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Abstract: Food safety risk prediction is crucial for timely hazard detection and effective control. This
study proposes a novel risk prediction method for food safety called TabNet-GRA, which combines a
specialized deep learning architecture for tabular data (TabNet) with a grey relational analysis (GRA)
to predict food safety risk. Initially, this study employed a GRA to derive comprehensive risk values
from fused detection data. Subsequently, a food safety risk prediction model was constructed based
on TabNet, and training was performed using the detection data as inputs and the comprehensive
risk values calculated via the GRA as the expected outputs. Comparative experiments with six typical
models demonstrated the superior fitting ability of the TabNet-based prediction model. Moreover, a
food safety risk prediction and visualization system (FSRvis system) was designed and implemented
based on TabNet-GRA to facilitate risk prediction and visual analysis. A case study in which our
method was applied to a dataset of cooked meat products from a Chinese province further validated
the effectiveness of the TabNet-GRA method and the FSRvis system. The method can be applied to
targeted risk assessment, hazard identification, and early warning systems to strengthen decision
making and safeguard public health by proactively addressing food safety risks.

Keywords: food safety; risk prediction; visual analysis; early warning; TabNet; grey relational analysis

1. Introduction

Food safety has emerged as a significant global public health concern in recent years,
impacting people’s health and wellbeing [1]. Within the food supply chain, food prod-
ucts are susceptible to contamination due to various safety hazards, including biological,
chemical, and physical risks [2]. These hazards can give rise to over 200 different diseases,
ranging from mild conditions such as diarrhea to more severe outcomes such as cancer.
Alarming data from the World Health Organization in 2023 indicate that over 600 million
cases of foodborne illnesses and 420,000 deaths may result from consuming contaminated
food annually [3]. This pressing situation underscores the urgent need to strengthen food
safety supervision and thereby prevent incidents and safeguard public health. Monitoring
potential hazards in food, conducting food safety risk predictions, and issuing early warn-
ings have proven to be effective tools in the supervision and control of food safety. Food
safety prediction involves utilizing models to predict future food safety events or outcomes
by analyzing patterns from historical food-safety-related data to provide a basis for risk
warnings. Such risk prediction is highly valuable in developing food safety surveillance
programs, especially in identifying products and hazards that warrant close monitoring [4].
Consequently, the establishments of robust food safety risk prediction models hold crucial
significance for both risk monitoring and early warning in the context of food safety.

Machine learning (ML), the process through which computers learn from substantial
historical data via statistical algorithms, generate empirical models, and make predictions
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or decisions [5], has emerged as an effective approach to solving food safety risk prediction
challenges in recent years [2]. The European Union launched the Rapid Alert System for
Food and Feed (RASFF) portal in 1977 to ensure cross-border monitoring and a quick
reaction when public health risks are detected in the food chain. In recent years, extensive
research has been conducted on applying ML within the RASFF framework [2,6,7]. In
2014, the European Food Safety Authority (EFSA) assessed the potential of applying
machine learning techniques (MLTs) to food risk assessment. Five case studies have been
proposed based on data from the European Union Summary Reports on Zoonoses and on
Antimicrobial Resistance.

Random forests, clustering methods, and ensemble models have been investigated,
and specific strategies, such as cross-validation, have been used to address well-known
issues such as over-fitting [8]. For instance, Liu et al. [9] employed random forest (RF) classi-
fication to predict food non-conformity indicators, while Gao et al. [10] constructed a Light-
GBM risk warning model using integrated fuzzy hierarchical partitioning based on gradient
boosting decision trees (GBDTs) to predict meat product safety risks. Wang et al. [11] uti-
lized an extreme gradient boosting tree (XGBoost) to develop a prediction model for rice
safety risks. These models integrate multiple decision tree models and fuse the results of
various single models in different ways, effectively reducing any prediction bias associated
with individual models and improving overall fitting ability. However, tree models are
susceptible to data noise interference and tend to overfit when the tree depth is excessive,
leading to inaccurate prediction results.

On the other hand, artificial neural networks (ANNs) are increasingly used to solve
classification and regression prediction problems due to their ability to learn more complex
data patterns. For instance, neural networks such as extreme learning machines (ELMs) [12],
radial basis functions (RBFs) [13,14], and backpropagation (BP) neural networks [15] have
been utilized to construct efficient food safety risk prediction models for dairy products,
meat products, and vegetables. Unlike tree models, ANNs possess end-to-end learning
capability, eliminating the need for users to focus extensively on internal network processes.
They can aptly approximate complex non-linear relationships, enabling them to more
effectively learn patterns in intricate data, and they exhibit superior generalization ability.
However, ANNs have certain limitations, such as their slow convergence and susceptibility
to local optimization during the training process [16].

