Variable functioning for steel frame structures

Structural engineering knowledge and concepts are typically 
used for the formulation of structural optimization problems. 
For instance, to consider the fabrication conditions in steel 
frame optimization problems, the beam and column sections 
are grouped into two/three consecutive stories. In this sec-
tion, we aim to find ways to embed information and knowl-
edge to find relationship between column cross-sections as 
the main variable in steel frame design optimization. A sin-
gle stepped column under a lateral load is shown in Fig. 1. 
The objective of this problem is minimization of the column 
weight to satisfy the maximum stress constraint in each seg-
ment, and the variables are the radii of the cross-sections.

One way of finding variable interactions in a black box 
model is performing the differential grouping test (Omidvar 
et al. 2014). This method was recently improved by Omidvar 
et al. (2017), named DG2, as mentioned above. Herein, the 
DG2 method was used to find interaction between variables, 
and the results for a column with 50 segments is visualized 
in Fig. 2. From this heat map, it is clear that variables have 
high dependency on the first variable (cross-section of the 
base segment).

(12)optimize
�∈��∧�∈��

f (�1(�1),… , �s(�s), xq+1,… , xn),

From an engineering point-of-view, there are several rea-
sons why the cross-section of a floor should be less than or 
equal to a cross-section in the lower floor. The first reason 
concerns the physics of the problem, whereby each column 
cross-section carries the cumulative axial loads above it. 
Additionally, installing a cross-section on a smaller cross-
section in a column is not practical and notably difficult, as 
it cannot transfer the load correctly. Therefore, the cross-
section area should be monotonically decreased as the story 
number increases. In other words, the story height and col-
umn cross-section area have an inverse relationship.

The following points are considered to relate the cross-
section area of a column by means of their heights:

– dependencies of all cross-sections to the first one (based 
on the DG2 test results illustrated in Fig. 2); and

– monotonically decreasing column cross-section area with 
increasing heights (based on engineering points of view);

The respective function is defined as:

(13)A(h) =
A(0)

�h

Fig. 1  Stepped column design problem with circular cross-sections 
under lateral load
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where A(0) is the cross-section area of the base segment; 
� is a new variable; h is the height of a cross-section from 
the base (or ground); and A(h) is the cross-section area of 
the column located at the height of h. For the base cross-
section, h = 0 , � = 1 , and from (13), A(h) = A(0) . In this 
equation, all the variables (cross-section areas) are related 
to the first variable by the new variable, � , and cross-section 
height. Therefore, all of a column’s cross-section areas can 
be related to each other using a function with just two vari-
ables: the cross-section area of the base column, A(0), and 
� . To monotonically reduce the cress-section areas while 
increasing the height, � should be greater than 1. Further-
more, the largest value of � is obtained when the lowest pos-
sible cross-section area is located at the end of the column 
(highest cross-section), which can be calculated from the 
following equation:

where hu is the height of the uppermost column section 
from the ground; and Amin and Amax are the smallest and 
largest cross-section areas among the predefined sec-
tions, respectively. Based on the above discussion, the 

(14)�max =
hu

√
Amax

Amin

,

boundaries of the new variable are �� ∶ � ∈ [1, �max] . 
Using this approach, all the variables (cross-section areas) 
above the base are replaced with � in the new formulation. 
It should be noted that this function can be used for dif-
ferent sets of columns. In other words, a problem with s 
columns and n cross-sections, f (A1,… ,An) , is replaced 
with f (A1(h),… ,As(h),Ai+1,… ,An) after defining s func-
tions. Note that other rules may apply for other problems 
like weak beam-strong column rule for the seismic regions 
that are not low-risk.

