ON THE GENERAL LINEAR RECURRENCE RELATION

Ray Melham

School of Mathematical Sciences, University of Technology, Sydney
Broadway N.S.W., 2007, Australia

Derek Jennings

Department of Mathematics, University of Southampton, Hampshire, S095NH, England
(Submitted August 1993)
The general $m^{\text {th }}$-order linear recurrence relation can be written as

$$
\begin{equation*}
R_{n}=\sum_{i=1}^{m} a_{i} R_{n-i}, \quad \text { for } m \geq 2, \tag{1}
\end{equation*}
$$

where the a_{i} 's are any complex numbers, with $a_{m} \neq 0$. If suitable initial values $R_{-(m-2)}, R_{-(m-3)}$, \ldots, R_{0}, R_{1} are specified, the sequence $\left\{R_{n}\right\}$ is uniquely determined for all integral n.

The auxiliary equation of (1) is

$$
\begin{equation*}
x^{m}=\sum_{i=1}^{m} a_{i} x^{m-i} \tag{2}
\end{equation*}
$$

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ be the m roots, assumed distinct, of (2) and define $\bar{\alpha}_{j}$ by

$$
\bar{\alpha}_{j}=\prod_{\substack{i=1 \\ i \neq j}}^{m}\left(\alpha_{j}-\alpha_{i}\right) .
$$

Then the fundamental $\left\{U_{n}\right\}$ and primordial $\left\{V_{n}\right\}$ sequences that satisfy (1) are given by the following Binet formulas [1]. For any integer n, we have

$$
\begin{equation*}
U_{n}=\sum_{j=1}^{m} \frac{\alpha_{j}^{n+m-2}}{\bar{\alpha}_{j}} \text { and } V_{n}=\sum_{j=1}^{m} \alpha_{j}^{n}, \tag{3}
\end{equation*}
$$

so that $U_{-(m-2)}=U_{-(m-3)}=\cdots=U_{-1}=U_{0}=0$ and $U_{1}=1$. Also $V_{1}=a_{1}$ and

$$
\begin{equation*}
V_{i}=a_{1} V_{i-1}+\cdots+a_{i-1} V_{1}+i a_{i}, \text { for } 1 \leq i \leq m . \tag{4}
\end{equation*}
$$

In this paper we answer a question of Jarden, who in his book [2] (p. 88), see also [1], asked for the value of $U_{2 n}-U_{n} V_{n}$ for the $m^{\text {th }}$-order linear recurrence relation. For example, when $m=2$, where $a_{1}=a_{2}=1,\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ are the Fibonacci and Lucas sequences, respectively. In this case, we have

$$
U_{2 n}-U_{n} V_{n}=0 .
$$

For the general third- and fourth-order linear recurrence relations we have, respectively,

$$
U_{2 n}-U_{n} V_{n}=a_{3}^{n} U_{-n} \text { and } U_{2 n}-U_{n} V_{n}=(-1)^{n} a_{4}^{n}\left\{U_{-n} V_{-n}-U_{-2 n}\right\} .
$$

For the general $m^{\text {th }}$-order linear recurrence relation, we have the following, very appealing theorem.

ON THE GENERAL LINEAR RECURRENCE RELATION

Theorem: For any integer n, and $m \geq 2$, we have

$$
U_{2 n}-U_{n} V_{n}=(-1)^{(m+1)(n+1)} a_{m}^{n} \sum_{i=0}^{m-2} \sum_{\pi(i)} \frac{(-1)^{k}}{k_{1}!k_{2}!\ldots k_{i}!1^{k_{1}} 2^{k_{2}} \ldots i^{k_{i}}} V_{-n}^{k_{1}} V_{-2 n}^{k_{2}} \ldots V_{-i n}^{k_{i}} U_{-(m-2-i) n}
$$

where a_{m} is the constant term in the auxiliary equation and the inner summation is taken over all partitions of $i=1 k_{1}+2 k_{2}+\cdots+i k_{i}$ so that k_{j} is the number of parts of size j. Here, $k=k_{1}+k_{2}+$ $\cdots+k_{i}$ is the total number of parts in the partition. The coefficient of $U_{-(m-2-i) n}$, inside the second summation sign, is taken to be 1 when $i=0$.