TabNet is a highly efficient standard deep neural network architecture designed specif-
ically for tabular data [17]. It employs sequential attention to select salient features at each
decision step, enabling more accurate and efficient learning. Combining the advantages
of multiple decision-making steps in a tree model with the end-to-end learning ability
of a neural network, TabNet exhibits robust fitting ability in tasks such as the classifica-
tion and regression of tabular data. It addresses the issues encountered when using tree
models, such as data noise interference leading to overfitting, and those affecting complex
neural network structures, such as susceptibility to local optimization. TabNet has found
applications in various fields, including rainfall prediction [18] and soybean protein P-site
classification prediction [19]. This study endeavors to construct a TabNet-based food safety
risk prediction model for the first time.

When developing a food safety risk prediction model, it is essential to analyze detec-
tion data and obtain comprehensive risk values in order to train the model. The analytic
hierarchy process (AHP) is often employed for this purpose, but it is limited by its subjec-
tive weight-assignment method. Grey relation analysis (GRA), an important multivariate
analysis method and part of grey system theory [20], measures the correlation between
two objects based on the similarity of data geometry presented by sequence curves [21].
GRA can partially overcome the subjectivity issues present in methods such as AHP. In the
field of food science, GRA has been utilized to calculate the correlation between food safety
influences, determine the weight of each risk indicator, and fuse detection data to obtain
comprehensive risk values [22,23]. Therefore, this study adopts the GRA method to derive
comprehensive risk values for testing data.
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Visualization techniques are widely recognized as an effective means for analyzing
and interpreting data [24,25]. Intelligent systems that incorporate visualization techniques
provide analysts with direct and efficient tools for exploring and interpreting data [26,27],
significantly enhancing the efficiency of risk analysis and decision support for food safety
regulations [28,29]. Furthermore, visualization techniques have found applications in other
food-safety-related fields [30–32]. This study has designed and implemented the FSRvis
system, a food safety risk prediction and visualization system that combines the TabNet-
GRA method with advanced visual analysis techniques, including multi-view collaboration
and human–computer interaction. This visualization system supports food safety risk pre-
diction and interactive visual analysis based on detection data, offering valuable assistance
to food safety supervision departments in conducting risk analysis and prediction.

The primary contributions of this work are as follows: (1) a novel risk prediction
method for food safety, TabNet-GRA, which enables a rapid and precise determination of
fine-grained risk values for food samples based on detection data by combining the advan-
tages of TabNet and GRA, (2) a food safety risk prediction and visualization system, called
FSRvis system, in conjunction with the TabNet-GRA method, which can facilitate food
safety risk prediction and interactive visual analysis based on detection data, and (3) a case
study employing detection data from cooked meat products in a Chinese province, which
the results of validate the effectiveness of the TabNet-GRA method and the FSRvis system.

2. The Framework of TabNet-GRA Method and FSRvis System

The framework of the TabNet-GRA method and FSRvis system is illustrated in Figure 1.
In Figure 1A, the progression of the food safety prediction method grounded in TabNet-
GRA is delineated, while Figure 1B outlines the framework of the FSRvis system. The food
safety risk prediction model, developed using the TabNet-GRA method, will be seamlessly
integrated into the FSRvis system, facilitating food risk prediction. For more comprehensive
understanding, readers are directed to consult Sections 3 and 5.
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3. The TabNet-GRA Method

TabNet-GRA is considered a food safety risk prediction method that utilizes the
combination of TabNet and GRA, which can predict the risk of food products by employing
food safety detection data. In this section, the principles and construction process of
TabNet-GRA will be introduced.

3.1. The Pipeline of TabNet-GRA Method

The Pipeline of the TabNet-GRA method is illustrated in Figure 1A, encompassing the
subsequent steps.

Step 1: Data processing. The food safety detection data are processed for deleting
useless attributes, data format conversion, deleting redundant data and “undetected” result
filling, etc., and the data are processed into a data matrix X suitable for modeling.

Step 2: Using GRA to calculate the comprehensive risk value of each food sample in a
detection dataset. Firstly, GRA is used to calculate the weight vector W of each indicator’s
contribution to the risk of the sample; secondly, the hazard level matrix for pollutants D is
obtained using the detection value of the risk indicator compared with its corresponding
limit value; and, finally, D is multiplied with W to obtain the risk vector of the food
sample R.

