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A B S T R A C T

The problem of hole-defect detection in standing trees is solved. An ultrasonic device (Pundit PL-200) was
employed to collect ultrasonic signals from various wood specimens both in the lab and field. The collected
ultrasonic signals were then processed through the Variational Mode Decomposition algorithm to derive
effective features. In order to solve the classification problem more efficiently, the obtained characteristics
were then analyzed through PCA to determine the most useful features. Several machine learning algorithms
and a one-dimensional convolutional neural network (1D-CNN) were employed to solve a set of classification
problems based on data collected from (1) specimens with artificial defects in the lab and (2) billets with
natural defects selected from trees harvested at sites in the two states of WA and NSW, Australia. The results
demonstrate the effectiveness of the proposed method for classifying wood materials based on their health
state, where testing accuracy results of 100% in the lab and at least 92.2% in fields were achieved. The Fine
Gaussian SVM was found to perform most effectively on data derived from specimens in the lab and fields.
It was also shown that 1D-CNN results were more reliable for generalizing the solution to the classification
problem of standing trees in fields.
1. Introduction

Modern detection and diagnosis (FDD) systems involve several
steps, including (1) system knowledge representation, (2) data acquisi-
tion and signal processing, (3) fault classification, and (4) maintenance-
related decision-making (Abid et al., 2021). Traditionally, the decay
assessment of trees involves visual inspection to identify external
evidence of structural failure. Such signs include wounds on self-
pruned branches, which can occur if trees are not pruned in time and
subsequently undergo a self-pruning process. Some invasive methods
are used for decay detection in standing trees, such as decay detection
drill (Goh et al., 2018). As such, a noninvasive sensing technology for
detecting wood defects in standing trees is yet to be developed.

Monitoring wood quality is of paramount interest to the mecha-
nized harvesting industry (Palander et al., 2018). For instance, it is
known that knot clusters can affect the mechanical properties of wood
products (Pang et al., 2021). Wood material assessment favors the
extensive development of novel nondestructive techniques developed
over the past decades. Such techniques usually comprise two elements:
a sensing technology for collecting data of a wooden specimen and a
data analysis algorithm that can interpret such data by deriving some
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features that can characterize the health state of the wood. Some of
such sensing technologies include ultrasonics (Yang and Yu, 2017),
thermography (López et al., 2013), and radiography (Li et al., 2014).
Ultrasonic testing has been widely used for quality assessment of wood
materials (Blomme et al., 2002) due to the following reasons: (1) it
is a less invasive and less expensive technique compared to other
methods, and (2) it is susceptible to the existence of defects in wood
materials (Senalik et al., 2014). Therefore, they have been used in
several research for quality assessment of wooden sections (Tallavo
et al., 2012; Gao et al., 2014; Fang et al., 2017). For instance, the
capability of ultrasonic techniques for evaluating mechanical properties
of wood with artificial defects has been demonstrated in several studies
(Reinprecht and Pánek, 2012; Mori et al., 2016). Ultrasonic tomogra-
phy was also demonstrated as an effective method for detecting defects
in standing trees (Lin et al., 2008), where it was shown that the velocity
of the ultrasonic waves was correlated with the ratio of the hole-to-disc
area. Another study found that the attenuation of the ultrasonic wave
velocity and increased damping could be correlated with the presence
of a defect in standing trees (Krajnc et al., 2019). However, it was also
learned that both ultrasound velocity and damping were sensitive to the
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diameter at the breast height (DBH) of the studied tree. A binary logistic
regression was developed to explore the possibility of using ultrasound
velocity and damping to predict internal defects’ presence in stating
trees (Krajnc et al., 2019). The obtained accuracy using the velocity
and damping were respectively 0.72 and 0.76 in European beech and
0.83 and 0.82 in Norway spruce spices. Studying the time of flight of
the ultrasonic waves traveling across the wood sections has also been
demonstrated effective for evaluating defects in standing trees.

Generally, there are two ways to study wood using ultrasonic tech-
niques. The first approach that considers a close study of the underlying
physics is guided wave technology (GWT). It allows inspection of
an elongated member by guiding ultrasound through the member’s
boundaries. The proper probing frequency varies from 20 to 100 kHz
depending on the study member’s size and thickness (Pedram et al.,
2018). Further, this method uses dispersion curves as graphic rep-
resentations of advanced mathematical modeling. Fathi et al. (2021)
showed that semi-analytically derived dispersion curves were in excel-
lent agreement with measured Lamb wave velocities for wood spec-
imens of different moisture content (MC). The propagation of lamb
waves and mechanical three-point bending tests were conducted on
green poplar wood specimens with varying MC. Lamb wave modes
were propagated in specimens using ultrasonic actuators, and wave
signals were acquired using an ultrasonic sensor along the propagation
direction of the specimens. The measured Lamb wave velocity was
consistent with semi-analytically calculated dispersion curves (less than
2% difference) for wood specimens with various MCs.

Nonetheless, guided waves are complex, and solving the wave equa-
tion for structures made of orthotopic materials, such as wooden poles,
is still challenging (Dackermann et al., 2014). As a result, GWUT cannot
be relied upon to interpret the wave patterns extracted from these
structures based on field measurements. In recent years, GWUT test
results have been interpreted using machine learning-based methods
to resolve its shortcomings. For example, Fathi et al. (2020) applied
the guided Lamb wave propagation method to predict the modulus
of elasticity and modulus of rupture of wood with varying moisture
content (MC) by developing a machine-learning model. They combined
the ‘‘group method of data handling’’ with Lamb wave velocity to
predict wood’s mechanical properties, namely the modulus of rupture
(MOR) and modulus of elasticity (MOE). The results of analyzing 70
green poplar wood specimens demonstrate that wood’s MC, density,
and mechanical properties are highly correlated with Lamb wave ve-
locity. As a result, guided Lamb wave propagation can be used for
the nondestructive characterization of timber. Nasir et al. (2021) also
implemented machine learning algorithms to determine the MOR and
MOE in UV-degraded wood sections using decision trees.

