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Abstract

The increasing amount of e-waste has become
a major problem for society as the percent-
age of recycling or reuse is still insufficient.
The need to find an economically viable solu-
tion to this problem is immense. One promis-
ing approach is the automatic disassembly of
e-waste using robots. In this paper, lessons
learned from three years of participation in the
Robothon Grand Challenge, an international
competition to find reusable robotic capabili-
ties for e-waste disassembly, are presented. As
winners of the competition in 2023 and 2021,
we present our system architecture and de-
scribe the methodologies used to address the
major challenges. We also demonstrate the
transferability of our approach to a real-world
e-waste problem. The evaluation focuses on the
2023 competition tasks. Experimental results
are presented for task board localisation accu-
racy, execution time, and robustness. For ex-
ecution time, a comparison of the automated
solution with human performance is presented.
A supplementary video can be found at https:
//youtu.be/ypk0Al8kdNQ.

1 Introduction

E-waste is a major problem for our environment and so-
ciety. On average, each person on earth produces 7.3
kg of e-waste every year, of which 82.6% is not recycled
and ends up in landfills [Forti et al., 2020]. The concept
of a circular economy aims to find a response to this
waste of resources. It aims at not only reducing environ-
mental degradation but also recovering rare materials
from waste products [Van Buren et al., 2016]. Disman-
tling end-of-life (EoL) products is an essential step in
achieving a circular economy. At that point, the deci-
sion is made whether a product or its components can
be reused, repaired, re-manufactured or recycled.

(a) Winding up a cable
after probing a circuit.

(b) Replacing faulty PC
components.

Figure 1: E-waste manipulation during the Robothon
Grand Challenge 2023.

Robotic manipulation is useful for the accurate and
consistent execution of repetitive tasks, e.g. in assem-
bly lines. However, in the context of robotic disassembly
where many uncertainties about the state of the product
exist, a standard pre-programmed manipulator has seri-
ous shortcomings compared to the ability of humans to
intuitively disassemble products. This poses a significant
obstacle to the widespread adoption of robotic disassem-
bly in industry. Our goal is to close that gap and bring
robotic systems close to the efficiency and flexibility of
manual disassembly by improving hardware, optimising
processes and perceptual capabilities. The Robothon
Grand Challenge, an international competition focusing
on minimising the e-waste problem, works toward this
goal by identifying reusable robotic capabilities compa-
rable to those of a human [MIRMI, 2023]. Examples of
e-waste manipulation tasks conducted during the 2023
competition are shown in Fig. 1.

The Robothon Grand Challenge competition takes
place remotely. A task board as shown in Fig. 2 is sent
out to the accepted teams. The task board is instru-
mented with sensors and a microcontroller allowing the
recording of task completion and execution times. The
results of each trial run are automatically posted to a
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web dashboard allowing remote access and automatic
data collection. This setup enables a fair performance
comparison between the remote teams [So et al., 2022].

Figure 2: Competition task board from 2023, showing
the start and goal state of the task board and the trial
protocol which includes six manipulation tasks.

The participating teams have 30 days to solve a set of
tasks using a robotic manipulator. The robotic platform
must perform the tasks autonomously, i.e. without any
human intervention, and manipulate the task board from
a given start state to a desired target state as many times
as possible within a 10 minutes time frame. After each
attempt, the task board must be re-positioned on the
work bench to prevent pre-programmed trajectories. In
a live video-conference before a jury of robotics experts,
each team has two attempts to solve the task board with
their robotic platform. The jury evaluated teams against
the following criteria: completeness of tasks, execution
times, robustness and flexibility of their solutions.

In addition to solving the task board, each team is
required to disassemble a device of their choice using
their robotic system. The purpose of this so-called Bring
Your Own Device (BYOD) task is to demonstrate the
transferability of the developed system to a real-world
e-waste problem.

To date, the competition has taken place three times
as summarised in Table 1. The five best-performing
teams are invited to an award ceremony that takes place
at the renowned Automatica trade fair in Munich. Spon-
sors from industry award prize money to the finalists.
Our teams have consisted of Bachelor and Masters stu-
dents supported by senior academic and technical staff.

