
Journal of Energy Storage 73 (2023) 109172

Available online 12 October 2023
2352-152X/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Research papers 

Probabilistic sizing and scheduling co-optimisation of hybrid battery/ 
super-capacitor energy storage systems in micro-grids 

Soheil Mohseni a,b,*, Alan C. Brent a,c 

a Sustainable Energy Systems, Faculty of Engineering, Victoria University of Wellington, Wellington 6140, New Zealand 
b University of Technology Sydney, Institute for Sustainable Futures, Sydney, NSW, 2007, Australia 
c Department of Industrial Engineering, Centre for Renewable and Sustainable Energy Studies, Stellenbosch University, Stellenbosch 7600, South Africa   

A R T I C L E  I N F O   

Keywords: 
Battery 
Super-capacitor 
Uncertainty 
Co-optimization 
Micro-grid 
Degradation 

A B S T R A C T   

While established deterministic capacity planning models for single-component energy storage systems exist, 
little attention has been given to probabilistic sizing of hybrid energy storage systems (ESSs) using swarm-based 
meta-heuristic algorithms. This highlights two key research opportunities, namely: (1) studying the impact of 
preserving model-inherent characteristics and optimising daily system dispatch on narrowing reality gaps in 
hybrid ESS designs, and (2) the optimal integration of hybrid ESSs into grid-connected micro-grids based on their 
applications, with potentially significant financial implications for model designs. In response, this paper in-
troduces a novel probabilistic hybrid ESS capacity planning optimisation model based on a state-of-the-art meta- 
heuristic algorithm. To demonstrate the effectiveness of the model within a community micro-grid scheme, a 
case study of an eco-village in Aotearoa New Zealand is presented. The simulation results indicate a ~4 % and 
~36 % premium above the deterministic results respectively in the most likely case and worst-case probabilistic 
scenarios. On the other hand, the best-case stochastic estimate of the life-cycle cost of the hybrid ESS is found to 
be ~39 % lower than that of the deterministic modelling. Additionally, the economics of temporal energy 
arbitrage using the battery bank is investigated, indicating that at the current capital cost of stationary LiFePO4 
batteries and the present fixed feed-in-tariff (NZ$0.08/kWh), it is not economically viable to cycle the storage for 
arbitrage reasons alone. In conclusion, this paper highlights the critical need to incorporate probabilistic opti-
misation techniques and emphasises the importance of sizing and scheduling co-optimisation when designing 
hybrid ESSs for integration into grid-connected micro-grids.   

1. Introduction 

The ever-increasing penetration of distributed energy resources 
(DERs) into the existing power networks presents challenges in terms of 
balancing electricity supply and demand, requiring novel interventions 
to improve the grid flexibility and resource adequacy margins [1–4]. To 
date, the suggested mechanisms to address the need for additional 
operating reserves and high ramp rates in highly renewable power 
systems have included additional dispatchable generation allocation, 
renewable energy curtailment, demand-side flexibility provisions, and 
energy storage procurements [5–7]. However, reserving unloaded ca-
pacity on dispatchable generators (including thermal generators and 
hydropower plants) and renewable energy curtailment are becoming 
increasingly controversial in terms of financial viability and environ-
mental responsibility [8–10]. 

Also, not only are the required investments in information and 
communication technologies (ICT) infrastructure for automated small- 
to medium-scale demand response still prohibitive, but also the impact 
of the underlying behavioural factors in optimising demand response is 
still less well understood – thereby, potentially carrying a risk of failure 
in meeting the contract performance requirements when demand 
response events are declared [11–15]. In contrast, the rapidly declining 
cost of energy storage technologies – particularly batteries and super- 
capacitors (SCs) – is providing system operators with a cost-efficient 
resource to effectively manage variability in generation and load, as 
well as the volatility of wholesale electricity prices [16–18]. 

The applications for which an energy storage technology is useful are 
determined by its corresponding power and energy capacities. Put 
differently, the potential applications of storage technologies are typi-
cally classified by the duration of discharge needed for a particular 
service. Additionally, different energy storage systems are associated 
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with different learning curves and different rates of technology ad-
vancements for improved efficiency. This brings to light the importance 
of producing a cost-optimal mix of different energy storage devices 
necessary to support cost-effective storage deployment – driven by the 
need for variable net demand smoothing [19–23]. 

In this context, hybrid energy storage systems (HESSs) integrate two 
or more energy storage technologies with complementary characteris-
tics to reduce costs and energy curtailment, improve system efficiency, 
minimise the overall storage capacity, and prolong system lifetime by 
optimally operating each technology across the time scale it is specif-
ically designed for – in accordance with the duration of energy storage 
capacity per unit of power capacity [24–28]. 

As the above discussion suggests, supporting renewable and sus-
tainable energy systems with energy storage solutions has been found to 

be one of the most effective interventions to improve their overall effi-
ciency, resulting in lighter footprints, higher robustness, and improved 
cost-efficiency. To this end, a key design problem is to yield the optimal 
storage sizing solution that offers the best compromise between the total 
discounted costs incurred and the technical improvements from 
hybridising different storage technologies. 

More specifically, considering multiple energy storage technologies 
with different technical characteristics increases the complexity of the 
associated optimal storage sizing problem significantly. In large part, 
this is because an intelligent control strategy needs to be integrated into 
the storage capacity planning model to optimally determine the share of 
each storage medium in serving the total load demand – in compliance 
with the time scale relevant to the technical capabilities of each 
technology. 

Nomenclature 

aPV area of each PV panel [m2] 
AHmin

B/SC minimum allowable autonomy hour of the battery/SC 
bank [h] 

α, β shape parameters of the beta distribution 
b constant defining the shape of the logarithmic spiral 
c, k scale and shape parameters of the Weibull distribution 
Cmin

B , Cmin
SC end-of-life capacity of the battery/SC bank [kWh] 

CB(0), CSC(0) initial capacity of the battery/SC bank [kWh] 
CB(cycle), CSC(cycle) remaining capacity of the battery/SC bank with 

respect to the cycle count [kWh] 
CC capital cost [$] 
CL component lifetime [years] 
CRF capital recovery factor 
Ci

exch cost of net power exchanges in year i [$] 
cyclemax

B , cyclemax
SC maximum cycle count of the battery/SC bank 

Dij distance between moth i and flame j 
Δt duration of time-step [h] 
ηPV , ηI efficiency of PV panels and inverters [%] 
ηch,B/SC charging efficiency of the battery/SC bank [%] 
ηdch,B/SC discharging efficiency of the battery/SC bank [%] 
ERSc

x expected value of variable x over the reduced scenario 
realisations 

EB/SC(t) energy in the battery/SC bank at time-step t [kWh] 
Fj position of flame j 
FiT vector of feed-in-tariff [$/kWh] 
GOSmin

MG minimum allowable grid outage survivability [h] 
ir real interest rate [%] 
LPSPmax maximum allowable loss of power supply probability 
Mi position of moth i 
NPV,ins, NWT,ins, NI,ins existing installed quantity of PV panels, wind 

turbines, and inverters 
Nc optimal quantity/capacity of component c in the candidate 

pool: battery (B), super-capacitor (SC), and inverter (I) 
Nmax

B , Nmax
SC , Nmax

I maximum allowable quantity of the battery packs, 
SC packs, and inverters 

NRSc number of reduced scenarios 
NPVexch net present value of power exchanges [$] 
NPCB, NPCSC, NPCI net present cost of the battery bank, SC bank, 

and inverter [$] 
NS optimal quantity of storage modules 
O&M operation and maintenance cost [$] 
PPV(t), PWT(t) power output from the PV plant and wind turbines at 

time-step t [kW] 
PWT,r, PI,r rated capacity of wind turbines and inverters [kW] 

Pex/sh(t) excess/shortage power at time-step t [kW] 
PL

ex/sh(t), P
H
ex/sh(t) low-frequency and high-frequency components of 
excess/shortage power at time-step t [kW] 

Pmax
ch,B/SC, Pmax

dch,B/SC charge/discharge power capacity of the battery/SC 
bank [kW] 

PG(t) total on-site power generation at time-step t [kW] 
Pch,B, Pdch,B, Pch,SC, Pdch,SC vector of hourly battery charging power, 

battery discharging power, SC charging power, and SC 
discharging power [kW] 

Pex, Pim vector of grid exports and imports [kW] 
PL vector of load power demand [kW] 
PRE vector of total renewable energy generated [kW] 
PL project lifetime [years] 
ρRSc(ScSI , ScWS, ScLD, ScWP) probability of reduced scenario vector 

XRSc 

ρScSI
, ρScWS

, ρScLD
, ρScWP

probability of scenario ScSI, ScWS, ScLD, and 
ScWP 

ρx,Sc probability of uncertain variable x in scenario Sc 
π vector of wholesale electricity prices [$/kWh] 
Qlife, Qthr lifetime throughput of storage [kWh] and annual storage 

throughput [kWh/year] 
r a random number in the range [− 1, 1] 
RC replacement cost [$] 
RS storage lifetime [years] 
s(t) global horizontal irradiance at time-step t [kW/m2] 
S logarithmic spiral function 
ScSI, ScWS, ScLD, ScWP value of solar irradiance [kW/m2], wind speed 

[m/s], load demand [kWh], and wholesale price [$/kWh] 
in scenario Sc 

SV salvage value [$] 
SPPW single-payment present-worth factor 
SSRmin minimum allowable self-sufficiency ratio [%] 
T number of time-steps in the operational planning horizon 
v(t), vci, vco, vr wind speed at time-step t, wind turbine’s cut-in wind 

speed, cut-out wind speed, and wind turbine’s rated wind 
speed [m/s] 

ωScSI ,ScWS ,ScLD ,ScWP binary variable corresponding to the existence or 
absence of an original scenario in the set of reduced 
scenarios 

xx,Sc value of uncertain variable x in scenario Sc 
XSc, XRSc original scenario vector and reduced scenario vector 
μ mean value 
σ variance value 
σB/SC self-discharge rate of the battery/SC bank [%/day] 
Γ(z) gamma function  
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1.1. Literature review: knowledge gaps 

A recent, growing body of the energy storage sizing literature has 
focused on designing capacity planning approaches tailored to multi- 
energy-storage-technology-integrated renewable and sustainable en-
ergy systems. Accordingly, a variety of methodologies and approaches 
have been developed to optimally size hybrid storage systems, either 
independently or jointly with other distributed generation and storage 
components, which are reviewed in detail in [6,21,22,29–33]. 

Table 1 presents a summary of the most notable previous studies on 
the optimal capacity planning of HESSs. The table, additionally, posi-
tions this paper within the identified content gaps and previously 
neglected factors in the optimal hybrid storage investment planning as 
indicated by ‘✘’ marks. 