Step 3: Construction and training of a TabNet-based food safety risk prediction model.
The predictive model was constructed based on the TabNet. During the training process of
the model, the food safety detection data matrix X is used as the input, and the risk vector
of the food sample R is used as the expected output; the relevant parameters of the model
are set and adjusted to obtain the TabNet-based food safety risk prediction model. The
performance of the model is evaluated eventually.

3.2. The GRA-Based Food Risk Quantitative Assessment

Grey relational analysis (GRA) is a multi-indicator decision-making evaluation method
developed from the gray system theory. Its fundamental concept involves quantifying
the geometric similarity between reference data sequences and multiple comparative
data sequences to establish their level of association. This analytical approach enables
the assessment and evaluation of correlations and influences among multiple indicators,
facilitating comprehensive decision-making progress [19]. In the second step of the TabNet-
GRA method, GRA is utilized to determine the contribution weight of each indicator to the
sample’s risk, and then the comprehensive risk value for each sample is calculated.

In order to clearly describe the process of calculating the sample’s comprehensive
risk value, the definitions of the symbols used in it are first stated. Let X be the food
detection data matrix, containing m indicators and n samples. xi(k) is the detection result
of the ith indicator of the kth sample, where i = 1, 2, . . . , m; k = 1, 2, . . . , n, n is the length
of the data sequence (the number of food samples), and m is the number of indicators.
The reference sequence is X1 = {x1(1), x1(2), . . . , x1(k), . . . , x1(n)} and the comparison
sequence is Xi = {xi(1), xi(2), . . . , xi(k), . . . , xi(n)}. In the actual calculation, each indicator
sequence is used as a reference sequence once, and the rest of the indicator sequences are
used as a comparison sequence.

X =



X1
X2
...

Xi
...

Xm


=



x1(1), x1(2)
x2(1), x2(2)

· · ·
· · ·

x1(k)
x2(k)

· · ·
· · ·

x1(n)
x2(n)

...
xi(1), xi(2)

. . .
· · ·

...
xi(k)

. . .
· · ·

...
xi(n)

...
. . . ...

. . .
...

xm(1), xm(2) · · · xm(k) · · · xm(n)


m×n

The process of calculating the comprehensive risk value of food samples using GRA is
as follows:
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(1) Dimensionless data. The difference in the physical significance of each indicator
results in data that are not always of similar magnitude, which does not facilitate com-
parisons or makes it difficult to obtain correct conclusions when making comparisons.
Dimensionless data processing is required for grey relational analysis. Equation (1) is used
for dimensionless processing.

yi(k) =
xi(k)− min

1≤k≤n
{xi(k)}

max
1≤k≤n

{xi(k)} − min
1≤k≤n

{xi(k)}
(1)

where yi(k) is the dimensionless value of the ith indicator corresponding to the kth data
element, i = 1, 2, . . . , m; k = 1, 2, . . . , n.

(2) The grey correlation coefficients of y1(k) and yi(k) at sample k are calculated as
Equation (2).

ξi(k) =
min

i
min

k
|y1(k)− yi(k)|+ ρmax

i
max

k
|y1(k)− yi(k)|

|y1(k)− yi(k)|+ ρmax
i

max
k
|y1(k)− yi(k)|

(2)

where ξi(k) is the grey correlation coefficient and ρ is called the adjustment parameter,
which is used to adjust the difference between correlation coefficients (ρ ∈ (0, 1)); the
smaller the ρ, the greater the difference and the stronger the distinction, which is usually
ρ = 0.5.

(3) The correlation coefficient between the two sequences y1 and yi is calculated as
Equation (3):

γ(y1, yi) =
1
n

n

∑
k=1

ξi(k) (3)

(4) Each indicator acts as a reference sequence once, and the correlation coefficient
matrix γ of all indicators can be obtained using Equation (3). In matrix γ, γiq denotes the
correlation between the ith and qth indicator.

γ =



γ11 · · · γ1q · · · γ1m
...

γi1

. . .
...

· · · γiq

. . .
· · ·

...
γim

... . . .
...

. . .
...

γm1 · · · γmq · · · γmm


m×m

(5) Determining indicator weights. According to the correlation coefficient matrix γ, γi
can reflect the weight of the ith indicator among all indicators, as calculated by Equation (4).

γi =
1
m

m

∑
q=1

γiq, (i = 1, 2, . . . , m) (4)

Normalize γi by Equation (5) to obtain W = [w1, w2, . . . , wm] as the weight of
each indicator.

wi =
m

∑
q=1

γiq/
m

∑
i=1

m

∑
q=1

γiq (5)

(6) Calculation of risk values for food samples. The ratio of the detection value of
the risk indicator to its limit value is used to express the risk of individual indicators on
the sample, calculated by the equation dik = xik/li (i = 1, 2, . . . , m; k = 1, 2, . . . , n), where
xik is the detection value of the kth sample corresponding to the ith indicator and li is the
maximum limit standard value of the ith indicator. Finally, the hazard level matrix for
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pollutants D obtained after the above calculation is multiplied by the indicator weight
vector W to obtain the risk series of food samples, as shown in Equation (6).