In order to prove the above theorem, we use the following lemma.
Lemma: Using the above notation, we have

$$
\begin{aligned}
\sum_{\pi(i)} \frac{(-1)^{k}}{k_{1}!k_{2}!\ldots k_{i}!1^{k_{1}} 2^{k_{2}} \ldots i^{k_{i}}} V_{-1}^{k_{1}} V_{-2}^{k_{2}} \ldots V_{-i}^{k_{i}} & =\frac{a_{m-i}}{a_{m}} \quad \text { for } 0 \leq i \leq(m-1) \\
& =-\frac{1}{a_{m}} \quad \text { for } i=m
\end{aligned}
$$

Proof of Lemma: First, we note that

$$
\begin{align*}
& \exp \left\{-\left(\frac{V_{-1}}{1} x+\frac{V_{-2}}{2} x^{2}+\frac{V_{-3}}{3} x^{3}+\cdots\right)\right\} \tag{5}\\
& =\sum_{i=0}^{\infty} x^{i} \sum_{\pi(i)} \frac{(-1)^{k}}{k_{1}!k_{2}!\ldots k_{i}!1^{k_{1}} 2^{k_{2}} \ldots i^{k_{i}}} V_{-1}^{k_{1}} V_{-2}^{k_{2}} \ldots V_{-i}^{k_{i}}
\end{align*}
$$

Therefore, we need to evaluate the function,

$$
f(x)=\sum_{i=1}^{\infty} \frac{V_{-i}}{i} x^{i}
$$

Using the fact that $\left\{V_{n}\right\}$ satisfies the recurrence relation (1), with the help of (4) it is not hard to see that the generating function $g(x)=\sum_{n=0}^{\infty} V_{-n} x^{n}$, for V_{-n}, is given by

$$
\begin{equation*}
g(x)=\frac{m a_{m}+(m-1) a_{m-1} x+(m-2) a_{m-2} x^{2}+\cdots+2 a_{2} x^{m-2}+a_{1} x^{m-1}}{a_{m}+a_{m-1} x+\cdots+a_{1} x^{m-1}-x^{m}} \tag{6}
\end{equation*}
$$

Letting

$$
\begin{equation*}
h(x)=1+\frac{a_{m-1}}{a_{m}} x+\frac{a_{m-2}}{a_{m}} x^{2}+\cdots+\frac{a_{1}}{a_{m}} x^{m-1}-\frac{1}{a_{m}} x^{m} \tag{7}
\end{equation*}
$$

from (6) and (7) we have

$$
\begin{equation*}
g(x)=m-\frac{h^{\prime}(x)}{h(x)} x \tag{8}
\end{equation*}
$$

Now, since $V_{0}=m$, from (8) we have

$$
-\sum_{n=1}^{\infty} V_{-n} \dot{x}^{n-1}=\frac{m-g(x)}{x}=\frac{h^{\prime}(x)}{h(x)}
$$

Integrating, and using $h(0)=1$ to eliminate the constant of integration, we have

$$
-\sum_{n=1}^{\infty} \frac{V_{-n}}{n} x^{n}=\log h(x)
$$

Therefore,

$$
\begin{equation*}
\exp \left\{-\sum_{n=1}^{\infty} \frac{V_{-n}}{n} x^{n}\right\}=h(x) . \tag{9}
\end{equation*}
$$

So, from (5) and (9) we have

$$
\begin{equation*}
h(x)=\sum_{i=0}^{\infty} x^{i} \sum \frac{(-1)^{k}}{k_{1}!k_{2}!\ldots k_{i}!1^{k_{1}} 2^{k_{2}} \ldots i^{k_{i}}} V_{-1}^{k_{1}} V_{-2}^{k_{2}} \ldots V_{-i}^{k_{i}} . \tag{10}
\end{equation*}
$$

Using the expression for $h(x)$ given by (7), we can equate the coefficients of x in (10) to complete the proof of the lemma.