This paper makes the following contributions:

1. Detailed description of the system architecture and
methods used to solve the 2023 task board and the
BYOD task.

2. Analysis of individual teams’ competition runs us-
ing data collected from the 2023 competition and a
user study where participants were asked to carry
out the same disassembly tasks for comparison.

3. Development of a custom, open-source ROS driver

Year 2021 2022 2023
No. of applications 16 25 31
No. of accepted teams 9 20 20
No. of developers 44 80 80
Total prize money (€) 12k 18k 20k
Our team’s ranking 1. 5. 1.

Table 1: Key figures of the Robothon competitions to
date.

for the URe manipulator series capable of utilising
the UR-provided force mode and gripper features.

The remainder of the paper is organised as follows.
Sec. 2 discusses related work in the field of robotic disas-
sembly. Sec. 3 describes the Robothon Grand Challenge
2023 tasks. Sec. 4 proposes a system architecture while
Sec. 5 describes our methodology for solving each of the
competition tasks. Sec. 6 presents experimental results
for both the task board and the transferability task. Fi-
nally, Sec. 7 concludes and discusses future work.

2 Related Work

This section discusses related work in the field of robotic
disassembly, with a focus on object detection and robotic
manipulation.

[Weigl, 1994] describe the major challenges for disas-
sembly tasks for electronic products. They include the
generally uncertain conditions of the parts, their acces-
sibility and graspability, jamming and wedging, and a
need for temporary fixtures. Although these challenges
have been identified thirty years ago, they presently re-
main unsolved [Foo et al., 2022].

According to [Foo et al., 2022] a successful robotic
disassembly is affected by external and system factors.
External factors are uncertainties arising from the EoL
product such as variation in product families, product
structure and condition. External factors also relate to
the disassembly economy such as required output qual-
ity, market value of materials and components, the ex-
tent of disassembly and the uncertainty of the outcome
of the operations. System factors are defined as method-
ologies to meet the external factors such as perception,
tooling, level of automation, cost, robustness, modular-
ity and user-friendliness. In this paper, we adopt some
of the proposed system factors in our experimental eval-
uation.

To address the above-mentioned external factors of
EoL products, various system architectures have been
proposed in the literature, e.g. [Vongbunyong and Chen,
2015; Poschmann, 2021]. The proposed architectures
typically consist of three modules: 1) an intelligent agent
responsible for reasoning and planning, 2) a vision sys-
tem and other sensors for object detection and state



recognition, and 3) a mechanical system conducting the
disassembly.

As stated in [Vongbunyong and Chen, 2015], the tasks
performed by each module can be categorised into three
levels of control as shown in Fig. 3. The intelligent agent
mostly conducts high-level tasks such as planning and
behaviour control. The vision and sensors system is con-
cerned with data acquisition, processing and interpreta-
tion. The mechanical system is responsible for control-
ling the manipulator and path/trajectory planning. The
scope of the Robothon competition and our study is on
low- and mid-level control as shown in Fig. 3.

Figure 3: Control levels and modules of a robotic dis-
assembly system according to [Vongbunyong and Chen,
2015]. The scope of the Robothon competition is on low-
and mid-level control.

3 Robothon Challenge Tasks

The competition’s challenge for 2023 was focused on di-
agnosing the health of the electrical components by tak-
ing measurements. In order to carry this out, it was re-
quired to localise objects in the workspace, manipulate a
cabled probe to take measurements and to clean up the
workspace. These skills needed to be demonstrated on
the task board as well as for a real-world use case chosen
by the participating teams (BYOD task).

The start and end state of the task board as well as the
individual tasks are shown in Fig. 2. A human starts the
trial by pressing the button on the microcontroller board
(0). The robotic system must subsequently localise the
task board and press the blue button (1). A slider has
to be set to two specific setpoints which are shown on
a small LCD display (2). A measuring probe must be
moved from one slot to another (3). A hinged door must
be opened and a terminal block must be measured with
the probe (4). The probe needs to be inserted back to
the initial position and the cable has to be wound up (5).
The robot presses the red button to end the trial (6).

