A GENERALIZATION OF THE CATALAN IDENTITY AND SOME CONSEQUENCES

R. S. Melham and A. G. Shannon
University of Technology, Sydney 2007, Australia
(Submitted June 1993)

1. INTRODUCTION

The Catalan identity

$$
\begin{equation*}
F_{n-r} F_{n+r}-F_{n}^{2}=(-1)^{n-r+1} F_{r}^{2} \tag{1.1}
\end{equation*}
$$

has several generalizations. Here we obtain a new generalization and use it to generalize the Gelin-Cesàro identity

$$
\begin{equation*}
F_{n}^{4}-F_{n-2} F_{n-1} F_{n+1} F_{n+2}=1 \tag{1.2}
\end{equation*}
$$

which was stated by Gelin and proved by Cesàro (see [1], p. 401). Furthermore, we establish that a certain expression arising from three-term recurrence relations is a perfect square, and this generalizes previous work.

Using the notation of Horadam [2], let

$$
\begin{equation*}
W_{n}=W_{n}(a, b ; p, q) \tag{1.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
W_{n}=p W_{n-1}-q W_{n-2}, W_{0}=a, W_{1}=b, n \geq 2 \tag{1.4}
\end{equation*}
$$

If α, β, assumed distinct, are the roots of

$$
\begin{equation*}
\lambda^{2}-p \lambda+q=0 \tag{1.5}
\end{equation*}
$$

we have the Binet form [2]

$$
\begin{equation*}
W_{n}=\frac{A \alpha^{n}-B \beta^{n}}{\alpha-\beta} \tag{1.6}
\end{equation*}
$$

in which

$$
\left\{\begin{array}{l}
A=b-a \beta \tag{1.7}\\
B=b-a \alpha
\end{array}\right.
$$

Write

$$
\begin{equation*}
e=p a b-q a^{2}-b^{2}=-A B \tag{1.8}
\end{equation*}
$$

As usual, $U_{n}=W_{n}(0,1 ; p, q)$ is the fundamental sequence of Lucas [4].

2. THE MAIN RESULT

We now generalize the Catalan identity and obtain some consequences.
Theorem: For $W_{n}=W_{n}(a, b ; p, q)$ and $Y_{n}=W_{n}\left(a_{1}, b_{1} ; p, q\right)$,

$$
\begin{equation*}
W_{n} Y_{n+r+s}-W_{n+r} Y_{n+s}=\Psi(s) q^{n} U_{r} \tag{2.1}
\end{equation*}
$$

where

$$
\Psi(s)=\left(p a_{1} b-q a a_{1}-b b_{1}\right) U_{s}+\left(a b_{1}-a_{1} b\right) U_{s+1}
$$

Proof: Using the Binet forms for W_{n} and Y_{n} we obtain, after some algebra,

$$
W_{n} Y_{n+r+s}-W_{n+r} Y_{n+s}=\frac{\left(A B_{1} \beta^{s}-A_{1} B \alpha^{s}\right) q^{n} U_{r}}{\alpha-\beta},
$$

where, in the Binet form for Y_{n},

$$
\left\{\begin{array}{l}
A_{1}=b_{1}-a_{1} \beta, \tag{2.2}\\
B_{1}=b_{1}-a_{1} \alpha .
\end{array}\right.
$$

Now, using (1.7) and (2.2) we see, after simplifying, that $\frac{A B_{1} \beta^{s}-A_{1} B \alpha^{s}}{\alpha-\beta}$ reduces to $\Psi(s)$.
In (2.1), replacing n by $n-r$ and s by r gives

$$
\begin{equation*}
W_{n-r} Y_{n+r}-W_{n} Y_{n}=\Psi(r) q^{n-r} U_{r} . \tag{2.3}
\end{equation*}
$$

Replacing r by $r+1$ in (2.3), we have

$$
\begin{equation*}
W_{n-r-1} Y_{n+r+1}-W_{n} Y_{n}=\Psi(r+1) q^{n-r-1} U_{r+1} . \tag{2.4}
\end{equation*}
$$