Proof of Theorem: From the Binet formulas (3) for U_{n} and V_{n}, we have

$$
\begin{align*}
U_{2 n}-U_{n} V_{n}= & \left(\frac{\alpha_{1}^{2 n+m-2}}{\bar{\alpha}_{1}}+\frac{\alpha_{2}^{2 n+m-2}}{\bar{\alpha}_{2}}+\cdots+\frac{\alpha_{m}^{2 n+m-2}}{\bar{\alpha}_{m}}\right) \\
& -\left(\frac{\alpha_{1}^{n+m-2}}{\bar{\alpha}_{1}}+\frac{\alpha_{2}^{n+m-2}}{\bar{\alpha}_{2}}+\cdots+\frac{\alpha_{m}^{n+m-2}}{\bar{\alpha}_{m}}\right)\left(\alpha_{1}^{n}+\alpha_{2}^{n}+\cdots+\alpha_{m}^{n}\right) \tag{11}\\
= & -\sum_{i \neq j} \frac{\alpha_{j}^{n+m-2} \alpha_{i}^{n}}{\bar{\alpha}_{j}},
\end{align*}
$$

where the summation is taken over all $1 \leq i, j \leq m$, such that $i \neq j$. Therefore, to prove the theorem, we need to show that the right-hand side of the theorem is given by the right-hand side of (11). First, we require some new notation. The a_{i} in (2) are given by

$$
a_{i}=(-1)^{i+1} \sum \alpha_{1} \alpha_{2} \ldots \alpha_{i}
$$

where α_{i} are the roots of (2) and the summation is taken over all possible distinct products of i distinct α_{j} 's. Now define $a_{i}(n)$ and $c_{i}(n)$ by

$$
a_{i}(n)=(-1)^{i+1} \sum \alpha_{1}^{n} \alpha_{2}^{n} \ldots \alpha_{i}^{n} \text { and } c_{i}(n)=\sum \alpha_{1}^{n} \alpha_{2}^{n} \ldots \alpha_{i}^{n},
$$

so that $a_{i}(n)=(-1)^{i+1} c_{i}(n)$. Now, by the lemma, for any integer n, we have

$$
\begin{align*}
\sum_{\pi(i)} \frac{(-1)^{k}}{k_{1}!k_{2}!\ldots k_{i}!1^{k_{1}} 2^{k_{2}} \ldots i^{k_{i}}} V_{-n}^{k_{1}} V_{-2 n}^{k_{2}} \ldots V_{-i n}^{k_{i}} & =\frac{a_{m-i}(n)}{a_{m}(n)} \quad \text { for } 0 \leq \mathrm{i} \leq(\mathrm{m}-1), \tag{12}\\
& =-\frac{1}{a_{m}(n)} \quad \text { for } i=m .
\end{align*}
$$

Using (12), we can rewrite the theorem as

$$
\begin{equation*}
U_{2 n}-U_{n} V_{n}=(-1)^{(m+1)(n+1)} a_{m}^{n} \sum_{i=0}^{m-2} \frac{a_{m-i}(n)}{a_{m}(n)} U_{-(m-2-i) n} \tag{13}
\end{equation*}
$$

Since

$$
\begin{align*}
a_{m}^{n} & =(-1)^{(m+1) n} c_{m}(n), \\
a_{m-i}(n) & =(-1)^{m+i+1} c_{m-i}(n), \tag{14}
\end{align*}
$$

and

$$
a_{m}(n)=(-1)^{m+1} c_{m}(n)
$$

we have, from (13) and (14),

$$
\begin{equation*}
U_{2 n}-U_{n} V_{n}=(-1)^{m+1} \sum_{i=0}^{m-2}(-1)^{i} c_{m-i}(n) U_{-(m-2-i) n} \tag{15}
\end{equation*}
$$

