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1. INTRODUCTION 

In the notation of Horadam [5], write 
W„=W„(a,b;p,q), (1.1) 

so that 
Wn = PW„_X -qWn_2, W0=a,W1=b,n>2. (1.2) 

The sequence {Wn}™=0 can be extended to negative subscripts by the use of (1.2) and, with this 
understanding, we simply write {Wn}. 

The fir* terms of the well-known Fibonacci and Lucas sequences are then 
\Fn = Wn(0,l; 1,-1), 
4 =W„(2,l; 1,-1). ^ • } 

More generally, we write 
[Un=Wn(09l9p9q)9 

\Vn=Wn(29p,p,q), K • } 

where {Un} and {Vn} are the fundamental and primordial sequences, respectively, generated by 
(1.2). They have been studied extensively, particularly by Lucas [7]. 

The Binet forms for U„ and V„ are 

(1.5) 

(1.6) 

where 

p+JF^i and v-W1^ 
2 2 

are the roots, assumed distinct, of 

x2-px + q = 0. (1.8) 

Write 
A = (a-f])2=p2-4q. (1.9) 

The Q-matrix 

e=(! J) (MO) 
has been studied widely in connection with the Fibonacci numbers and has the property 
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Q" = | F"+l _f" j , n an integer (see [4]). 
"n "n-\ j 

Filipponi and Horadam [2] considered the matrix 

Qk,x-*Q ~[xFk xFkJ 

where x is an arbitrary real number and k is a nonnegative integer, and noted that 

QL = 
x rkn+l x rkn 

\-nT7 ynJ7 
x rkn x rkn-\ 

( l . i i ) 

(1.12) 

(1.13) 

Then they evaluated certain power series at the matrix Qk x to obtain summation identities involv-
ing the Fibonacci and Lucas numbers. The identities had the following forms: 

£*»*^Wi = 
w=0 

T,<*nXnFkn 
n=0 

f(xtf)-f(x<t>k
2) 

Vs" 

ZjUnX rkn-l ~ 7T • 
n=Q 

2la„x"Lh,=fXxtf)+f(x4k
2), 

n=0 

where 

and 
/w=I«/. 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 
n=0 

. 1 + V5 1-V5 

They also indicated how their procedures could be generalized to apply to Wn(0, l;p,~-l) and 
W„(2,p;p,-l). 

The object of this paper is to extend (1.14)-(1.17) to apply to the more general fundamental 
and primordial sequences of Lucas as defined in (1.4). Then, specializing to the Chebyshev poly-
nomials of the first and second kinds, we obtain infinite series summations involving the sine and 
cosine functions that we believe are new. 

2. THE MATRIX A k,x 

Define the matrix A by 

A = p -q^ 
1 0 

Then it can be shown by induction that 

14 

(2.1) 

[FEB. 



SOME INFINITE SERIES SUMMATIONS USING POWER SERIES EVALUATED AT A MATRIX 

A" = fu, n+l -qun 
un -qu„^ 

Associated with A, we define the matrix Akx by 

, «>0. 

/l], V — X/x — H,x 
k _ (xUk+1 -x"qU, kn 

xUk -xqUk_Xj 

where x is an arbitrary real number and k is a nonnegative integer. 

To prove the following lemma, we need to note that 
Vk = Uk+i~qUk_u 

U\-Uk^k_^qk~\ 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Each can be proved using Binet forms, and (2.5) is in fact a generalization of Simson's identity for 
Fibonacci numbers. 

Lemma 1: The eigenvalues ofAktX are xak and xfik. 

Proof: Using (2.4) and (2.5), we see that the characteristic equation of AktX simplifies to 

t2-xVkt + x2qk =0. (2.6) 

Recalling that Vk = ak + pk and q = aft, we see, by substitution, that the eigenvalues are as 
stated. D 

Another important property of Ak>x is 

Alx = (xAKy=x"AK" = 
{x"Ul kn+l -xqUl kn 

x"Ukn -xnqUkn_x 
by (2.2). (2.7) 

(2.8) 

The following is easily proved by induction: 

an = aUn-qUn_x, n>0. 

Of course, (2.8) remains valid if we replace a by ft. 

3, THE MAM RESULT 

Assuming that /as defined in (1.18) has a domain of convergence which includes xa and 
xpk we have, using (2.7), 

/ ( A , x ) - Lmd
an^k,x -

n=0 

lLanXnUkn+l -tiL^Ukn 
=0 77=0 

00 OO 

J,anxnUkn -qyZanxnUh^l 

w=0 

V w=0 n=0 

(3.1) 

On the other hand, from the theory of matrices [3], it is known that f(Ak^x) = c0I +c}Aky 
where / is the identity 2x2 matrix and where c0 and cx can be obtained by solving 
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\c0+clxak=f(xak), 
\c0 + Clx/3k=f(xpk). 