3.3  Illustrative example

A simple example for applying the proposed approach 
is a single stepped column under a lateral load, which is 
created here to illustrate the proposed method. Here, the 
objective is to minimize the column weight, subject to 
satisfying the maximum stress constraint in each segment, 
and variables are the radii of the sections (here radii are 
used instead of area). Then, the optimization problem is 
formulated as follows:

Fig. 2  Interaction matrix
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where N is the number of segments, which is equal to 50; 
� ∈ {r1,… , rN} ; ri is the radius of the ith segment subject to 
r ∈ [3, 50]50cm ; � is the density; and L is the length of each 
segment. Subject to:

where �i is the maximum bending stress at the bottom of the 
ith segment; and �a

i
 is the allowable stress. To implement 

the proposed variable functioning strategy, the variables are 
converted as:

The height vector of the cross-section is now equal to:

where hu is hmax = (N − 1)L = 49L = 490cm , and therefore, 
the � boundary can be obtained as:

The � bounds should be: �� ∶ � ∈ [1, 1.00575817] All the 
segments’ radii are related to the radius of the first seg-
ment and the � value. For this problem, ten solutions with 
r1 = 30cm are presented in Fig. 3. The straight line at the top 
shows � = 1 , and the lowest line (brightest line) indicates the 
solution with � equal to �max . In this case, all the possible 
solutions will be placed within these two lines. Based on 
the original formulation, each cross-section radius should 
be within 3 and 50 cm. Since r1 = 30cm , all radii should 
be less than 30 cm. Also, components of a solution have an 
order (shown as lines in Fig. 3) and are not distributed in 
the whole search space. Therefore, it is clear how much this 

(15)minimize
r∈�r

f (�) = �L

N∑
i=1

�r2
i
,

(16)g(r) = �i − �a
i
≤ 0,

{r1,… , rN} ↦ {r1, �}

h(i) = (i − 1)L

�max
490

√
50

3
= 1.0057581

approach narrows down the search space, which can enhance 
the search process.

After reformulating the current problem, the new objec-
tive function can be redefined as follows:

Using the new formula, the problem with 50 variables was 
converted to a problem with only two variables and was 
solved using both PSO and DE. Each algorithm was used 
for optimizing this problem via three strategies: 

1. Optimization algorithm for solving the problem without 
reformulation

2. Optimization algorithm for solving the problem with 
reformulation only for initialization (iFx)

3. Optimization algorithm for solving the problem with 
reformulation (Fx)

Due to the random nature of the optimization process, each 
strategy was ran 51 times, and the performance plots are 
presented in Fig. 4. At first, it is obvious that the PSO 
and DE algorithms have completely different results in 
optimizing a constrained problem due to their different 
natures. Also, it should be noted that, because of the selec-
tion operator in DE, a feasible solution cannot be replaced 
with an infeasible solution. Thus, the number of infeasible 
solutions cannot increase, and the DE histories are smooth. 
Conversely, since the PSO algorithm does not have such a 
selection operator, a feasible solution can be replaced with 
an infeasible solution. As a result, the number of infeasible 
solutions may increase during the search process.

From Fig. 4a and b, it can be seen that iFx and Fx strate-
gies have better starting points. This should be the main 
reason why they converge more quickly and to better val-
ues in comparison to the original algorithm without the 
variable functioning approach. These two performance 
plots show that the third strategy can converge after a 
few iterations. Since the Fx strategy reduces the problem 
dimension from 50 to 2, it converges very fast. Although 
the third strategy converges very quickly, its final solution 
is slightly worse than the second strategy for this problem, 
due to the fact that the candidate solutions are forced to 
stay with the defined function during all iterations. From 
Fig. 4c and d, all candidate solutions to the algorithms 
with the proposed strategy quickly converge on the feasible 
region, and their convergence rates are better than those 
of the iFx and Fx strategies. The PSO-iFx candidate solu-
tions move toward the feasible region faster than those of 
PSO, which suggests that initialization using the proposed 

minimize
r1∈�r∧�∈��

f (r1, �) = �L

N∑
i=1

�

( r1

�h(i)

)2

subject to g(r1, �) = �i − �a
i
≤ 0.

Fig. 3  Sample solutions for the cross-section of the base column 
equal to 30 cm
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approach could be effective in PSO. Compared to DE, the 
DE-iFx candidate solutions converge to the feasible region 
much faster. For this stepped column example, it is clear 
that the PSO and DE results significantly improved after 
using the proposed approach. However, the steel frame 
design optimization is more complex, and cross-section 
areas should be selected from predefined sections. The 
next section presents several case studies on steel frame 
design optimization to demonstrate the applicability of the 
proposed method.