The literature review has identified several methodological and 
knowledge gaps in optimal HESS asset allocation research, namely:  

• Lack of comprehensive, high-quality uncertainty-aware approaches: 
Assuming perfect long-term input data forecasts – or, put differently, 
ignoring the uncertainty associated with input data forecasts – is 
common practice in the long-term HESS investment planning liter-
ature. Although their potential benefit in narrowing reality gaps has 
been demonstrated in several distributed energy resource optimisa-
tion areas, stochastic models applied to the HESS capacity planning 
problem remain underutilised.  

• Underrepresented usage of joint operational and investment optimisation 
methods: While practically all the HESS models reviewed consider the 
life-cycle cost as a decision criterion, co-optimising the short-term 
energy scheduling and investment planning, is seldom reported. 
There are a few instances in the literature where the optimal HESS 
portfolio and optimal dispatch schedules are concurrently deter-
mined at hourly time fidelity. However, as far as can be ascertained, 
no scholarly attention has been given to formulating an optimal 
HESS design problem where a model predictive control-based 
optimal dispatch strategy over a moving 24-hour horizon is nested 
within. 

• Negligence of storage degradation effects and projected storage cost de-
clines: It is common knowledge that assuming energy storage devices 
do not degrade over cycle life is not a reasonable approximation of 
reality and there is strong evidence to support the proposition that 
steep declines in storage procurement costs are projected [67,68]. 
However, the characterisation of the cycle-induced HESS degrada-
tion and the consideration of the expected reductions in the 
replacement costs of storage technologies are less well explored in 
the literature on HESS planning – with addressing this issue implying 
potential positive impacts on reducing the simulation-to-reality gaps. 

• A narrow focus on state-of-the-art meta-heuristics: Although their su-
periority to conventional meta-heuristics and exact mathematical 
optimisation algorithms has been demonstrated in many instances, 
fundamentally new meta-heuristic optimisation algorithm-based 
capacity planning models applied to HESS capacity planning 
remain underutilised. In particular, a moth-flame optimisation al-
gorithm (MFOA)-based investment planning approach is found to be 
non-existent in the HESS sizing literature. 

1.2. Novel contributions 

To address the above-mentioned knowledge gaps, this paper presents 
a two-stage, meta-heuristic-based, robust, stochastic, long-term HESS 
capacity planning optimisation modelling framework tailored to hybrid 
battery/SC systems. Among various candidates, the low-pass energy 
filter, first introduced by Xu et al. [69], was adapted for application to 
the hybrid battery/SC sizing problem to produce the best-compromise 
scheduling solution in terms of energy density and power density due 
to its fewer model parameters compared to the peer frequency-based 
methods for the decomposition of the supply-demand power mismatch 

signal. Specifically, the proposed model features the following four key 
novel generalisations, each addressing one of the above-mentioned 
literature gaps:  

• General data-driven, large-scale, scenario-led stochastic programming: 
The uncertainty associated with long-term input data forecasts, such 
as solar irradiance, wind speed, load demand, and wholesale power 
price, is quantified using probabilistic scenarios generated by dis-
cretising the corresponding hour-specific probability density func-
tions (PDFs).  

• Coordinated, system-level design and dispatch co-optimisation over a 
moving one-day look-ahead period: A model predictive control- 
oriented linear programming energy management optimisation 
model is nested within the meta-heuristic-based HESS capacity 
allocation approach to optimise the operational schedules of the 
hybrid storage over a moving 24-hour energy dispatch horizon.  

• Quantification of dynamic energy storage degradation and incorporation 
of learning curve costs: A linearized dynamic degradation model is 
used to characterise the cycle-induced capacity losses of stationary 
LiFePO4 Li-ion battery packs and electric double-layer capacitor 
(EDLC) SC modules. In addition, this study incorporates the effects of 
learning curve costs, reflecting the reduction in overall costs over 
time as a result of increased experience in energy storage system 
deployment and operation.  

• MFOA-based design optimisation: The integrated approach to optimise 
the hybrid storage capacity procurement cost constitutes the first 
HESS optimisation study of any kind that implements the state-of- 
the-art meta-heuristic algorithm MFOA. The MFOA [70] was cho-
sen from a pool of >40 state-of-the-art evolutionary techniques to 
search for and select the optimal hybrid battery/SC design. Partic-
ularly, the MFOA was chosen because its statistical outperformance 
to the algorithms in the candidate pool has recently been verified in 
micro-grid (MG) capacity planning applications [71–73]. 

1.3. Paper organisation 

The remainder of the paper is organised as follows. Section 2 presents 
a hybrid battery/SC storage-integrated test-case MG system, while 
additionally presenting the proposed low-pass filter-based, degradation- 
aware, optimal day-ahead scheduling strategy. Section 3 mathemati-
cally defines the proposed meta-heuristic-based probabilistic sizing 
model tailored to grid-connected hybrid battery/SC community MGs, 
within which the optimal scheduling strategy is nested. The case study is 
detailed in Section 4 before the modelling results are discussed in Sec-
tion 5. Finally, Section 6 draws conclusions and suggests areas for future 
work. 

2. Test-case hybrid battery/SC-integrated micro-grid 

A DC-coupled, grid-connected residential MG, shown in Fig. 1, is 
considered. The existing system consists of solar photovoltaic (PV) and 
wind turbine (WT) generation technologies, which need to be supported 
by a hybrid battery/SC storage. 

While the uni- and bi-directional power electronics devices con-
necting the system components to the common DC bus, as well as the 
multi-mode inverter and transformer, are modelled by constant effi-
ciencies, the following components are modelled in more detail. 

2.1. PV panels 

At each time-step t, the PV generation system’s output power is given 
by [74]: 

PPV(t) = NPV,ins⋅ηPV ⋅aPV ⋅s(t), (1)  

where NPV,ins is the existing installed quantity of PV panels, ηPV is the 
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Table 1 
Summary of the most notable previous studies on the optimal planning of HESSs.  

Reference Storage technologies HESS operating 
strategy 

Design optimisation 
approach 

Uncertainty 
treatment 

Energy 
scheduling 
optimisation 

Consideration of 
degradation 
effects 

Consideration of 
projected 
replacement cost 
reductions 

[34] Battery/FC SMRB Peak demand-based 
capacity planning 

✘ ✘ ✘ ✘ 

[35] Battery/SC Lagrange 
multipliers 

Improved PSO, 
improved simulated 
annealing 

✓ ✘ ✘ ✘ 

[36] Battery/SC Low-pass filter Peak demand-based 
capacity planning 

✘ ✘ ✘ ✘ 

[37] Battery/SC Low-pass filter Multi-objective GA ✘ ✘ ✓ ✘ 
[38] Battery/TES SMRB Cuckoo optimisation 

algorithm 
✓ ✓ ✘ ✘ 

[39] Battery/FC Extended-power 
pinch analysis 

Peak demand-based 
capacity planning 

✘ ✘ ✘ ✘ 

[40] Pumped-hydro/CAES/ 
battery/flywheel 

MMRB Peak demand-based 
capacity planning 

✘ ✘ ✘ ✘ 

[41] Unspecified technologies 
allocated to the very short- 
term, short-term, intra-day, 
and inter-day time-scales 

DFT Ad-hoc design based 
upon the expected 
peak load 

✘ ✘ ✘ ✘ 

[42] Battery/FC Lagrange 
multipliers 

Scenario-based 
modelling 

✘ ✘ ✘ ✘ 

[43] Battery/SC First-order passive 
low-pass filter 

Ragone-plot-guided 
optimisation 

✘ ✘ ✘ ✘ 

[44] Battery/SMES Arbitrarily 
weighted power 
mismatch 
stabilisation 

Ad-hoc design based 
upon the expected 
peak load 

✘ ✘ ✘ ✘ 

[45] Battery/FC SMRB Ant colony 
optimisation 

✘ ✘ ✘ ✘ 

[46] Battery/FC SMRB HOMER software ✘ ✘ ✘ ✘ 
[47] Battery/SC DFT Ad-hoc design based 

upon the expected 
peak load 

✘ ✘ ✘ ✘ 

[48] Battery/SC Lagrange 
multipliers 

Linear programming ✘ ✓ ✘ ✘ 

[49] Battery/FC MMRB PSO ✘ ✓ ✘ ✘ 
[50] Battery/FC MMRB GA ✓ ✓ ✓ ✘ 
[51] Battery/TES SMRB Mixed-integer linear 

programming 
✘ ✘ ✘ ✘ 

[52] Battery/TES SMRB Ad-hoc design based 
upon the expected 
peak load 

✘ ✘ ✘ ✘ 

[53] Battery/SC DFT GA ✘ ✘ ✘ ✘ 
[54] Battery/FC DFT Scenario-based 

modelling 
✘ ✘ ✘ ✘ 

[55] Battery/SC/flywheel/CAES Multi-attribute 
utility theory 

Unspecified exact 
mathematical 
optimisation 

✓ ✘ ✘ ✘ 

[56] Battery/SC Low-pass filter PSO ✘ ✘ ✘ ✘ 
[57] Lead acid battery/lithium 

polymer battery/flywheel/SC 
Switched decay 
ordinary 
differential 
equation 

Unspecified exact 
mathematical 
optimisation 
algorithm 

✘ ✘ ✘ ✘ 

[58] Battery/SC SMRB Multi-objective GA ✘ ✘ ✘ ✘ 
[26] Battery/SC/FC Pinch analysis Design space 

approach 
✘ ✘ ✘ ✘ 

[59] Battery/SC Low-pass filter Differential evolution ✘ ✓ ✘ ✘ 
[60] Battery/FC SMRB GA ✘ ✘ ✘ ✘ 
[61] Battery/TES SMRB Evolutionary-PSO ✘ ✘ ✓ ✘ 
[62] Battery/battery SMRB Mixed-integer 

nonlinear 
programming 

✘ ✘ ✓ ✘ 

[63] Battery/pumped-hydro MMRB Grey wolf optimiser ✘ ✘ ✘ ✓ 
[64] Battery/SC Low-pass filter Whale optimisation 

algorithm 
✘ ✘ ✓ ✘ 

[65] Battery/SC SMRB Dynamic 
programming 

✘ ✘ ✓ ✘ 

[66] Battery/SC/SMES MMRB Nonlinear 
programming 

✘ ✘ ✘ ✘ 

This 
study 

Battery/SC First-order passive 
low-pass energy 
filter 

Moth-flame 
optimisation 
algorithm 

✓ ✓ ✓ ✓ 
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overall efficiency of the plant (taken as a constant for simplification), aPV 
is the area of each panel [m2], and s(t) is the global horizontal irradiance 
at time-step t [kW/m2]. 

2.2. Wind turbines 

The power output from the WT generation system can be calculated 
by [75]: 

PWT(t) = NWT,ins ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if v(t) ≤ vci or v(t) ≥ vco,

PWT,r

v3
r − v3

ci
v3(t) −

v3
ci

v3
r − v3

ci
PWT,r if vci < v(t) ≤ vr ,

PWT,r if vr < v(t) < vco,

(2)  

where NWT,ins is the existing installed quantity of WTs, v(t) is wind speed 
at time-step t [m/s], PWT,r is the rated capacity of each turbine [kW], 
while vr, vci, and vco are the rated, cut-in, and cut-out wind speeds, 
respectively [m/s]. 