R = [r1, r2, · · · , rn] = W × D = [w1, w2, · · · , wm]



d11 d12 · · · d1n
d21 d22 · · · c2n
...
di1
...

...
di2
...

. . .
· · ·
. . .

...
din
...

dm1 dm2 · · · dmn


(6)

where R = [r1, r2, . . . , rn] is the risk value matrix for n samples, D is the hazard level matrix
for pollutants, and W = [w1, w2, . . . , wm] is the weight vector.

3.3. The TabNet-Based Food Safety Risk Prediction Model

TabNet is a novel high-performance standard deep learning architecture designed
for tabular data; it has demonstrated remarkable performance in tasks such as the clas-
sification and regression of tabular-type data. TabNet is applied to predict food safety
in this work. The architecture of the TabNet-based food safety risk prediction model is
shown in Figure 2, which consists of Nsteps sequential decision steps, each consisting of
the Attentive transformer (At) module, Mask module, Feature transformer (Ft) module,
Split module, and ReLU activation function to realize, respectively, feature selection and
feature processing. The normalization and initialization module contain two parts: the
batch normalization (BN) layer and variable initialization. First, the sampling data were
processed into a risk feature matrix through the BN layer, and the initialization of variables
was performed. In addition, TabNet was encoded with the input of the ith step by the
output of the (i− 1)th step through the module to decide which feature was used, and the
Mask-filtered features were then input into the Ft module for feature processing to obtain
the processed risk features. When put into the Split module for division, the input of the
next decision step a[i] and the output of the current decision step d[i] can be obtained in
two parts. For the next At module for feature selection and the overall output to use, after
Nsteps decision steps, the multi-step output vector d[i] is aggregated by the ReLU function
to obtain the dout, and then the Fully connected layer (FC) can be used for a transformation
to take place. Finally the composite risk value of the sample was obtained. Specifically:
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Step 1: Normalization and initialization.
The BN layer processes the sampling data matrix X into a risk feature matrix c as an

input to each decision step, as shown in Equation (7).

c = BN(X) (7)

where c ∈ <B×D, B denotes the batch size (number of food samples used at a time during
training), and D denotes the number of dimensions of the features (risk indicators).

Initialize the related variables of TabNet: i = 0, P[0] = 1, a[0] = 0.
Step 2: Let i = i + 1, execute the decision step, and input a[i− 1] into the At module

to learn to obtain the Mask matrix M[i].
The Mask module implements the selection of significant features, which made the

model focus on the risk indicators that mainly contribute to the risk when learning, thus
improving the learning efficiency of the model. The importance of the features was realized
by the At module, which implements feature selection for the current decision step by
learning a Mask matrix as in Equation (8).

M[i] = sparsemax(P[i− 1]•hi(a[i− 1])) (8)

where a[i− 1] was the input information at the current decision step obtained by the Split
module at (i − 1)th step, and hi denoted a Fully connected (FC) layer and a BN layer
operation, which served to achieve a linear combination of features so as to extract higher
dimensional and abstracted features. hi(a[i− 1]) and P[i− 1] were multiplied and then the
desired M[i] was generated by the sparsemax algorithm. M[i] and feature elements were
multiplied to achieve feature selection for the current decision step. P[i] denotes the use of
features in the past decision step, which is updated by Equation (9).

P[i] =
i

∏
j=1

(γ−M[j]) (9)

where γ is a relaxation parameter. When γ = 1, a feature is forced to be used in only one
decision step. In addition, the sparsemax algorithm was employed to assign weights to
individual features of each sample, ensuring that the total sum of weights for all features
in a sample equaled 1, i.e., P[i]∑D

j=1 M[i]b,j = 1, where D denotes the dimensionality of the
features, thus realizing instance-wise feature selection.

Step 3: The risk feature matrix c and M[i] were passed through the Mask module to
select the significant features of food safety risks.

The feature selection for the current decision step was achieved by multiplying M[i]
and the risk feature matrix c to obtain the food safety risk significant feature M[i]•c.

