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Species interactions play a fundamental role in ecosystems. However, few ecological 
communities have complete data describing such interactions, which is an obstacle to 
understanding how ecosystems function and respond to perturbations. Because it is 
often impractical to collect empirical data for all interactions in a community, vari-
ous methods have been developed to infer interactions. Machine learning is increas-
ingly being used for making interaction predictions, with random forest being one 
of the most frequently used of these methods. However, performance of random for-
est in inferring predator-prey interactions in terrestrial vertebrates and its sensitivity 
to training data quality remain untested. We examined predator–prey interactions in 
two diverse, primarily terrestrial vertebrate classes: birds and mammals. Combining 
data from a global interaction dataset and a specific community (Simpson Desert, 
Australia), we tested how well random forest predicted predator–prey interactions for 
mammals and birds using species’ ecomorphological and phylogenetic traits. We also 
tested how variation in training data quality – manipulated by removing records and 
switching interaction records to non-interactions – affected model performance. We 
found that random forest could predict predator–prey interactions for birds and mam-
mals using ecomorphological or phylogenetic traits, correctly predicting up to 88 and 
67% of interactions and non-interactions in the global and community-specific data-
sets, respectively. These predictions were accurate even when there were no records in 
the training data for focal species. In contrast, false non-interactions for focal preda-
tors in training data strongly degraded model performance. Our results demonstrate 
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that random forest can identify predator–prey interactions for birds and mammals that have few or no interaction records. 
Furthermore, our study provides guidance on how to prepare training data to optimise machine learning classifiers for pre-
dicting species interactions, which could help ecologists 1) address knowledge gaps and explore network-related questions in 
data-poor situations, and 2) predict interactions for range-expanding species.

Keywords: ecological network, food web, machine learning, Simpson Desert, species interactions, training data

Introduction

Species interactions are essential for maintaining biodiver-
sity (Thompson 1999) because they determine how energy 
and nutrients flow among organisms (Traill  et  al. 2010, 
Allan  et  al. 2021) and affect the distribution, survival and 
abundance of species (Van der Putten et  al. 2010). Species 
interactions also determine how ecological disturbances – 
such as those involving invasive species, habitat modification, 
and climate change – reverberate through ecological commu-
nities (Tylianakis et al. 2008, Blois et al. 2013). This is because 
environmental changes that directly alter one or a subset of 
species in a community can have flow-on effects for other 
species via interaction networks (Kaneryd et al. 2012, Strona 
and Bradshaw 2018, Morton  et  al. 2022). Given the need 
to predict and mitigate human-driven biodiversity declines, 
interest in modelling interaction networks for biological 
communities is increasing (Bohan et al. 2017, Strydom et al. 
2021, Strona and Bradshaw 2022). However, most species 
interactions in most ecological communities have not been 
documented (Hortal et al. 2015, Jordano 2016, Caron et al. 
2022). Indeed, it is usually logistically impossible to measure 
how all species interact in a community – even when only 
one type of interaction (e.g. predator–prey) is considered 
(Brousseau et al. 2018, Strona 2022). In addition to the chal-
lenge of identifying long-established interactions, the rapid 
and widespread translocation of species across the planet due 
to migratory responses to climate change and movement 
by humans means we also need to identify interactions that 
could occur between species that previously did not co-occur, 
and therefore had not previously had the opportunity to 
interact (Smith and Phillips 2006, Valdovinos et al. 2018). 

To overcome gaps in species interaction data, various 
methods for inferring interactions using species traits/prox-
ies can be applied, such as quantile-regression trophic niche-
space modelling (Gravel et al. 2013, Llewelyn et al. 2022), 
Bayesian linear modelling (Caron  et  al. 2022), and several 
machine learning approaches (e.g. K nearest-neighbour – 
Desjardins-Proulx et al. 2017, Pichler et al. 2020; neural net-
works/deep learning methods – Fricke et al. 2022; random 
forest – Sydenham et al. 2021; and ensemble methods – Poisot 
2023). Of these, random forest is a popular method due to 
its ability to learn nonlinear interactions between predictor 
variables and predict interactions accurately (Desjardins-
Proulx et al. 2017, Laigle et al. 2018, Sydenham et al. 2021). 
Random forests have been used to predict various interaction 
types, including plant–pollinator (Ornai and Keasar 2020, 
Sydenham et  al. 2021), parasite–host (Kotula  et  al. 2021), 

and predator–prey interactions (Desjardins-Proulx  et  al. 
2017, Parravicini et al. 2020). They have also been used to 
identify which species’ traits are most important for pre-
dicting whether species interact (Dellinger  et  al. 2019, 
Klomberg  et  al. 2022). Using training data consisting of 
interacting and non-interacting species, random forests can 
learn how ecomorphological traits, phylogenetic position, 
and/or taxonomy (as a proxy for phylogenetic position; 
Laigle et al. 2018) relate to which species interact. However, 
questions remain regarding the ability of random forests to 
predict different types of interactions in different taxonomic 
groups, which species’ data/traits are best for inferring inter-
actions, and how to fine-tune training datasets (Poisot 2023). 
Furthermore, investigating ways to optimise training data for 
predicting species interactions using random forest will likely 
help guide procedures for optimising other machine learning 
methods.

Identifying predator–prey interactions is central to com-
munity ecology because these interactions influence both 
top–down and bottom–up processes such as energy transfer 
and extinction cascades (Sinclair et al. 2003). Random for-
ests have been applied to predict such interactions, but these 
applications have largely been limited to fish communities 
(Parravicini  et  al. 2020, Strona  et  al. 2021) and soil inver-
tebrates (Desjardins-Proulx et al. 2017, Laigle et al. 2018). 
Indeed, the performance of random forests for inferring 
predator–prey interactions among terrestrial vertebrates has 
not been assessed despite this group including many species 
of high conservation concern (Tilman et al. 2017, Cox et al. 
2022) and of important ecological function (e.g. ecological 
engineers, Samson and Knopf 1996). 