2.3. Hybrid battery/SC bank 

The energy filter concept is used in this study to smooth the charging 
power and discharging power of the battery bank by allocating power 
surges to the SC bank. The energy filter is realised using a first-order 
passive low-pass filter, which decomposes an hourly excess/shortage 
power signal into high- and low-frequency components, which are 
respectively addressed by the SC and battery banks. Fig. 2 illustrates the 
concept of the energy filter for application to the decomposition of 
excess/shortage power signals (refer to Fig. A1 in the Appendix for the 
power rating versus rated energy capacity comparison for battery and 
super-capacitor systems across various storage systems). 

The energy filter’s transfer function is given by [69]: 

f (s) =
ω2

n

s2 + (ωn/Q)s + ω2
n
, (3)  

where Q denotes the first-order passive low-pass filter’s quality factor 
and ωn represents the associated cut-off frequency. 

More specifically, Q (quality factor) indicates the damping charac-
teristics of the system. It provides insights into how quickly or slowly the 
system’s oscillations decay over time. Also, ωn (natural frequency) 

Key: CAES = Compressed Air Energy Storage, DFT = Discrete Fourier Transform, FC = Fuel Cell, GA = Genetic Algorithm, MMRB = Mix-Mode Rule-Based, PSO =
Particle Swarm Optimisation, SC = Super-Capacitor, SMES = Superconducting Magnetic Energy Storage, SMRB = Single-Mode Rule-Based, TES = Thermal Energy 
Storage. 

Fig. 1. Schematic of DC-coupled grid-connected solar PV/WT/battery/SC MG system.  

Fig. 2. Illustration of the energy filter concept’s application to the battery/SC HESS. 
(Adapted from [69]). 
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represents the inherent frequency at which the hybrid energy storage 
system naturally oscillates or responds to external influences. It char-
acterises the system’s intrinsic dynamics. Further, s (complex frequency 
variable) represents the complex frequency variable, which accounts for 
the Laplace domain where the transfer function operates. It allows for 
analysing the system’s dynamic response to different inputs and 
conditions. 

By applying the filter, the low-frequency component of the shortage/ 
excess power (addressed by the battery bank) can be obtained as: 

PL
ex/sh

Pex/sh
=

ω2
n

(
1− z− 1

Δt

)2
+ ωn

Q
1− z− 1

Δt + ω2
n

, (4)  

PL
ex/sh(t) =

ω2
nΔt2Pex/sh(t) +

(
2 + ωnΔt

Q

)
PL

ex/sh(t − 1) − PL
ex/sh(t − 2)

1 + ωnΔt
Q + ω2

nΔt2
, (5)  

where the value of the low-frequency component of the energy excess/ 
shortage signal, PL

ex/sh, in the first two time-steps is assumed to be equal 
to the corresponding value of Pex/sh. That is, PL

ex/sh(1) = Pex/sh(1) and 
PL

ex/sh(2) = Pex/sh(2). 
The high-frequency component of the excess/shortage signal, PH

ex/sh, 
which is directed to the SC bank, can accordingly be obtained as: 

PH
ex/sh(t) = Pex/sh(t) − PL

ex/sh(t). (6)  

2.3.1. Cycle counting algorithm 
To systematically count the heterogeneous cycles of the battery and 

SC banks, the three-point rainflow-counting algorithm is employed in 
this paper [76,77]. The algorithm can translate a spectrum of varying 
states of charge into a set of discrete full- and half-change cycles as a 
function of cycle amplitude. To this end, first, the associated state-of- 
charge (SOC) profile is converted into a series of minima and maxima 
(known as reversals), where the delta SOC changes sign. The cycles are 
counted by using a moving reference point of the series, Z, as well as a 
moving ordered three-point subset with the following features [78]:  

• The first and second points are collectively denoted by Y.  
• The second and third points are collectively denoted by X.  
• The sets of ordered pairs X and Y are sorted chronologically but are 

not necessarily consecutive points in the SOC profile.  
• The range of X, denoted by r(X), is defined as the absolute difference 

between the amplitudes of the first and second points. The definition 
of r(Y) is analogous. 

In this context, Fig. 3 illustrates the process flow of the three-point 
rainflow-counting algorithm [78]. 

Fig. 4, additionally, illustrates the application of the rainflow-cycle- 
counting algorithm on a typical representative SOC profile [25]. In the 
figure, the full cycles are represented by the planes enclosed by the 
mustard yellow triangles, whereas the half-cycles are represented by the 
planes enclosed by the triangles diagonally shaded in light blue. As the 
figure shows, the representative SOC profile contains three full cycles – 
the triangular regions B-A′-B′, J-K′-J′, and I-F-I′ – and four half-cycles – 
the triangular regions C-D-C′, G-H-G′, L-M-L′, and N-O-N′. 

In this paper, the MATLAB’s built-in ‘rainflow’ function [78] is used 
to estimate the battery and SC cycle counts as part of calculating the 
application-specific expected cycle life of the battery and SC banks, 
which are then adjusted for the cycle-induced degradation and the ef-
fects of depth of discharge (DOD) on the cycle life according to the 
procedures described in the next sub-section. 

2.3.2. Battery/SC degradation and DOD effects 
The cycle-induced degradation of the LiFePO4 Li-ion battery bank is 

modelled by the linear function in Eq. (7) [50]. The employed capacity 

fade characterisation technique is illustrated in Fig. 5. 

CB(cycle) = CB(0) −
CB(0) − Cmin

B

cyclemax
B

cycle, (7)  

where CB(0) denotes the initial capacity of the battery, Cmin
B is the ex-

pected battery capacity at its end-of-life phase, and cyclemax
B denotes the 

manufacturer-provided maximum battery cycle count. A similar process 
characterises the degradation of the SC bank. 

Moreover, to account for the impact of the DOD on the expected 
average cycles, first, the best-fit curve for the manufacturer-provided 
cycles-to-failure with respect to the DOD data is produced. The 
following logarithmic polynomial function describes the relationship 
between the battery’s cycles-to-failure and DOD characteristics [79]: 

CTF = a0 + a1DOD− 1 + a2DOD− 2 + a3DOD− 3, (8)  

where CTF denotes the cycles-to-failure, DOD is the depth-of-discharge, 
with a0, a1, a2, and a3 denoting the curve fitting coefficients. 

Then, the DOD-adjusted cycle-life expectancy of the battery system 
can be obtained from the following equation [79]: 

LB,C =
∑T

t=1

CTF(DODB(100) )
CTF(DODB(t) )

, (9)  

where CTF(DODB(100) ) is the battery’s specified cycle life at 100 % 
DOD and CTF(DODB(t) ) is the battery’s cycles-to-failure determined for 
the t-th hour of the MG operation, while adjusting for the DOD. Note that 
1 full cycle means 100 % of battery energy charged and discharged. 

On the other hand, assuming that battery enclosures with full air 

Fig. 3. Illustration of the three-point rainflow-counting algorithm. 
(Adapted from [78]). 
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conditioning and temperature control are in place, a linear calendar-life 
aging estimation model as a function of the SOC can be used, as follows 
[79]: 

CD1h(t) = b0 + b1SOC(t), (10)  

where CD1h(t) and SOC(t) respectively denote the hourly calendar- 
induced capacity loss and SOC, while b0 and b1 are the coefficients ob-
tained from fitting a linear curve to the associated manufacturer- 
provided empirical data collected from accelerated life tests. 

Accordingly, the cumulative calendar-driven battery capacity loss at 
the i-th hour of the MG operation over its lifetime can be calculated as 
[79]: 

CD(i) =
∑I

i=1
CD1h(i), (11)  

where Ii = {i1, i2,…, I} is the total set of useful battery operating times, 
ranging from baseline time i0 (the first hour of system operation) to final 
time I (the elapsed time before a battery becomes unusable). For 
example, assuming an expected battery life of 15 years and hourly data 
granularity, I = 8760 × 15 = 131,400. 

In this light, by taking a superposition approach to calculating the 
battery end-of-life, Eq. (11) can be modified to factor calendar-induced 
battery degradation into the analysis, as follows: 

CB(cycle, i) = CB(0) −
(

CB(0) − Cmin
B

cyclemax
B

cycle+CD(i)
)

. (12)  

3. Probabilistic optimal capacity planning of hybrid battery/SC 
systems 

The proposed two-stage method for the coordinated, system-level 
design and dispatch co-optimisation of hybrid battery/SC systems inte-
grated into grid-connected MGs consists of an outer optimal sizing stage 
and a nested dispatch optimisation loop, as explained in the following 
sub-sections. 

3.1. Optimal operational scheduling stage 

This sub-section details the hourly-basis rule-based operational 
planning strategy developed to optimally schedule the charging/dis-
charging of the hybrid storage system with reference to the day-ahead, 
local generation, load demand, and wholesale electricity prices. The 
operational strategy is designed based on linear programming formu-
lations to optimally control the operation of the hybrid storage system 
assuming that the 24 h’ worth of wholesale prices, local generation, and 
demand for the next day are available. Notably, the storage follows the 
general arbitrage strategy of ‘charge cheaply, discharge discreetly’. 

The day-ahead energy management optimisation problem to maxi-
mise the day-ahead profit is defined in Eqs. (13)–(22). Bold-face char-
acters refer to 24-hour column vectors. It should be noted that the 
operational strategy is inspired by the linear programming formulations 
proposed by Pimm et al. [80]. 

max Pr = PexFiTT Δt − PimπT Δt − 10− 6‖u‖1, (13)  

subject to: 

Pim − Pex = PL − PRE +Pch,B − Pdch,B +Pch,SC − Pdch,SC, (14)  

EB/SC(t) = EB/SC(t − 1)⋅
(
1 − σB/SC⋅Δt

)
+ ηch,B/SC⋅Pch,B/SC(t)⋅Δt

−
Pdch,B/SC(t).Δt

ηdch,B/SC
∀t, (15)  

Cmin
B/SC ≤ EB/SC(t) ≤ CB/SC(cycle) ∀t, (16)  

0 ≤ Pch,B/SC(t) ≤ uch(t)⋅Pmax
ch,B/SC ∀t, (17)  

0 ≤ Pdch,B/SC(t) ≤ udch(t)⋅Pmax
dch,B/SC ∀t, (18)  

uch(t) + udch(t) = 0 ∀t, (19)  

0 ≤ Pim(t) ≤ uim(t)⋅
(
NI ⋅PI,r + PI,ins

)
∀t, (20)  

0 ≤ Pex(t) ≤ uex(t)⋅
(
NI ⋅PI,r + PI,ins

)
∀t, (21) 

Fig. 4. Illustrative application of the three-point rainflow-counting algorithm to a typical representative SOC profile. 
(Adapted from [25]). 