Conventional ultrasonic techniques diagnose material properties by
measuring the velocity and time of flight of bulk waves propagating
within them (Yaitskova and van de Kuilen, 2014; Karaiskos et al.,
2015). Time-domain characteristics of other forms of NDT techniques,
such as Hz Time-Domain sensing (Lei et al., 2022), have also been
used for wood quality assessment. However, wood’s orthotropic nature
depends on the testing direction (Mackenzie-Helnwein et al., 2003;
Liu et al., 2013), which results in independent mechanical properties
on three perpendicular axes. These axes include (1) longitudinally
along the fibers/grain, (2) radially along the growth rings, and (3)
tangentially along the growth rings (EN 408:2010+A1:2012, 2010).
In addition, the microfibril angle varies from species to species, con-
tributing to this variety of material properties (Ramage et al., 2017).
As a result, traditional techniques for assessing wood material proper-
ties are subject to many uncertainties, making it nearly impossible to
distinguish the direction in which the evaluated mechanical properties
correspond (Handbook and Wood, 1999).

This work demonstrates an innovative method for feature extraction
based on variational mode decomposition (VMD). In this way, ultra-
sonic bulk waves can be decomposed into some intrinsic mode func-
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tions, called IMFs, from which meaningful features can be extracted.
VMD has been used in several applications, including denoising signals
used for damage detection (Hassani et al., 2022a,b). This method uses
time–frequency domain features derived from ultrasound signals as one
of its key features. This implies that the derived features are more
likely independent of the distance the ultrasonic wave travels. Thus,
regardless of the shape of the specimens, the proposed method is
effective at assessing their health.

The analysis of ultrasonic waves using signal decomposition is
a reliable approach for gaining information. For example, El Najjar
and Mustapha (2021) examined two ultrasound signals obtained from
guided ultrasonic tests conducted on wooden poles and identified mode
reflections using EEMDAN (ensemble empirical mode decomposition
with adaptive noise). In their analysis, the authors concluded that
the first four modes of decomposition contained the most information
compared to the higher modes (i.e., IMFs 5 to 10). An ultrasound
contact test was performed in Mousavi and Gandomi (2021) to de-
termine defects in wooden specimens. VMD was employed to extract
descriptive features through three decompositions of an ultrasound
bulk wave. The results showed that there are two possible outcomes
of VMD’s higher modes: the higher mode carries duplicate information
or no information at all. Wood inspection using ultrasonic testing was
subsequently solved through machine learning algorithms.

This study explores the possibility of using contact–ultrasonics to
mechanize the recognition of healthy standing trees for harvesting.
Generally, it is imperative to prune trees in time to avoid self-pruning.
Trees that have undergone self-pruning are usually found to be knotty
and inappropriate for sawlogs (Taskhiri et al., 2020). Therefore, it
is essential to hunt such trees down in the field prior to harvesting.
Two different experiments, one in the lab and one in the field, were
conducted in this study to explore the possibility of using contact–
ultrasonic testing to classify wooden specimens into two categories:
defective and healthy. Regarding the lab trial, two types of wood speci-
mens, Merbau (instia palembanica with a nominal density of 850 kg/m3)
and Pine (Radiata pine or pinus radiata with a nominal density of
400 kg/m3), were studied. In order to synthesize hole-defect in the
specimens, two types of holes of varying sizes were drilled into the
models; one small and one large. The samples were classified as defec-
tive regardless of the size of the hole defects to make the experiment
more compatible with the field test. First, some billets were cut from
harvested trees at different sites in Collie (WA) and Coffs Harbor
(NSW), Australia. Other types of wood were studied at these sites,
including Eucalyptus Marginata (Jarrah), Eucalyptus Pilularis (Black-
butt), and Eucalyptus Punctata (Gray gum). The proposed strategy
uses the variational mode decomposition (VMD) algorithm to derive
descriptive features from the ultrasonic test results conducted on the
studied specimens. Next, machine learning and deep learning models
were trained to solve the classification problem of the tested samples
into two categories, i.e. healthy and defective. This study presents
several novel findings, which are listed below:

1. First, the possibility of using VMD as a signal decomposition
algorithm for feature extraction from ultrasonic test results is
demonstrated by introducing a set of useful features.

2. Since the number of features extracted from the VMD can be
specified by the user, a procedure is proposed to select the most
appropriate features for solving the classification problems in
this paper. Moreover, it was demonstrated that there is quite an
overlap between the selected features from the lab and the field’s
test results.

3. The proposed strategy is further successfully tested on some
standing trees in the field by employing trained machine learn-

ing and deep learning algorithms.
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2. Methodology

2.1. Feature extraction using VMD

Each ultrasonic signal 𝑆(𝑡) was first shifted by its mean value and
then scaled by the difference between its maximum and minimum
values as follows:

𝐒(𝑡) = 𝐒(𝑡) − 𝜇
max(𝐒(𝑡)) − min(𝐒(𝑡))

. (1)

here 𝑆(𝑡) is the normalized version of 𝑆(𝑡). The normalized sig-
nals were then low-pass filtered with a cutoff frequency of 300 kHz
(Mousavi and Gandomi, 2021). The VMD algorithm was employed to
derive effective features from the normalized and low-pass filtered ul-
trasonic signals. Hence, a brief background of VMD theory is presented
here to keep the paper self-contained.