Step 4: The significant feature M[i]•c was input into the Ft module for processing to
obtain the risk feature y[i] as in Equation (10):

y[i] = fi(M[i] · c) (10)

where fi is the Ft module operation and c is the risk feature matrix.
Step 5: The processed risk features y[i] were put into the Split module for segmentation.
The processed risk features y[i] were divided into two parts by the Split module; one

part was used for the output of the current decision step (d[i]) and the other part was used
as the input information for the next decision step (a[i]), where d[i] ∈ <B×Nd, a[i] ∈ <B×Na,
Nd is the number of features in the total decision output, and Na is the number of features
input to the At module for the next step.

Step 6: Determine whether i is less than Nsteps, then go to Step 2 to perform the next
decision step, or otherwise go to Step 7.



Foods 2023, 12, 3113 8 of 17

Step 7: TabNet draws on the idea of tree model aggregation to aggregate the output

vectors d[i] of all the decision steps into dout, where dout = ∑
Nsteps
i=1 ReLU(d[i]), and then

finally a FC layer is mapped to the final output, which was the predicted fused risk value.
After the above steps, a food safety risk prediction model based on TabNet was

constructed, with the detection data matrix X as the input, and the comprehensive risk
vector R as the expected output. The relevant hyperparameters of TabNet were set and
adjusted to train the risk prediction model.

4. Case Study and Model Evaluation

This work presents an analysis using the safety detection data of cooked meat products
provided by the food detection department of a Chinese province in 2018 and 2019. Firstly,
the raw data were processed, adhering to the principles of the comprehensiveness, scientific
state, and operability of the risk evaluation indicator system [18]. Moreover, nine risk
indicators were selected for food additives (nitrite, sorbic acid, and benzoic acid), heavy
metal elements (lead, cadmium, chromium, and total arsenic), and microorganism (coliform
and total bacterial count) categories, which have an important impact on the risk of meat
products. Secondly, the GRA method was employed to calculate the weights of each
indicator, and the risk value of meat samples was obtained by fusing the results with the
weights; then, the food safety risk prediction model was constructed based on TabNet, the
detection content data of each hazard in the meat product sample were used as the input
of the model, and the comprehensive risk value calculated via the GRA was used as the
expected output to perform the model training process.

4.1. Data Preprocessing

The detection data used in this work comprised 87,260 raw data records, a part of the
raw data is shown in Table 1. The data included over 50 attributes (e.g., sample number,
sampling time, product name, detection items, detection results, etc.) and contained
detection items other than the nine indicators to be used in this experiment. Each detection
item possessed a unique discrete domain, while the format of the detection result data
primarily utilized in model construction lacked standardization and contained many
superfluous attributes, redundant data, etc. Therefore, preprocessing the detection results
is essential prior to modeling.

Table 1. Raw detection data (partial).

No. Sample
No. Sampling Time Product Name Detection

Item
Detection

Result
Maximum

Limit

Standard
Detection

Limit
Unit

1 1 3 January 2018 Duck in sauce lead 0.0425 0.5 0.05 mg/kg

2 2 3 January 2018 Beef Jerky chromium 0.3570 1.0 0.03 mg/kg

3 3 3 January 2018 Ham Sausage nitrite 4.2 30 0.2 mg/kg

4 3 3 January 2018 Ham Sausage sorbic acid 0.86 0.075 0.01 g/kg

5 4 31 January 2018 Bacon benzoic acid <0.005 shall not
be used 0.005 g/kg

6 4 31 January 2018 Bacon cadmium <0.008 0.1 0.003 mg/kg

7 5 4 February 2018 Roasted leg
with sauce

total bacterial
count

80; 70; 90;
50; 180 10,000 / CFU/g

8 5 4 February 2018 Roasted leg
with sauce total arsenic Not

Detected 0.5 0.04 mg/kg

9 5 4 February 2018 Roasted leg
with sauce coliform group <10 10 / CFU/g
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To address the issues with the data, the following processing steps were undertaken:
(1) Useless attributes were eliminated, retaining only twelve relevant attributes, includ-
ing nine risk indicators, sample number, limit standards, and standard detection limits.
(2) Data formats were converted, and the redundant non-numerical symbols in the data
were removed, e.g., “<0.005” to “0.005”. (3) Redundant data were removed, for example,
if there were multiple numbers in the detection result; the maximum value was taken as
its detection result. (4) “Undetected” results were addressed by filling them with half of
the standard detection limit rather than assigning a value of zero. (5) Outlier detection
was performed on the data to identify and exclude abnormal samples. The processed
data are presented in Table 2, consisting of a total of 7933 samples. Among these samples,
7885 samples from 2018 to November 2019 were utilized for model construction (7835 for
model training and 50 for model test), while 48 samples were retained from December 2019
to be applied in the risk early warning and visualization system.

Table 2. Processed detection data (partial).