4  Numerical case studies

Design of three steel frame structures are optimized in 
this section as case studies. In the structural engineer-
ing literature, frame structures are usually defined by the 
number of stories and bays (Talatahari et al. 2015). These 
benchmarks for 1-bay 8-story, 3-bay 15-story, and 3-bay 
24-story are considered the best-designed frame case 
studies in this study (Talatahari et al. 2015). The level 

Fig. 4  History results (performance plots) of the optimization algo-
rithms for stepped column design problem. a mean convergence his-
tories of PSO runs, b mean convergence histories of DE runs, c histo-

ries of infeasible candidate solutions rate for PSO runs, d histories of 
infeasible candidate solutions rate for DE runs
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of interaction between each pair of variables for these 
three case studies are visualized in Fig. 6, which con-
firms that all column cross-sections depend on the base 
column cross-section. These steel frame design problems 
were optimized by both PSO and DE algorithms. Like the 
illustrative example, three strategies were implemented 
in each of the optimization algorithms. Because of the 
random nature of the optimization process, each strategy 
was ran 51 times to obtain meaningful results. After trial 
and error, with the initial population up to 100, a range 
of 20 to 60 was found to be best for the benchmark steel 
frame problems with and without the variable functioning 
approach, as illustrated in Table 1.

The maximum number of function evaluations, or the 
number of finite element (FE) analyses, was considered to be 
the stopping criterion, which can be found from the conver-
gence history plots. The structural analysis was performed 
in MATLAB using the matrix stiffness method implementa-
tion of FE.

4.1  Design of a 1‑bay, 8‑story frame

The 1-bay 8-story problem is one of the benchmark struc-
tural engineering problems (Gandomi and Yang 2011) that 
has been widely used in the literature (e.g.,  Juliani and 
Gomes (2022)). The configuration of this frame structure, 
including the applied loads, is shown in Fig. 5. After consid-
ering the fabrication conditions affecting the construction of 
the frame structure, the same beam/column cross-sections 
were used for the two following stories. The values of both 
the beam and column element groups were chosen from all 
267 W-shapes. In this case, the roof drift is the only perfor-
mance constraint, which should be less than 5.08 cm. The 
modulus of elasticity (E) of the steel was taken as 200 GPa.

The proposed approach was used to reformulate the 
problem variables (column cross-section areas). Here, four 
column cross-section areas were replaced with the base 
cross-section area and � ; therefore, the number of column 
variables was decreased to two variables. PSO and DE algo-
rithms were applied to solve this benchmark problem with 
the three defined strategies. The convergence histories of 
PSO and DE algorithms with 3000 FEs for Fx and 5000 
FEs for the other strategies and the mean of 51 runs are 
presented in Fig. 7. From the shown histories, it can be seen 

that the algorithms using iFx and Fx strategies started the 
search from a better fitness compared to the algorithm with-
out variable functioning, which demonstrates that the ini-
tialization itself (iFx) can significantly improve the search 

Table 1  Population size of benchmark steel frames

Problem Variable Functioning

None iFx Fx

1-bay 8-story frame 25 25 20
3-bay 15-story frame 40 40 25
3-bay 24-story frame 60 60 25

Fig. 5  Topology of the 1-bay 8-story frame
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process. Note that each of these methods converged to a 
different solution, and the final cross-sections of any two 
strategies were not the same. The PSO convergence history 
(Fig. 7a) clearly indicates that iFx helps the algorithm to 
converge more quickly and to better solutions. Using the pro-
posed approach during the search process (Fx) significantly 
improved the convergence rate of PSO in comparison with 
the other two strategies. The DE convergence histories also 
have the same trend as those of PSO histories. Although 
the convergence rates improved after using DE-iFx and 
DE-Fx, the improvements were not as significant as those 
of PSO. Note that the results of the PSO-Fx and DE-Fx algo-
rithms were obtained after 3,000 FEs, while the others were 
received after 5,000 FEs. Therefore, the third strategy (Fx) 
improved the convergence rates significantly for this case.