VMD solves a variational optimization problem to decompose a
nonlinear/non-stationary signal into its constructive modes termed In-
trinsic Mode Functions (IMFs). Each IMF is narrow-band and, therefore,
can represent only one mode of oscillation of the signal. The general
form of the 𝑘th IMF is as follows:

𝐮𝑘(𝑡) = 𝐀𝑘(𝑡) cos(𝜙𝑘(𝑡)), (2)

where 𝐮𝑘(𝑡) is the 𝑘th IMF with 𝐀𝑘(𝑡) and 𝜙𝑘(𝑡) being its instantaneous
amplitude and phase, respectively. The Instantaneous Frequency (IF)
of each IMF is obtained as 𝜔(𝑡) = 𝜕𝜙(𝑡)

𝜕𝑡 . Alternatively, once an IMF is
identified, the IF signal can be obtained through Gabor’s analytic signal
defined as follows (Gabor, 1946):

𝐮𝑎(𝑡) = 𝐮(𝑡) + 𝑗�̂�(𝑡), (3)

where 𝐮𝑎(𝑡) is the Gabor’s analytic signal, 𝑗 is the imaginary unit, and
�̂�(𝑡) is the Hilbert transform (Muskhelishvili and Radok, 2008) of the
given IMF signal 𝐮(𝑡). As such, the instantaneous frequency of the IMF
is obtained as follows:

𝜔(𝑡) = d
d𝑡

(

tan−1
( ̂𝐮(𝑡)
𝐮(𝑡)

))

, (4)

The following procedures are followed to construct the variational
ptimization problem of the VMD:

Step (1): First, the unilateral Hilbert transform of the 𝑘th IMF is ob-
tained as

(

𝛿(𝑡) + 𝑗
𝜋𝑡

)

∗ 𝐮𝑘(𝑡), where 𝛿, 𝑗, and ∗ denote the
Dirac distribution, the imaginary unit, and the convolution
operator, respectively.

Step (2): A center frequency 𝜔𝑘 is assumed for the 𝑘th IMF, and the
obtained Hilbert spectrum from step (1) is shifted to the
baseband as

[(

𝛿(𝑡) + 𝑗
𝜋𝑡

)

∗ 𝐮𝑘(𝑡)
]

× 𝑒−𝑗𝜔𝑘𝑡.

Step (3): Then, the squared 𝐿2 norm of the gradient of the shifted spec-

trum from step (2) is calculated as
‖
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Step (4): Finally, the 𝐿2 norm of the gradients is summed over all
IMFs to construct the conditional optimization problem of the
VMD, on 𝐮𝑘 and 𝜔𝑘, as follows:

min
𝐮𝑘 & 𝜔𝑘

∑

𝑘

‖

‖

‖

‖

𝜕𝑡

(
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∗ 𝐮𝑘(𝑡)
)
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2

, 𝑠.𝑡. 𝐟 (𝑡) =
∑

𝑘
𝐮𝑘(𝑡)

(5)

where the sum of the obtained IMFs constructs the original
signal minus some noise depending on the settings.

The following alternative Lagrangian is constructed to solve the
optimization problem of (5), (Dragomiretskiy and Zosso, 2014):

(𝐮𝑘, 𝜔𝑘, 𝜆) = 𝛼
∑

‖

‖

‖

𝜕𝑡

(
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∗ 𝐮𝑘(𝑡)
)
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‖
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Table 1
VMD parameters.

Parameters Description Specified values

𝑝 Number of IMFs 3
𝛼 Denoising factor N.A.
𝜏 Time interval 0.1
𝜖 Convergence threshold 10−5

𝑖𝑛𝑖𝑡 Center frequency initializer 0
DC Boolean parameter 0

Table 2
The description of all features naming.

Features Description Features Description

𝑥1 𝜔 of IMF1 𝑥12 𝑄1IF of IMF2
𝑥2 RMSIF of IMF1 𝑥13 𝑄2IF of IMF2
𝑥3 𝜔 of IMF2 𝑥14 𝑄3IF of IMF2
𝑥4 RMSIF of IMF2 𝑥15 𝑘IF of IMF2
𝑥5 𝜔 of IMF3 𝑥16 𝜎IF of IMF2
𝑥6 RMSIF of IMF3 𝑥17 𝑄1IF of IMF3
𝑥7 𝑄1IF of IMF1 𝑥18 𝑄2IF of IMF3
𝑥8 𝑄2IF of IMF1 𝑥19 𝑄3IF of IMF3
𝑥9 𝑄3IF of IMF1 𝑥20 𝑘IF of IMF3
𝑥10 𝑘IF of IMF1 𝑥21 𝜎IF of IMF3
𝑥11 𝜎IF of IMF1 – –

+
‖

‖

‖

‖

𝐟 (𝑡) −
∑

𝑘
𝐮𝑘(𝑡)

‖

‖

‖

‖

2

2

+
⟨

𝜆(𝑡), 𝐟 (𝑡) −
∑

𝑘
𝐮𝑘(𝑡)

⟩

(6)

his makes the VMD a parametric decomposition algorithm, requiring
ts parameters to be specified in computer program settings before
unning the decomposition algorithm (Zosso, 2020). In this study, the
arameters of the VMD and the values selected for each are listed in
able 1. For further details about specifying the parameters, readers
re referred to Mousavi and Gandomi (2021). The signal was set
o be decomposed into three IMFs based on the results of Mousavi
nd Gandomi (2021). Accordingly, more decompositions can result in
aving duplicated IMFs in higher-order IMFs (IMFs with higher center
requency), which will compromise the effectiveness of the extracted
eatures and ML results.

Seven types of features were selected for each IMF as follows:

1. The center frequency of the IMF (𝜔).
2. The Root Mean Square (RMS) of the IF signal, obtained for the

IMF as follows (Mousavi and Gandomi, 2021):

RMSIF =

√

∑𝑛
𝑖=1 𝜔(𝑡)2

𝑛
, (7)

where RMSIF is the root mean square of the IF signal 𝜔(𝑡), and 𝑛
is the length of the signal.

3. The first quartile of the IF signal, shown as 𝑄1IF, indicates the
value under which 25% of IF points are located when arranged
in ascending order.

4. The second quartile of the IF signal or the median, shown as
𝑄2IF, indicates the value under which 50% of IF points are
located when arranged in ascending order.

5. The third quartile of the IF signal, shown as 𝑄3IF, indicates the
value under which 75% of IF points are located when arranged
in ascending order.