Fig. 5. Characterisation of the battery bank degradation effect. 
(Adapted from [50]). 
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uim(t) + uex(t) ≤ 1∀t, (22)  

where Pr denotes the 24-hour vector of day-ahead profits, Pim represents 
the imported power, Pex is the exported power, PL is the load power, PRE 
is the renewable energy generation, FiT denotes the feed-in tariff, π is 
the wholesale electricity price, Pch,B and Pdch,B respectively denote the 
charging and discharging power of the battery bank, Pch,SC and Pdch,SC 

respectively represent the charging and discharging power of the SC 
bank, EB/SC is the energy content of the battery/SC bank, σB/SC is the self- 
discharge rate of the battery/SC bank, ηch,B/SC and ηdch,B/SC respectively 
denote the charging and discharging efficiencies of the battery/SC bank, 
Pch,B/SC and Pdch,B/SC respectively denote the charging power and dis-
charging power of the battery/SC bank, Pmax

ch,B/SC and Pmax
dch,B/SC respectively 

represent the maximum charging and discharging power of the battery/ 
SC bank, uch and udch are binary variables used to ensure that charging 
and discharging do not occur concurrently, uim and uex guarantee the 
non-simultaneous importing and exporting, NI is the optimal size of the 
inverter to be installed, PI,r is the rated power of the inverter to be 
installed, while PI,ins denotes the capacity of the existing installed 
inverter. 

Particularly, Eq. (14) defines the power balance constraint, ensuring 
that the imported and exported power, along with the load power, onsite 
renewable power generation, as well as the charging and discharging 
power components of the energy storage devices – which define the 
energy content of the battery bank at each time-step in Eq. (15) – are in 
equilibrium. 

The final component of the objective function in Eq. (13), namely 
10− 6‖u‖1, penalises the solutions that entail unprofitable cycling by 
accommodating the net present cost (NPC) of storage deterioration (due 
to cycling) in the day-ahead operational scheduling optimisation. It is 
based on the L-1 norm of the storage schedules, which can be obtained 
from ‖u‖1 =

∑t1+24
t=t1

(
Pch,B(t) + Pdch,B(t) + Pch,SC(t) + Pdch,SC(t)

)
. 

Also, note that the lower limit on the stored energy in the battery 
bank in Eq. (16) is set to (1 − DODB)× CB(cycle), where DODB is the 
battery’s corresponding DOD. Also, the lower limit on the energy con-
tent of the SC bank is set to 0 because the EDLC SCs are considered in this 
study, which can be continually discharged to 100 % DOD without any 
long-term effects [81,82]. Also, using two binary control variables, the 
constraint in Eq. (19) ensures that the storage is not in both the charging 
and discharging modes at a single time-step. Furthermore, the exchange 
of power with the grid is limited by the maximum capacity of the bi- 
directional inverter including the existing and newly installed capac-
ities (Eqs. (20) and (21)). Additionally, the constraint in Eq. (22) ensures 
that the import and export of energy are mutually exclusive events. 

3.2. Optimal capacity planning stage 

To determine the economic value of the investment in the hybrid 
battery/SC system, the concepts of net present cost (NPC) and net pre-
sent value (NPV) are used in deriving the objective function. 

The NPC associated with each newly installed component – battery, 
SC, inverter – can be obtained as [83,84]: 

NPC = Nc ×

(

CC+RC× SPPW +
O&M

CRF(ir,PL)
− SV

)

, (23)  

SPPW =
∑N

i=1

1
(1 + ir)CL×i, (24)  

N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⌊
PL
CL

⌋ − 1 if PL mod CL = 0,

⌊
PL
CL

⌋ ifotherwise,
(25)  

CRF(ir,PL) =
ir(1 + ir)PL

(1 + ir)PL
− 1

, (26)  

SV = RC×
CL −

(
PL − CL × ⌊PL

CL⌋
)

CL
, (27)  

where Nc is the optimal capacity of component c, the notations CC, RC, 
and O&M denote the capital, replacement, and operation and mainte-
nance costs, SPPW is the single-payment present-worth factor, CRF is the 
capital recovery factor, ir is the interest rate, PL is the project lifetime, CL 
is the component lifetime, and SV is the salvage value. 

The following equation can also be used to convert the cycle life of 
the storage components to calendar life [85]: 

RS =
NS × Qlife

Qthr
, (28)  

where NS is the optimal capacity of the storage component, while Qlife 
and Qthr respectively denote the lifetime throughput of storage [kWh] 
and annual storage throughput [kWh/year] of the storage component. 

Also, the NPV of the total power exchanged with the grid over the life 
cycle of the project can be obtained from Eq. (29). 

NPVexch =
∑PL

i=1

Ci
exch

(1 + ir)i, (29)  

where Cexch is the total cost of annual net energy purchased from the 
grid, which can be obtained as follows: 

Cexch =
∑T

t=1
Pim(t)⋅π(t) − Pex(t)⋅FiT . (30) 

Accordingly, the objective function of the optimal hybrid storage 
sizing problem can be defined as: 

min TNPC = NPCB + NPCSC + NPCI + NPVexch + c, (31)  

where NPCB, NPCSC, and NPCI respectively denote the net present cost of 
the battery bank, SC bank, and the inverter, NPVexch is the net present 
value of power exchanges with the wider utility grid, and c is a penalty 
factor that adds a large positive constant to the returned value of the 
objective function if any of the imposed constraints are violated. 

3.2.1. Constraints 
The system-wide power balance constraint in Eq. (14), the energy in- 

store balance constraint in Eq. (15), the imposed bounds on the energy 
content and charging/discharging power of the battery and SC banks in 
Eqs. (16)–(18), the constraint that the storage cannot be both charged or 
discharged at a time (Eq. (19)), the imposed bounds on energy ex-
changes with the wider grid in Eqs. (20) and (21), and the constraint that 
the MG cannot be simultaneously in the charging and discharging modes 
in Eq. (22), need to be satisfied in the nested optimal dispatch optimi-
sation stage. In addition, the objective function of the optimal invest-
ment planning problem (Eq. (23)) is subject to a set of constraints 
presented in the following sub-sections. Note that the optimal capacity 
planning problem is only feasible if the nested optimal operational 
scheduling problem is feasible. 

3.2.1.1. Initial energy in-store limits. To ensure an economic serving of 
the peaks occurring early in the 8760-hour scheduling period, the bat-
tery and SC banks are set to be full in the first iteration, as: 

EB,SC(0) = NB/SC⋅CB/SC(0). (32)  

3.2.1.2. Terminal energy in-store limits. For balanced analysis, the bat-
tery and SC banks’ energy contents at the end of the operational analysis 
period are constrained to be equal to or exceed their initial energy 
contents, as: 
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EB/SC(T) ≥ EB/SC(0). (33)  

3.2.1.3. Minimum self-sufficiency ratio. Defining the self-sufficiency 
ratio (SSR) as the percentage of load met using onsite DERs over the 
year-long energy scheduling period, the optimal sizing problem is sub-
ject to a minimum SSR, as [86]: 

SSR ≥ SSRmin, (34)  

SSR =

∑T

t=1
PL(t) − Pim(t)

∑T

t=1
PL(t)

, (35)  

where SSRmin denotes the pre-defined minimum SSR imposed, PL is the 
local load, and Pim is the imported power. 

3.2.1.4. Energy resilience constraints. The capacity planning optimisa-
tion is enforced to meet two energy resilience constraints, namely the 
minimum autonomy hour of the hybrid battery/SC bank and the mini-
mum grid outage survivability, which are respectively defined as the 
ratio of the storage size to the mean total annual load demand and the 
ratio of the storage size to the mean total annual net load demand (load 
minus local generation), as follows [87]: 

AHB/SC ≥ AHmin
B/SC, (36)  

AHB/SC =

(
NB⋅PB,r + NSC⋅PSC,r

)

(
∑T

t=1
PL(t)

)
/

T
, (37)  

GOSMG ≥ GOSmin
MG, (38)  

GOSMG =

(
NB⋅PB,r + NSC⋅PSC,r

)

(
∑T

t=1
PL(t) − PRE,ins(t)

)
/

T
, (39)  

where AHmin
B/SC is the minimum autonomy hour of the battery/SC bank 

imposed, NB and NSC respectively denote the optimal capacity of the 
battery and SC banks, PB,r and PSC,r respectively denote the rated power 
of the battery and SC banks, GOSmin

MG is the minimum grid outage sur-
vivability imposed, PRE,ins is the existing installed capacity of the 
renewable energy generation components, with T representing the last 
time-step of the operational analysis period. 

3.2.1.5. Maximum loss of power supply. The optimal solution to the 
outer design optimisation problem needs to meet a maximum loss of 
power supply probability (LPSP) reliability constraint, defined as a ratio 
of total energy deficit to the total load demand over the year-long energy 
balance analysis timeframe, as [88]: 

LPSP ≤ LPSPmax, (40)  

LPSP =

∑T

t=1
(LPS(t) × Δt )

∑T

t=1
(PL(t) × Δt )

, (41)  

LPS(t) =
{

PL(t) − PG(t) if PL(t) > PG(t),
0 if otherwise, (42)  

PG(t) = PPV(t) + PWT(t) + Pdch,B(t) + Pdch,SC(t) + Pim(t) ∀t, (43)  

where LPSPmax is the maximum loss of power supply probability 
imposed, LPS denotes the amount of loss of power supply, with PG 
representing an auxiliary variable that quantifies the total available 

power for supplying local loads from onsite generation, discharging 
storage components, and grid imports. 

3.2.1.6. Decision variable limits. The non-negative decision variables are 
also upper bounded to limit the search space for computational 
complexity reasons, as: 

0 ≤ NB/SC ≤ Nmax
B/SC, (44)  

0 ≤ NI ≤ Nmax
I , (45)  

0 ≤ NT ≤ Nmax
T , (46)  

where Nmax
B/SC, Nmax

I , and Nmax
T respectively denote the maximum capacity 

of the battery/SC bank, inverter, and the transformer at the point of 
common coupling. 

3.2.2. Optimisation algorithm 
The objective function is optimised using a state-of-the-art meta- 

heuristic optimiser, namely the moth-flame optimisation algorithm 
(MFOA) [70]. The MFOA simulates the swarm behaviour of moths with 
respect to flames to optimise a solution to a problem. Specifically, the 
position of moths in the design space is updated using Eqs. (47)–(49). 
The updating process continues with 100 search agents until the 
maximum number of iterations (i.e., 200) is reached. 

Mi = S
(
Mi,Fj

)
, (47)  

S
(
Mi,Fj

)
= Dijebtcos(2πr)+Fj, (48)  

Dij =
⃒
⃒Fj − Mi

⃒
⃒, (49)  

where S
(
Mi, Fj

)
denotes the spiral function of moth i and flame j, Dij is 

the Euclidean distance between moth i and flame j, b is a constant that 
defines the shape of the logarithmic spiral, and r is a random number in 
the range [− 1, 1]. 

Note that in the deterministic variant of the model, the uncertain 
input variables – solar irradiance, wind speed, wholesale price, and load 
demand – are set to their expected values. 