If we are to model terrestrial ecosystems realistically to 
predict and minimise the risk of extinction cascades, reli-
able inference of trophic interactions is essential. However, 
trophic-related traits and network structure differ among ter-
restrial vertebrates, fish and invertebrates (Liem 1984, Liem 
1990, Shurin et al. 2006, Miller-ter Kuile et al. 2022), sug-
gesting traits and methods (such as random forest and other 
machine learning techniques) that effectively predict inter-
actions in fish and invertebrates might not necessarily work 
well for terrestrial vertebrates. These vertebrates are diverse 
structurally, phylogenetically, and functionally, potentially 
making the ‘rules’ determining interactions complex and dif-
ficult for machine learning classifiers to identify (whereas just 
one trait – body size – largely determines trophic interac-
tions in fish due to their gape limitation; Gravel et al. 2013, 
Morales-Castilla et al. 2015). Furthermore, interaction data 
for many terrestrial vertebrate species have been recorded 

 16000587, 2023, 9, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.06619 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [22/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 3 of 17

opportunistically or not at all (although detailed diet data 
do exist for some species; Pringle and Hutchinson 2020), 
potentially leading to sparse (i.e. missing most prey for 
most predators) and taxonomically biased datasets for train-
ing and testing random forests. Having sparse interaction 
records for predators in training data is problematic because 
machine learning classifiers such as random forests need 
to be trained with data that include both interacting (e.g. 
predator and prey) and non-interacting species pairs, with 
non-interacting species pairs usually assigned by assuming 
that undocumented interactions imply no interaction (i.e. 
pseudo-non-interactions generated from presence-only data; 
Pichler  et  al. 2020). When applied to incomplete (sparse) 
datasets, this process can identify undocumented but truly 
interacting species pairs as non-interacting pairs (but see 
Strona et al. 2021). Importantly, such ‘false non-interactions’ 
in training data likely reduce the reliability of interactions 
and non-interactions inferred from random forests and other 
classifiers. Similarly, random forests and other classifiers 
trained on datasets that are taxonomically biased might per-
form poorly when making predictions for species not repre-
sented in the training data (Strydom et al. 2022).

We designed analyses to test whether random forest could 
accurately predict predator–prey interactions within and 
between two diverse terrestrial vertebrate classes – birds and 
mammals – using both a global (GloBI) and a single-commu-
nity (Simpson Desert, Australia) predator–prey interaction 
dataset. We also assessed 1) the importance of ecomorpho-
logical traits and phylogenetically based latent traits (i.e. as 
proxies for phylogenetically conserved traits associated with 
trophic interactions; Benandi et al. 2022) for inference accu-
racy, 2) whether prediction accuracy improved by removing 
predators from the training dataset that had few interaction 
records (i.e. those with scarce diet records and were, there-
fore, prone to generating false non-interactions), and 3) the 
sensitivity of model performance to the quality of the train-
ing data. To test sensitivity to the quality of training data, we 
compared two scenarios that could occur as a result of sparse 
training data: 1) a reduction in the number of interaction 
and non-interaction records used to train the models, and 
2) a reduction in the number of interaction records and an 
increase in the number of false non-interaction records used 
to train the models. We also investigated how these changes 
affected model performance when they were restricted to 
different components of the training dataset (i.e. testing the 
effect of taxonomic bias on performance). 

Our results confirm that: 1) random forests can predict 
interactions in birds and mammals, 2) models trained on 
interaction datasets including either ecomorphological traits 
or phylogenetic position (or both) can perform well, 3) 
removing predators with few recorded interactions from the 
training data can improve prediction accuracy, 4) models can 
identify the prey of predators that have no interaction records 
in the training data, and 5) model performance is especially 
sensitive to false non-interactions in the training data that 
involve records of predatory species for which predictions 
are being made (i.e. focal predators). Our results highlight 

the unrealised potential for the application of random for-
ests for predicting interactions among terrestrial vertebrates. 
Furthermore, they show to which components of the training 
data random forests are most sensitive, thereby identifying 
the most efficient ways to increase accuracy via fine-tuning 
of training data – highlighting steps that would likely also 
improve species-interaction inference by machine learning 
classifiers more generally.

Material and methods

We used two interaction datasets combined with ecomorpho-
logical and phylogenetic information to test the performance 
of random forest for predicting predator–prey interactions in 
birds and mammals (the Supporting information shows flow-
chart of dataset preparation). We also tested how the perfor-
mance of these models was influenced by the type of species 
data used, the filtering of training data by removing predators 
with few interaction records in those data, and the quality 
of the training data. The two interaction datasets were: 1) a 
dataset from the ‘Global Biotic Interactions database’ (global-
bioticinteractions.org; Poelen et al. 2014) supplemented with 
interaction data from diet studies done in Australia (Llewelyn 
2022), and 2) an ecosystem-specific dataset from the Simpson 
Desert in Australia that focuses on seven predators for which 
detailed dietary information is available (Llewelyn 2022). We 
focused on birds and mammals rather than on all tetrapods 
due to the availability of detailed trait (Wilman et al. 2014) 
and phylogenetic (vertlife.org) information for birds and 
mammals (detailed trait databases for reptiles and amphib-
ians are far from complete), thereby providing a wide range 
of traits for predicting interactions.

Datasets

Global data

We extracted all predator–prey interactions involving birds 
and mammals from GloBI (accessed 29 May 2020 and 26 
June 2020 for birds and mammals as consumers, respec-
tively). However, GloBI contains few records of species found 
in Oceania (including Australia) relative to other regions of 
the world: of the 3329 unique species combinations in the 
records we extracted from GloBI, only 109 involved a preda-
tor and prey species both found in Oceania. Supervised learn-
ers, including random forests, need to be trained on data that 
capture the variation present in the species for which pre-
dictions are being made, and so geographic and taxonomic 
biases in training data could reduce prediction accuracy. 
We therefore added interactions involving Simpson Desert 
species and their relatives to the GloBI data (Supporting 
information). We added data for these species by merg-
ing two additional datasets with GloBI: 1) predator–prey 
records from the Simpson Desert that did not involve the 
seven focal predators (focal predator = species for which we 
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made predictions), and 2) interactions of the focal Simpson 
Desert predators with non-Simpson Desert prey elsewhere in 
Australia (i.e. from diet studies of the focal predators outside 
the Simpson Desert; no interactions between the focal preda-
tors and Simpson Desert species were included in the global/
training data). In both cases, we built these datasets by aggre-
gating predator–prey records from diet studies (Supporting 
information). We then combined these additional interaction 
datasets with the GloBI data (adding 363 records) to create 
an enhanced global interaction dataset (Llewelyn 2022).