That is, 

/(4> 
rxakf{xpk) - xpkf(xak)^ 

x(ak-pk) 1 + 
rf(xak)-f(xj3*y 

x(ak-pk) , k,x' (3.2) 

This is Sylvester's matrix interpolation formula [8]. Noting that ak -J3k =^/AUk and using 
(2.8), the right side of (3.2) can be simplified to yield 

/(4,J = 
* Y ^ qf(xa*)-Pf(xP«) q{f{xpK)-f{xak)) 

VA VA 
f(xak)-f(xj3k) qf(xpk)-pf(xak) 

VA VA 

(3.3) 

These observations lead to our main result. 

Theorem 1: Iff as defined in (1.18) has a domain of convergence which includes xak and x/3k, 
then 

'kn+l 
n=0 0 

00 

n=0 

qf(xak)-pf(xpk) 
VA 

f(xak)-f(xfik) 
VA 

IX*"t4„-i = Pf{xak)-qf(xpk) 

»=o ?VA 

fjanx"Vkn=f(xak)+f{xpk). 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
«=0 

We note that (3.4)-(3.6) are obtained by comparing (3.1) and (3.3). Identity (3.7) is obtained by 
using (2.4), (3.4), and (3.6). 

It is easily seen that (3.4)-(3.7) generalize (1.14)-(1.17) and also (5.6)-(5.17) of [2]. In the 
next section we apply (3.5) and (3.7) to the Chebyshev polynomials and obtain infinite sums 
involving the sine and cosine functions. 

4. APPLICATIONS 

Let {Tn(x)}™=0 and {$„(x)}^0 denote the Chebyshev polynomials of the first and second 
kinds, respectively. Then 

SJx) = 
sin# f, x = cos#, n>0. 

Tn(x) = cosnO 
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Indeed {Sn(x)}™=0 and {2I^(x)}^0 are the fundamental and primordial sequences, respectively, 
generated by (1.2), where p = 2cos0, q-l. Thus, 

a = e?0 and fi = e~w
9 (4.1) 

which are obtained by solving t2 - 2 cos ft +1 = 0. Further information about the Chebyshev poly-
nomials can be found, for example, in [1] and [6]. 

To begin, we consider the following well-known power series each of which has the complex 
plane as its domain of convergence: 

oo /_-i\n 2n+l 
sinz = y ^ - ^ , (4.2) 

h (2* + l)! 
C0M = S i 7 ^ - . (4-3) 

iTo (2")! 
OO -2/1+1 

sinh z = Y , (4.4) 

oo In 

coshz = T . (4.5) 

Now in (3.5), taking U„ =^f and replacing/by the functions in (4.2)-(4.5), we obtain, 
respectively, 

f (-l)"x2n+1 smk(2n + l)e = cos(xcosk0)sinhixsinke) ( 4 6 ) 

V -— = sin(x cos£<9) sinh(x sin k0), (4.7) 
^ o (2")! 

, ^ x 2 " + 1 s i n £ ( 2 « + l)6> . , . , » , , , ~ , . „. 
> - — = sm(xsmkff)cos\\(xcoskd), (4.8) 
~o (2w + l)! 

V = sin(x sin kO) sinh( JC cos&#). (4.9) 

In (3.7), taking Vn=2cosn& and r ep l ac ing /by the functions in (4.2)-(4.5), we obtain, 
respectively, 

| , ( - l )"x2"+ 1cosA:(2/7 + l)g = s i n ( x c o s A - ^ ) c o s h ( x s i n k0) ( 4 1 0 ) 
h (2» + l)! 

> -— = cos(xcos£#)cosh(xsinA:/9), (4.11) 
£S (2«)' 

7 X "+ COS*(2" + 1 ^ = cos(xsin£6Osinh(xcos*0), (4.12) 
„=o (2» + l)! 
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^ x2n cos2kn0 . 
\ c o s ( x sin kff) cosh(x coskff). (4.13) 

At this point, we note that (4.6), (4.7), (4.10), and (4.11) generalize (40), (42), (41), and 
(43), respectively, of Walton [9]. 

As an example of the method, we prove (4.11). 