3.3. Uncertainty characterisation 

The stochastic variant of the model is formulated by discretising the 
corresponding hour-specific continuous PDFs of the above-mentioned 
uncertain variables. The associated PDFs are built based on 10 years’ 
(2012 to 2021) worth of hourly historical data for the climatic and 
wholesale price inputs and 10 one-year synthetic time-series derived for 
electricity consumption – given the lack of reliable historical load de-
mand data for the case study area with hourly granularity. More spe-
cifically, to populate the model for generating hourly PDFs of load 
demand, the synthesised load demand profile for aggregated dwellings 
was regenerated nine times using the second-order Markov chain model 
developed in [89], while employing a time-dependent dummy variable 
to account for weekday versus weekend. 

A set of multi-dimensional scenario vectors, XSc =

[ScSI, ScWS, ScLD, ScWP] were then generated by all possible combinations 
of the uncertain variables containing multiple (hourly) input values. The 
input values for each variable represent the mean values of the intervals 
obtained from discretising the corresponding PDFs, which are assigned a 
specific probability of occurrence. The probabilities of the scenario 
vectors are then calculated based on the multiplication rule of proba-
bility. Fig. 6 illustrates the PDF discretisation process for a typical 
representative normal distribution divided into seven equal regions. The 
probability of occurrence and the corresponding input value of uncer-
tain variable x in each scenario Sc can be obtained from Eqs. (50) and 
(51), respectively [90]. 
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ρx,Sc =

∫ xend,Sc

xstart,Sc

PDF(x)dx, for Sc = 1, 2,…,Nx, (50)  

xx,Sc =
1

ρx,Sc

∫ xend,Sc

xstart,Sc

x.PDF(x)dx, for Sc = 1, 2,…,Nx, (51)  

where Nx represents the total number of scenarios generated for un-
certain variable x through PDF discretisation. 

The two-parameter Weibull distribution is used to model hourly 
wind speed data, the beta distribution is used to model solar irradiance 
data, while the normal (Gaussian) distribution is used to model load 
demand and wholesale price data, as they are shown to be the best fitting 
distributions, respectively [91,92]. Also note that for load demand and 
wholesale price data, a dummy variable is used to distinguish weekday 
and weekend data points. 

3.3.1. Beta distribution 
The beta distribution for solar irradiance 0 ≤ s ≤ 1 is given by [93]: 

f (s;α, β) = Γ(α + β)
Γ(α)Γ(β)s

α− 1(1 − s)β− 1
, (52)  

α =
μ⋅β

1 − μ, (53)  

β = (1 − μ)
(

μ(1 + μ)
σ2 − 1

)

, (54)  

where α and β define shape parameters of the beta distribution, while μ 
and σ respectively denote the mean and variance of the associated solar 
irradiance data records. 

3.3.2. Weibull distribution 
The two-parameter Weibull distribution for wind speed v ≥ 0 is 

given by [93]: 

f (v; c, k) =
k
c

(v
c

)k− 1
e
−

(
v
c

)k

, (55)  

k =

(
σ
μ

)− 1.086

, (56)  

c =
μ

Γ
(
1 + 1

k

), (57)  

where c and k denote the scale and shape parameters of the Weibull 
distribution, while μ and σ respectively denote the mean and variance of 
the associated wind speed data records. 

3.3.3. Normal distribution 
As mentioned above, the variability in load demand and wholesale 

prices are modelled by the normal distribution. The normal distribution 
for a Gaussian variable x can be determined as [93]: 

f (x) =
1̅̅̅
̅̅

2π
√

σ
e
− 1

2

(
x− μ

σ

)2

, (58)  

where x is the corresponding random variable – load demand or 
wholesale prices – with μ and σ respectively denoting the mean and 
variance of the corresponding random data records. 

3.3.4. Scenario reduction 
The meta-heuristic-based stochastic storage sizing framework, which 

additionally entails the optimal scheduling of the hybrid storage system 
at a daily increment (in intervals of 1 h) for energy arbitrage,1 is highly 
computationally intensive. That is, it is not computationally tractable to 
simulate the system for the entire set of multi-dimensional scenarios 
generated through PDF discretisation when dealing with multiple un-
certain inputs. To put this into perspective, dividing the hour-specific 
PDFs generated for the four uncertain variables concerned into seven 
equally sized intervals results in 74 = 2401 independent scenarios. 

To reduce the computational complexity of the problem, while 
retaining the optimality of the stochastic modelling results within an 
acceptable limit, a mixed-integer linear programming (MILP)-based 
heuristic algorithm, first introduced by Karuppiah et al. [94], is adopted. 
The heuristic scenario reduction algorithm yields a minimum subset of a 
given set of multi-dimensional scenarios, which ensures that the overall 
probability of occurrence of a particular realisation (value) of each un-
certain variable in the reduced subset equals the probability of the un-
certain variable taking on that particular value. Assuming that the range 
of possible values for the uncertain variables has been divided into seven 
regions, the algorithm can be expressed mathematically as [94]: 

minNRSc =
∑7

ScSI=1

∑7

ScWS=1

∑7

ScLD=1

∑7

ScWP=1
ωScSI ,ScWS ,ScLD ,ScWP , (59) 

Fig. 6. Schematic illustration of scenario generation by dividing a normal PDF into equally sized intervals.  

1 It should be noted that the energy balance problem is solved for the baseline 
year, and then results are assumed to repeat for each of the ensuing years in the 
life cycle of the project. 
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subject to: 
∑7

ScWS=1

∑7

ScLD=1

∑7

ScWP=1
ρRSc( ScWS, ScLD, ScWP) = ρScSI

, for ScSI

= 1, 2,…, 7, (60)  

∑7

ScSI=1

∑7

ScLD=1

∑7

ScWP=1
ρRSc(ScSI , ScLD, ScWP) = ρScWS

, for ScWS

= 1, 2,…, 7, (61)  

∑7

ScSI=1

∑7

ScWS=1

∑7

ScWP=1
ρRSc(ScSI , ScWS, ScWP) = ρScLD

, for ScLD

= 1, 2,…, 7, (62)  

∑7

ScSI=1

∑7

ScWS=1

∑7

ScLD=1
ρRSc(ScSI , ScWS, ScLD) = ρScWP

, for ScWP

= 1, 2,…, 7, (63)  

∑7

ScSI=1

∑7

ScWS=1

∑7

ScLD=1

∑7

ScWP=1
ρRSc(ScSI , ScWS, ScLDScWP)

= 1, ∀ScSI , ScWS, ScLD, ScWP, (64)  

ρRSc(ScSI , ScWS, ScLD, ScWP) ≤ ωScSI ,ScWS ,ScLD ,ScWP , ∀ScSI , ScWS, ScLD, ScWP,

(65)  

0 ≤ ρRSc(ScSI , ScWS, ScLD, ScWP) ≤ 1, ∀ScSI , ScWS, ScLD, ScWP, (66)  

where NRSc is the optimal number of reduced scenarios, 
ωScSI ,ScWS ,ScLD ,ScWP ∈ {0,1} is a binary variable that corresponds to the 
presence or absence of a multi-dimensional scenario XSc in the new set of 
scenarios, and ρRSc(ScSI , ScWS, ScLD, ScWP) is the new probability assigned 
to the reduced scenario XRSc. 

Finally, the expected values of the hourly scenario outputs (value- 
probability pairs) for each variable x are returned as stochastic results, 
as follows: 

ERSc
x (t) =

∑

rs∈RSc
ρrs(t)Xrs(t). (67)  

3.4. Overview of the proposed two-stage hybrid battery/SC designing 
model 

Figs. 7 and 8 illustrate the two-stage meta-heuristic-based, stochastic 
solution algorithm developed for the hybrid storage capacity optimisa-
tion model. As can be seen from Fig. 7, the overall problem is separated 
into an outer loop storage sizing problem with a nested optimal energy 
scheduling problem. The optimal sizing problem (outer loop) sends a 
vector of decision variables (here-and-now design variables) to the 
optimal scheduling problem (inner loop). 

The decision variables are treated as parameters by the optimal 
scheduling problem, a solution to which yields the wait-and-see de-
cisions. The optimal scheduling problem is solved for every 24-hour 
period in the baseline year, the solutions of which are supplied to the 
optimal design problem to evaluate each design’s fitness (total NPC). 
The operational planning model is formulated as a linear programming 
problem and solved using the MATLAB inbuilt linear programming 
optimiser called ‘linprog’, while the long-term investment planning 
problem is solved using the MFOA. 

Each search agent of the MFOA is represented by a vector of in-
vestment decision variables to be made over the analysis period. At each 
iteration of the MFOA, an investment portfolio is generated subject to 
the operational constraints as an output that includes the optimal DER 
assets’ sizes and economic dispatch schedules. Then, the optimised 
variables are fed into the SSR, grid outage survivability, the hybrid 
battery/SC bank autonomy hour, and LPSP evaluation blocks to calcu-
late the corresponding indices. The search and selection process of the 
MFOA is subject to a set of planning-level constraints defined based on 
the above-mentioned indices, which continues until the maximum 

number of iterations is reached. 
Finally, the process is repeated for each of the clustered hourly-basis, 

year-long scenarios, and normal density curves that best approximate 
the corresponding histograms of the optimised decision variables, while 
the best-case, most likely case and worst-case solutions are calculated 
based on the 5th percentile values, expected values, and 95th percentile 
values, respectively. 

4. Case study: Totarabank Subdivision, Aotearoa New Zealand 

Located in central Wairarapa, Aotearoa New Zealand (GPS co-
ordinates: 41◦1′4″ S, 175◦40′0″ E), Totarabank is a residential subdivi-
sion built on sustainability design criteria. It consists of eight 
freestanding houses, and a common building, with a total population of 
14 people as of 2020 [95]. The geographical location and description of 
the study area are shown in Fig. 9. 

To populate the model for the case of Totarabank, specific brands of 
equipment were chosen based on the authors’ judgement of suitability 
for the services of interest from the options available in the Aotearoa 
New Zealand and Australian renewable energy asset markets.2 Note that 
given the objective of the paper, only the costs associated with energy 
storage devices and any additional bi-directional inverter capacity 
required are included in the total system cost function (Eq. (31)).3 

The economic specifications of the candidate components to be in-
tegrated into the existing grid-connected MG system are listed in 
Table 2, while technical assumptions, including the existing installed 
capacities of generation and conversion components, are summarised in 
Table 3. In Table 2, the replacement costs are based on projection. Also 
note that costs are always cited in New Zealand currency and figures 
depict local New Zealand time for the relevant month. Moreover, the 
analysis period and the real discount rate were assumed to be 25 years 
and 3.7 % [96], respectively. 