To demonstrate the transferability of our general ap-
proach to a real product, we chose to diagnose and ma-
nipulate a PC mainboard with respect to two of its
components: a GPU board and a RAM module (see
Fig. 4). Due to their prevalence, high value, and con-
tinuing decrease in average life span, Personal Com-
puters are a relevant e-waste problem commonly ad-
dressed by disassembly systems [Hohm et al., 2000;
Laszlo et al., 2019].

Figure 4: Our selected BYOD task: diagnosing GPU
boards and RAM modules by inserting them into a PC
mainboard and measuring the error code via an oscillo-
scope. The measurement is made using a custom PCB
the robot connects to the mainboard via a standard plug.

4 System Architecture

This section describes the hardware and software archi-
tecture we developed in order to address the tasks from
the previous section. The hardware setup is shown in
Fig. 6. We use a Universal Robot UR5e manipulator
and a Robotiq Hand-E gripper. Custom-made tools
for specific manipulation tasks are 3D-printed. Two
cameras are utilised: 1) a statically mounted IDS U3-
3800CP camera responsible for localising objects in the
workspace, and 2) a wrist-mounted Intel Realsense D435i
camera used for manipulation tasks that require vision
feedback. A Tektronix oscilloscope TDS 2002B is used
for the BYOD task. The software architecture is set up
using ROS Noetic, running on a PC with an Intel i7 8850
CPU, 16 GB of RAM and an Ubuntu 20.04 installation.
For GPU processing a Nvidia RTX A2000 is used.

The overall system architecture is shown Fig. 5. It
consists of a Sense, Plan, and Act module following the
standard approach for robotic disassembly systems as
discussed in Sec. 2.

Adopting the control levels from Fig. 3, the
Sense module consists of the hardware mentioned
above, low-level software drivers to read the sen-
sor data, and three mid-level software modules
(Board/Triangle/Component Detection) which are de-
scribed in later sections. The IDS driver was custom-
developed based on the manufacturer’s API. The Re-
alsense driver is a standard ROS package. The signals



Figure 5: System architecture with the three modules Sense, Plan and Act. Arrows indicate the information flow.
The software architecture is set up using ROS.

Figure 6: Hardware setup consisting of an UR5e, a stat-
ically mounted IDS camera, and a wrist-mounted Intel
Realsense. An oscilloscope is used to take measurements
on the PC for the BYOD task.

from the Tektronix oscilloscope are read via a GPIB in-
terface and subsequently processed to detect and count
the signal edges.

The Plan module evaluates the information from the
Sense module and determines what action needs to be
taken. It is split into two parts: Task Scheduler and
Task Handler. The scheduler generates a sequence of
tasks and observes their execution. In case of an error,
it can reschedule the task or initiate a fallback action.
It calls the functions defined in the Task Handler which
execute the requested tasks.

The Act module consists of the manipulator and grip-
per hardware and a robot driver. The custom-developed
driver is a ROS wrapper of the ur rtde library1 which
provides a C++ and Python API for Real-Time Data

1https://gitlab.com/sdurobotics/ur_rtde

Exchange (RTDE) of the UR Robot. Our driver enables
the utilisation of the UR force mode, freedrive mode and
provides advanced gripper control. Those features are
not available with the standard ROS driver2. The au-
thors have successfully used their driver in other projects
and are planning to publish it under an open-source li-
cense after more testing and bug fixing has been com-
pleted.

5 Methodology

In this section, solutions to the main technical challenges
of the Robothon competition are presented. This con-
sists of our approach to 1) object detection, namely task
board localisation and the detection of small objects on
an LCD screen, and 2) manipulation, namely tooling and
fault-tolerant design.

5.1 Task Board Localisation

One of the main challenges of the competition is the un-
known location of the task board. This requirement is
evaluated by random placements of the task board dur-
ing the competition using Velcro strips. Therefore, a pre-
requisite to all subsequent manipulation tasks is to de-
termine the absolute pose of the task board in the robot’s
workspace. Here, we decided for a fast vision-based lo-
calisation approach instead of a more time-consuming
tactile sensing solution.

Vision-based localisation of objects with known geom-
etry is based on finding point correspondences between
known 3D coordinates of distinct features on the object
and its correspondent camera measurements.