To predict species interactions using random forest, we 
required a training dataset that included interacting and 
non-interacting pairs of species. Like most interaction data-
sets, our global dataset did not include non-interactions i.e. 
because relationships are based on presence-only data. We 
therefore generated pseudo-non-interactions (‘non-interac-
tions’ henceforth) by taking all possible two-species combi-
nations from the species in our global interaction dataset and 
removing those combinations documented as ‘interacting’ 
(Supporting information). We also removed combinations 
where either the ‘predator’ does not consume vertebrates (e.g. 
strictly herbivorous species could not be potential predators) 
or the combination involved species not found on the same 
continent (using the ‘rgbif’ package in R, www.r-project.
org; Chamberlain et al. 2022). We removed these non-inter-
actions because they would not help models predict which 
sympatric species known predators preyed on (i.e. the type 
of interactions we aimed to predict in the Simpson Desert). 
Although the non-interactions we generated would have 
included many sympatric, truly non-interacting species com-
binations, they would have also included false non-interac-
tions (species combination assigned as not interacting, but 
that do indeed interact) as well as allopatric species pairs that 
would interact if they were sympatric.

Random forests use explanatory variables such as spe-
cies’ traits to learn and predict associations (Desjardins-
Proulx  et  al. 2017). We therefore added trait data to all 
the predator and prey species in the interaction and non-
interaction datasets (Supporting information). These traits 
included: body mass, time of activity (whether the species 
displays nocturnal, diurnal, and/or crepuscular activity), 
ability to fly, resource groups consumed (plants, vertebrates, 
and/or invertebrates), and percentage use of different habitat 
strata (eight habitat categories for birds and five for mam-
mals; Wilman  et  al. 2014, Supporting information). We 
added phylogenetic information by calculating eigenvectors 
describing a species’ position in the phylogeny (eigenvec-
tor mapping; Guénard  et  al. 2013), a potential proxy for 
explanatory variables that are phylogenetically conserved. 
We extracted phylogenies from VertLife.org, and used the 
MPSEM (Guénard and Legendre 2022) and ape (Paradis 
and Schliep 2019) R packages (www.r-project.org) to handle 
phylogenetic data and extract eigenvectors.

We also identified which species pairs in the non-interac-
tion data included a potential prey species from within the 
predator’s preferred prey-size range (Supporting informa-
tion). We did this so the ratio of non-interaction records from 

inside versus outside the preferred size range in training data-
sets could be adjusted to optimise performance of random 
forests. This is analogous to optimising species distribution 
models by adjusting the ratio of pseudo-absences sampled 
from among versus outside observed occurrences (Barbet-
Massin  et  al. 2012). To identify a preferred size range, we 
log-transformed (loge) predator and prey body masses to lin-
earise body–size relationships (Gravel et al. 2013). We then 
resampled the interaction dataset to create 100 training and 
testing dataset pairs using all 3692 interaction records in each 
of the 100 pairs (75:25 interaction records in training:testing 
datasets).

To each training set we fitted a series of upper and lower 
quantile regressions capturing the middle 0.99 to 0.8 quan-
tiles at 0.01 quantile increments. We included a prey mass × 
predator taxonomic class interaction in the regression models 
to allow different body–size relationships for predatory birds 
and mammals (Llewelyn  et  al. 2022). We then combined 
each of the 100 testing sets with an equal number of species 
pairs randomly sampled from the non-interaction set (also 
with body mass loge-transformed), and applied the quan-
tile regression models (i.e. upper and lower quantile regres-
sions combinations) built in the previous step to the testing 
sets. Species combinations in the testing sets that included 
a potential prey species from within the upper and lower 
quantile ranges derived from the regressions were predicted 
as prey, and those outside these limits were excluded as prey.

We assessed model performance by comparing predictions 
to documented interactions (i.e. asking whether the quantile 
regression models correctly identified which combinations 
came from the interaction and non-interaction datasets), 
and used these results to calculate the true skill statistic to 
identify the optimal quantile regression model for assigning 
predator–prey interactions. The true skill statistic is a met-
ric that can effectively evaluate the performance of classifiers 
such as those predicting species interactions (Poisot 2023). 
A true skill statistic = 1 indicates a model that perfectly pre-
dicts interactions and non-interactions, whereas when it is 0, 
the model performs no better than assigning links randomly. 
The model capturing the middle 0.84 quantiles performed 
best (true skill statistic = 0.26), so we used that model to clas-
sify species pairs in the non-interaction dataset as those that 
included a potential prey from within the predator’s preferred 
size range and those that included a potential prey from out-
side the predator’s preferred size range. 

Simpson Desert testing data

It is unclear how the accuracy of random forests trained and 
tested on data including species from many different commu-
nities (such as was the case for our global datasets) translates 
to model performance when applied to single ecological com-
munities (Parravicini et al. 2020). We therefore tested model 
performance when applied to seven common predators from 
the Simpson Desert, a community we chose because it has 
been intensively studied for over 30 years and has detailed 
information on species composition and the diets of some 
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predators. We used the species documented at established 
field sites in the Simpson Desert as the species assemblage 
(i.e. potential prey), rather than all species documented in 
the Simpson Desert bioregion, because the former includes 
sympatric species that have the potential to interact whereas 
the latter would likely include species that seldom have the 
opportunity to interact. 

The Simpson Desert bird and mammal assemblage from 
these sites includes 64 vertebrate-consuming bird and mam-
mal species (49 birds and 15 mammals). However, the diets 
of many of these species have not been studied in detail. 
When testing the performance of random forests for predict-
ing predator-prey interactions, we therefore restricted the 
Simpson Desert testing dataset to seven predatory species 
with detailed dietary information from studies both in the 
Simpson Desert and other arid regions in Australia. These 
seven focal predators included four birds – Aquila audax, 
Falco berigora, Hamirostra melanosternon, Tyto alba, and three 
mammals – Canis dingo, Felis catus and Vulpes vulpes. Felis 
catus (domestic cats) and Vulpes vulpes (red fox) are recent 
introductions to Australia (since European colonisation in 
1788), Canis dingo (dingo) was brought to Australia by peo-
ple > 3000 years ago (Fillios et al. 2012), and the remaining 
focal predators naturally occur in Australia. 

To construct the dataset, we aggregated data from pub-
lished and unpublished diet studies (excluding species con-
sumed as carrion) of the focal predators in the Simpson 
Desert (Supporting information, Llewelyn 2022). We also 
included records from diet studies done outside the Simpson 
Desert involving species pairs found in the Simpson Desert 
(i.e. we assumed that if trophic interactions occurred between 
the species in other communities, they would also occur in 
the Simpson Desert; Llewelyn 2022), and records involv-
ing the focal predators and Simpson Desert species in the 
global interaction dataset (we removed these records from 
the global dataset). None of the studies we used to build the 
Simpson Desert interaction dataset reported non-interac-
tions. We therefore generated non-interactions by assuming 
any species pairs involving the focal predator and the species 
recorded from the Simpson Desert field sites (157 bird and 
mammal species) that have not been documented as predator 
and prey are not predator and prey. We added the same trait 
and phylogenetic information to the Simpson Desert data as 
described for the global dataset. However, we did not include 
a column indicating if non-interacting species pairs in the 
Simpson Desert data involved potential prey from within 
the predator’s preferred size range because we only used the 
Simpson Desert dataset to test model performance (i.e. we 
did not need to optimise the sampling of these non-interac-
tions because they were not used for training random forests).