Fig. 10 displays the monthly mean daily profiles for the expected 
values of meteorological, wholesale electricity price, and load demand 
data. The meteorological and wholesale price data consists of the rolling 
averages for a particular hour of the day in each month over the 10-year 
period 2012 to 2021, recorded at hourly intervals [108,109].4 For the 
load demand data, this is the rolling average of the total forecasted 
consumption for a particular hour of the day over the one-year database 
built with hourly intervals. The electricity usage during one-hour in-
tervals over the representative year was forecasted based on the New 
Zealand GREEN Grid residential electricity demand study’s findings 
[110] in accordance with the site’s population and the average number 
of people per household. 

5. Simulation results and discussion 

This section presents and discusses the results obtained from the 
application of the proposed model to the case study of Totarabank 
Subdivision. The computer code was developed in MATLAB (version 
R2022a). The software was run on a standard desktop computer with an 
Intel Core i7 3.20 GHz processor and 16 GB RAM. 

2 The following product models were chosen for non-dispatchable renew-
ables: Trina Solar’s TSM-285 solar panels [104] and Primus Wind Power’s AIR 
40 wind turbines [107].  

3 This study expands on the prior feasibility study carried out on the site’s 
renewable energy potential. Accordingly, it was decided to make a simplifica-
tion of fixed PV and WT sizes, which were set to the optimal values found in 
[115]. Although the obtained optimal renewable capacities are not yet 
completely implemented, they are referred to in this paper as ‘existing installed’ 
capacities to facilitate comprehension.  

4 For the wholesale price data, a time-dependent dummy variable is used to 
account for weekday versus weekend. It takes a value of 1 if the data point 
represents a weekday, and 0 if otherwise. 
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To better evaluate the effect size of each of the model’s elements, 
simulations were conducted in four separate cases in a hierarchical 
manner. Table 4 illustrates the increasing complexity of the model. Note 
that the simulation cases build upon each other. As the model becomes 
more complex by including new features, the desired modelling detail to 
better reflect reality increases. 

5.1. Case 1: base case 

In the base case, which represents a business-as-usual approach to 
energy storage resource provision, a battery-only storage system is 
considered. Also, the uncertainty associated with the forecasted time- 
series data is not quantified and the look-ahead energy dispatch strat-
egy is not implemented. Specifically, the system is modelled using the 
expected values of the stochastic parameters. Moreover, the rule-based 
Greedy algorithm is run in this case, whereby the excess renewable 
energy generation is used to charge the battery bank before being 
exported to the grid. On the other hand, any load exceeding local 
renewable energy generation is met by discharging the battery bank 
before importing from the grid. 

Table 5 compares the results obtained for the four simulation cases. 

5.2. Case 2: incorporation of a SC bank 

A comparison of the modelling results obtained for cases 1 and 2 in 
Table 5 indicates the following important insights:  

1. The hybrid battery/SC bank reduces the cost of energy storage 
resource procurement by a significant ~20 % (equating to $4620), 
compared to the battery-only scenario. It also reduces the overall 
storage capacity by as much as ~31 %. The hybrid system that uses a 
central energy filter-based energy management strategy provides the 
optimal solution by leveraging the complementary characteristics of 
the two technologies.  

2. Incorporating a SC bank into the grid-connected MG system reduces 
the total annual net electricity exchange cost by ~51 %. Much of the 
associated savings are attributable to the reduced total imported 
power (~63 %) during peak times when wholesale prices are higher 
– enabled by the increased power density of the overall storage 
system. Put differently, in the battery-only scenario, the storage is 
not able to provide transient high power densities due to its limited 
discharge power capacity (cycled at a C/2 rate). Accordingly, these 
transient power demands are imported from the national grid. 

Fig. 11 presents the monthly mean 24-hour profiles for the import 

power and export power throughout the year in cases 1 and 2. As the 
figure shows, incorporating the SC bank into the system flattens the 
monthly mean daily import and export power profiles by addressing the 
transient high-power-density shortages and excesses – which are 
addressed by the utility grid in case 1. Not only does this generate 
savings from the reduced electricity imports during higher-priced hours 
and reduced exports during the hours on which the buyback rate is lower 
than the levelised cost of energy (LCOE) of the system, but it also 
eliminates the need for any additional power conditioning infrastruc-
ture. Yet, the total annual exported power has increased by ~7 %, which 
can be explained by the constraint that the MG can either import or 
export power at a given time-step. More specifically, reducing the need 
to import transient high-power-density shortages opens up the oppor-
tunity to export more excess power. Another key finding is that adding 
the SC bank does not have a significant impact on the temporal distri-
bution of the power exchanges. 

Additionally, Table 6 presents the descriptive statistics over 30 in-
dependent simulation runs of the MFOA. In the table, SD, RE, MAE, and 
RMSE respectively stand for the standard deviation, relative error, mean 
absolute error, and root mean square error, which can be calculated as 
follows: 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1(Fi − F)
N − 1

√

, (68)  

RE =

∑N
n=1(Fi − Fbest)

Fbest
, (69)  

MAE =

∑N
n=1(Fi − Fbest)

N
, (70)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1(Fi − Fbest)
2

N

√

, (71)  

where Fi represents the returned value of the objective function and the 
optimised values of the decision variables in the i-th independent 
simulation run, N is the number of runs (in this paper, N = 30), Fbest is 
the best value of Fi obtained over the 30 independent runs, and F rep-
resents the population mean. 

The resulting descriptive statistics collectively indicate that the 
MFOA-based solution algorithm has a robust performance, and is not 
sensitive to the selected initial points. There are two main reasons for 
this: (1) the evidenced superior efficiency of the MFOA in the integrated 
MG resources planning application (compared to both the conventional 
and other state-of-the-art meta-heuristics) [71–73], and (2) the 

Fig. 7. Optimal stochastic storage capacity planning problem structure with nested optimal scheduling problem.  
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relatively low dimension (i.e., the number of design variables) and step 
size granularity (i.e., the inverse of the lengths of intervals of the 
candidate solutions) of the search space. Accordingly, a single run of the 
algorithm yields acceptable solution quality, which is used to estimate 
the optimal solution in the following sub-sections. Particularly, the total 
annual power exchanged with the upstream grid is the only contributor 
to the slight instability of the estimated total discounted system costs 
across different simulation runs. 

Moreover, Fig. 12 displays the convergence process of the solution 
algorithm in its best- and worst-case runs. The table, additionally, 
compares the performance of the MFOA with the well-established meta- 
heuristics in the MG equipment capacity planning literature, namely the 
GA [111] and the PSO [112]. Accordingly, the best- and worst-case runs 
of the GA and the PSO (out of 30 independent runs) are presented. Two 
key observations can be made from Fig. 12: First, the selected number of 
moths (i.e., primary search agents) and the maximum number of 

iterations are adequate for the convergence of the solution algorithm. 
Second, the MFOA consistently outperforms the well-established meta- 
heuristics in the MG capacity planning literature. The latter observation 
corroborates recent work suggesting that the MFOA has particularly 
high efficiency in the optimal MG sizing applications [71–73]. 

It should also be noted that while incorporating the SC bank yields 
significant benefits in terms of supplementing battery power when 
transient high power densities are required, this paper only focuses on 
the steady-state operation of the system. 

5.3. Case 3: quantification of uncertainties 

In the stochastic variant of the model, the uncertain parameter- 
specific hourly PDFs generated based on the historical and syntheti-
cally augmented data are first approximated by dividing them into seven 
equal segments. The scenarios generated by different combinations of 

Fig. 8. Illustration of the proposed two-stage stochastic hybrid battery/SC capacity planning framework.  
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the hourly values of the uncertain inputs – obtained using the PDF dis-
cretisation – are then reduced to seven using the MILP-based scenario 
reduction algorithm. Accordingly, new probabilities are assigned to 
each of the reduced scenario vectors. For instance, Table 7 presents the 
value-probability pairs associated with the reduced discrete approxi-
mations for the noon hour of the day where the one-day total energy 
consumption is assumed to be highest, namely July 21st – the winter 

solstice in the Southern Hemisphere.5 Recall that these posterior prob-
abilities are assigned to the uncertainty vectors that contain a joint 
realisation of the uncertain parameters, rather than to each individual 
uncertain input. The corresponding parameter values in the determin-
istic model are as follows: solar irradiance = 400.29 W/m2, wind speed 
= 6.4 m/s, load demand = 9.9 kWh, and wholesale power price =
$88.1/MWh. 

Fig. 9. The study area: (a) the Totarabank’s location on a satellite map of Aotearoa New Zealand; and (b) a satellite photograph of the site with subdivision 
components overlaid. 
(Image courtesy of Google EarthNZ). 

Table 2 
Economic specifications of the candidate components to be integrated into the system.  

Component Nominal capacity Capital cost O&M costa Replacement costb Lifetime Source 

Li-ion battery (RESU 3.3, LG Chem) 3.3 kWhc $3645/unit $7.3/unit/year $1714/unit (in year 15) 6000 cycles [97] 
EDLC SC module (XLR-48, Eaton) 166 Fd $1300/unit $2.6/unit/year $728/unit (in year 20) 1,000,000 cycles [98] 
Inverter (SPMC240-AU, Selectronic SP Pro) 3 kW $4600/unit $3.9/unit/year $4600/unit 15 years [99]  

a Estimated based on the capital-to-O&M cost ratios presented in [100,101]. 
b Estimated based on the projections made by Goldie-Scot [102] for the Li-ion battery market, and Schmidt et al. [103] for the EDLC SC market. No considerable 

change is expected to the costs of power electronics devices. 
c Energy throughput = 10.0 MWh. 
d Energy capacity = 0.054 kWh. 

Table 3 
Technical specifications of the MG components.  

Scalar Value Source Scalar Value Source Scalar Value Source 

αPV 1.64 m2 [104] DODB 88 % [97] Pmax
ch,B 3 kW [97] 

AHmin
B/SC 12 h – DODSC 100 % [98] Pmax

ch,SC 118 kW [98] 

b 1 [70] ηdch,B 97.5 % [97] Pmax
dch,B 3 kW [97] 

cyclemax
B 6000 cycles [97] ηdch,SC 98 % [98] Pmax

dch,SC 118 kW [98] 
cyclemax

SC 1,000,000 cycles [98] ηI 96 % [99] PI,ins 15 kW [105] 
CB(0) 3.3 kWh [97] ηPV 17.4 % [104] Q 0.707 [105] 
CSC(0) 0.054 kWh [98] FiT $0.08/kWh [106] PI,r 3 kW [104] 
Cmin

B 2.64 kWh [97] GOSmin
MG 8 h – PWT,r 40 kWh [107] 

Cmin
SC 0.043 kWh [98] LPSPmax 0 % – SSRmin 85 % – 

σB 0.3 %/day [97] Nmax
B 25 – T 8760 h – 

σSC 1.4 %/day [98] Nmax
I 25 – vr 18.7 m/s [107] 

ηch,B 97.5 % [97] Nmax
SC 90 – vci 3.1 m/s [107] 

ηch,SC 98 % [98] NPV,ins 42 [105] vco 22 m/s [107] 
Δt 1 h – NWT,ins 1 [105]     

5 Low-temperature heat is the main (42 %) source of household electricity 
demand in New Zealand, providing water heating (27 %) and space heating (15 
%) [116]. 
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To assist the associated hybrid battery/SC expansion decision- 
making process, the proposed stochastic model is tailored towards 
different uncertainty budgets. To this end, three scenarios were 
considered, namely the best-case, most likely case, and worst-case sce-
narios. The best-case and worst-case scenarios respectively represent the 
5th and 95th percentile values of the capacity planning and the associ-
ated life-cycle cost results, while the most likely case represents the 
expected values of the probabilistic results. 