6. The variance of the IF signal, shown as 𝜎IF.
7. The Kurtosis of the IF signal, shown as 𝑘IF.

herefore, there is a total of 21 features derived for each test result,
amed from 𝑥1 to 𝑥21 as shown in Table 2.

.2. Feature selection

It is essential to select the most practical features for training the

LAs in order to, first, avoid using uncorrelated features that will only
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Fig. 1. Scree plots of the PCA applied to the dataset corresponding to the (a) Mr, (b) Pr, (c) mixed observations.
increase the time of the training process and, secondly, prevent over-
fitting of the model on the training dataset, which will consequently
increase the variance between the test set and training set accuracy.
To this end, principal component analysis (PCA) is employed to explore
the importance of each feature. Generally, the most important features
are more correlated with lower order PCs, i.e. PC1 and PC2, and compo-
nents that are not correlated with the lower order PCs are less critical
in describing the variability of the dataset across different observations.

Consider the standardized1 feature matrix 𝐗𝑚×𝑝 of rank 𝑟 ≤ min
{𝑚, 𝑝}, that has the obtained features per observation stacked up in its
rows. The singular value decomposition of 𝐗 is written as follows:

𝐗 = 𝐏𝛥𝐐T , (8)

where 𝐏𝑚×𝑟 and 𝐐𝑝×𝑟 are matrices of left singular and right singular
ectors, respectively. Note that 𝐐 is a unitary matrix, i.e. 𝐐−1 = 𝐐T.
inally, the diagonal matrix of singular values is obtained as 𝛥𝑟×𝑟. The
rincipal components of 𝐗 are stacked up in the columns of the matrix
f factor scores, 𝐅, obtained as follows:

= 𝐏𝛥 , (9)

1 The standardized matrix 𝐗 is obtained through centering each of its
columns concerning the mean value of all the observations in that column
divided by their standard deviation.
4

whose columns represent the projected observations on the principal
axes. Since 𝐐 is a unitary matrix, one can write:

𝐅 = 𝐏𝛥 = 𝐏𝛥𝐐T𝐐 = 𝐗 𝐐 . (10)

Therefore, 𝐐 can also be interpreted as a projection matrix. As such, the
contribution of a component to a variable called ‘‘loading’’ is obtained
from the calculation of the squared entries of 𝐐. Hence, the rows of 𝐐2

correspond to the loading of variables evaluated in the principal direc-
tion of each column. In order to select the most compelling features for
classification, we propose the following procedure to be followed:

1. Obtain the variance percentage explained by each PC corre-
sponding to the standardized feature matrix 𝑋.

2. Multiply the variance percentage of the PC to the corresponding
column of the 𝐐2.

3. Sum the results of step (2) over the selected PCs. Note that
one may choose to determine the number of PCs based on the
accumulated variance explained by them. However, the first
three PCs were selected in this study in all cases.

The above concept can be written in the form of an equation as
follows:

𝐈 =
𝑁
∑

𝑖=1
𝑣𝑎𝑟(𝑖) ×𝐐2(∶, 𝑖) (11)

where 𝐈 is a vector of the obtained importance value for each feature, 𝑁
is the number of selected PCs, 𝑣𝑎𝑟(𝑖) represents the amount of variance
explained by the 𝑖th PC, and 𝑁 = 3.
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Fig. 2. Contribution percentage of each feature to the first principal dimension for (a) Mr, (b) Pr, (c) mixed observations.
Table 3
MLAs employed for solving the classification problems.
Trees Discriminant Naive Bayes SVM Nearest neighbor Ensemble

Fine Linear Gaussian Linear Fine Boosted trees
Medium Quadratic Kernel Quadratic Medium Bagged trees
Coarse – – Cubic Coarse Subspace discriminant
– – – Fine Gaussian Cosine Subspace KNN
– – – Medium Gaussian Cubic RUSBoosted trees
– – – Coarse Gaussian Weighted –
s
t
t
t
d
p
A
P

2.3. Employed machine learning algorithms

The machine learning toolbox in Matlab was exploited to solve the
classification problems in this study. The MLAs employed for solving
the classification problems are listed in Table 3.

3. Lab trial results

In this section, the problem of wood hole-defect classification in two
types of wood, i.e. Merbau (hardwood) and Pine (softwood), is solved.
The problem of this section is mainly set to serve as a controlled lab
trial for classifying wood with natural imperfections in the field. The
specifications of the test set-up are listed in Table 4. The dimensions of
the specimens were 90× 90× 300 mm3. There were two types of defects
implemented on the specimens: (1) a small hole with a diameter of
6 mm (7% of the cross-section) and (2) a larger hole with a diameter
of 13 mm (14% of the cross-section). The hole damage was drilled
5

F

into the radial cross-sections. As for the weather conditions within the
room during testing, there were moderate fluctuations in temperature,
ranging from 20–22 ◦C. It was about 60% humidity on average. There
were no significant differences between lab specimens in terms of
moisture levels (usually ten to fifteen percent, depending on the locale’s
climate) (Mousavi et al., 2020). A Pundit PL200 was used for ultrasonic
testing (Fig. 3(b)), where a 54 kHz transducer was used to transmit a
sinc-like probing P-wave (compression wave) with a pulse repetition
frequency (PRF) of 5 Hz. During operation, the device generates 17.5 μs
inc-like impulses. According to the manual: ‘‘transducers supplied with
he instrument are not damped and, therefore, on being excited by the
ransmitter, they have a long ring-down time’’. As a result, it is possible
o assume that the signal transmitted into the sample is a lightly
amped impulse response. Due to the lower repetition frequency of
ulses than the resonant frequency of the transducer, pulses do not mix.
limited number of frequencies can be selected for use with the Pundit

L200, which must match the frequency of the selected transducer pair.

or the current work, the receiver gain was set to the device’s ‘1 dB’
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Fig. 3. Ultrasonic test experimental set-up.
Table 4
Technical specifications of the test set-up.