The general problem statement is simplified by the
following two pre-conditions: the geometry of the task
board is known, and the pose of the robot arm can be

2https://github.com/UniversalRobots/Universal_
Robots_ROS_Driver
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measured very precisely. This allows the use of any
2D or 3D camera at arbitrary known positions in the
workspace. Decisions to be made are 1) where to place a
camera, 2) what camera to use (2D or 3D), and 3) which
features to select.

The position and orientation of the task board is lim-
ited to a planar workspace. Therefore, we use a static
camera in bird’s eye view to localise the task board as
can be seen in Fig. 6. In this configuration the top of
the task board is always front-to-parallel to the cam-
era which means circular shapes on the task board re-
main circular on the image projected from any location
of the task board, and the scale and the appearance of
the visual features only vary slightly. Furthermore, a
light source can be used for consistent illumination of
the scene within the defined workspace.

Depth measurements from 3D cameras are prone to er-
rors, their accuracy varies with distance and view point,
and their calibration is non-trivial and sensible to tem-
perature changes. Therefore, we use an RGB camera and
extract 2D features from the image. As the correspond-
ing 3D coordinates of the features on the task board are
known, the Perspective-n-Point (PnP) problem can be
solved via minimising the reprojection error [Lu, 2018]

in order to estimate the pose of the task board.

The accuracy of the PnP pose estimation depends on
the number of robustly extracted feature coordinates and
its spatial configuration in space. There are a limited
number of distinct and easy-to-detect visual features on
the task board. As shown in [Acuna and Willert, 2018],
the lower the number of features the more their spatial
configuration affects the accuracy. A very stable config-
uration for 5 features are the corner points of a square
plus the midpoint. In general, the larger the number of
features the more accurate the estimate.

Given this background, the features we selected on the
task board are shown in Fig. 7. All features are robustly
detected via threshold-based colour segmentation, noise
reduction via morphological filtering, and 2D coordinate
extraction via the Hough circle transform [Jähne, 2005].
To disambiguate the orientation of the task board, the
rectangular-shaped microcontroller is used.

5.2 Triangle Detection

Another challenge in 2023 is the detection of coloured
triangles on a small LCD screen under varying lighting
conditions and with overlapping triangles (see Fig. 8).
The colour coding is as follows: the yellow triangle indi-
cates the centre of the screen. The green triangle shows
the goal point for the slider which is tracked via the red
triangle. The task for the robot is to move the slider
such that the red triangle firstly aligns with the yel-
low triangle and secondly with the green triangle. To
address this, we implemented a closed-loop system con-

Figure 7: Distinct features selected for PnP pose es-
timation: Six screws, the blue/red buttons, the probe
connector and the orange microcontroller. The yellow
rectangle visualises the estimated task board pose.

Figure 8: Challenges of the triangle detection task: over-
lapping triangles and varying lighting conditions.

sisting of simultaneous triangle detection via the wrist-
mounted camera and moving the slider with the UR5e.
The system calculates a commanded velocity which is
inversely proportional to the distance to the target po-
sition. This prevents the robot from overshooting while
ensuring faster motion for larger distances.

With the wrist-camera and gripper setup described in
Sec. 4, the resulting images are out-of-focus due to prox-
imity to the task board making it difficult to segment
the individual triangles based on shape. Therefore, our
approach relies on colour detection. Images are captured
in RGB colour space; however, RGB is sensitive to lu-
minance and other ambient conditions and therefore un-
suitable for our use case. We have also found that the
hue oriented HSV colour space (see Fig. 9 left) is not
well suited to robustly distinguish green from yellow. In-
stead, we use the L*a*b* colour space (see Fig. 9 right).
Its colour channels are defined to achieve a perceptually
uniform colour representation, i.e. the differences in the
colour space are proportional to subjective differences in
human perception. The L*a*b* colour space is known
for its high classification accuracy [Garćıa-Mateos et al.,
2015].