Figure 8 presents the number of infeasible solutions 
during the PSO and DE iterations, respectively. From 
Figs. 8a and 7a, it can be seen that PSO mostly performs 

exploration for about the first half of iterations when the 
best feasible solutions and violation rates remained almost 
constant after a few iterations. Fig. 8a also shows that the 
percentage of infeasible solutions in PSO and PSO-iFx is 
similar. This means that, despite different initializations, 
both algorithms have the same constraint violation histo-
ries. In Fig. 8a, the PSO-Fx results have the same pattern 
as the other methods with a smaller scale (fewer FEs), 
which confirms the advantages of the Fx strategy over the 
other two strategies in reaching more feasible solutions. 
Figure 8b illustrates an entirely different paradigm, where 
the constraint violation of DE is less than that of DE-iFx 
and DE-Fx. Also, DE-iFx and DE-Fx infeasible solutions 
histories are very similar and differ from the DE history. 
This is because the DE-iFx and DE-Fx strategies generate 
more infeasible solutions in early iterations compared to 
the DE strategy (approximately 10%).

Fig. 6  Variable interaction matrix of various steel frames

Fig. 7  Convergence histories of the 1-bay 8-story frame optimization problem using PSO and DE algorithms



Variable functioning and its application to large scale steel frame design optimization  

1 3

Page 11 of 17 13

4.2  Design of a 3‑bay, 15‑story frame

The 3-bay 15-story frame structure is shown in Fig. 9, 
including the configuration and applied loads. This steel 
frame optimization problem has been used by many 
researchers as a benchmark (Mosharmovahhed and Mohar-
rami 2021). The AISC combined strength and displacement 
limit (sway of the roof is restricted to 23.5 cm) IA consid-
ered as the constraint for optimizing the frame weight. The 
used steel has E = 200 GPa and a yield stress (Fy) of 248.2 
MPa. After considering the fabrication conditions for the 
construction of the frame, the same column cross-sections 
were used for the three following stories. Because of the 
symmetry of the frame structure, two sets of columns were 
considered here: inner columns and outer columns. Each 
column set was replaced with one function to apply the pro-
posed approach, and as a result, the number of variables 
decreased from 11 to 5 after using the Fx approach.

The 3-bay 15-story frame problem was solved by PSO 
and DE algorithms with different strategies. The maximum 
number of FEs was set to 4000 for the Fx strategy and to 
10,000 for the other strategies. Also, it should be clarified 
that each of these methods converge to a different solution, 
which is expected due to the vast search space of this case 
study. The convergence histories of the PSO and DE algo-
rithms for the mean of runs are presented in Fig. 10. From 
Fig. 10a, it can be seen that PSO-iFx convergence slightly 
improved in contrast with PSO. However, it is clear that 
PSO-iFx notably improved the average results (shown in 
Fig. 10a). Using the proposed approach during the whole 
iterations (Fx) significantly improved the convergence of 
PSO for this problem in comparison with the other two 
strategies. Similar to the PSO results, it can be seen that 
the iFx strategy improved the DE algorithm, and using the 

Fig. 8  Infeasible solutions histories in 1-bay 8-story frame optimization problem

Fig. 9  Topology of the 3-bay 15-story frame
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approach during all iterations (Fx) significantly improved the 
convergence history (Fig. 10b). Therefore, it is clear that the 
proposed approach can notably improve the results for this 
steel frame optimization problem.

Figure 10a indicates that the PSO-Fx and PSO-iFx meth-
ods need fewer than 3000 and 8000 FEs, respectively, to 
reach the objective value obtained by PSO after 10,000 
FEs. Figure 10b similarly shows that the DE-Fx and DE-iFx 
methods reached better objective values with lesser FEs. In 
Fig. 10b, the improvement is significant for DE-iFx, which 
only needs about a quarter of the FEs compared to the DE 
methods to reach the same objective value.

Figure 11 displays the number of infeasible solutions dur-
ing iterations in PSO and DE algorithms. From Fig. 11a, 
it can be seen that the percentages of infeasible solutions 
of PSO and PSO-iFx during optimization processes have 
a similar pattern. This suggests that, despite different 

initializations, these two algorithms have the same constraint 
violation histories. In Fig. 11a, the PSO-Fx results have the 
same pattern as the other methods with fewer FEs. This con-
firms the advantages of the proposed approach for finding 
more feasible solutions when it is used during iterations. 
However, using the proposed method for the initialization 
(shown in Fig. 11b) slightly increased the number of feasible 
solutions, in comparison with the DE strategy. Once again, 
using the proposed approach during iterations significantly 
enhanced the convergence to the feasible region.