By the Binet formula,

$$
U_{-(m-2-i) n}=\sum_{j=1}^{m} \frac{\alpha_{j}^{i n-m n+2 n+m-2}}{\bar{\alpha}_{j}}
$$

which, when inserted into (15), gives

$$
\begin{align*}
U_{2 n}-U_{n} V_{n} & =(-1)^{m+1} \sum_{i=0}^{m-2}(-1)^{i} c_{m-i}(n) \sum_{j=1}^{m} \frac{\alpha_{j}^{i n-m n+2 n+m-2}}{\bar{\alpha}_{j}} \\
& =(-1)^{m+1} \sum_{j=1}^{m} \frac{\alpha_{j}^{2 n+m-2}}{\bar{\alpha}_{j}} \sum_{i=0}^{m-2}(-1)^{i} c_{m-i}(n) \alpha_{j}^{(i-m) n} \tag{16}
\end{align*}
$$

Now we note that

$$
\begin{align*}
\left(x+\frac{1}{\alpha_{1}^{n}}\right)\left(x+\frac{1}{\alpha_{2}^{n}}\right) \cdots\left(x+\frac{1}{\alpha_{m}^{n}}\right) & =\sum_{i=0}^{m} \frac{c_{i}(n)}{c_{m}(n)} x^{i} \tag{17}\\
& =\sum_{i=0}^{m} \frac{c_{m-i}(n)}{c_{m}(n)} x^{m-i}
\end{align*}
$$

So if we let $x=-1 / \alpha_{j}^{n}$ in (17), for any $j=1,2, \ldots, m$, we have

$$
\begin{equation*}
\sum_{i=0}^{m}(-1)^{i} c_{m-i}(n) \alpha_{j}^{(i-m) n}=0 \tag{18}
\end{equation*}
$$

From (18), we easily obtain

$$
\begin{equation*}
(-1)^{m+1} \sum_{i=0}^{m-2}(-1)^{i} c_{m-i}(n) \alpha_{j}^{(i-m) n}=-c_{1}(n) \alpha_{j}^{-n}+c_{0}(n) \tag{19}
\end{equation*}
$$

Now we note that $c_{0}(n)=1$ and $c_{1}(n)=\sum_{i=1}^{m} \alpha_{i}^{n}$. Therefore, using (19) in (16), we have

$$
U_{2 n}-U_{n} V_{n}=\sum_{j=1}^{m} \frac{\alpha_{j}^{2 n+m-2}}{\bar{\alpha}_{j}}\left\{-\sum_{i=1}^{m} \alpha_{i}^{n} \alpha_{j}^{-n}+1\right\}=-\sum_{j=1}^{m} \sum_{i=1}^{m} \frac{\alpha_{j}^{n+m-2} \alpha_{i}^{n}}{\bar{\alpha}_{j}}+\sum_{j=1}^{m} \frac{\alpha_{j}^{2 n+m-2}}{\bar{\alpha}_{j}}=-\sum_{i \neq j} \frac{\alpha_{j}^{n+m-2} \alpha_{i}^{n}}{\bar{\alpha}_{j}}
$$

Which agrees with the right-hand side of (11). Hence, the theorem is proved.

REFERENCES

1. A. G. Shannon. "Some Properties of a Fundamental Sequence of Arbitrary Order." The Fibonacci Quarterly 12.4 (1974):327-35.
2. Dov Jarden. Recurring Sequences: A Collection of Papers. 2nd ed. Jerusalem: Riveon Lematika, 1969.