The results are assumed to follow a normal distribution. However, 
given the existence of only seven scenarios in the reduced stochastic 
simulation case, the built-in MATLAB function ‘normrnd(μ,σ)’ was used 
to generate N = 300,000 random numbers from the original population 
distribution X (containing the seven sets of reduced stochastic modelling 
results) with mean μ and standard deviation σ. Accordingly, a synthet-
ically augmented population of X was created. The margin of error (with 
a confidence level of 95 %) associated with a certain output can then be 
obtained as follows [113]: 

MOE =
σ(X)

̅̅̅̅
N

√ tm,N , (72)  

where tm,N is the value of the variable on a t-distribution with N degrees 
of freedom for m% right-tailed probability corresponding to the selected 
uncertainty budget. For the best-case, most likely case, and worst-case 
scenarios, m is set to 5 %, 50 %, and 95 % respectively. 

Fig. 13 presents the obtained results for the total NPC of the opti-
mally sized HESS under different uncertainty budgets. The results are 
based on the optimal cost solutions estimated for the seven reduced 
scenarios. 

Table 8 presents the comparative results for the realisation of 
simulation case 3 under different uncertainty budgets. The table is 
revealing in the following two ways:  

1. Characterising the parametric uncertainties of interest may increase 
or decrease the expected value of the system’s total NPC depending 

Fig. 10. Monthly mean 24-hour profile for: (a) solar irradiance; (b) wind speed; (c) wholesale power price; and (d) load power demand.  

Table 4 
Increasing complexity of the hybrid battery/SC capacity optimisation planning 
model in this paper.  

Case Incorporation of a 
SC bank 

Characterisation of 
uncertainties 

Day-ahead scheduling 
optimisation  

1     
2 ✓    
3 ✓ ✓   
4 ✓ ✓ ✓  

Table 5 
Comparison of the energy storage investment planning results obtained for 
different simulation cases.  

Model output Case 1 Case 2 Case 3a Case 4 

Total NPC [$] 23,590 18,970 19,795 14,829 
LCOEb,c [$/kWh] 0.027 0.022 0.023 0.017 
Total annual net electricity exchange 

cost [$] 
–1391 –2094 –1881 –2192 

Total annual imported power [kWh] 5851 2165 2414 1258 
Total annual exported power [kWh] 14,628 15,702 15,622 17,109 
Total annual net energy purchased 

[kWh] 
–8777 –13,537 –13,208 –15,851 

Optimal battery bank size [kWh] 9.9 6.6 6.6 6.6 
Optimal SC bank size [kWh] N/A 0.270 0.324 0.162 
Newly added inverter capacity [kW] 3 0 0 0 
CPU usage time [s] 79,201 78,930 562,104 597,434  

a The stochastic results are reported for the most-likely case, which is dis-
cussed in more detail in Section 5.3. 

b Levelised cost of energy is defined as: LCOE =
TNPC

∑PL
i=1

∑T
t=1PL(t)Δt
(1 + ir)i

.  

c Note that the calculated LCOE is only associated with the energy storage 
capacity procurement. 
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on the uncertainty budget of the decision-maker. More specifically, 
accounting for the forecast uncertainties concerned carries a pre-
mium above the HESS’s whole-life cost determined deterministically 
in the most likely and worst-case scenarios. The premium in the most 
likely and worst-case scenarios is equal to $825 (~4 %) and $6806 
(~36 %), respectively. Note that the premium is primarily spent on 
additional SC capacity to provide a hedge against forecast un-
certainties. On the other hand, the system’s life-cycle cost in the 
highly risk-seeking scenario (best-case) can be reduced by as much as 
$7356 (~39 %). The savings are, in large part, attributable to the 
reduced overall capacity of the hybrid storage system.  

2. The stochastic formulation of the model increases the CPU usage 
time by approximately a factor of seven. The reason is that the 
deterministic model is run seven times in the probabilistic model 
with seven (most probable and dissimilar) multi-dimensional subsets 
of uncertain input values. Specifically, the CPU usage time in the 
probabilistic model is found to be 562,104 s, which is satisfactory in 
the context of computationally intensive meta-heuristic-based ca-
pacity planning approaches. 

The probabilistic results presented in the following sub-sections 
represent the most-likely case. 

Fig. 11. Monthly mean daily profiles for the exchanged power in cases 1 and 2: (a) power import; and (b) power export. Note the change in scale in the depen-
dent axes. 

Table 6 
Summary statistics of 30 independent trials of the proposed MFOA-based solution algorithm.  

Output Best Worst Mean Median SD RE MAE RMSE 

TNPC [$] 18,970 19,385 19,030 18,976 103.81 0.0946 59.83 327.72 
LCOE [$] 0.0217 0.0222 0.0218 0.0217 1.1881 × 10− 4 0.0946 6.8482 × 10− 5 3.7509 × 10− 4 

NB [kWh] 6.60 6.60 6.60 6.60 0 0 0 0 
NSC [kWh] 0.27 0.27 0.27 0.27 0 0 0 0 
NI [kW] 0 0 0 0 0 0 0 0 
Pexch

a [kWh] –13,537 –11,159 –13,144 –13,466 661.37 –0.8701 392.63 2150.50  

a Pexch refers to the total annual net energy purchased, which is defined as: 
∑T

t=1Pim(t) − Pex(t).  

Fig. 12. Convergence of the meta-heuristic-based solution algorithm in the best and worst runs out of 30 independent trials.  
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5.4. Case 4: intelligent day-ahead scheduling 

This sub-section quantifies the effectiveness of the optimal sched-
uling of the hybrid battery/SC bank using the adopted linear program-
ming model to look ahead over a 24-hour period, while optimally sizing 
the hybrid storage system. A comparison of the stochastic results with 
and without intelligent look-ahead provisions (cases 3 and 4), presented 
in Table 5, offers the following key insights:  

1. Co-optimisation of the day-ahead energy scheduling and long-term 
investment planning of the hybrid battery/SC system reduces the 
total discounted system cost by a significant ~25 %, compared to the 
business-as-usual rule-based Greedy approach. The savings stem 
mainly from the added strategic foresight to look beyond a one-hour 
energy balance analysis. That is, optimising the storage schedules 
over a moving 24-hour foresight horizon (at hourly resolution), over 
which there is perfect foresight of the community’s load demand, 
non-dispatchable generation, and wholesale prices, has a consider-
able impact on reducing the total cost of storage resource procure-
ment – by making the decision-making process more dynamic. 

2. Integrating the day-ahead linear programming-based energy sched-
uling optimisation model into the probabilistic optimal energy 
storage sizing problem increases the CPU usage time by ~6 %. More 
specifically, given the linearity of the optimal energy dispatch model, 
the standard desktop computer specified above was able to solve the 
daily (24-hour) energy dispatch problem in about 6 s of 

computational time. Accordingly, the overall year-long operational 
analysis solution time was found to be about 15,330 s, which was 
2555 (365 days × 7 scenarios) times higher than that of a daily en-
ergy balance analysis (6 s), given that the linear programming model 
was run successively for every day in the baseline year under each of 
the reduced multi-dimensional scenarios. 

Furthermore, to evaluate the impact of the energy filter’s frequency 
response (Tn = 2π

ωn
) on its performance, Fig. 14 displays the monthly 

mean daily profiles for the SC and battery charging power for three 
different frequency response values, namely 6, 12, and 24. It can be seen 
from the figure that the higher the frequency response value, the better 
the energy filter performance, and the smoother the battery charging 
power profile. This has direct implications on the optimal design of the 
hybrid battery/SC system – and, in turn, on the life-cycle cost of the 
storage capacity expansion. 

To illustrate, the optimal combination of the size of the battery and 
SC banks – presented as an ordered pair of their respective charging 
power – is found to be (9 kW, 59 kW), (6 kW, 118 kW), and (3 kW, 177 
kW) respectively for the frequency response values of 6, 12, and 24 – 
with the associated total NPCs of $33,108 $19,795, and $26,492, 
respectively. Note that the change in the total NPC of the optimal ca-
pacity expansion is mainly driven by the net purchased electricity, as the 
changes in the NPCs associated with different combinations of the bat-
tery and SC banks – under different frequency response values of the 
filter – largely offset each other. As the analysis shows, there is a point at 
which additional SC capacity starts having a negative effect on the total 
NPC of the system due to excessive filtering. In this light, a trade-off 
frequency response value of 12 was selected in this study. 

Fig. 15 shows the monthly mean daily profiles for the SOC of the Li- 
ion battery bank in cases 3 and 4. As the figure shows, the linear 
programming-based intelligent scheduling framework has successfully 
charged the battery bank using excess power and/or power imports 
during lower-priced off-peak hours to more cost-effectively meet the net 
load demand during peak times when wholesale prices are higher. More 
specifically, Fig. 15 reveals the following key insights:  

1. The optimal size of the battery bank is primarily driven by the energy 
storage requirements during the wintertime. This is evident from the 
consistently high values of the battery SOC throughout the summer 
months (December through February). 

Table 7 
Probability-value pairs for the stochastic simulation of the system for the noon 
hour of July 21st.  

Reduced 
scenario 

Probability 
of 
occurrence 

Stochastic 
value of 
solar 
irradiance 
[W/m2] 

Stochastic 
value of 
wind 
speed [m/ 
s] 

Stochastic 
value of 
load 
demand 
[kWh] 

Stochastic 
value of 
wholesale 
price 
[$/MWh]  

1  0.2705  374.2  6.5  10.4  89.3  
2  0.1953  461.4  5.9  9.5  103.2  
3  0.1508  405.7  7.3  10.9  78.4  
4  0.1379  358.8  5.5  10.0  67.8  
5  0.1119  492.0  6.9  8.8  80.5  
6  0.0966  336.9  7.1  9.3  95.1  
7  0.0370  289.1  4.9  9.7  120.6  

Fig. 13. Probability density function of the optimal life-cycle cost of the hybrid battery/SC bank under different uncertainty budgets.  
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2. The minimum daily battery SOC often occurs during the morning (6 
a.m. to 10 a.m.) and evening (5 p.m. to 9 p.m.) peak hours when the 
MG peak coincides with the utility grid peak. On the other hand, the 
charging periods are efficiently scheduled to when prices are lowest.  