Ultrasonic device Pundit PL200
Prob frequency 54 kHz
Sampling frequency 10 MHz
Couplant gel Proceq Ultraschall-Koppelpaste

setting. Several trial runs were conducted to ensure the signal is strong
but not saturated. Probe waves are P-waves (compressional waves),
with transducer voltages of 50 V.

By interacting with wood irregularities, the receiver recorded mod-
ulated ultrasonic waves at a sampling frequency of 10 MHz as recom-
mended in other works, including (Nasir et al., 2021). To ensure the
effective transmission of ultrasonic waves into and out of the wood
samples, couplant gel (Proceq Ultraschall-Koppelpaste) was applied
between the transducer/receiver and the wood surface.2

The contact–ultrasonic testing is sensitive to the following items:

2 For further details, readers are referred to Mousavi and Gandomi (2021)
and Mousavi et al. (2020).
6

Table 5
The number of test samples collected from different types of wood through ultrasonic
tests.

Radial test (tangential defect)

Defect type Specimens # Pine test # Merbau test #

Intact 6 300 300
Small tangential defect 3 150 150
Large tangential defect 3 150 150

1. The amount of the coupling gel applied to the surface of the
wood at the transducer and receiver sides.

2. Any vibration of the hands upon testing while holding the trans-
ducer and receiver.

3. The amount of pressure applied to the transducer and receiver.

Therefore, 50 replicates of the ultrasonic tests were conducted on each
specimen. Table 5 shows the number of tests performed on the samples’
different types and health conditions.

Two classes were considered in this study: (1) healthy and (2) de-
fective. As such, small and large damage is classified as defective. This
is mainly because the size of the defect is not a factor in standing tree
inspection. Therefore, this was done primarily to align with the field



Computers and Electronics in Agriculture 209 (2023) 107816M. Mousavi et al.

t
f
(
d
t
f
i
t
t
a
l
t
b
d
o
a
c

t

f

Fig. 4. Box plot of the standardized features regarding (a) Mr, (b) Pr, and (c) mixed observations.
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rials section. Fig. 4 showcases the box plot of standardized features
or (a) Mr (Fig. 4(a)), (b) Pr (Fig. 4(b)), and (c) mixed observations
Fig. 4(c)). The middle red line indicates the median of the feature
istribution. The lower and upper bounds of the box correspond to
he first (Q1) and third (Q3) quartiles regarding the distribution of the
eature, respectively. The range between (Q1) and (Q3) denotes the
nterquartile range (IQR). The lower and upper whiskers correspond
o the minimum of Q1−1.5 × IQR and the maximum of Q3+1.5 × IQR
hat the feature can take. Observations outside the defined ranges
re shown with a + sign and correspond to outliers. The median
ocated at the center of the box coincides with the mean, indicating
he feature distribution is symmetric. However, the median located
elow and above the centerline of the box indicates that the feature
istribution is right- and left-skewed, respectively. As such, the box plot
f different features suggests several features for each case follow an
symmetric distribution. Moreover, multiple features have values that
an be considered outliers.

From the box plots of features extracted from test results in the lab,
he following conclusions can be drawn:

1. Features are spread, showing the diversity of the test result
by replicating the experiment, where in some cases, out-of-
distribution value for attributes is evident.

2. Most features follow asymmetrical distribution, indicating that
the value of features occurs at irregular frequencies.

3. The existence of outliers again indicates how loosely the data
is grouped and therefore, the application of machine learning
algorithms is well justified.

Fig. 5 shows the scatter plot of PC1 versus PC2 of the standardized
7

eature space regarding (a) Mr (Fig. 5(a)), (b) Pr (Fig. 5(b)), and (c)
ixed observations (Fig. 5(c)). As can be seen from the scatter plots, it
s not straightforward to separate the classes.

The MLAs listed in Table 3 have been used to answer the following
uestions:

1. Do the selected features capture enough variability in the ob-
tained ultrasonic signals across different specimens?

2. How will the trained MLAs perform on a mixture of different
types of wood?

Fig. 1 shows the Scree plots of different types of specimens and a
ixture of them. It can be seen that the amount of variance explained

y higher-order PCs is always smaller than those described by lower-
rder PCs. Therefore, it is reasonable to select only the three first
olumns of the 𝐐2 corresponding to the first three PCs in (11). As
uch, the plots of Fig. 2 are obtained that describe the contribution
f each feature to the variability of the feature space across different
bservations when the observations from different types of wood are
onsidered individually or mixed. A threshold was set for the value
f entries in vector 𝐈 for each case to pick the first ten most effective
eatures for training. Table 6 shows the selected features for different
ypes of wood based on their correlation with the first three PCs. As
an be seen from the table, features 𝑥21, 𝑥18, 𝑥17, 𝑥14, 𝑥12, and 𝑥5 are

recognized as the most effective in all cases.
Table 7 shows the 5-fold cross-validation accuracy results obtained

from various MLAs trained on each type of wood and their mixture.
The results indicate that the ‘‘Fine Gaussian SVM’’ is the most effective
algorithm for the classification of all three problems, i.e. Mr, Pr, and
their mixture with the accuracy index of 100, 100, and 99.9 percent,
respectively. The other observation is that the accuracy slightly declines

in most cases of using different MLAs when the samples are mixed.
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Fig. 5. Scatter plot of PC1 versus PC2 of the standardized feature space regarding (a) Mr, (b) Pr, and (c) mixed observations.
Table 6
VMD parameters.

