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Abstract
Background: Using radiation therapy (RT) to treat head and neck (H&N) can-
cers requires precise targeting of the tumor to avoid damaging the surrounding
healthy organs. Immobilisation masks and planning target volume margins are
used to attempt to mitigate patient motion during treatment, however patient
motion can still occur.Patient motion during RT can lead to decreased treatment
effectiveness and a higher chance of treatment related side effects. Tracking
tumor motion would enable motion compensation during RT, leading to more
accurate dose delivery.
Purpose: The purpose of this paper is to develop a method to detect and
segment the tumor in kV images acquired during RT. Unlike previous tumor
segmentation methods for kV images, in this paper, a process for generating
realistic and synthetic CT deformations was developed to augment the training
data and make the segmentation method robust to patient motion. Detecting
the tumor in 2D kV images is a necessary step toward 3D tracking of the tumor
position during treatment.
Method: In this paper, a conditional generative adversarial network (cGAN)
is presented that can detect and segment the gross tumor volume (GTV) in
kV images acquired during H&N RT. Retrospective data from 15 H&N cancer
patients obtained from the Cancer Imaging Archive were used to train and test
patient-specific cGANs. The training data consisted of digitally reconstructed
radiographs (DRRs) generated from each patient’s planning CT and contoured
GTV. Training data was augmented by using synthetically deformed CTs to gen-
erate additional DRRs (in total 39 600 DRRs per patient or 25 200 DRRs for
nasopharyngeal patients) containing realistic patient motion. The method for
deforming the CTs was a novel deformation method based on simulating head
rotation and internal tumor motion.The testing dataset consisted of 1080 DRRs
for each patient, obtained by deforming the planning CT and GTV at different
magnitudes to the training data.
The accuracy of the generated segmentations was evaluated by measuring
the segmentation centroid error, Dice similarity coefficient (DSC) and mean sur-
face distance (MSD). This paper evaluated the hypothesis that when patient
motion occurs, using a cGAN to segment the GTV would create a more accu-
rate segmentation than no-tracking segmentations from the original contoured
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GTV, the current standard-of -care.This hypothesis was tested using the 1-tailed
Mann-Whitney U-test.
Results: The magnitude of our cGAN segmentation centroid error was
(mean ± standard deviation) 1.1 ± 0.8 mm and the DSC and MSD values were
0.90 ± 0.03 and 1.6 ± 0.5 mm, respectively. Our cGAN segmentation method
reduced the segmentation centroid error (p< 0.001),and MSD (p= 0.031) when
compared to the no-tracking segmentation,but did not significantly increase the
DSC (p = 0.294).
Conclusions: The accuracy of our cGAN segmentation method demonstrates
the feasibility of this method for H&N cancer patients during RT. Accurate tumor
segmentation of H&N tumors would allow for intrafraction monitoring methods
to compensate for tumor motion during treatment,ensuring more accurate dose
delivery and enabling better H&N cancer patient outcomes.

KEYWORDS
cGAN, radiotherapy, segmentation

1 INTRODUCTION

Radiation therapy (RT) is indicated for 74% of head and
neck (H&N) cancer patients.1 H&N RT has a higher risk
of adverse side effects than treatments to other sites
since there are many important organs located near
the planning target volume (PTV). Recent advances in
RT, including intensity-modulated RT,which confirms the
high dose to the complex shapes of the target vol-
ume and minimizes dose to organs at risk (OAR), has
led to improved survival rates and reduced toxicities.2–5

However, treatment-related toxicities still occur and can
become a serious health risk if the dose received by
organs close to the PTV exceeds certain thresholds.4–6

To minimize the dose delivered to healthy organs,
H&N cancer patients are required to wear a skin-tight
immobilization mask that minimizes patient motion.7,8

However, despite the restrictive nature of immobiliza-
tion masks, motion in the order of several millimeters
of the tumor and surrounding tissue can still occur dur-
ing and between treatment fractions.9,10 This motion can
be caused by a change in the mask’s fit due to patient
weight loss between fractions, imperfections in the mask
manufacturing and fitting process, tumor shrinkage, or
treatment-related oedema.7 The current standard of
care is to use PTV margins of 2–5 mm rather than
motion tracking to account for motion and changes in the
target volume.11 This margin,combined with intrafraction
motion, leads to increased dose to surrounding healthy
tissue, as well as decreased dose to the target.12

Tracking the tumor position during treatment would
enable the use of more accurate radiotherapy tech-
niques such as gating or real-time beam adaptation
technology and could lead to being able to reduce
the PTV margins. One method used in other treatment
sites such as prostate, lung and liver to track the tumor
position during treatment involves surgically implant-
ing fiducial markers into the tumor which can then be

tracked using kV projection images acquired during
treatment.13–15 However, surgically implanting fiducial
markers into H&N tumors has a high risk of complica-
tion and the large and complex shape of H&N tumors
makes implanting markers difficult. If intrafraction tumor
monitoring is to be implemented for H&N tumors,a mark-
erless approach to detecting the tumor position in kV
images needs to be implemented.

Markerless tumor detection methods have been pre-
viously proposed for the lungs,16–22 liver,22 prostate,23,24

and pancreas.25 As detecting the Gross Tumor Vol-
ume (GTV) in kV images is difficult due to the low
contrast between the GTV and surrounding tissue,
most markerless tracking methods are based on deep
learning.22,25 Template-matching or feature based reg-
istration has also been used for markerless tumor
tracking, however these methods use high-gradient or
high intensity features such as bone as a surrogate for
tumor motion.26,27

4DCT is commonly used to train deep learning based
markerless segmentations methods because the mul-
tiple volumes provide large amounts of training data
showing how the images will change with motion.22,23,28

However, 4DCTs are not routinely acquired for H&N RT,
so in this paper we present a way of training a deep-
learning network to segment H&N tumors from only the
planning CT.