It can be seen that using the proposed method for either 
the initialization or whole iterations results in cost sav-
ings. For the PSO algorithm, the iFx strategy lead to the 
best results with a 3.6% improvement of the median over 
the 51 PSO runs. However, using Fx during the whole 
search process improved the median by only 2.5%. The 
DE results show that the Fx strategy could produce the 

Fig. 10  Convergence histories of the 3-bay 15-story frame optimization problem using PSO and DE algorithms

Fig. 11  Infeasible solutions histories in 3-bay 15-story frame optimization problem
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greatest improvement (3.1%) of the median. Interestingly, 
the latter strategy only used 3750 FEs, which is far fewer 
than the other strategies that used 10,000 FEs. It should 
be noted that about a 2% improvement of the median was 
obtained when only the seeding approach was used with 
the DE algorithm.

4.3  Design of a 3‑bay 24‑story frame

The topology of the 3-bay 24-story frame, along with the 
service loading conditions, are shown in Fig. 12. This tall 
steel frame problem originally designed by Davison and 
Adams (1974) has 168 members. This case study was later 
optimized by many researcher as a challenging steel frame 
optimization problem Bigham and Gholizadeh (2020). After 
imposing the fabrication conditions on the construction of 
the frame, the same beam cross-section was used in the first 
and third bay of all floors, except the roof beams. The inte-
rior columns were combined into one set, and the exterior 
columns were combined in another set of three following 
stories, yielding 20 design variables: 4 beam and 16 column 
groups. This steel frame structure was designed based on 
the LRFD specifications under inter-story drift constraints. 
The steel material has E = 205 GPa and Fy = 230.3 MPa. In 
this problem, column element groups should be chosen from 
W14 sections (37 W-shapes), while beam element groups 
could be any of the 267 W-shapes.

One function was assigned to each of the column sets, inte-
rior column and exterior column sets, and thus, the number of 
variables for the columns decreased from 16 to 4, which is sig-
nificant dimension reduction. The 3-bay 24-story steel frame 
design problem was solved by PSO and DE algorithms with 
the three defined strategies, where the Fx and other strategies 
had a maximum number of iterations of 5000 and 15,000, 
respectively. The convergence histories of PSO and DE algo-
rithms for the mean of runs are presented in Fig. 13. From 
these histories, it is clear that both the iFx and Fx strategies 
improved the convergence rates of PSO and DE algorithms 
significantly and also converged to better solutions. Compar-
ing the strategies using the proposed approach, Fx had more 
improvements in the convergence rate than iFx. Each of these 
methods converged to a different solution, which was expected 
because of the huge search space of the case study.

Figure 13a illustrates that the PSO-Fx and PSO-iFx meth-
ods need less than 4000 and 10,000 FEs to reach the objec-
tive value of PSO after 15,000 FEs, respectively. Figure 13b 
similarly indicates that both DE-Fx and DE-iFx methods 
reached better objective values using fewer FEs. In Fig. 13b, 
the improvement is significant for DE-iFx since it only needs 
about a quarter of the FEs in comparison with DE methods 
to reach the same objective value.

Figure 14 displays the percentage of infeasible solutions 
in the histories of PSO and DE algorithms, respectively. 
From Fig. 14a, it can be seen that the percentages of infea-
sible solutions of PSO and PSO-iFx during iterations are 
almost identical. In Fig. 14a, the solutions of the PSO algo-
rithm moved toward the feasible area in fewer FEs, which 
confirms the advantages of the proposed approach for find-
ing more feasible solutions during the entire search process. 
However, Fig. 14b shows that the proposed approach for the Fig. 12  Topology of the 3-bay 24-story frame
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initialization notably increased the number of feasible solu-
tions (iFx). Using this approach during whole iterations (Fx) 
can even improve the number of feasible solutions, and all 
solutions become feasible at early iterations.