Type of wood Selected features

M𝑟 𝑥21 , 𝑥19 , 𝑥18 , 𝑥17 , 𝑥14 , 𝑥12 , 𝑥6 , 𝑥5 , 𝑥3 , 𝑥2
P𝑟 𝑥21 , 𝑥18 , 𝑥17 , 𝑥14 , 𝑥13 , 𝑥12 , 𝑥7 , 𝑥5 , 𝑥2 , 𝑥1
Mixture 𝑥21 , 𝑥19 , 𝑥18 , 𝑥17 , 𝑥14 , 𝑥13 , 𝑥12 , 𝑥6 , 𝑥5 , 𝑥3

4. Field experimental results

4.1. Using machine learning

In this section, the problem of classification of standing trees based
on no defect in their trunk is studied. This problem has been given
much attention due to its importance in facilitating the mechanized
harvesting process. If trees with natural imperfections are appropriately
identified, they will not be subjected to sawing. This is vital as the bulk
of timber with natural defects is usually sold as pulpwood.

Multiple specimens from different types of wood at various sites
in Western Australia (WA) and New South Wales (NSW) were tested
using the Pundit PL-200 ultrasonic device. Table 8 shows the types of
wood and the environmental conditions at each site upon which the
tests were conducted. As such, there was one type of wood (Jarrah)
tested at the WA site (Collie) and two different types of wood, namely
Blackbutt and Greygum, tested at the NSW site (Coffs Harbor). All
of these spices, however, are classified as members of the Eucalyptus
family. The temperature in the WA and NSW sites was respectively
8

Table 7
The classification results of different MLAs applied to the lab test results.

MLA M𝑟 P𝑟 Mixed

Fine trees 98.5 100 97.8
Medium trees 98.5 100 97.8
Coarse trees 97.8 100 89.1
Linear discriminant 97.5 100 86.1
Quadratic discriminant 100 100 88.8
Gaussian Naïve Byes 81.8 98.7 80.3
Kernel Naïve Byes 95.3 100 84.4
Linear SVM 100 100 87.5
Quadratic SVM 100 100 97.9
Cubic SVM 100 100 99.4
Fine Gaussian SVM 100 100 99.9
Medium Gaussian SVM 100 100 96
Coarse Gaussian SVM 90.2 100 80.4
Fine nearest neighbor 100 100 99.8
Medium nearest neighbor 100 100 99.6
Coarse nearest neighbor 87.7 96.2 82.9
Cosine nearest neighbor 100 100 99.3
Cubic nearest neighbor 100 100 99.5
Weighted nearest neighbor 100 100 99.8
Boosted trees 50 50 50
Bagged trees 99.8 100 99.3
Subspace discriminant 92.5 100 81
Subspace KNN 100 100 99.8
RUSBoosted trees 50 50 50
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Fig. 6. All trees were visually inspected and marked with spray marker.
Table 8
Wood from different sites with different meteorological condition were tested.

State Site Wood species Temperature (◦C) Humidity (%)

WA Collie Jarrah 5.1 90
NSW Coffs harbor Blackbutt & Greygum 10 90

5.1 and 10 degrees Celsius, while the relative humidity in both was
almost 90 percent. The average moisture content of standing trees in
the winter climate of both sites was around 90%. Previous experiences
indicate that defects usually appear at the minimum breast height of
a standing tree. Therefore, some billets between breast height and the
highest commercial elevation of the corresponding standing trees were
harvested and further tested. The breast height was roughly 1.3 m
above the highest point of the ground at the base of the tree. The length
of the billets was 20 cm each.

Table 9 shows the number of billets from each site and the overall
number of ultrasonic tests conducted on them. Likewise, in the lab trial
section, there were two labels assigned to the tested specimens, namely
healthy and defective, which were specified through visual inspection.
The woods were tested in different randomly selected directions based
on how flat the surface of the tested tree was. All specimens were
debarked at the point of testing using a hammer. The billets were
9

Table 9
The number of billets and ultrasonic tests conducted on woods of different sites.

Number of billets

Condition WA # NSW #

Intact 37 7
Defective 37 28

Number of ultrasonic test

Condition WA # NSW #

Intact 838 213
Defective 897 617

harvested from 6 standing trees of each species. All trees were visually
inspected and marked with a spray marker, as shown in Fig. 6.

The obtained ultrasonic test results were preprocessed using the
VMD algorithm to derive the required features, as discussed in Sec-
tion 2.1. Fig. 7 showcases the box plot of standardized features for sites
in (a) WA (Fig. 7(a)), (b) NSW (Fig. 7(b)), and (c) mixed observations
(Fig. 7(c)). The same observations as those in the lab trial sections are
evident from the boxplots of this section. It can be seen that, in this
case, the number of outliers is even larger, indicating that the data
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Fig. 7. Box plot of the standardized features obtained from test data collected from billets at sites (a) WA, (b) NSW, and (c) mixed observations.
is not tightly grouped. There are several reasons for that, such as the
following:

1. Testing the billets in different directions yields different re-
sults due to the characteristic of the wood being an orthotropic
material.

2. The testing conditions can be affected by those uncertainties in
the lab trial justifying the diversity of the test results.

3. The billets are not perfectly cylindrical, meaning that the ultra-
sound wave travels different distances when transmitted through
different angles.

Fig. 8 showcases PC1 versus PC2 of the standardized feature space
regarding tested billets from (a) WA (Fig. 8(a)), (b) NSW (Fig. 8(b)),
and (c) mixed observations from both sites (Fig. 8(c)). Although the
plots show a degree of separability of the classes in all three cases, the
problem is predicted to be more challenging compared to the lab trial
experiments.

The Scree plot of the PCA algorithm applied to the standardized 𝑋
was first obtained, as shown in Fig. 9, to select the most compelling
features for training. Then, the variance explained by the first three
PCs was used to obtain the effectiveness of features through (11). The
contribution of features to the variability of the dataset pertaining to
the specimens tested in WA, NSW, and their mixture is presented in
Fig. 10. Next, a threshold was set for each case to select the ten most
useful features, as listed in Table 10. As can be seen from the table,
features 𝑥21, 𝑥18, 𝑥17, 𝑥13, 𝑥12, 𝑥7, 𝑥4, and 𝑥2 were identically selected
among the most effective features in all cases. This also has an overlap
with the most effective features selected for the lab trial cases, which
are 𝑥21, 𝑥18, 𝑥17, and 𝑥12.