AMS Classification Numbers: 11B37, 11B39

Announcement

 SEVENTH INTERNATIONAL CONFERENCE ON

 SEVENTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND FIBONACCI NUMBERS AND THEIR APPLICATIONS

 THEIR APPLICATIONS}

July 14-July 19, 1996
INSTITUT FÜR MATHEMATIK
TECHNISCHE UNIVERSITÄT GRAZ
STEYRERGASSE 30
A-8010 GRAZ, AUSTRIA

LOCAL COMMITTEE
Robert Tichy, Chairman
Helmut Prodinger, Co-chairman
Peter Grabner
Peter Kirschenhofer

INTERNATIONAL COMMITTEE

A. F. Horadam (Australia), Co-chair M. Johnson (U.S.A.)
A. N. Philippou (Cyprus), Co-chair P. Kiss (Hungary)
G. E. Bergum (U.S.A.) G. M. Phillips (Scotland)
P. Filipponi (Italy)
J. Turner (New Zealand)
M. E. Waddill (U.S.A.)
H. Harborth (Germany)
Y. Horibe (Japan)

LOCAL INFORMATION

For information on local housing, food, tours, etc., please contact:

$$
\begin{aligned}
& \text { PROFESSOR DR. ROBERT F. TICHY } \\
& \text { INSTITUT FÜ MATHEMATIK } \\
& \text { TECHNISCHE UNIVERSITÄT GRAZ } \\
& \text { STEYRERGASSE } 30 \\
& \text { A-8010 GRAZ, AUSTRIA }
\end{aligned}
$$

Call for Papers

The SEVENTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR APPLICATIONS will take place at Technische Universität Graz from July 14 to July 19, 1996. This conference will be sponsored jointly by the Fibonacci Association and Technische Universität Graz.

Papers on all branches of mathematics and science related to the Fibonacci numbers as well as recurrences and their generalizations are welcome. Abstracts and manuscripts should be sent in duplicate following the guidelines for submission of articles found on the inside front cover of any recent issue of The Fibonacci Quarterly to:

PROFESSOR GERALD E. BERGUM	PROFESSOR F. T. HOWARD
THE FIBONACCI QUARTERLY	
COMPUTER SCIENCE DEPARTMENT	or
BEPARTMENT OF MATH. \& COMP. SCI.	
BOX 2201	
SOUTH DAKOTA STATE UNIVERSITY	
BROOKINGS, SD $57007-1596$	WINS FOREST UNIVERSITY

Жुe Fibonacci Quarterly

Official Publication of The Fibonacci Association
Journal Home | Editorial Board | List of Issues How to Subscribe | General Index | Fibonacci Association

Volume 33
Number 2
May 1995

CONTENTS

Cover Page

G. F. C. de Bruyn
Formulas $a+a^{2} 2^{p}+a^{3} 3^{p}+\ldots+a^{n} n^{p}$ 98
Full text
Wai-fong Chuan
Generating Fibonacci Words 104
Full text
Wai-fong Chuan
Extraction Property of the Golden Sequence 113
Full text
A. Rotkiewicz and K. Ziemak On Even Pseudoprimes 123
Full text
R. S. Melham and A. G. Shannon
Generalizations of Some Simple Congruences 126
Full text
P. R. Subramanian
Nonzero Zeros of the Hermite Polynomials are I rrational 131
Full text
R. S. Melham and A. G. Shannon
A Generalization of a Result of D'Ocagne 135
Full text
Helmut Prodinger
Geometric Distributions and Forbidden Subwords 139
Full textRay Melham and Derek JenningsOn the General Linear Recurrence Relation142Full text
N. G. GamkrelidzeOn a Probabilistic Property of the Fibonacci Sequence147
Arnold Knopfmacher and M. E. Mays
Pierce Expansions of Ratios and Fibonacci and Lucas Numbers and Polynomials 153Full text
Peter Hope
Exponential Growth of Random Fibonacci Sequences 164
Full text
L. C. Hsu
A Difference-Operational Approach to the Möbius Inversion Formulas 169
Full text
Jun WangOn the $\boldsymbol{k}^{\text {th }}$ Derivative Sequences of Fibonacci and Lucas Polynomials174
Full text
Krystyna Bialek
A Note on Choudhry's Results 179
Full text
Edited by Stanley Rabinowitz Elementary Problems and Solutions 181
Full text
Edited by Raymond E. Whitney Advanced Problems and Solutions 187
Full text
Back Cover

Copyright © 2010 The Fibonacci Association. All rights reserved.