3. The intelligent scheduling design strategy (case 4) has effectively 
reduced the peak-to-average ratio of the monthly energy content 
profiles – which drives capacity reductions. This is achieved in light 
of the optimisation-based energy management framework’s strategic 

foresight of the daily load demand, local generation, and wholesale 
prices at hourly resolution – contrary to the rule-based Greedy en-
ergy management framework’s fixed approach. Consequently, the 
average charge/discharge schedules of the battery bank are consid-
erably different in the two cases. For instance, the rate of the battery 
charging during the light-load hours of 0:00 a.m. to 4:00 a.m. in July 
is higher in case 4, with the difference coming from the utility grid to 
more cost-effectively meet the load demand in the remaining hours 
of the day. Then, during the 5th and 6th hours, despite the shortage 
of local generation, the intelligent dispatch strategy continues 
charging the battery because of the lower wholesale price values 
than the LCOE of the capacity expansion. On the other hand, despite 
the excess power, the intelligent scheduling framework discharges 
the battery bank for export during the 9th and 10th hours. This can 
be explained as follows. Given the fixed feed-in-tariff, the daily 
forecasts of wholesale prices, and the inability of the storage to be 
charged and discharged simultaneously (which makes battery 
charging during the off-peak, lower-priced hours more economically 
viable), it is cost-optimal for the MG to export the excess power 
stored during the off-peak hours at these time-steps. 

5.5. Sensitivity analysis: economics of energy arbitrage 

To analyse the impact of the variations in the feed-in-tariff and the 
battery capital cost on the optimal combination of the storage compo-
nents and the exchanged power with the grid, Table 9 details the cost- 
optimal solutions obtained for three cases, namely: the existing situa-
tion, a realistic projection case (where the feed-in-tariff is increased to 
$0.18/kWh and the battery capital cost is reduced by 40 %), and an 
extreme case (where the feed-in-tariff is increased to $0.43/kWh6 and 
the battery capital cost is reduced by 70 %). 

As can be seen from Table 9, a further battery capacity of 9.9 kWh 
and a further inverter capacity of 3 kW have been allocated for arbi-
traging on electricity tariffs under the realistic projection case scenario, 
which increase to 75.9 kWh and 12 kW under the extreme case scenario, 
respectively. Accordingly, defining the internal rate of return (IRR) as 
the discount rate at which the status quo (no-storage case) and the 
expanded system have the same total NPC, the IRR of the storage 

Table 8 
Comparative deterministic and stochastic results obtained under different un-
certainty budgets.  

Output Case 2 Case 3 
(best-case 
results) 

Case 3 
(most-likely 
results) 

Case 3 
(worst-case 
results) 

TNPCa 

[$]  
18,970 11,614 19,795 25,776  

VSSb [$] N/A 7356 –825 –6806  
Relative 
VSSb 

N/A 0.39 –0.04 –0.36  

MOE [%] N/A 0.157 0.025 0.161 
NB 

[kWh]  
6.6 3.3 6.6 6.6 

NSC 

[kWh]  
0.27 0.216 0.324 0.486 

NI [kW]  0 0 0 0 
Pexch 

[kWh]  
–13,537 –10,483 –13,208 –7737 

CPU 
usage 
time 
[s]  

78,930 562,104c 562,104c 562,104c  

a The TNPC represents the life-cycle cost of the storage capacity expansion. 
b The VSS stands for the value of the stochastic solution, which is defined as 

the optimal deterministic solution minus the optimal stochastic solution. The 
relative VSS is defined as the VSS divided by the optimal deterministic solution 
[114]. 

c Note that the CPU usage time associated with case 3 represents the time 
required to simulate the seven reduced scenario vectors. The best-, most likely-, 
and worst-case analyses are then made based on the results obtained for these 
seven sets of inputs. 

Fig. 14. Monthly mean daily profiles for the SC and battery charging power under different frequency response values: (a) Tn = 6, Tn = 12, and Tn = 24. Note the 
change in scale in the dependent axes. 

6 Considering income streams such as the frequency control ancillary ser-
vices, operating reserve, and network support markets. 
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capacity expansion is increased to ~53 % and ~236 % in the realistic 
projection and extreme case scenarios from ~17 % in the existing situ-
ation scenario. 

Additionally, Table 9 indicates that as the feed-in-tariff increases 
and/or the battery capital cost decreases, the total net energy purchased 
in the optimal solution increases, while adhering to the minimum 
required SSR. The underlying reason for this observation is that the 
increased optimal battery capacity – as a result of reaching arbitrage 
profitability – increases the opportunity to store the off-peak energy 
purchased from the grid – at costs lower than the system’s LCOE – for 
later on-site use, to cost-optimally supplement the power generated by 
onsite non-dispatchable renewables. 

6. Conclusions and future work 

Hybridising different energy storage technologies tailored to oper-
ating on different time scales is increasingly recognised as one of the 

most cost-effective ways of accommodating the variability and limited 
predictability of renewable energy sources – a prerequisite for inte-
grating significant volumes of DERs into the grid. This paper has pre-
sented a novel, meta-heuristic-based two-stage stochastic model for the 
nested capacity planning and energy scheduling co-optimisation of 
hybrid battery/SC energy storage systems to be integrated into grid- 
connected MGs. 

Based on the numeric simulation results obtained for the case of 
Totarabank Subdivision, in Aotearoa New Zealand, the following main 
quantifiable findings emerge from this study:  

• Significant cost reduction with super-capacitor integration: The 
addition of a SC bank to a battery-supported MG significantly re-
duces the total energy throughput of the battery bank and effectively 
mitigates the stresses induced by high charge/discharge rate re-
sponses. By leveraging the energy filter concept, it has been 
demonstrated that a battery/SC hybrid energy storage system can 
reduce the total discounted cost associated with adding capital- 
intensive storage resources to an on-grid MG by as much as 
approximately ~20 %. This reduction is achieved by smoothing 
power fluctuations in and out of the battery bank, thus extending its 
lifespan.  

• Importance of probabilistic modelling: Introducing a probabilistic 
dimension to meta-heuristic-based optimal storage capacity plan-
ning models tailored to hybrid battery/SC systems is essential. The 
comparison of stochastic and deterministic variants of the proposed 
model reveals that failure to quantify the most salient model- 
inherent parametric uncertainties results in a significant underesti-
mation of total discounted system costs. Specifically, in the most- 
likely case and worst-case scenarios, underestimations of approxi-
mately 4 % and 36 % have been observed, respectively. Furthermore, 
the best-case stochastic results are found to be at least 39 % lower 
than deterministic results. The developed stochastic model effec-
tively accommodates various sources of uncertainty while main-
taining acceptable computational efficiency.  

• Energy management optimisation: Utilising an intelligent scheduling 
design framework with 24-hour look-ahead periods for the dispatch 
of hybrid battery/SC systems integrated into grid-connected MGs can 
significantly reduce the total life-cycle cost of the HESS, up to 

Fig. 15. Monthly mean daily profiles for the energy content of the hybrid battery/SC bank in cases 3 and 4.  

Table 9 
Detailed modelling results under the existing situation, realistic projection case, 
and extreme case scenarios.  

Model output Existing 
situation 

Realistic 
projection 

Extreme 
case 

Total NPC [$] 19,795 7120 –63,205 
Internal rate of return [%] 16.83 53.14 235.90 
Total annual net electricity 

exchange cost [$] 
–1881 –3514 –13,992 

Total annual net energy 
arbitrage trade [kWh] 

0 10,211 30,054 

Total annual imported power 
[kWh] 

2414 12,625 32,468 

Total annual exported power 
[kWh] 

15,622 24,143 40,403 

Total annual net energy 
purchased [kWh] 

–13,208 –11,518 –7935 

Optimal battery bank size 
[kWh] 

6.6 16.5 82.5 

Optimal SC bank size [kWh] 0.324 0.324 0.324 
Newly added inverter capacity 

[kW] 
0 3 12  
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approximately 25 % when compared to a rule-based Greedy energy 
dispatch strategy. This approach optimally utilises the available en-
ergy resources, resulting in cost savings.  

• Economic viability and sensitivity analysis: At the existing average 
buyback rate of $0.08/kWh in Aotearoa New Zealand, it has been 
found that the potential investment in a hybrid battery/SC system for 
arbitrage alone is not economically viable. This conclusion holds 
even when considering lower C-rated behind-the-meter batteries, 
which are unable to effectively track the volatility of the spot market. 
Additionally, a sensitivity analysis has demonstrated the robustness 
of this finding to increased buyback rates, up to at least $0.23/kWh, 
at current Li-ion battery technology costs. 

While this study provides valuable insights, it is important to 
acknowledge that the results are limited by certain assumptions made in 
setting the techno-economic parameters, which were held fixed. Future 
research endeavours should aim to further characterise the uncertainty 
associated with techno-economic data, such as battery and SC bank 
replacement costs and lifetimes, to improve the robustness of hybrid 
energy storage capacity planning approaches. Copula theory may offer a 
viable, less computationally expensive method for achieving this goal by 
deriving a multivariate joint distribution of uncertain variables. 

The insights gained from our study not only highlight the effective-
ness of hybrid battery/SC systems in improving the resilience and cost- 
effectiveness of renewable energy integration within the context of the 
selected case study in Aotearoa New Zealand, but also suggest their 

scalability and applicability in diverse global micro-grid settings. 
In conclusion, this research has advanced the understanding of grid- 

connected hybrid energy storage systems, providing a comprehensive 
framework that combines capacity planning and optimal scheduling. 
The findings underscore the potential of hybridisation, the importance 
of probabilistic modelling, and the significance of intelligent energy 
management. These insights contribute to the ongoing evolution of 
sustainable energy integration strategies in modern micro-grid systems. 
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Appendix A 

Fig. A1 shows power rating versus rated energy capacity for energy storage technologies that have been deployed at significant scale across time 
scales ranging from fractions of a second to many hours [27]. The figure additionally presents the nominal duration of discharge at the corresponding 
rated power of the energy storage technologies.

Fig. A1. Power rating versus rated energy capacity for various grid-supporting energy storage technologies. 
(Adapted from [27]). 

In the area of hybrid energy storage systems, the intricate interplay between power rating and rated energy capacity of the constituent components, 
particularly Li-ion batteries and EDLC super-capacitors, assumes paramount significance. Li-ion batteries are renowned for their ability to provide 
stable, prolonged energy storage owing to their substantial rated energy capacity. Conversely, EDLC super-capacitors boast a strong power rating, 
which allows for rapid energy discharge. It is the synergy between these divergent characteristics that accentuates the overall performance of hybrid 
storage. The Li-ion battery, with its elevated energy reservoir, caters to the extended energy requirements, ensuring system stability over extended 
durations, while the high power rating of EDLC super-capacitors facilitates instantaneous energy delivery during abrupt power surges. This collab-
orative dynamic strikes an equilibrium in energy management, averting undue strain on Li-ion batteries during sudden power fluctuations – thereby, 
improving the overall efficiency and longevity of the energy storage system. Thus, this harmonious partnership between power rating and rated energy 
capacity encapsulates a pivotal dimension of hybrid storage design and operation, with ramifications extending to various applications within the 
broader domain of resilient and cost-effective energy grid integration. 
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