Adding (2.3) and (2.4) gives

$$
\begin{equation*}
W_{n-r} Y_{n+r}+W_{n-r-1} Y_{n+r+1}=2 W_{n} Y_{n}+\Psi(r) q^{n-r} U_{r}+\Psi(r+1) q^{n-r-1} U_{r+1} . \tag{2.5}
\end{equation*}
$$

Subtracting (2.4) from (2.3) gives

$$
\begin{equation*}
W_{n-r} Y_{n+r}-W_{n-r-1} Y_{n+r+1}=\Psi(r) q^{n-r} U_{r}-\Psi(r+1) q^{n-r-1} U_{r+1} . \tag{2.6}
\end{equation*}
$$

Squaring (2.5) and subtracting the square of (2.6), we obtain

$$
\begin{align*}
W_{n-r-1} W_{n-r} Y_{n+r} Y_{n+r+1}=W_{n}^{2} Y_{n}^{2} & +W_{n} Y_{n} q^{n-r-1}\left(q \Psi(r) U_{r}+\Psi(r+1) U_{r+1}\right) \tag{2.7}\\
& +\Psi(r) \Psi(r+1) q^{2 n-2 r-1} U_{r} U_{r+1} .
\end{align*}
$$

Putting $r=1$ in (2.7) yields

$$
\begin{equation*}
W_{n-2} W_{n-1} Y_{n+1} Y_{n+2}=W_{n}^{2} Y_{n}^{2}+W_{n} Y_{n} q^{n-2}(q \Psi(1)+p \Psi(2))+p \Psi(1) \Psi(2) q^{2 n-3} . \tag{2.8}
\end{equation*}
$$

In (2.1), substituting $r=-1, s=m-n+1$ and noting that $U_{-1}=-q^{-1}$, we obtain

$$
\begin{equation*}
W_{n} Y_{m}-W_{n-1} Y_{m+1}=-\Psi(m-n+1) q^{n-1} \tag{2.9}
\end{equation*}
$$

Furthermore, if $n=m-1$, then (2.9) yields

$$
\begin{equation*}
W_{m-1} Y_{m}-W_{m-2} Y_{m+1}=-\Psi(2) q^{m-2} \tag{2.10}
\end{equation*}
$$

Finally, from (2.1), it follows that

$$
\left(W_{n} Y_{n+r+s}-W_{n+r} Y_{n+s}\right)^{2}=\Psi^{2}(s) q^{2 n} U_{r}^{2},
$$

so that

$$
4 W_{n} W_{n+r} Y_{n+s} Y_{n+r+s}+\Psi^{2}(s) q^{2 n} U_{r}^{2}=\left(W_{n} Y_{n+r+s}+W_{n+r} Y_{n+s}\right)^{2}
$$

thus establishing that

$$
\begin{equation*}
4 W_{n} W_{n+r} Y_{n+s} Y_{n+r+s}+\Psi^{2}(s) q^{2 n} U_{r}^{2} \tag{2.11}
\end{equation*}
$$

is a perfect square for nonnegative integers n, r, s and integers a, b, a_{1}, b_{1}, p, q.

3. RELATION TO OTHER GENERALIZATIONS

The results of the previous section generalize results of Horadam and Shannon [3] who, in turn, generalized work of Morgado [5] on the Fibonacci numbers. It suffices then to indicate how our work generalizes that of Horadam and Shannon.