Modelling

We used the ranger package (www.r-project.org, Wright 
and Ziegler 2017) in R and the Flinders University high 
performance computer (Flinders University 2021) to apply 

random forest using the model-based recursive partitioning 
algorithm (Breiman 2001). In the first phase, we optimised 
the random forest models and tested how performance was 
affected by 1) the number and choice of variables included 
in the random forest, and 2) removing predators that had 
few documented interactions in the training data (i.e. those 
whose diet is likely not adequately captured in the data). In 
the second phase, we tested how changes to the quality of the 
training dataset – including removing records and increasing 
the number of false non-interactions – influenced model per-
formance (Supporting information shows flowchart of mod-
elling steps and for what different models were used). When 
optimising models, we assessed model performance by com-
paring predictions to documented interactions and used these 
results to calculate the true skill statistic (we also calculated 
other performance metrics to confirm our results; Supporting 
information). A true skill statistic of 1 indicates a model that 
perfectly predicts interactions and non-interactions, a score > 
0.75 is ‘excellent’, between 0.4 and 0.75 is ‘fair to good’, and 
< 0.4 indicates ‘poor’ performance (Fleiss et al. 2003).

Model optimisation and variables

We used the global dataset and cross-validation to optimise 
training datasets and model parameters, and we compared 
performance of models trained using: 1) only ecomorpholog-
ical traits, 2) only phylogenetic eigenvectors, or 3) both types 
of data (Supporting information). We also compared per-
formance of models that incorporated many vs few explana-
tory variables/traits to test whether more variables resulted in 
higher accuracy or overfitting. There were 42 variables in the 
many-variable ecomorphological model (21 each for preda-
tor and prey; Llewelyn 2022) because there were 21 ecomor-
phological variables in the databases we built (Supporting 
information). To be consistent, we used 42 phylogenetic 
eigenvectors in the many-variable phylogenetic model (first 
21 phylogenetic eigenvectors for predator and prey). In the 
few-variable models, we included 10 variables (a number we 
chose arbitrarily that is substantially smaller than the 42 vari-
ables in the many-variable models). These 10 variables were the 
most important ecomorphological or phylogenetic variables 
(five each for predator and prey) for predicting interactions, 
as determined by permutation, which measures the impact 
of changing a variable’s value on model accuracy. To iden-
tify the most important variables, we sequentially removed 
the least-important variable and repeated the permutation 
and removal steps until 10 variables remained (retained vari-
ables for each model listed in the Supporting information, 
Llewelyn 2022). Although a variable’s importance in predict-
ing interactions does not imply causation (Arif and MacNeil 
2022), knowing which traits are most important for predict-
ing interactions can help researchers avoid spending time and 
resources collecting data on traits that are uninformative. The 
many- and few-variable models that incorporated both types 
of data simply combined the variables from the respective 
ecomorphological and phylogenetic models (i.e. either 84 or 
20 variables in total). 
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We also tested whether performance was enhanced or 
eroded by removing records from the global dataset involv-
ing predators with few (< 5) interaction records. We pos-
ited that predators that had only a small proportion of their 
diet documented in the dataset could bias results and lead 
to the generation of many false non-interactions because, for 
example, models might be unduly influenced by predators 
that had not been studied in detail – rather than matching 
of predator and prey traits. Removing records involving these 
predators reduced the number of interactions from 3692 in 
the original global dataset to 3424 in the modified global 
dataset, and reduced the number of non-interactions from 
454924 to 89184.

To optimise training datasets and model parameters, we 
divided the global dataset’s interactions (original and modi-
fied data) into training and testing datasets (ratio: 75:25 
training:testing), and combined them with non-interaction 
data. The number of non-interaction records added to the 
testing datasets equalled the number of interaction records in 
that dataset, whereas we varied the number of non-interac-
tions in the training datasets to identify the optimal (highest 
true skill statistic) ratio. We replicated the process of gen-
erating training and testing datasets each time we applied a 
random forest in the parameter-optimization and cross-vali-
dation steps described below.

We weighted non-interactions such that their combined 
weight was equal to that of the observed interactions because 
models built with weighted non-interactions performed 
slightly better than those built using unweighted non-inter-
actions (Supporting information; similar to results from 
species distribution modelling; Barbet-Massin  et  al. 2012). 
These weightings determine the probability an interaction/
non-interaction is selected in the bootstrap samples for the 
trees built from the training datasets. We optimised the train-
ing datasets and random forests in terms of 1) number of 
non-interactions in the training data (above), 2) the ratio of 
non-interactions from inside vs outside preferred size range 
in the training data, 3) the probability threshold for assign-
ing interactions – because random forests can estimate prob-
abilities for binary responses such as interact vs not interact 
(Malley  et  al. 2012), 4) the number of variables randomly 
sampled as candidates at each split in the trees, 5) the number 
of decision trees in the random forest, and 6) the maximum 
depth of the trees. 

We optimised these parameters by iterating through values 
for each parameter individually, running five random forests 
at each value (on five resampled training and testing datasets) 
and calculating the mean true skill statistic for models at each 
value. We identified the parameter values that gave models 
with the highest true skill statistic. We separately optimised 
the 12 models that differed in terms of included variables 
(i.e. the many- versus few-variable ecomorphological, phylo-
genetic, and combined data models) and whether the original 
or modified global dataset was used (the Supporting infor-
mation shows optimised parameter sets). We then compared 
performance of these optimised models by applying them to 
100 training and testing datasets generated using the global 

dataset cross-validation design described above, and calcu-
lated the true skill statistic for each of these 100 cases.

After comparing performance of the twelve models with 
the global dataset, we tested their performance when trained 
on the global dataset (with hyper-parameters set to optimise 
performance, as identified in the previous step) and applied 
to the Simpson Desert data (Supporting information). Again, 
we trained and applied 100 random forests for each of the 
twelve models, and assessed their performance with the true 
skill statistic. We resampled non-interactions for the training 
dataset in these 100 analyses because there were more non-
interactions than needed, whereas we used all available inter-
action records in the global datasets (3692 and 3424 for the 
original and modified global datasets, respectively) in each of 
the 100 training datasets. 

