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The general m^ -order linear recurrence relation can be written as 
m 

^=Z"A-i> forw>2, (1) 
7 = 1 

where the a/s are any complex numbers, with am ̂  0. If suitable initial values i?_(w_2), i?_(^_3), 
..., i?o, Rx are specified, the sequence {Rn} is uniquely determined for all integral n. 

The auxiliary equation of (1) is 
m 

^^Z^"7 ' - (2) 
7 = 1 

Let au a2,..., ocm be the m roots, assumed distinct, of (2) and define a . by 
m 

^j=U(aj-ai)' 
;=1 

Then the fundamental {Un} and primordial {Vn} sequences that satisfy (1) are given by the 
following Binet formulas [1]. For any integer n, we have 

m a
n+m~2 m 

U„=Y^=— ^d Vn=Xa% (3) 
y=i aj y=i 

so that C/_(W_2) ~ ̂ -(/w-3) = • • • = f/_i = U0 = 0 and Ux = 1. Also Vx - ax and 

Vt =alVj_l + --+ai_lV1+iaj, for \<i<m. (4) 

In this paper we answer a question of Jarden, who in his book [2] (p. 88), see also [1], asked 
for the value of U2n-UnVrl for the m^ -order linear recurrence relation. For example, when 
m = 2, where ax = a2 - 1, {U„} and {Vn} are the Fibonacci and Lucas sequences, respectively. In 
this case, we have 

u2„-unv„ = o. 
For the general third- and fourth-order linear recurrence relations we have, respectively, 

U2„-Ujr„=a»3U_„ and U2n-U„V„ =(-!)" a"4{U_nV_n-U_2n}. 
For the general m^ -order linear recurrence relation, we have the following, very appealing 
theorem. 
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Theorem: For any integer n, and m > 2, we have 
m-2 (—1\k 

TT -JJV = /_n(^i)(«+i)fl« V y \_±1 yk^Vkl ...Vk'TT 
°2« UnVn~\ l) a m Z ^ 2 ^ h , h s , MJfel0Jfe2 .Jfc, V ~nV-In V-inV ~{m-2-i)n > 

i=0 7F(i)KVK2""Ki11 L -l 

where am is the constant term in the auxiliary equation and the inner summation is taken over all 
partitions of i = lkx + 2k2 + • • • + ikf so that k} is the number of parts of size j . Here, k = kx + k2 + 
"- + ki is the total number of parts in the partition. The coefficient of f/_(7W_2_/)„, inside the 
second summation sign, is taken to be 1 when / = 0. 

In order to prove the above theorem, we use the following lemma. 

Lemma: Using the above notation, we have 

y v *) yk\yki yki ~ am-i 

1 

Proof of Lemma: First, we note that 

e x p | - f ^ x + ̂ - x 2 + ^ x 3 + ...ji 

= YVY t ^ vk\v 

for 0 < / <{m-

for i = #i. 

^2 l A ' 
-2 • • • ' - / • 

- i) , 

(5) 
( *) ykiVk2 Vkt 

J = 0 ;r(0 " 1 : ^2 : • • • K i •l L • l 

Therefore, we need to evaluate the function, 

/(x) = I ^ * ' . 
i=l l 

Using the fact that {Vn} satisfies the recurrence relation (1), with the help of (4) it is not hard to 
see that the generating function g(x) = E^=0 V_nxn, for V_n, is given by 

gfx\ = mClm + ( j n ~ ^n-1* + ( m ~ ^ n - 2 * 2 + ' " + 2a2Xm~2 + QlXm~l
 ( 6 ) 

am+am_lx + --+a1xm-1-xm 

Letting 
h(x) = l + ̂ ^x+^^x2 + '-+^xm-1- — xm, (7) 

from (6) and (7) we have 
, x h'(x) 

g(x) = m--±+x. (8) 
h(x) Now, since V0=m, from (8) we have 

f, 'l_m-g(x)_h'(x) 
Za ~nX ~~ ~ i / \ ' 
n=l X Kx) 
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Integrating, and using h(0) = 1 to eliminate the constant of integration, we have 

Therefore, 

So, from (5) and (9) we have 

exp|-£^*"UA(*). (9) 

\k 

Using the expression for h(x) given by (7), we can equate the coefficients of x in (10) to complete 
the proof of the lemma. D 

Proof of Theorem: From the Binet formulas (3) for U„ and Vn, we have 
( 2n+m-2 2n+m-2 2n+m-2 \ 

h a2 am ) 

n+m-2 ^n+m-2 w+m-2 \ 

^ - + - ^ - + " - + ^ - K + « 2 " + - " + < ) (ii) 
a» 

a"+m~2cc" 

where the summation is taken over all \<i,j<m, such that i&j. Therefore, to prove the theo-
rem, we need to show that the right-hand side of the theorem is given by the right-hand side of 
(11). First, we require some new notation. The at in (2) are given by 

a, =( - l ) , + 1 Za 1 a 2 ...ai9 

where ai are the roots of (2) and the summation is taken over all possible distinct products of i 
distinct a .'s. Now define at{n) and ct(n) by 

ai(n) = (-l)MIla'lal..:a? and c,(«) = 2 > ^ 2 ... a,", 
so that a^ri) = (-l)/+1c/(w). Now, by the lemma, for any integer n, we have 

\k 
T ( *\ k ^ ^ 4 . . . ^ = - ^ ^ for0<i<(m-l), 

1 
^ l ^ ! . . . * , ! ^ .../*< - - - am(n) 

for i = m. 

Using (12), we can rewrite the theorem as 

U2„ -UnVn = {-\r+^a»m § ^ g > C/_(ffl-2-0„- (13) 
/=0 am\n) 

144 [MAY 



Since 

and 

ON THE GENERAL LINEAR RECURRENCE RELATION 

<=(-l)C"+1>"cm(»), 

am(n) = (-l)m+1cm(n), 

m-2 

i=0 

we have, from (13) and (14), 

U2„-U„V„ = (-l)m+1S(-l)'cm_,(«)C/_(M_2_0n. 

By the Binet formula, 

^-{m-2-i)n ~ Z ^ = ~ 

which, when inserted into (15), gives 

in-mn+2n+m-2 
, a 

;=i aJ 

u2n -uyn - (-ir^c-iy^wz-^ 
!-2 

>:< 
/=0 

a 
in-mn+2n+m-2 

y=i ° 7 

m a 2«+m-2 m _ 2 

y=l « / /=o 

Now we note that 
f P 
x + — 

x + -
a: 2 7 

f 
x + s(»lx, 

Cm-i\n) x*n-i 

,=0 C m( W ) 

So if we let x = -l/ a" in (17), for anyy = 1, 2, ..., w, we have 
m 

K-l)'Cm_,.(»)af^ = 0. 
/=0 

From (18), we easily obtain 
m-2 

( - l r 1 1 ( - l ) ' c M , ( n ) a f m ) " = -C l( / i)«7 +c0(«). 
/=0 

Now we note that cQ(n) = 1 and c^ri) = SJli a". Therefore, using (19) in (16), we 

a 
2n+m-2 

j=i a j . i i=i 

m m a
n+m~2an m a2n+m~2 

^-w=Z V -Z«?«r+ih-l Z-V1^ V = - l y-i /-i « / y-i a ; "V 

Which agrees with the right-hand side of (11). Hence, the theorem is proved. • 
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