Sample
No. Lead Cadmium Chromium Total

Arsenic Nitrite Benzoic
Acid

Sorbic
Acid

Total
Bacterial

Count

Coliform
Group

1 0.0425 0.0025 0.0522 0.0010 9.600 0.0050 0.0050 100 5
2 0.1270 0.0090 0.3570 0.0450 0.001 0.0025 0.0050 85 10
3 0.0744 0.0057 0.1400 0.0640 4.200 0.0100 0.8600 10 0
4 0.0806 0.0080 0.4180 0.0875 3.100 0.0050 0.0050 100 5
5 0.0332 0.0015 0.0250 0.0200 0.100 0.0025 0.0050 180 10
6 0.2440 0.0115 0.7680 0.0111 6.100 0.0050 0.0050 100 5
7 0.1720 0.0015 0.0580 0.0010 20.00 0.0025 0.0405 10 0
8 0.0500 0.0050 0.2000 0.0400 4.160 0.0100 0.0050 70 10
9 0.0611 0.0015 0.0250 0.0370 0.100 0.0025 0.0232 200 10

10 0.1300 0.0094 0.0990 0.0010 5.400 0.1000 0.0050 100 5

4.2. Calculating the Comprehensive Risk Value

Based on the processed cooked meat products detection data, correlation analysis was
performed using the GRA method on 7885 sample data from January 2018 to November
2019 to obtain the weights of nine evaluation indicators, and the comprehensive risk val-
ues of the samples were obtained by fusing the data on the detected contents of hazards
in cooked meat product samples with the indicator weights. The correlation coefficient
between each risk indicator was obtained using Equations (1)–(3), and the correlation coef-
ficient represented the correlation degree between the indicators; the larger the correlation
coefficient, the greater the correlation degree between the two indicators. The correlation
degree and heat map matrix between the evaluation indicators are shown in Figure 3. Then,
based on the correlation coefficient matrix, the weights of each risk evaluation indicator
were calculated using Equations (4) and (5), and the results are shown in Table 3. Finally,
the risk value of each food sample was calculated using Equation (6) as the expected output
of the model. The results of the risk assessment are shown in Table 4.

Table 3. The weight of each risk indicator.

Indicator Lead Cadmium Chromium Total
Arsenic Nitrite Benzoic

Acid
Sorbic
Acid

Total Bacterial
Count

Coliform
Group

Weight 0.0950 0.1153 0.1080 0.1122 0.1138 0.1167 0.1073 0.1155 0.1162

Table 4. Risk assessment results (partial).

Sample No. 1 2 3 4 5 6 . . . 7885

Risk value 0.6131 0.7433 1.5476 0.3113 0.6040 1.3979 . . . 0.5988
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4.3. Model Construction and Evaluation

In constructing the food safety risk prediction model using the pytorch-tabnet package,
7835 samples were used as the training set for TabNet model training, and the remaining
50 samples were used as the test set; Table 5 shows the parameter settings of the risk
prediction model this study proposed. To verify the predictive power of this model,
comparison experiments were performed between the TabNet-based model and six typical
predictive models on the same detection dataset. The comparison models included three
tree models, RF, GBDT, and XGBoost, and three neural networks: BP, ELM, and RBF.
Among them, RF is an integrated learning model with a decision tree as the base learner,
which integrates the results of multiple decision trees to obtain the final training results;
the GBDT model mainly achieves the purpose of data learning by the linear combination of
base learners and continuously reducing the residuals generated by the training process.
XGBoost has more efficient and accurate prediction capabilities by adding a regular term to
the loss function as well as supporting parallel computation; BP is a multi-layer feedforward
neural network trained according to the error back propagation algorithm, which is one
of the more widely used neural network models; and ELM and RBF are kinds of single
hidden layer feedforward neural networks—ELM has the advantages of few training
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parameters and fast learning speed and RBF uses radial basis function as the activation
function of hidden layer neurons, which is a kind of local approximation network with a
strong generalization ability.

Table 5. Parameter value setting of food safety risk prediction model constructed based on the
TabNet-GRA method.