5.3 End-Effector Tooling

Many of the Robothon manipulation tasks cannot be
solved with a standard gripper and require specialised



Figure 9: Comparison of the HSV (left) and L*a*b
(right) colour spaces [Rosebrock, 2023]. Due to a better
separation between yellow and green, we use L*a*b for
the detection of the coloured triangles.

tooling. We have considered two types of custom-made
designs for the Robothon: 1) fingertips that attach di-
rectly to the gripper, 2) graspable tools (see Fig. 10).

Figure 10: Two types of designs for specialised tooling:
(1) and (2) show fingertips which are attached directly
to the gripper used in the 2022 competition. (3) and (4)
show graspable tools used in 2023: a hook for winding
up the probe cable and a front panel connector (FPC)
for the BYOD task.

The advantage of graspable tools is the ability to swap
between suitable tools during execution based on the
current task. On the other hand, a universal fingertip
is more efficient in terms of the execution times since
no tool changes are required. Due to the diversity of
the tasks, the former approach was found to be more
suitable.

The most challenging manipulation task in 2023 is the
winding up of the cable. Handling deformable objects re-
mains one of the more challenging and generally unsolved
tasks in robotic manipulation [Zhu et al., 2022]. We de-
veloped a graspable tool in form of a hook as shown in
Fig. 10 (3). Another graspable tool was developed for
our BYOD task providing a physical interface for the
front panel connection on the PC (see Fig. 10 (4)).

5.4 Fault-Tolerant Design

The ability to react to failed tasks is important for dis-
assembly due to uncertainty in the state of objects be-
ing manipulated and noisy perception. Thus, a fault-
tolerant system capable of detecting failed tasks and re-
covering with fallback actions is necessary. Some exam-
ple scenarios specific to the task board and our method

for solving them are described here. These scenarios are
representative of common faults and the general princi-
ple can be applied to wider disassembly tasks.

In the triangle detection task, the detection process oc-
cassionally fails to accurately identify the positions of the
triangles due to varying lighting conditions and overlap-
ping shapes (see Fig, 8). The fallback option is to move
the slider over the entire range in an open-loop fash-
ion. This guarantees task completion but significantly
increases execution time.

Another fallback has been implemented for a failed
button press. A job status on the LCD display indicates
whether a button has been successfully pressed. Using
the wrist-mounted camera, we check the status and re-
peat the task if a failure has occurred. This is useful for
the task of pressing the red button after manipulating
the probe cable which tends to be unreliable due to the
flexible structure of the cable hook tool (see Fig. 10 (3)).

Another fault-tolerant design method is used to
counter the insufficient accuracy of the task board local-
isation for fine manipulation tasks such as peg-in-hole
operations. In the 2023 competition, inserting the probe
plug is an example. To address this, a spiral search has
been implemented. The TCP moves in a spiral motion
around the target position with the plug touching its
receptacle. A successful insertion into the receptacle is
detected via feedback from the UR force-torque sensor,
read via our custom-made ROS driver.

6 Results

This section presents experimental results for both the
task board and the BYOD tasks from the 2023 Robothon
competition.

6.1 Task Board

For the evaluation of the task board results, we adopt the
taxonomy by [Foo et al., 2022] introduced in Sec. 2. The
authors identified a number of system factors that are
crucial for an automated disassembly process. For our
evaluation, we select perception abilities and robustness.
We also add execution time which is crucial in industrial
processes and is also a focus of the Robothon competi-
tion. Table 2 summarises the system factors used in this
paper and shows the evaluation metric. The following
section reports results in the same order as listed in the
table.

System Factor Evaluation Metric
Perception Position/orientation error (mm/◦)
Robustness Task success rate (%)
Execution time Time (s)

Table 2: System factors used in our evaluation.



Figure 11: Results for total execution time per Job. F1
through F5: results for the top five teams, extracted
from the 10min video submission (F1 is ours), A: im-
proved version of our solution, H: human performance.

Perception capabilities are evaluated by the
achieved accuracy of our task board localisation system
described in Sec. 5.1. Ground truth is obtained by us-
ing the UR5e as a tactile sensor, i.e. touching the top
and the sides of the task board to compute its pose via
forward kinematics.