Quality of training dataset and model performance

To test the influence of the size of the training dataset, taxo-
nomic coverage, and prevalence of false non-interactions 
(true interactions classified as non-interactions) on model 
performance, we reran the analyses with the optimised model 
that performed best on the Simpson Desert data (i.e. the 
many ecomorphological and phylogenetic variable model 
trained on the modified global dataset; Supporting informa-
tion) but varied the number of records, taxonomic coverage, 
and prevalence of false non-interactions in the training data-
sets (Supporting information).

We deliberately reduced the quality of training data in 
eight ways to test specific sensitivity hypotheses. We modi-
fied the entire training dataset by 1) randomly removing 
records and 2) randomly switching interaction records to 
non-interactions (false non-interactions). We hypothesised 
that model performance would be sensitive to removal of 
training data because having more records helps the mod-
els learn associations between species traits and trophic links, 
and we hypothesised that models would be sensitive to false 
non-interactions because random forests would learn the 
wrong association when trained with erroneous data. We also 
tested what impact data removal and false non-interactions 
had when they were restricted to subsets of the training data 
that included either: 3, 4) focal prey, 5, 6) focal predators, 
or (7, 8) interactions where neither prey nor predators were 
focal/Simpson Desert species. We hypothesised that model 
performance would be especially sensitive to changes involv-
ing focal predators and prey because these records involve the 
species for which predictions are made. Here, the associations 
between these species’ traits and trophic interactions should 
be especially important for the model to learn. Furthermore, 
we hypothesised that model performance would be sensi-
tive, albeit less so, to removing records and increasing the 
proportion of false non-interactions in non-Simpson Desert 
(non-focal) interactions because these interactions teach the 
random forest trait-trophic associations that also apply to 
Simpson Desert species. Assessing the sensitivity to changes 
in the quality of training data involving the focal species is 
important because it assesses the suitability of random forest 
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for inferring interactions of species that have few/no interac-
tion records, a common phenomenon. 

For each of the eight ways we reduced training dataset 
quality, we made these changes at 1% increments relative to 
the initial number of records in the modified group (e.g. 1% 
increments of the total number of interactions involving the 
focal predator), generating 10 training datasets at each incre-
ment. We trained the random forests on these reduced-qual-
ity datasets, applied them to the Simpson Desert data, and 
calculated true skill statistics 10 times at each increment. We 
plotted results to make visual comparison of the sensitivity 
of model performance to each of the eight types of artificial 
variation in the quality of training data, and we compared 
model performance when all relevant data were modified to 
quantify the impacts of each type of modification. 

We also examined the mechanisms underlying changes 
in model performance by testing how removing records or 
increasing false non-interactions for the focal predator influ-
enced the: 1) relative probability (or suitability) of interacting 
assigned by the random forest to each potential prey for each 
predator (i.e. asking whether changes to the training data-
set affected which species were identified as the most likely 
prey), and 2) mean probability assigned to potential prey for 
each predator (i.e. asking whether changes to the training 
dataset cause an overall increase or decrease in the probabili-
ties assigned to potential prey). If lower model performance 
reflects a systematic shift in all the probabilities (upward or 
downward), rather than a change in which potential prey are 
identified as the most likely, the models could still be used to 
predict a predator’s prey because the rank order of probabil-
ity of different prey remains similar irrespective of absolute 
model performance and absolute probability. 

To test for changes in relative prey suitability, we mea-
sured the correlation (Pearson’s r) between prey probabilities 
assigned by models trained on reduced-quality training data-
sets with that assigned by models trained on the full train-
ing dataset (Supporting information). To test for changes in 
mean probability assigned to potential prey overall, we sub-
tracted the mean probability assigned to potential prey for 
each predator as calculated by the full training-data models 
from that calculated by the models trained on the reduced-
quality training datasets (Supporting information). For both 
analyses, we reduced the quality of the training dataset at 
1% increments (10 replicate training datasets/models at each 
increment) and plotted the results to compare visually. We 
hypothesised that removing records and including more false 
non-interactions in the training dataset would disrupt the 
assignment of relative suitability and reduce assigned prob-
abilities overall.

Results

Variables and model performance

Random forests trained and tested on the global data had 
mean true skill statistics ranging from 0.53 to 0.77 (Fig. 1a, c, 

e, g), indicating ‘good’ to ‘excellent’ performance (Fleiss et al. 
2003). These models tended to perform better when we used 
the original global interaction dataset rather than the modi-
fied dataset that had predators with few prey records removed 
(mean difference in true skill statistic between models = 0.14; 
Fig. 1a, c versus e, g). Using few or many variables in the phy-
logenetic or phylogenetic/ecomorphological variable models 
had little effect on performance when applied to the global 
datasets (difference in mean true skill statistic < 0.02 in all 
cases; Fig. 1), but there was a slight decrease in performance 
associated with using few variables in the ecomorphological-
only models (difference in mean true skill statistic = 0.08 and 
0.06 between the many- and few-variable ecomorphologi-
cal models when the original or modified global dataset was 
used, respectively; Fig. 1a versus c, e versus g). 

The models trained on the global dataset and applied 
to the Simpson Desert data yielded mean true skill statis-
tics between 0.25 and 0.45, indicating ‘poor’ to ‘fair’ per-
formance (Fleiss  et  al. 2003; Fig. 1). Those that used both 
phylogenetic and ecomorphological variables performed well 
when trained on the modified global dataset, yielding mean 
true skill statistics of 0.43 ± 0.02 (mean ± standard devia-
tion) and 0.45 ± 0.02 when we used few or many variables, 
respectively (Fig. 1f, h). Using few versus many variables did 
not strongly affect the performance of the phylogenetic-only 
or phylogenetic- and ecomorphological-variable models (dif-
ference in mean true skill statistic < 0.07 in all four cases; 
Fig. 1). In contrast, the few-variable ecomorphological mod-
els did not perform as well as their many-variable counter-
parts (difference in mean true skill statistic > 0.13 between 
the many- and few-variable ecomorphological models when 
using either the original or modified global datasets Fig. 1b 
versus d, f versus h).

Using the model that performed best on the Simpson 
Desert data (i.e. the many-variable model with phyloge-
netic and ecomorphological traits trained on the modified 
global dataset; Fig. 1f ), performance predicting interaction 
for recently introduced predators – cats and foxes – was bet-
ter than that for native predators (true skill statistic = 0.56 
± 0.03 and 0.41 ± 0.02 for recently introduced and native 
predators, respectively; Fig. 2).