Parameter Description Value

N_d Width of the decision prediction layer 8
N_a Width of the attention embedding for each mask 8

N_steps Number of steps in the architecture 3
Lr Learning rate 0.01

Max_epochs Maximum number of epochs for training 1000
Batch_size Number of examples per batch 7835

Virtual_batch_size Size of the mini batches used for “GBN” 128
Optimizer_fn Pytorch optimizer function Adam

The root mean squared error (RMSE) and mean absolute error (MSE) are used to
judge the performance of each model on the test set, and the smaller the values, the better
the risk prediction ability of the model, which are calculated by Equations (11) and (12),
respectively. The experimental results are shown in Table 6. The RMSE value and MAE
value of the TabNet-based model are the smallest among the seven models, which are 0.0710
and 0.0532, respectively, indicating that TabNet can predict the risk value of meat samples
more accurately. The risk prediction error curves of the seven models are shown in Figure 4.
The error is obtained by subtracting the true value from the model prediction and taking
the absolute value, and it can be seen that the error curve of TabNet fluctuates the least.
Meanwhile, from Figure 5, it can be found that the curves of the predicted values of TabNet
almost overlap with the curves of the true values, while the curves of the predicted values
of the other models have a larger gap with the curves of the true values, indicating that
its fitting ability is stronger than that of the other comparison models. Therefore, it can be
concluded that the TabNet-based food safety risk prediction model is better than the other
comparison models in terms of risk prediction accuracy, stability, and generalization ability.

RMSE =

√
1
n∑n

i=1 (ŷi − yi)
2 (11)

MAE =
1
n∑n

i=1|ŷi − yi| (12)

where n is the number of samples, yi is the true risk value of the ith sample, and ŷi is the
predicted risk value of the ith sample.

Table 6. Risk prediction error of the seven models.

RF GBDT XGBoost BP ELM RBF TabNet

RMSE 0.1435 0.1485 0.1842 0.3532 0.4533 0.4362 0.0710
MAE 0.1038 0.1147 0.1376 0.1385 0.3088 0.3217 0.0532
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5. FSRvis System

The framework of the FSRvis system developed in this work is shown in Figure 1B.
It comprised several views, including the detection data view; risk indicator detection
content view; risk prediction results view; sample details view; risk value distribution view;
sample risk composition view; and the portion view of samples for each risk level, which
can realize the prediction and visual analysis of food safety risk based on sampling data.
Figure 6 shows the interface of the system obtained by uploading the detection results of
48 samples of cooked meat products in December 2019. Due to space limitations, please
refer to the Supplementary Material for a detailed description of the interaction of each
view of the system.
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In the detection data view (Figure 6A) in the FSRvis system, analysts uploading food
detection results in the tabular form receive the content presented in the other views, and
sliders are used to adjust the warning thresholds. The uploaded data sample size as well
as the risk indicators are also shown to facilitate a better understanding of the content of
the other views. The detection content of the risk indicator view (Figure 6B) presents the
detection content of nine risk indicators in the form of a bar chart, which allows you to
clearly see the distribution of the detection content of each evaluation indicator, as well as
the comparison of the content of each sample in the same indicator.
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The risk prediction results view (Figure 6C) presents the risk prediction results by the
risk prediction model for the uploaded samples, with the horizontal axis indicating the
sample number and the vertical axis indicating the predicted risk value. The prediction
results are visualized using three markers, point, line, and surface, respectively, and two
visual channels, position and color, to present the prediction results. According to the risk
calculation in this work, when the sample risk is greater than one, it means that there is at
least one risk indicator in the sample with a detection content greater than the maximum
limit, so the risk level is coded by color in the three sub-views: red denotes that the risk
value is greater than the warning threshold (high risk), yellow denotes that the sample risk
value is between one-half of the warning threshold and the warning threshold (medium
risk), and green denotes that the sample risk is less than one-half of the warning threshold
(low risk), and the analyst can slide the slider in view (Figure 6A) to adjust the warning
threshold according to the actual situation. In this way, the high-risk food samples (red-
marked samples in view (Figure 6C)) can be found visually and effectively. The subview
(Figure 6C1) can effectively discover the distribution of different sample risks in the form
of a scatter plot; the subview (Figure 6C2) can visually compare the risk level of adjacent or
different samples in the form of a bar chart; and the subview (Figure 6C3) can obviously
observe the trend of sample risks in the form of a line graph. For problems such as graphical
overlap caused by a large number of samples, a brush tool is designed to enable the swiping
of samples, which can increase the distance between markers in the view, and this tool is
also applicable to views (Figure 6C2) and (Figure 6C3). For further analysis, a function for
downloading risk results was designed in each subview of view (Figure 6C).

The sample details information view (Figure 6D) uses a hierarchical tree to explore
the details of a single sample. By selecting a sample in view (Figure 6C) by clicking on
it, you can display information about the detection time, food category, food name, and
sampling results of each risk indicator for that sample in view (Figure 6D). The root node in
the tree diagram denotes the sample, the color is synchronized with the view (Figure 6C),
the second layer denotes the attribute name, and the third layer denotes the attribute
value. The distribution information of the predicted risk results for the data samples is
presented in the distribution of the risk values view (Figure 6E), through which the overall
situation of the sample risk can be understood, e.g., the third quartile is 0.937, indicating
that three-quarters of the sample risk is below 0.937.