It can be seen that iFx and Fx strategies resulted in bet-
ter designs. For the PSO algorithm, both iFx and Fx strate-
gies improved the median results by about 9%. When using 
only the function for seeding of the DE algorithm (iFx), the 
median improved by about 5.9%. Moreover, the Fx strategy is 
much more effective and improved the median results of DE 
by 16.8% with only one third of FEs used in other strategies.

The normalized outer and inner column cross-section 
areas of the best solutions using PSO and DE algorithms are 
presented in Fig. 15. As previously discussed (section 4.2), 
a column’s cross-section areas should be reduced with 
increasing height based on the physics of the problem and 

engineering knowledge. In Fig. 15a, it can be seen that only 
PSO- (deleted something here on accident) has the expected 
trend in the results for the outer column. Figure 15b shows 
that the optimum design of PSO without the proposed 
approach does not have the desired trend in the inner col-
umn cross-section areas, and the final design of PSO-iFx 
slightly violates this condition. However, this is not the case 
for PSO-Fx since the expected trend is considered by the 
variable functioning. In other words, all the solutions are 
forced to satisfy the condition, and therefore, the algorithms 
only search the solutions that have the trend and monotoni-
cally decrease with increasing height. From Fig. 15c and d, 
DE and DE-iFx do not exhibit this condition in the outer and 
the inner columns. Therefore, the DE-Fx results are even 
more practical, as they satisfy the conditions.

Fig. 13  Convergence histories of the 3-bay 24-story frame optimization problem using PSO and DE algorithms

Fig. 14  Infeasible solutions histories in 3-bay 23-story frame optimization problem
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5  Conclusion and discussions

In this study, a concept-based approach is proposed to replace 
sets of variables with their functions by incorporating different 
sources of information. For the steel frame design optimization 
problems, the structure of the variables (cross-section areas) 
was explored using a grouping method, then a function was 
defined to relate each column cross-section areas by means 
of their heights. A general equation was developed to relate 
a column’s cross-section areas using a differential grouping 
and engineering points-of-view. Here, the proposed approach 
was coupled with two well-known global optimization algo-
rithms (DE and PSO) and implemented in a 50-stepped col-
umn design problem. The designs of three complex steel 
frame structures with different numbers of bays and stories 
were further optimized as numerical case studies. The pro-
posed approach was coupled with the optimization algorithms 
using two different strategies: 1. Only for initialization; and 
2. During the entire iterations. The results suggest that the 
proposed method can improve the results when used only for 
initialization and can significantly improve the convergence 
rates and final solutions when used during the iterations, espe-
cially for the tall and more complex frame design optimization 

problems. Using the proposed approach during initialization 
showed to be significantly effective in all cases and improved 
the results for the studied steel frame structures. Therefore, 
it can be used for seeding of the frame design optimization 
problem instead of randomly generating the initial solutions. 
Although the relationship proposed for the column sections 
may not be exact, it achieved competitive results and, most of 
the time, produced better results compared with an algorithm 
that does not use the proposed approach. In terms of numbers 
of function evaluations, the proposed approach can signifi-
cantly improve the convergence rate and reduce the number 
of required finite element analyses (a time-consuming process 
for real-world problems) when used during the entire search 
process. It should be noted that this approach also considers the 
practicality aspect of a column cross-section areas, which may 
not be achieved with other strategies. Since the proposed func-
tion was effectively applied to columns of moment-resisting 
steel frames, we suggest future research focus on applying and 
modifying it to different types of frame systems (Camp and 
Assadollahi 2013) and real-world structures (Azad 2021; Mon-
temurro et al. 2012). Also, the proposed approach can be cou-
pled with curve fitting (Costa et al. 2018) and surrogate models 
(Audoux et al. 2020). Since the variable functioning aims to 

Fig. 15  Optimum design of columns cross-section areas for the 3-bay 24-story frame structure
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narrow down the search space in the optimization problem, in 
problems where it is possible to introduce a variable function-
ing, a similar superior efficiency of the optimization process 
can be expected.

Appendix

See Tables 2 and 3. 
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