Next, the MLAs of Table 3 were employed to solve the classification
problem of billets based on their health state in different states. Interest-
10

ingly, similar to the lab trial results, the Fine Gaussian SVM performs
Table 10
Selected features for each type of wood in different states and a mixture of them.

Type of wood Selected features

WA 𝑥21 , 𝑥18 , 𝑥17 , 𝑥14 , 𝑥13 , 𝑥12 , 𝑥7 , 𝑥5 , 𝑥4 , 𝑥2
NSW 𝑥21 , 𝑥18 , 𝑥17 , 𝑥13 , 𝑥12 , 𝑥9 , 𝑥8 , 𝑥7 , 𝑥4 , 𝑥2
Mixture 𝑥21 , 𝑥18 , 𝑥17 , 𝑥14 , 𝑥13 , 𝑥12 , 𝑥7 , 𝑥5 , 𝑥4 , 𝑥2

best on all cases of WA, NSW, and a mixture of them with a 5-fold
cross-validation accuracy of 93.9, 96.7, and 94 percent, respectively
(see Table 11).

4.2. Using deep learning

Thus far, the results of applying conventional MLAs for solving
the classification problem of billets were presented and discussed.
However, deep learning architectures have been widely used to solve
problems in different fields. Different architectures of deep convolu-
tional neural networks can be found in Khan et al. (2020). In this
section, a one-dimensional Convolutional Neural Network (1D-CNN) is
developed that takes the identified practical features from the previous
sections as input and outputs the class of billets as healthy or defective.
The architecture of the employed 1D-CNN is depicted in Fig. 11. Some
essential parameters in the employed 1D-CNN are as follows: learning
rate was initially set at 0.01 and was assigned to drop at every 200
epochs with a dropping rate of 0.5; momentum was 0.9; mini-batch size
was set at 128; the total epoch number was set at 1000. The damage
identification results of the 1D-CNN are presented in Table 12. Table 12
shows the results of the 5-fold cross-validation accuracy for the training
and test sets. The results indicate the better performance of the trained
1D-CNN model on billets harvested from NSW sites. This is ideally in
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Fig. 8. Scatter plot of PC1 versus PC2 of the standardized feature space regarding tested billets from (a) WA, (b) NSW, and (c) mixed observations.
Table 11
The classification results of different MLAs applied to the field test results.

MLA WA NSW Mixed

Fine trees 91.2 94.1 90.3
Medium trees 91.0 94.5 89.8
Coarse trees 88.2 90.6 85.2
Linear discriminant 88.0 90.1 85.7
Quadratic discriminant 87.5 91.3 85.7
Gaussian Naïve Byes 85.4 84.5 82.2
Kernel Naïve Byes 87.5 86.7 85.3
Linear SVM 90.4 91.9 86.8
Quadratic SVM 93.2 95.4 91.6
Cubic SVM 91.8 95.4 92.2
Fine Gaussian SVM 93.9 96.7 94
Medium Gaussian SVM 93.3 95.2 91.7
Coarse Gaussian SVM 90.4 90.4 87.1
Fine nearest neighbor 91.2 94.8 91.5
Medium nearest neighbor 93.5 95.3 92.9
Coarse nearest neighbor 88.0 87.5 85.7
Cosine nearest neighbor 92.2 93.6 91.8
Cubic nearest neighbor 93.5 94.9 92.8
Weighted nearest neighbor 93.3 95.9 94.1
Boosted trees 92.7 94.9 92
Bagged trees 93.3 96.4 93.3
Subspace discriminant 86.6 90.1 85.2
Subspace KNN 91.5 96.5 92.2
RUSBoosted trees 91.9 95.5 90.7

line with the results obtained through ML algorithms. Next, the trained
models are further tested on data collected from testing some standing
trees.

To highlight the effect of feature selection on training the 1D-CNN
models, all features are next introduced to the models for training.
Table 13. The results show less variance for the model trained on WA
specimens with selected features compared to all features. Opposite
conclusions can be drawn for models trained on NSW and Mixed
specimens, although the difference is still marginal.

It is not typical to perform feature selection prior to running a CNN
11

network, as in-built feature engineering capability is a main highlight of
Table 12
The 5-fold cross-validation accuracy results obtained for the training and test sets using
the trained 1D-CNN models with selected features.

Accuracy (%) WA NSW Mixed

Training 96.3 99.7 97.8
Testing 92.5 96.3 92.2

deep models. However, the main reason here to train 1D-CNN models
with and without feature selection was to further assess the power of
the proposed feature selection algorithm. Tables 12 and 13 show the
variance between training and testing accuracy in both cases. The vari-
ance between the accuracy results of the 1D-CNN model with selected
features on data collected from WA, NSW, and Mixed samples yielded
3.8, 3.4, and 5.6 percent, respectively. Likewise, the results obtained
for the 1D-CNN model with all features on data collected from WA,
NSW, and Mixed samples returned 5, 2.3, and 4.8 percent, respectively.
Comparing the results indicates that while the performance of the
model on WA samples improved, its performance slightly worsened
for the NSW and Mixture samples. However, these improvements are
marginal and can be overlooked. As such, the validity of the feature
selection algorithm is confirmed.

The proposed procedure is meant to be independent of the type of
wood on which the model is trained. We have checked this hypothesis
by mixing test results obtained from different types of wood and an
acceptable accuracy ranges were achieved. For example, the results of
Tables 12 and 13 show that not only mixing different types of wood
in WA and NSW did not compromise the effectiveness of the model in
Table 12, but also improved the performance of the model in Table 13.