In the risk composition of the samples view (Figure 6F), the relative risk of each
indicator is presented using parallel coordinates, which is the hazard level matrix for
pollutants D in Equation (6), where each vertical axis represents an indicator and each
line through each indicator represents a sample, which passes through each axis, from
which the impact of each indicator on the risk of the sample can be analyzed. As in view
(Figure 6C), here the color channels are used to indicate the level of risk. The proportion of
the samples by the risk-level view (Figure 6G) mainly presents the percentage of samples
with different risk levels obtained from the uploaded data samples, as predicted by the
TabNet-based model.

6. Discussion

First, the proposed GRA-based quantitative risk assessment method can calculate
fine-grained risk values of food products in detection data, enabling a more accurate iden-
tification of food safety risks. This method calculated the correlation between each risk
indicator by using the GRA approach and obtained the weight of each indicator, subse-
quently calculating the risk value based on the weighted sum of all indicator detections. In
comparison with qualitative risk assessment methods, this quantitative approach allowed
for a more precise evaluation of food risks, overcoming the limitations of subjectivity and
difficulties in quantifying risks to a certain extent.

Second, the proposed food safety risk prediction method, TabNet-GRA, provided a
rapid and direct comprehensive risk value for food based on detection data, exhibiting a
superior predictive ability when compared with typical prediction models. The TabNet-
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GRA method first derives the comprehensive risk value of fused detection data using GRA.
It then constructs a risk prediction model based on TabNet, trained using the detection
data as the input and the comprehensive risk value calculated via the GRA as the expected
output. Subsequently, users can employ this trained model to directly predict the compre-
hensive risk value of food based on new detection data, eliminating the need for previous
complex calculation processes. As a result, food safety risks can be promptly identified.
Comparative experimental results demonstrated that the TabNet-based prediction model
exhibits lower error rates than the current typical models, including RF, GBDT, XGBoost,
BP, ELM, and RBF, showcasing its superior fitting ability and ability to predict food safety
risk more accurately and efficiently.

Third, the developed FSRvis system offers support for food safety risk assessment,
prediction, and visual analysis in a more intuitive and effective manner. The system
integrated the risk prediction model constructed based on the TabNet-GRA method and
employed multi-view collaborations, providing multiple views of detection data, detection
content for each risk indicator, risk prediction results, risk composition, sample detail
information, etc. This approach enabled risk prediction and multi-faceted interactive
visual analysis of new detection data, thereby enhancing the efficiency and accuracy of risk
analysis. Food safety supervision departments can utilize this system to conduct in-depth
analysis of detection data and subsequently implement targeted food safety monitoring,
early warning, and control measures based on risk analysis outcomes. For example, the
FSRvis system can be employed to focus on monitoring and controlling high-risk food
products and safety hazards, ultimately improving the cost-efficiency of supervision efforts.

7. Conclusions and Future Work

In conclusion, this work addressed the critical aspect of data-driven food safety risk
early warning, which was a pivotal method for ensuring effective food safety supervision.
This study proposed an innovative risk prediction method for food safety, namely TabNet-
GRA, which harnessed the advantages of TabNet and GRA to empower accurate and
expeditious fine-grained risk prediction based on detection data. To substantiate its efficacy,
this study conducted a comprehensive case study and method evaluation using a dataset
comprising 87,260 original records of cooked meat products detection from a Chinese
province. The comparative evaluation unequivocally demonstrated the superiority of the
TabNet-based prediction model over six typical models (RF, GBDT, XGBoost, BP, ELM, and
RBF) under equivalent conditions.

Additionally, this study has implemented an intelligent visualization system named
the FSRvis system which is built upon the TabNet-GRA method. This advanced system
facilitated food safety risk prediction and multi-dimensional interactive visual analysis,
elevating the efficiency and scope of food safety risk analysis to new heights.

In future work, the intention is to explore two pivotal research directions. Firstly, the
goal involves parameter optimization of the risk prediction model by employing particle
swarm optimization (PSO) and Bayesian optimization techniques, aiming to further elevate
the prediction accuracy. Secondly, attention will be directed towards devising an auto-
mated warning report generation method, which is capable of generating comprehensive
analysis reports for users following risk analysis and prediction of detection data. These
improvements will substantially amplify the practicality and real-world applicability of the
TabNet-GRA method.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12163113/s1, Food safety risk prediction and visualization
system decomposition diagram and description.
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