For our experiment, we placed the task board on the
table in eight different positions and orientations. The
detection was run three times for each pose providing
a total of 24 data points. We calculated the position
error to be 1.4± 0.66mm and the orientation error to be
0.39± 0.21◦. As a comparison, [So et al., 2022] reported
a positional error of 9.8±3.5mm and an orientation error
of 0.72 ± 0.32◦ for their benchmark implementation for
the Robothon 2022.

Robustness is evaluated during the competition by
successfully finishing five consecutive trial runs of all
tasks with different orientations within a 10min time
frame. Out of the 20 accepted teams, six including us
achieved this goal (30%).

Execution time is evaluated on a per-task basis for
the 2023 competition. Sec. 3 contains a detailed descrip-
tion of the trial run. For the purpose of our evaluation,
we define the following four Jobs:

• J1: Localise task board

• J2: Move slider

• J3: Take measurement

• J4: Wind up cable

For each Job, we extracted the execution times from
the 10 minutes video submission by the five finalists in-
cluding ours. The videos include five trial runs: for each

trial, the task board was placed in a different orienta-
tion. The videos show that teams F2 to F4 changed the
orientation within approximately 45◦ whereas we cov-
ered a range of 270◦. Secondly, we ran 20 trials on an
improved version of our own system demonstrated to
the jury during the video interview. Two main improve-
ments were implemented: a) porting code from Python
to C++, and b) adding blending to the robot motion.
Finally, since one of main goals of the Robothon compe-
tition is to match human capabilities via an automated
solution [MIRMI, 2023], we generated data of human
performance.

For our pilot user study, we asked 21 human sub-
jects to perform the tasks manually. Participants are
between 20 and 47 years old, 17 are male and 4 female,
all have an engineering background. Each participant
received a short introduction of the tasks. Subsequently,
the task board was placed at a random orientation on
the workspace out of the participants’ view. The par-
ticipants then conducted the tasks manually while the
experimenter recorded the time per Job using a stop-
watch. Each participant repeated the trial three times
and we computed the average time per participant.

An overview of the total average execution times is
shown in Fig. 11. The top 4 teams (F1-F4) achieved re-
sults between 58.5 and 72.7 seconds. With our improved
version (A), we achieved an execution time of 57.5. No-
tably, the average human performance of 29.1 seconds is
better than all automated solutions.

A breakdown of the execution times per Job is pro-
vided in Fig. 12. J1 represents the Job of localising the
task board which is considered finished when the blue
button is pressed. Task board localisation is a crucial
prerequisite for the following manipulation tasks. Teams
used different types of hardware to address the task:
while teams F1, F2 and F5 used consumer-grade RGB-D
cameras, teams F3 and F4 used commercially available
solutions often used in bin picking applications. The ap-
proach yielded very consistent results as indicated by the
small variances for F3 and F4. Nevertheless, their me-
dian results are not significantly better when compared
to F1 and F2. From analysing the videos, it appears
that the board recognition of the commercial systems
(F3 and F4) was very fast but time was lost during the
slow robot motion to press the blue button.

Another observation is that our improved solution (A)
is significantly better than our initial solution (F1). The
reduction in median and variance can both be explained
by our port from Python to C++: processing time be-
came faster and a multi-threading capability removed
CPU clogging.

J2 represents the Job for moving the slider. Results
for teams F1-F4 are close to each other when compar-
ing the medians. The execution time variance can be



(a) J1: Localise task board (b) J2: Move slider

(c) J3: Take measurement (d) J4: Wind up cable

Figure 12: Comparison of execution times per Job. F1 through F5: results for the top five teams, extracted from
the 10min video submission (F1 is ours), A: improved version of our solution, H: human performance. F1 through
F5 have 5 data points each, A has 20 data points and H has 21 data points.

explained by the nature of task: the position of the tri-
angles on the LCD screen are randomly generated lead-
ing to different execution times between trials. Outliers
for our improved solution (A) occured when the triangle
recognition failed and the fallback method described in
Sec. 5.4 had to be used.

J3 represents the Job of taking a measurement which
includes moving the probe plug, opening the door and
probing the circuit (see Fig. 2). We chose opening the
door using the probe to save time; however, this does
not show in the plot since time was lost by taking the
measurement slowly compared to the other teams. Sim-
ilar to J2, the outliers of our improved solution (A) are
explained by spiral search fallback method described in
Sec. 5.4.

