SUMS OF CERTAIN PRODUCTS OF FIBONACCI AND LUCAS NUMBERS

R. S. Melham
School of Mathematical Sciences, University of Technology, Sydney
PO box 123, Broadway, NSW 2007, Australia
(Submitted September 1997-Final Revision February 1998)

1. INTRODUCTION

Inspired by the charming result

\[
\sum_{k=1}^{n} F_k^2 = F_n F_{n+1},
\]

Clary and Hemenway [3] discovered factored closed-form expressions for all sums of the form \(\sum_{k=1}^{n} F_k^r\), where \(r\) is an integer. One of their main aims was to find sums that could be expressed neatly as products of Fibonacci and Lucas numbers. At the end of their paper they mentioned the result

\[
\sum_{k=1}^{n} F_k^2 F_{k+1} = \frac{1}{2} F_n^3 F_{n+1} F_{n+2},
\]

Motivated by (1.1) and (1.2), we have discovered an infinity of similar identities which we believe are new. For example, we have found

\[
\sum_{k=1}^{n} F_k F_{k+1} F_{k+2} F_{k+3} F_{k+4} = \frac{1}{4} F_n F_{n+1} F_{n+2} F_{n+3} F_{n+4} F_{n+5},
\]

and

\[
\sum_{k=1}^{n} F_k F_{k+1} F_{k+2} F_{k+3} F_{k+4}^2 F_{k+5} F_{k+6} F_{k+7} F_{k+8} = \frac{1}{11} F_n F_{n+1} \cdots F_{n+9}.
\]

In Section 2 we prove a theorem involving a sum of products of Fibonacci numbers, and in Section 3 we prove the corresponding theorem for the Lucas numbers. In Section 4 we present three additional theorems, two of which involve sums of products of squares of Fibonacci and Lucas numbers.

We require the following identities:

\[
F_{n+k} + F_{n-k} = F_n I_k, \quad k \text{ even},
\]

(1.5)

\[
F_{n+k} + F_{n-k} = L_n F_k, \quad k \text{ odd},
\]

(1.6)

\[
F_{n+k} - F_{n-k} = F_n L_k, \quad k \text{ odd},
\]

(1.7)

\[
F_{n+k} - F_{n-k} = L_n F_k, \quad k \text{ even},
\]

(1.8)

\[
L_{n+k} + L_{n-k} = F_n I_k, \quad k \text{ even},
\]

(1.9)

\[
L_{n+k} + L_{n-k} = L_n F_k, \quad k \text{ odd},
\]

(1.10)

\[
L_{n+k} - L_{n-k} = F_n L_k, \quad k \text{ odd},
\]

(1.11)

\[
L_{n+k} - L_{n-k} = L_n F_k, \quad k \text{ even},
\]

(1.12)

\[
I_n^2 - I_{2n} = -2, \quad n \text{ odd},
\]

(1.13)
SOMS OF CERTAIN PRODUCTS OF FIBONACCI AND LUCAS NUMBERS

\[5F_{2n}^2 - L_{2n}^2 = -4 = -L_0^2, \quad (1.14) \]
\[5F_{2n}^2 - L_{4n}^2 = -2 = -L_0. \quad (1.15) \]

Identities (1.5)-(1.8) occur on page 59 of Hoggatt [4], while (1.9)-(1.12) occur as (9)-(12), respectively, in Bergum and Hoggatt [1]. Identities (1.13)-(1.15) can be proved with the use of the Binet forms.

2. A FAMILY OF SUMS FOR THE FIBONACCI NUMBERS

Theorem 1: Let \(m \) be a positive integer. Then

\[\sum_{k=1}^{n} F_k F_{k+1} \cdot F_{k+2m} \cdot F_{k+4m} = \frac{F_{n} F_{n+1} \cdot F_{n+2m} \cdot F_{n+4m+1}}{L_{2m+1}}. \quad (2.1) \]

Proof: We use the elegant method described on page 135 in [3] to prove (1.2). Let \(l_n \) and \(r_n \) denote the left and right sides, respectively, of (2.1). Then \(l_n - l_{n-1} = F_n F_{n+1} \cdot F_{n+2m} \cdot F_{n+4m} \).

Also,

\[r_n - r_{n-1} = \frac{F_n F_{n+1} \cdot F_{n+2m} \cdot F_{n+4m+1} - F_{n-1}}{L_{2m+1}} \]
\[= \frac{F_n F_{n+1} \cdot F_{n+2m} \cdot F_{n+4m+1} - F_{n+2m}(2m+1) - F_{n+2m} - (2m+1)}{L_{2m+1}} \]
\[= l_n - l_{n-1} \quad \text{using (1.7)}. \]

Hence, to prove that \(l_n = r_n \) it suffices to show that \(l_1 = r_1 \). But

\[r_1 = \frac{F_1 F_{2} \cdot F_{3m+1} \cdot L_{2m+1}}{L_{2m+1}} \quad \text{(since } F_2 = F_n F_{n+1}) \]
\[= l_1, \quad \text{and this completes the proof}. \]

When \(m = 1 \) and 2, identity (2.1) reduces to (1.3) and (1.4), respectively. However, while (1.1) and (1.2) can be proved in a similar way, they are not special cases of (2.1).