5. Further testing the trained models

Thus far, the results of solving the classification problem of billets
have been presented and discussed. To further assess the capability of
the trained models in identifying defective and healthy trees, several
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Fig. 9. Scree plots of the PCA applied to the dataset corresponding to the (a) WA, (b) NSW, and (c) mixed observations.
standing trees were tested in WA, of which ten were flawed and
nine were healthy. The health state of the trees was determined after
cutting and performing a visual inspection. However, the trees were
tested before cutting, and there were 822 ultrasonic signals collected
from the sampled trees at breast height. The optimal MLAs, i.e., Fine
Gaussian SVM and the 1D-CNN models (with all and selected features)
trained on the billets harvested from WA, NSW, and their mixture,
were employed to estimate the health condition of the trees. The final
accuracy results are reported in Table 14. It was generally expected
to achieve poor accuracy when applying the trained models on NSW
species for estimating the label of the trees in WA. The results of the
table indicate that this is the case.

Moreover, it can be seen from the table that the Fine Gaussian
SVM model trained on the WA billets provides the highest accuracy of
87.4%, followed by the 1D-CNN with all the features trained on WA
billets at 85.5%. However, the accuracy obtained from the 1D-CNN
with selected features trained on the mixture of billets was 84.8%–more
than the Fine Gaussian SVM at 78.4% and the 1D-CNN model with all
the features at 78%. Interestingly, the 1D-CNN model with selected fea-
tures and all features trained on the NSW specimens performs relatively
better than the Fine Gaussian model with an accuracy of 64.4 and 65.8
percent, respectively, where the poorest results were obtained from the
Fine Gaussian model trained on NSW billets with 58.9% accuracy.

The results of Table 14 again confirm our previous observation.
As such, one can see that the performance of the trained model of
mixed samples has significantly (6.8%) improved by using the selected
features. This is while this accuracy slightly worsened in models trained
on WA and NSW samples by 1 and 1.4 percent, respectively.
12
Table 13
The 5-fold cross-validation accuracy results obtained for the training and test sets using
the trained 1D-CNN models with all features.

Accuracy (%) WA NSW Mixed

Training 98 99.9 98.8
Testing 93 97.6 94

Table 14
The testing accuracy (%) of the trained CNN models on test data collected from standing
trees in WA.

Model WA Mixed NSW

CNN (selected features) 84.5 84.8 64.4
CNN (all features) 85.5 78 65.8
Fine Gaussian SVM 87.4 78.4 58.9

6. Future work

In Section 5, the developed models were further tested on some
standing trees. Based on the results, it is more generalizable to predict
the label of unseen data in WA using 1D-CNN trained on mixed samples
with selected features as opposed to the model, which is trained using
all features. However, the presented accuracy results were not intended
for decision-making about accepting or rejecting the null hypothesis
that a tested tree is healthy. This is mainly due to the fact that it is not
clear how to decide the integrity of a tree whose, for instance, more
than 50% test outcomes are negative, but still, a few are positive. Some

internal defects in the wooden sections may not be deemed significant
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Fig. 10. Contribution percentage of each feature to the first principal dimension for (a) WA, (b) NSW, (c) mixed observations.
Fig. 11. The architecture of the constructed 1D-CNN.
defects and may not thus exclude the tree from being used for industrial
purposes. For such defects, it is evident that the test results obtained
from testing from certain angles may be positive. This is schematically
demonstrated in Fig. 12. Therefore, further work needs to be done on
the decision-making part of the proposed strategy to make assigning a
label to a tested tree more rational for practical applications. This can
indeed be a potential subject of future work.

In this study, different models were trained for test data collected
in the lab and field. One possible future work could be employing the
concept of transfer learning, where models trained on lab specimens
will be generalized for use in the field. Moreover, the extracted features
can be expanded by deriving statistical features from the instantaneous
amplitude of IMFs obtained from ultrasonic test results.
13
7. Conclusions

The problem of wood quality assessment of standing trees has been
targeted by solving the classification problem of trees using contact–
ultrasonic testing and machine learning algorithms. To this end, the
contact–ultrasonic test results were first decomposed into their con-
stituent components using the VMD algorithm to derive informative
features. The importance of each feature was identified through a new
equation based on the loading of each feature obtained from the PCA
analysis of the feature matrix. Several test results were obtained from
lab specimens, and samples from sites of the two states in Australia,
i.e., WA and NSW, were studied. The results of the lab trial were
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Fig. 12. Testing a cross-section of a tree with (a) major defect and (b) minor defect.
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atched with those obtained in the field. As such, the Fine Gaus-
ian SVM was shown to be the most effective MLA for solving the
lassification problem in both cases. Moreover, it was shown that in
oth cases, features corresponding to 𝜎IF of IMF3, 𝑄2IF of IMF3, 𝑄1IF
f IMF3, and 𝑄1IF of IMF2 were most valuable features to be used
or classification. This indicates features extracted from high-frequency
MFs are of significant importance, further supporting the idea of signal
ecomposition.

A 1D-CNN model was constructed to solve the classification prob-
em of billets obtained from trees harvested in the fields. The results
ndicate the Fine Gaussian algorithm and 1D-CNN can effectively solve
he problem of wood classification in the fields. In the worst case, using
he selected features led to achieving 92.2% accuracy for the mixture of
illets obtained from WA and NSW sites. The 1D-CNN model was also
rained using all the extracted features and compared with the model
esults when using selected features. The results show that training the
odel with selected features could improve model performance in most

ases. Also, it was noted that the performance of the CNN model slightly
eclined in some other cases. Overall, the proposed feature selection
lgorithm produces a robust classification of wood specimens based
n their health condition. The trained models were then employed to
redict the health status of standing trees at WA sites. According to
he results, it is apparent that the 1D-CNN model is more generalizable
n all cases. However, this hypothesis needs to be further tested by
pplying the models to larger data sets.

In summary, the results of this study pave the way for solving the
roblem of determining the health status of wood. This paper’s results
lso confirm the VMD algorithm’s effectiveness in obtaining time–
requency features from ultrasonic signals. Further work is needed on
he decision-making portion of the problem, in which test results from
ifferent angles on a cross-section of a tree (mainly breast height) are
sed to discern whether the timber is helpful for industrial applications.
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