J4 represents the Job of winding up the cable which
was the most challenging manipulation task of the com-
petition. Team F4 achieved the best result in both me-
dian and variance. With our improved solution (A), we
achieved a similar median as F4. Notably, we used 20
trials for A and covered a range of 360◦ for the task
board orientations, demonstrating the robustness of our
approach to all possible orientations.

For all four Jobs, the median of the human perfor-
mance was better than the best automated solution.
Humans did particularly well for J3 and J4 which re-
quire fine-grained and tactile manipulation skills. On
the other hand, the automated solutions show a smaller
variance compared to the manual labour, in particular
for J4, indicating higher consistency and repeatability.



6.2 Transferability Task

This section describes results of the BYOD transferabil-
ity task described in Sec. 3. As shown in Fig. 4, our
PC diagnosis system works as follows. After localising
the PC, the custom-made front panel connector (FPC)
is plugged in by the robot before turning on the PC.
Then, the error codes are read by detecting the edges
of the voltage signal using the oscilloscope. The RAM
error signal is shown in Fig. 13 top.

Figure 13: BYOD task: 1) RAM error signal measured
with an oscilloscope, 2) Detection of the RAM cards with
a YOLO neural network.

A detected error state can have two different causes: 1)
missing component, or 2) defective component. In order
to distinguish between the two causes, a visual detection
of the GPU/RAM boards on the PC is required. We
chose to train a YOLO v8 neural network3 which pro-
vides bounding boxes for the detected boards as shown
in Fig. 13 bottom. The network was trained using 3600
images: 1200 original images were labelled by hand and
the roboflow tool4 tripled the data set by varying their
saturation and brightness. On a test data set of 18 im-
ages, roboflow reported a mean average precision (mAP)
of 97.1%.
In the context of sustainability, our proposed system

can be used in two ways as detailed in Figure 14:

1. PC diagnosis: If defective components are found,
replace them and recycle the defective components.

2. Component (GPU/RAM) diagnosis: If components
are faulty, recycle them. If they are functional, reuse
them.

3https://github.com/ultralytics/ultralytics
4https://roboflow.com/model/yolov8

Therefore, three of the multiple R’s of the circular
economy are addressed, namely Repair, Recycle and
Reuse [Kirchherr et al., 2017].

Figure 14: Two usage patterns of our BYOD task: 1)
PC diagnosis, and 2) component (GPU/RAM) diagno-
sis. The system addresses three R’s of the circular econ-
omy (Repair, Recycle and Reuse).

7 Conclusion and Future Work

In this paper, we have presented the developments and
experiences made during three successful participations
in the Robothon Grand Challenge competition. The
Robothon aims at developing robot skills comparable to
a human in the handling of e-waste. Our paper presents
a robust and effective approach to address the challenges
of the competition by describing our system architecture
and developed methodologies.

Our experimental evaluation focuses on the 2023 com-
petition tasks. We show high accuracy for the 2D pose
detection of the task board using vision compared to tac-
tile sensing. We compare our task execution times with
those from other teams in the competition. We also
show results from a pilot user study comparing execu-
tion times between the automated solution and manual
labour. The results show that on average humans are
faster for all tasks; however, our robotic solution carried
out the tasks with lower execution time variance.

We also demonstrate the transferability of our pro-
posed system to a real and highly relevant e-waste prob-
lem, namely the diagnosis of PCs and their components
such as GPU and RAM modules. This is a valuable
demonstration of our system being useful in the context
of a circular economy.

In future work, we will combine the strengths of robots
such as repeatability and accuracy with the fine manip-
ulation skills and flexibility of humans. We believe that
human-robot collaboration is well suited to address more
complex disassembly tasks [Liu et al., 2019].

https://github.com/ultralytics/ultralytics
https://roboflow.com/model/yolov8


Another avenue of future research in the context of dis-
assembly is to replace pre-programmed motions by learn-
ing manipulation skills from human demonstrations [Ne-
matollahi et al., 2022]. The task board and the system
presented in this paper will be used as a benchmark to
evaluate those approaches.
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