Effects of training dataset size, false non-
interactions, and taxonomic coverage

We altered the global (modified) training dataset by ran-
domly removing records and changing interaction records 
to false non-interactions, applying these changes both to the 
entire training dataset as well as to three subsets: 1) records 
involving the focal prey (i.e. species found in the Simpson 
Desert), 2) records involving the focal predators (i.e. the 
seven Simpson Desert predators for which we predicted 
interactions), and 3) records involving species not found in 
the Simpson Desert. Removing records reduced performance 
when modifying either the entire training dataset (Fig. 3a; 
true skill statistic reduced to 0 when all records removed 
because random forests cannot run without training data) 

 16000587, 2023, 9, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.06619 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [22/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 8 of 17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
10

15
20

25
30

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Global dataset

d
en

si
ty

(a)

all variables
ecomorphological
phylogenetic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
10

15
20

25
30

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Simpson Desert dataset

(b)

o
ri

g
in

al
 t

ra
in

in
g

 d
at

as
et

an
d

 m
an

y 
va

ri
ab

le
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
10

15
20

25
30

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30
d

en
si

ty

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
10

15
20

25
30

0.0 0.2 0.4 0.6 0.8 1.0
0

5
10

15
20

25
30 (d)

o
ri

g
in

al
 t

ra
in

in
g

 d
at

as
et

an
d

 f
ew

 v
ar

ia
b

le
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
10

15
20

25
30

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30
d

en
si

ty

(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
10

15
20

25
30

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30 (f)

m
o

d
if

ie
d

 t
ra

in
in

g
 d

at
as

et
an

d
 m

an
y 

va
ri

ab
le

s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
10

15
20

25
30

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30
d

en
si

ty

(g)

true skill statistic
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
10

15
20

25
30

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30 (h)
m

o
d

if
ie

d
 t

ra
in

in
g

 d
at

as
et

an
d

 f
ew

 v
ar

ia
b

le
s

true skill statistic

Figure 1. Density plots comparing the performance (true skill statistic) of random forest models predicting predator–prey interactions in 
birds and mammals. The random forests used either ecomorphological traits, phylogenetic eigenvectors, or both types of data, and were 
applied to two interaction datasets: a global interaction dataset (panels in the left column) and a specific ecosystem dataset (seven predators 
and their potential prey/sympatric species in the Simpson Desert; panels in the right column). We also assessed the effects of using many 
variables (42, 42, and 84 variables, for ecomorphological, phylogenetic eigenvector, and both data-type models) or few variables (10, 10, 
and 20 variables, for ecomorphological, phylogenetic eigenvector, and both data-type models), and restricting the training dataset to preda-
tors with ≥ 5 prey records (modified training dataset). (a) and (b) show results from models that use the complete training dataset and many 
variables; (c) and (d) show results from models that use the complete training dataset and few variables; (e) and (f ) show results from models 
that use the modified training dataset and many variables; and (g) and (h) show results from models that use the modified training dataset 
and few variables.
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or the focal-predator component only (Fig. 3e; true skill sta-
tistic reduced to 0.24 ± 0.01 [mean ± standard deviation] 
when all focal-predator records were removed). However, 
these effects became pronounced only when > 80% of 
the interaction and non-interaction records were removed 
(Fig. 3a, e), which equates to removing > 15750 or 1240 
records from the entire or focal-predator components of the 
training datasets, respectively. Removing records involving 
the focal prey or non-Simpson Desert species had only weak 
or no effect on model performance (Fig. 3c, g; true skill 
statistic = 0.36 ± 0.02 and 0.46 ± 0.01 when removing all 
focal prey or all non-Simpson Desert species, respectively).

The effect of false non-interactions on model performance 
was stronger than that of removing records. False non-inter-
actions assigned at random to interaction records in either 
the entire training dataset or the component of the training 
dataset involving focal predators degraded model perfor-
mance more rapidly (Fig. 3b, f; true skill statistic reduced 
to 0 and 0.04 ± 0.01 for models when changing all records 
or all records involving focal predators to non-interactions, 
respectively). These declines were triggered when changing > 
40% of the interaction records in the relevant group to false 
non-interactions (Fig. 3b, f ), which equates to 1370 records 
in the entire training-dataset analysis and 235 in the focal-
predator analysis. False non-interactions in the training data 

involving the focal prey (Fig. 3d) or non-Simpson Desert spe-
cies (Fig. 3h) caused slight declines in model performance 
(true skill static reduced to 0.36 ± 0.03 and 0.34 ± 0.02 
when changing all interactions records to false non-interac-
tions for focal prey species and non-Simpson Desert species, 
respectively).

Focal-predator training data and the mechanisms 
underlying changes in model performance

The correlation between probabilities assigned to potential 
prey by models trained on the full versus record-removed 
global datasets showed a gradual decrease as more interactions 
involving the focal predator were removed from the training 
data, and this decline became more rapid when removing 
> 80% of records (Fig. 4a). The correlation between these 
probabilities reduced to 0.59 ± 0.02 when all records involv-
ing focal predators were removed from the training dataset, 
indicating that models identified many of the same species 
as prey even when there were no records involving the focal 
predator in the training data. The mean probability assigned 
to potential prey for each predator was reduced by removing 
records of the focal predator from the training data and, like 
the correlation results, this change was small until 80% of 
records were removed (Fig. 4c). After removing all records, 
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Accipiter fasciatus

whistling kite
Haliastur sphenurus

wedge-tailed eagle
Aquila audax

spotted harrier
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common wallaroo