In (2.1), when $\left(a_{1}, b_{1}\right)=(a, b)$, we have $\left\{W_{n}\right\}=\left\{Y_{n}\right\}$ and $\Psi(s)=e U_{s}$, so that (2.1) becomes

$$
W_{n} W_{n+r+s}-W_{n+r} W_{n+s}=e q^{n} U_{r} U_{s},
$$

which Horadam and Shannon gave as a generalization of the Catalan identity. Under the same circumstances, noting that $\Psi(1)=e$ and $\Psi(2)=e p,(2.8)$ reduces to

$$
W_{n-2} W_{n-1} W_{n+1} W_{n+2}=W_{n}^{4}+W_{n}^{2} e q^{n-2}\left(p^{2}+q\right)+e^{2} q^{2 n-3} p^{2},
$$

which Horadam and Shannon gave as a generalization of the Gelin-Cesàro identity.
Similarly, (2.9) and (2.10) reduce, respectively, to

$$
W_{n} W_{m}-W_{n-1} W_{m+1}=-e q^{n-1} U_{m-n+1}
$$

and

$$
W_{n} W_{n-1}-W_{n-2} W_{n+1}=-e p q^{n-2},
$$

which are generalizations of results for Fibonacci numbers due to D'Ocagne (see [1], p. 402).
Finally, the expression (2.11) reduces to

$$
4 W_{n} W_{n+r} W_{n+s} W_{n+r+s}+e^{2} q^{2 n} U_{r}^{2} U_{s}^{2},
$$

which was proved by Horadam and Shannon to be a perfect square.

ACKNOWLEDGMENT

We gratefully acknowledge the comments of an anonymous referee whose suggestions have considerably streamlined the presentation of this paper.

REFERENCES

1. L. E. Dickson. History of the Theory of Numbers. Vol. 1. New York: Chelsea, 1966.
2. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3.2 (1965):161-76.
3. A. F. Horadam \& A. G. Shannon. "Generalization of Identities of Catalan and Others." Portugaliae Mathematica 44 (1987):137-48.
4. E. Lucas. Théorie des Nombres. Paris: Albert Blanchard, 1961.
5. J. Morgado. "Some Remarks on an Identity of Catalan Concerning the Fibonacci Numbers." Portugaliae Mathematica 39 (1980):341-48.

AMS Classification Numbers: 11B37, 11B39

สुe Fibonacci Quarterly

Official Publication of The Fibonacci Association
Journal Home | Editorial Board | List of Issues How to Subscribe | General Index | Fibonacci Association

Volume 33
Number 1
February 1995

CONTENTS

Cover Page

Referees 2
Full text
Clark KimberlingThe Zeckendorf Array Equals the Wythoff Array3Full textW. R. Spickerman, R. L. Creech, and R. N. J oynerOn the (3, F) Generalizations of the Fibonacci Sequence9Full text
R. S. Melham and A. G. Shannon
Some Infinite Series Summations Using Power Series Evaluated at a Matrix 13
Full textJulia AbrahamsVarn Codes and Generalized Fibonacci Trees21Full text
Roger Webster
A Combinatorial Problem with a Fibonacci Solution 26
Full text
R. S. Melham and A. G. Shannon
Inverse Trigonometric Hyperbolic Summation Formulas Involving Generalized Fibonacci Numbers 32
Full text
Morris J ack DeLeonSequences Related to an Infinite Product Expansion for the Square Rootand Cube Root Functions41Full textMarjorie Bicknell-J ohnson and David A. EnglundGreatest Integer I dentities for Generalized Fibonacci Sequences $\left\{\boldsymbol{H}_{\boldsymbol{n}}\right\}$,Where $H_{n}=H_{n-1}+H_{n-2}$50Full text
Wayne L. McDaniel
Diophantine Representation of Lucas Sequences 59
Full text
R. S. Melham and A. G. Shannon
Some Summation I dentities Using Generalized Q-Matrices 64
Full text
Vassil S. Dimitrov and Borislav D. Donevsky
Faster Multiplication of Medium Large Numbers Via the Zeckendorf Representation 74
Full text
Paul Thomas Young
Quadratic Reciprocity Via Lucas Sequences 78
Full text
R. S. Melham and A. G. Shannon
A Generalization of the Catalan I dentity and Some Consequences 82
Full text
Edited by Stanley Rabinowitz
Elementary Problems and Solutions 85
Full text
Edited by Raymond E. WhitneyAdvanced Problems and Solutions91Full textBack CoverCopyright © 2010 The Fibonacci Association. All rights reserved.