3. CORRESPONDING RESULTS FOR THE LUCAS NUMBERS

Corresponding to (1.1) we have

\[\sum_{k=1}^{n} L_k^2 = L_n L_{n+1} - 2, \quad (3.1) \]

which occurs as \(I_4 \) in Hoggatt [4]. The Lucas counterpart to (1.2) is

\[\sum_{k=1}^{n} L_k^2 L_{k+1} = \frac{1}{2} L_n L_{n+1} L_{n+2} - 3. \quad (3.2) \]

The constants on the right sides of (3.1) and (3.2) can be obtained by trial, and also in the same manner as in our next theorem, demonstrating a certain unity.

Theorem 2: Let \(m \) be a positive integer. Then

\[\sum_{k=1}^{n} L_k L_{k+1} \cdot L_{k+2m} \cdot L_{k+4m} = \frac{L_n L_{n+1} \cdot L_{n+2m+1} - R_0}{L_{2m+1}}. \quad (3.3) \]
SUMS OF CERTAIN PRODUCTS OF FIBONACCI AND LUCAS NUMBERS

where

\[R_n = \frac{L_n L_{n+1} \cdots L_{n+4m+1}}{L_{2m+1}}, \quad n = 0, 1, 2, \ldots \]

Proof: Again, let \(I_n \) denote the left side of (3.3). Then

\[
R_n - R_{n-1} = \frac{L_n L_{n+1} \cdots L_{n+4m}}{L_{2m+1}} [I_{n+4m+1} - I_{n-1}]
\]

\[
= \frac{L_n L_{n+1} \cdots L_{n+4m}}{L_{2m+1}} [I_{(n+2m)+(2m+1)} - I_{(n+2m)-(2m+1)}]
\]

\[
= I_n I_{n+1} \cdots I_{n+2m} \cdots I_{n+4m} \quad \text{[by (1.11)]}
\]

\[
= I_n - I_{n-1}.
\]

From this we see that \(I_n - R_n = c \), where \(c \) is a constant. Now,

\[
c = I_1 - R_1
\]

\[
= L_1 L_2 \cdots L_{4m+1} \left[L_{2m+1} \frac{L_{4m+2}}{L_{2m+1}} \right]
\]

\[
= L_1 L_2 \cdots L_{4m+1} \frac{L_{2m+1}^2 - L_{4m+2}}{L_{2m+1}}
\]

\[
= - \frac{L_0 L_1 L_2 \cdots L_{4m+1}}{L_{2m+1}} \quad \text{[by (1.13)]}
\]

\[
= -R_0.
\]

This concludes the proof.

Since this method of proof applies to (3.1) and (3.2), we see that the appropriate constants on the right sides are \(-2 = -L_0 L_1\) and \(-3 = -\frac{1}{2} L_0 L_1 L_2\), respectively. Accordingly, we write (3.1), for example, as

\[
\sum_{k=0}^n I_k^2 = [I_k L_{k+1} L_{k+2}].
\]

We use this notation throughout the remainder of the paper.

Remark: If for \(m = 0 \) we interpret the summands in (2.1) and (3.3) to be \(F_k^2 \) and \(I_k^2 \), respectively, then we can realize (1.1) and (3.1) within the framework of our two theorems. However, the same cannot be said for (1.2) and (3.2).

4. MORE SUMS OF PRODUCTS

In this section we state three additional theorems, two of which involve sums of products of squares. Using (1.5)-(1.15), they can be proved in the same manner as Theorems 1 and 2, and so we leave this task to the reader. In each theorem, \(m \) is assumed to be a nonnegative integer.

Theorem 3:

\[
\sum_{k=1}^n F_k F_{k+1} \cdots F_{k+4m+2} I_{k+2m+1} = \frac{F_0 F_1 F_{n+1} \cdots F_{n+4m+3}}{F_{2m+2}}, \quad (4.1)
\]

[250] [AUG.
\[\sum_{k=1}^{n} L_k L_{k+1} \cdots L_{k+4m+2} F_{k+2m+1} = \left[\frac{L_k L_{k+1} \cdots L_{k+4m+3}}{5F_{2m+2}} \right]_0^n. \] (4.2)

Theorem 4:
\[\sum_{k=1}^{n} F_k^2 F_{k+1}^2 \cdots F_{k+4m}^2 F_{2k+4m} = \frac{F_n^2 F_{n+1}^2 \cdots F_{n+4m+1}^2}{F_{4m+2}}, \] (4.3)
\[\sum_{k=1}^{n} I_k^2 I_{k+1}^2 \cdots I_{k+4m}^2 I_{2k+4m} = \left[\frac{I_k^2 I_{k+1}^2 \cdots I_{k+4m+1}^2}{5F_{4m+2}} \right]_0^n. \] (4.4)

In the proof of (4.3), when finding \(r_n - r_{n-1} \), we obtain the expression \(F_{n+4m+1}^2 - F_{n-1}^2 \), which by (1.6) and (1.7) can be written as
\[[F_{(n+2m)+(2m+1)}] - [F_{(n+2m)-(2m+1)}] + F_{(n+2m)+(2m+1)} - F_{(n+2m)-(2m+1)} \]
\[= F_{n+2m} F_{2m+1} - F_{n+2m} F_{2m+1} = F_{n+4m} F_{4m+2}. \]

Similar expressions that arise in the proof of (4.4), and in the proof of the next theorem, can be treated in the same manner.