Osphranter robustus

long-haired rat
Rattus villosissimus

red kangaroo
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Figure 2. The five most- and least-likely mammalian and bird prey for the red fox Vulpes vulpes in the Simpson Desert predicted by random 
forest. Solid blue arrows indicate prey that were predicted and observed, dashed blue arrows show prey that were predicted but not observed 
(potentially indicating interactions that occur but have not yet been recorded), and red lines indicate species that were not predicted or 
observed as prey. The five most-likely prey according to the many-variable phylogenetic and ecomorphological model (run 100 times and 
trained on the modified training data) were the common wallaroo Osphranter robustus, long-haired rat Rattus villosissimus, red kangaroo 
Osphranter rufus, Eurasian coot Fulica atra, and sandy inland mouse Pseudomys hermannsburgensis. The five least-likely prey were the little 
eagle Hieraaetus morphnoides, brown goshawk Accipiter fasciatus, whistling kite Haliastur sphenurus, wedge-tailed eagle Aquila audax and 
spotted harrier Circus assimilis.
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Figure 3. Effect of training-dataset quality on the performance of random forest for predicting predator–prey interactions in birds and 
mammals. Each panel shows performance when modifying a percentage of either the whole or specific taxonomic groups in the training 
dataset. (a) and (b) show performance when changing the whole dataset, (c) and (d) show performance when restricting changes to focal 
prey, (e) and (f ) show performance when restricting changes to focal predators, and (g) and (h) show performance when restricting changes 
to non-focal (non-Simpson Desert) species. Panels in the left column show the effects of removing records from the training data, whereas 
panels in the right column show the effects of switching interaction records to non-interactions (false non-interactions). We trained random 
forests on the modified global predator–prey interaction dataset (i.e. restricted to predators with ≥ 5 prey records) and applied them to 
seven predators and their potential prey from the Simpson Desert. Plot points indicate performance (according to the true skill statistic) 
when applied to the Simpson Desert predators.
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the probabilities assigned to potential prey were on average 
0.17 ± 0.01 lower compared to those assigned by models 
trained on the full dataset.

Both the correlation and change in mean probability 
assigned to potential prey were more sensitive to false non-
interactions involving the focal predators than to remov-
ing their records from the training dataset, showing more 
rapid declines (Fig. 4a versus b, c versus d). When changing 
all interactions involving the focal predators in the training 
data to non-interactions, the correlation between probabili-
ties assigned to prey decreased to 0.27 ± 0.03 (Fig. 4b) and 
the mean probabilities assigned to potential prey dropped by 
0.31 ± 0.01 (Fig. 4d).

Discussion

Our results demonstrate that random forests can predict 
the prey of predatory birds and mammals even when few 
or no interaction records involving the focal predator are 
included in training data (Fig. 4a). Applying random forests 
to predict predator–prey interactions for these predators (and 

terrestrial vertebrates more generally) to facilitate network 
modelling of terrestrial vertebrate systems is therefore sup-
ported (Brousseau et al. 2018). However, our analyses high-
light that caution is needed in applying random forest and 
other machine-learning approaches depending on the qual-
ity, quantity, and type of training data available, and in the 
face of these limitations we suggest that filtering training data 
could improve model performance (Fig. 5).

We found that random forests could predict bird and 
mammal interactions in both our global and ecosystem-spe-
cific datasets (including for native and recently introduced 
predators). Models based on ecomorphological, phyloge-
netic, or both types of traits, and those using few or many 
traits, could perform similarly well (Fig. 1) – consistent 
with previous studies showing that either data type can be 
used for predicting interactions in other taxa (Faisal  et  al. 
2010, Morales-Castilla  et  al. 2015, Brousseau  et  al. 2018, 
Pomeranz  et  al. 2019, Elmasri  et  al. 2020) and that few 
traits/variables are required to make accurate predictions 
(Desjardins-Proulx  et  al. 2017). Because phylogenetic 
information is available for most terrestrial vertebrates (e.g. 
VertLife.org), ecological/morphological trait databases are 
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Figure 4. Effects of the quality of the training dataset on 1) the predicted relative suitability of prey and 2) the mean probabilities assigned to 
potential prey by random forests. Panels in the left column show the effects of reducing the number of interactions records involving the focal 
predator in the training dataset, whereas panels in the right column show the effect of switching interaction records involving the focal preda-
tor to non-interactions (false non-interactions). (a) and (b) show the correlation between prey probabilities assigned by the models trained on 
the changed datasets with that assigned by models trained on the complete (modified) training dataset. (c) and (d) show the mean probability 
(suitability) assigned to potential prey by models trained on the changed datasets minus those values assigned by the models trained on the 
complete (modified) training datasets. We trained these random forests on the modified global predator–prey interaction dataset (restricted 
to predators with ≥ 5 prey records) and applied them to seven predators and their potential prey from the Simpson Desert.
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Figure 5. Framework for preparing and optimising random forest models for predicting species interactions. Most of these steps and meth-
ods are also relevant to the application of other machine learning approaches for inferring species interactions.
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increasingly common and comprehensive (Jones et al. 2009, 
Oliveira  et  al. 2017, Herberstein  et  al. 2022), and interac-
tion data for many species are available from open-source 
databases (e.g. globalbioticinteractions.org; web-of-life.es) 
and publications, random forests and other machine learning 
methods can now easily be applied to such data to predict 
predator–prey interactions for most vertebrate communities, 
and aid in the ecological network and invasive species model-
ling required to guide conservation decisions.

We found that model performance was robust to the ran-
dom removal of records from the training dataset. In fact, 
we had to remove > 80% of records (> 15750 individual 
records) before an obvious change in performance occurred 
(Fig. 3a). Thus, models that use large training datasets are 
unlikely to be sensitive to random additions or removal of 
interaction and non-interaction records. 

The removal of records involving focal predators only 
caused a prominent decline in model performance when 
we removed > 80% (Fig. 3e) of records in that group, but 
this translates to fewer (1240) records in total needing to 
be removed (compared to the random removal of records). 
Conversely, the complete removal of records involving focal-
prey species or non-focal species had little impact on model 
performance (Fig. 3c, g). Thus, declines in model perfor-
mance in the random-removal analyses were largely driven by 
the loss of focal predator records. This reduction in model per-
formance following removal of focal-predator records was due 
to every prey species being assigned consistently lower prob-
abilities and a slight shuffling of prey preference (Fig. 4a, c). 
Because relative prey preferences were largely maintained even 
when all training records involving the focal predator were 
removed from training data (mean Pearson r = 0.59; Fig. 4a), 
our results suggest prey species could be predicted for preda-
tors that do not have any interaction data, which is likely the 
case for many understudied, rare, or extinct species. The abil-
ity to predict trophic interactions for extinct species accurately 
has important applications for understanding past extinction 
events (Ripple and Van Valkenburgh 2010, Pires et al. 2015, 
Llewelyn et al. 2022), while the capacity to predict interactions 
for rare species could help identify cryptic factors that threaten 
their persistence (Smith and Phillips 2006, Doherty  et  al. 
2016). However, additional work to assess the requirements 
of training data for predicting interactions for species without 
interaction records is still required. For example, it is unclear 
how phylogenetically and/or ecologically similar species in the 
training data need to be to the focal species for models to be 
able to predict trophic interactions accurately. 