Proof of (4.11): In (3.7), taking Vn =2cosw# and / ( x ) = cosx we have, using (4.1) and 
(4.3), 

y(-l)"x2"2cos2yfofl 
(2»)! n=0 

• = cos(x^) + cos(»"*^) 

= 2 cos x\ 
v l 2 

COS X 
f eike _e-ike\\ 

JJ 
= 2 cos(x coskff) cos(/x sin kff) 
= 2 cos(x coskd) cosh(x sin kff), 

which yields the result. D 

We now obtain further interesting sums by employing some power series which occur in [1]. 
We restate them here for easy reference: 

log. U + £ = 1 (-1) n-\ n 
Z 

tan l\ — 
m) 

m) n=l n m" 

(-I)" r = 1 o(2w + l) m 2n+l 

\z\<\ml 

\z\<\m\. 

(4.14) 

(4.15) 

sec 
f{-l)"E2n z2n 

m) „t5 (2n)\ m2n l*l<jM> (4.16) 

tan-UE (-l)"-l22n(22n-\)B2n z2"-1 

(2/i)! ^ M<§M, (4.17) 

cosec 
V#* 

m = » (-l)"-1(22w-2)52w z2n~l 

n=\ (2n)\ m 
2«- l 0<\z\<7r\m\. (4.18) 

c o t l ^ 1 W 

m 

oo / i \ » « 2 « ri _2n- l 

Y.{ } • 2"-1^, 0<\z\<Mm\. 
n=\ (2«)! 772 

2/7—1 (4.19) 

Here, 5„ and£w are the Bernoulli and Euler numbers, respectively. 
In (3.5), taking Un=^§- and replacing / by the functions in (4.14)-(4.19) we obtain, 

respectively, 
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^ ( - l ) w -Vs in fo ig _ 1 [ m + xe' /£0 ^ 

m + xe 
• / f e ^ x\<\m. 

(-1)" xz"+1 sin &(2w +1)0 _ 1 , _ / 2mx sin £ 0 
„=0 (2w + l )w 2«+l = -tanh" , 

2 V m2+x2 
|x|<|m|, 

(4.20) 

(4.21) 

(-l)"£2„x2w sin2Jb20 _ 2 s i n ( ^ ) s i n h ( ^ ) 

w=0 (2n)\m In 
x <— m. 

c o s ( 1 ^ M ) + cosh ( 1 ^ M ) ? 2 
(4.22) 

A (-1)""122"(22;7 - l ^ x 2 * " 1 sin Jfc(2w-1)0 
^ {2n)\m2n-1 
w=l 

s inh(2 x s^) 
x |<— TW| 

cos(2xc°s^) + c o s h ( ^ M ) ' 2 ' 

(4.23) 

^ (-l)""1^ ~ 2)^2„x^-i sin k(2n -1)0 
£ (2n)\jn2-1 

2 C o s ( ^ ^ ) s i n h ( ^ ) m Sin k8 
+ -c o s ( 1 ^ M ) - c o s h ( ^ M ) x 0<|xl<;rM. 

(4.24) 

^ ( - l ) ^ 2 " ^ 2 " " 1 sin k(2n -1)0 

n=l (2n)\m2n~l 

s i n h ( ^ M ) m$ink0 
cos(2xc™ke)-cosh(2xs™ke) x 0<|x|<;rM. 

(4.25) 

As stated at the beginning of Section 3, the domains of validity are determined by the 
requirement that the eigenvalues, in this case xelkd and xe~lkS\ must lie within the radius of conver-
gence of the relevant power series. The proofs follow essentially the same lines as the proof of 
(4.11) demonstrated earlier, employing well-known properties of the relevant functions. 

Finally in (3.7), taking Vn =2com0 and rep lac ing /by the functions in (4.14)-(4.19), we 
obtain, respectively, 

i|-j nmn 2 
( 2xcosk0 x2^ 

1 + + — m m 
\x\<\m\. (4.26) 

™(-\)"x2"+lcosk(2n + l)e_ 1 JlmxcoskO 
L (2n + \)m2"+1 " 2 ^ t ™2 -2 
«=0 m -x 

\x\<\m\. (4.27) 
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f{-\yE2y"cos2kne_ 2 c o s ( ^ ) c o s h ( ^ M ) £ 

~ 0 (2n)\m2n cos(2^M) + cosh(^™)' M 2 ' '' K' } 

^i-^-tv"^^ 
(2«)!m2"-1 

V m / i i - ^ 

(4.29) 

x\<—\m\. m$(2xc™ke) + cos\\{2xs™ke)' 2 

^ (-l)"-1(22"-2)B2nx2"-1 cosk{2n-\)6 

~ cosh(2*™^)-cos(2*c°s^) x 

^ (-l)"22"^2„x2""' cosA:(2»-1)0 

—m—; mcoshO 

(4.30) 

0<\x\<7u\m\. 

(4.31) 
sin 0<|x|<;r|mL 

cosh(2*s™^) - cos(2xc°s^) x 
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