A simple special case of (4.3), which occurs for \(m = 0 \), is \(\sum_{k=1}^{n} F_k^2 F_{2k} = F_n^2 F_{n+1}^2 \).

Theorem 5:
\[\sum_{k=1}^{n} F_k^2 F_{k+1}^2 \cdots F_{k+4m+2}^2 F_{2k+4m+2} = \frac{F_n^2 F_{n+1}^2 \cdots F_{n+4m+3}^2}{F_{4m+4}}, \] (4.5)
\[\sum_{k=1}^{n} I_k^2 I_{k+1}^2 \cdots I_{k+4m+2}^2 I_{2k+4m+2} = \left[\frac{I_k^2 I_{k+1}^2 \cdots I_{k+4m+3}^2}{5F_{4m+4}} \right]_0^n. \] (4.6)

To conclude we mention that, for \(p \) real, the sequences \(\{U_n\} \) and \(\{V_n\} \), defined for all integers \(n \) by
\[\begin{aligned}
U_n &= pU_{n-1} + U_{n-2}, \quad U_0 = 0, \quad U_1 = 1, \\
V_n &= pV_{n-1} + V_{n-2}, \quad V_0 = 2, \quad V_1 = p,
\end{aligned} \]
generalize the Fibonacci and Lucas numbers, respectively. The results contained in Theorems 1-5 translate immediately to \(U_n \) and \(V_n \). The reason is that if we replace \(F_n \) by \(U_n \), \(I_n \) by \(V_n \), and 5 by \(p^2 + 4 \), then \(U_n \) and \(V_n \) satisfy (1.5)-(1.15).

REFERENCES

AMS Classification Numbers: 11B39, 11B37

+++
CONTENTS

Cover Page

K. B. Subramaniam
Almost Square Triangular Numbers 194
Full text

P. Viader, J. Paradis and Bibiloni
Note on the Pierce Expansion of a Logarithm 198
Full text

Zhizheng Zhang
Generalized Fibonacci Sequences and a Generalization of the Q-Matrix 203
Full text

R. S. Melham
Lambert Series and Elliptic Functions and Certain Reciprocal Sums 208
Full text

M. N. Swamy
Generalized Fibonacci and Lucas Polynomials, and Their Associated Diagonal Polynomials 213
Full text

W. Motta, M. Rachidi and O. Saeki
On ∞-Generalized Fibonacci Sequences 223
Full text

Temba Shonhiwa
Generalized Bracket Function Inverse Pairs 233
Full text

Indulis Strauzdins
Partial Fibonacci and Lucas Numbers 240
Full text

R. S. Melham
Sums of Certain Products of Fibonacci and Lucas Numbers 248
Full text

Georg J. Rieger
<table>
<thead>
<tr>
<th>Article Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibonacci Numbers and Harmonic Quadruples</td>
<td>252</td>
</tr>
<tr>
<td>Feng-Zhen Zhao</td>
<td>254</td>
</tr>
<tr>
<td>Notes on Reciprocal Series Related to Fibonacci and Lucas Numbers</td>
<td></td>
</tr>
<tr>
<td>Anatoly S. Izotov</td>
<td>258</td>
</tr>
<tr>
<td>On the Form of Solutions of Martin Davis' Diophantine Equation</td>
<td></td>
</tr>
<tr>
<td>P. Filipponi and O. Brugia</td>
<td>262</td>
</tr>
<tr>
<td>On the Integers of the Form n(n-1)-1</td>
<td></td>
</tr>
<tr>
<td>Announcement of the Ninth International Conference on Fibonacci Numbers</td>
<td>264</td>
</tr>
<tr>
<td>Numbers and Their Applications</td>
<td></td>
</tr>
<tr>
<td>Florian Luca</td>
<td>265</td>
</tr>
<tr>
<td>Arithmetic Functions of Fibonacci Numbers</td>
<td></td>
</tr>
<tr>
<td>R. S. Melham</td>
<td>269</td>
</tr>
<tr>
<td>Lucas Sequences and Functions of a 4-by-4 Matrix</td>
<td></td>
</tr>
<tr>
<td>Edited by Stanley Rabinowitz</td>
<td>277</td>
</tr>
<tr>
<td>Elementary Problems and Solutions</td>
<td></td>
</tr>
<tr>
<td>Edited by Raymond E. Whitney</td>
<td>282</td>
</tr>
<tr>
<td>Advanced Problems and Solutions</td>
<td></td>
</tr>
</tbody>
</table>

Back Cover

Copyright © 2010 The Fibonacci Association. All rights reserved.