In contrast to removal, false non-interactions in the train-
ing data reduced model performance more rapidly, triggering 
lower performance when > 40% of the interaction records 
were changed to non-interactions. This sensitivity highlights 
an important issue: most studies generate non-interactions by 
assuming that undocumented interactions imply true non-
interaction; however, this assumption could generate many 
false non-interactions, especially if interaction records are 
sparse (i.e. if many of the predators in the training data have 
only a small proportion of their interactions documented). 

To avoid generating false non-interactions, one can restrict 
non-interactions in training datasets to species combina-
tions where the predator is too small to eat the potential prey 
and/or the potential predator comes from a low trophic level 
(Strona et al. 2021). However, applying this approach could 
reduce the capacity of random forests to identify unsuitable 
prey from within a predator’s preferred prey-size range or 
for high trophic-level species. Indeed, the optimal ratio of 
non-interactions sampled from within vs outside preferred 
size range in the model that performed best on our Simpson 
Desert data (i.e. the many-variable, both data-types model) 
was 5:2 (Supporting information), suggesting that non-inter-
actions of suitably-sized potential prey should be included in 
training data.

Alternatively, filtering training data by removing preda-
tors that have few interaction records could help avoid false 
non-interactions because many of the interactions/prey of 
these predators are likely missing (i.e. they have sparse inter-
action records, although these species would also include 
some predators with narrow diet breadths). When applied to 
the Simpson Desert data, our models trained on the global 
dataset modified by removing predators with < 5 interaction 
records performed better than those trained on the original/
full global dataset (Fig. 3). This result might reflect a reduc-
tion of false non-interactions in the modified training data-
set. Thus, removing predators/consumers that are missing 
most of their interactions from training datasets could be 
an effective way to filter training data and improve model 
performance. 

Model performance was especially sensitive to false non-
interactions in the training data involving focal predators. 
This type of change in data quality disrupted relative prey 
preferences and lowered probabilities assigned to interac-
tions more extensively than did reducing the number of 
records involving focal predators (Fig. 4a versus b, c versus 
d), reinforcing the importance of avoiding false non-inter-
actions – especially for focal predators – when generating 
pseudo-non-interactions for training data; otherwise, such 
data can change which species are identified as most-likely 
prey. Although removing predators/consumers with few 
interaction records from training data and/or restricting the 
generation of non-interactions based on relative size and 
trophic level are two simple methods for avoiding false non-
interactions as we discussed, there are other strategies that 
could be applied to the entire- or focal-predator-component 
of training datasets to minimise the number of false non-
interactions. For example, false non-interactions could be 
minimised by generating non-interactions on a case-by-case 
basis (similar to the ‘target-group absences’ approach used in 
species distribution modelling; Barbet-Massin  et  al. 2012), 
an approach shown to improve the accuracy of predator–prey 
interactions predicted by deep-learning models (Fricke et al. 
2022). We generated non-interactions for the global dataset 
using interaction data from different regions, studies, and 
sources, but this approach could generate false non-interac-
tions, such as when pairs of species are allopatric in studies 
that contributed to the training data and so are designated as 
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non-interacting, but the component species interact when/
where they are sympatric. This approach could also generate 
misleading non-interactions, such as pairs of currently allo-
patric species that might interact should future conditions 
force them to become sympatric. Instead, training data non-
interactions could be generated based on individual studies 
or locations of recorded interactions describing what a preda-
tor does and does not eat in a particular area. Such a nuanced 
approach would identify more reliable and informative non-
interactions than would be achieved by assuming that any 
undocumented pairs from an incomplete global database are 
truly not predator and prey.

Our models performed better with the global dataset 
than with the Simpson Desert data. This difference might 
indicate that the random forests learnt patterns in the global 
dataset that are not as effective when re-applied to specific 
communities. For example, the random forests might have 
learnt from the global dataset that predators with particular 
traits do not eat prey with particular traits, but predators or 
prey with those traits might not be present in the Simpson 
Desert. In other words, learning the relationship did not 
help the random forest predict interactions in the Simpson 
Desert. Alternatively, random forests might learn which 
predators had few or many prey records within the global 
dataset – another pattern that would be less effective at iden-
tifying interactions and non-interactions when applied to the 
Simpson Desert predators due to the similarity among focal 
predators in terms of number of interactions in the train-
ing data (60% of predators in the original/full global dataset 
had < 5 interaction records whereas all Simpson Desert focal 
predators had > 10 interaction records in the global data-
set). This might explain why our models did not perform as 
well on the global data when we used the modified dataset 
rather than the original/full global dataset for training and 
testing, because we had removed predators with few interac-
tion records from the modified dataset. Geographic biases in 
the global training dataset could also lead to weaker perfor-
mance on our ecosystem-specific dataset (Tuia et al. 2022). 
Irrespective of what caused the difference in model perfor-
mance, our results indicate that performance based on global 
datasets might not be a strong indicator of performance when 
applied to single communities.

Previous studies applying random forests in aquatic and 
invertebrate communities have tended to report higher per-
formance than our models achieved (mean true skill statistic 
consistently > 0.6; Desjardins-Proulx et al. 2017, Laigle et al. 
2018, Brousseau  et  al. 2018, Parravicini  et  al. 2020, 
Strona et al. 2021). There are several possible explanations for 
this discrepancy, including previous studies 1) pooling prey 
species into broad resource categories (Parravicini et al. 2020), 
2) using higher-quality training data (Laigle  et  al. 2018, 
Parravicini et al. 2020), 3) including resource predictions for 
a wider range of trophic groups, including easily-excluded 
non-interactions such as herbivores and/or detritivores eat-
ing other animals (Desjardins-Proulx  et  al. 2017), and 4) 
focusing on taxa whose interactions might be easier to pre-
dict than for terrestrial vertebrates (although further testing 

is required to evaluate this possibility). Another potential 
means of improving the performance of random forests that 
neither we nor others have yet addressed is to include detail 
on intraspecific variation in traits and interactions, including 
ontogenetic shifts (González-Varo and Traveset 2016). 

Random forest and other machine learning approaches 
are useful and flexible tools that have great potential in terms 
of predicting species interactions. While global interaction 
databases are a valuable resource for training and testing such 
models, they currently include only a small fraction of real-
world species interactions. Furthermore, for the consumers 
that are included in such databases, in most cases only a small 
subset of their trophic interactions are documented, thereby 
increasing the likelihood of generating false non-interactions. 
Databases therefore need to be expanded, and a framework 
for generating non-interactions that avoids or minimises false 
non-interactions and retains informative non-interactions is 
required (Fig. 5 shows a proposed framework). By making such 
changes, the application of random forests and other machine 
learning methods (including ensemble approaches) can be fur-
ther honed to infer species interactions more accurately.
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