The aim of this paper was to develop a realistic data
augmentation approach for H&N images which would
allow a deep learning method to detect and segment
the primary GTV for H&N cancer patients in kV images
using only the planning CT as training data. The deep
learning network used was a conditional generative
adversarial network (cGAN). The effectiveness of our
cGAN segmentation method was evaluated by testing
the hypothesis that our cGAN segmentation method
improves GTV segmentation accuracy when compared
to the current standard of care in which no GTV tracking
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F IGURE 1 A flowchart showing the method used to evaluate the patient-specific deep learning method for one patient. First, the planning
CT and contoured GTV is deformed multiple times and forward projected to create the training data. The same planning CT is deformed at half
the magnitude of the training data to create the testing data. The original contoured GTV is also forward projected to create the no-tracking
segmentations which assume no motion occurred in the testing data. DRR, digitally reconstructed radiograph; GTV, gross tumor volume.

is used. The data augmentation simulated realistic
patient movement, which was achieved using a novel
synthetic deformation method. To the authors knowl-
edge, this paper describes the first implementation
of markerless tumor detection of H&N tumors in kV
images. This feasibility study is an important step in
demonstrating the feasibility of markerless tracking of
H&N tumors, and is an important step toward reducing
the need for immobilization equipment during RT.

2 METHODS

A flowchart detailing the training, testing and evaluation
of our GTV tracking method is shown in Figure 1. The
code used in this paper to generate these results is avail-
able on a public repository (https://github.com/ACRF-
Image-X-Institute/MarkerlessHNGTVTracking). Most
deep neural network-based markerless tumor tracking
methods uses the large amount of data acquired in
4DCTs to train their neural network.22,23 As 4DCTs
are not routinely used for H&N treatments, our training
dataset was generated from the planning CT by using a
novel synthetic CT deformation method to deform each
patient’s planning CT to generate multiple CT volumes.

From these multiple CT volumes, synthetic images in
the form of digitally reconstructed radiographs (DRRs)
were created and used to train a patient-specific cGAN
to segment the GTV in the DRRs. To create the testing
dataset, the planning CT volumes were again deformed
by creating an additional realistic synthetic deformation.
This additional deformation had different magnitudes to
the deformations used to create the training data. The
resultant deformed CT was then used to create a set of
testing DRRs.

The cGANs used in this paper were trained using
DRRs,which are simulated 2D fluoroscopy x-ray images
created from a 3D CT volume.2 Using a known projection
geometry, DRRs can be created at different projection
angles to simulate kV images acquired during RT. There
are known differences between the noise properties and
the image quality of kV images and DRRs,29-31 how-
ever using DRRs to train the patient-specific cGANs
allows for the networks to be trained without needing
any additional images to be acquired. The use of DRRs
for testing allows for the exact location of the ground
truth GTV segmentations to be known in each projec-
tion and is a useful first step in evaluating the feasibility
of our cGAN segmentation method described in this
paper.
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2.1 Database and patient selection

The data for this paper involved 15 patients with head
and neck squamous cell carcinoma (HNSCC) and were
acquired from the HNSCC database32-34 on The Can-
cer Imaging Archives (TCIA).35 For each patient, the
original data consisted of a planning CT and corre-
sponding structure file, which contained the contoured
primary GTV.The 15 patients were sequentially selected
based on tumor location to ensure a range of primary
tumor locations and to investigate the feasibility of the
method described in this paper. The locations of the
tumor were the oropharynx (n = 5), the larynx (n = 5),
and the nasopharynx (n = 5). Patients with different
tumor locations in the head and neck were selected to
test the robustness of our patient-specific segmentation
method.

2.2 Synthetic CT deformations

Previous implementations of deep learning networks
for markerless tumor detection and segmentation in
kV images trained the network using data from 4DCT
scans.16,17,22,25 The advantage of using the 4DCT for
training is that the network is trained on images showing
how the tumor and surrounding tissue move and deform.
H&N cancer treatment planning is typically done on a
regular CT scan, which presents a challenge for training
a patient-specific segmentation model because regular
CT scans contain a single volume whereas 4DCTs
contain multiple volumes. This reduces the training
dataset and results in the network being less effective
at detecting and segmenting the tumor when motion
occurs.

To compensate for the lack of motion data, we
developed a CT deformation-based data augmenta-
tion method that can be used to generate synthetic
images showing realistic head motion. This data aug-
mentation method allowed each patient’s cGAN to be
trained on a patient-specific dataset containing images
of H&N motion without requiring additional CT scans.
The assumption was made that two types of move-
ments would be the primary sources of tumor motion
during RT treatment: head rotation and internal tumor
motion. A brief summary of the method used to create
these synthetic deformations is included below, with a
more detailed discussion provided in the Supplementary
Materials.

2.2.1 Head rotation

Six different training volumes representing the differ-
ent types of head rotation were created: axial rota-
tion (left-right rotation around the superior-inferior (SI)

axis rotation), lateral bending (left-right rotation around
the anterior-posterior (AP) axis), and flexion/extension
(back-front rotation around the left-right (LR) axis). The
head rotation deformation vector fields (DVFs) were
created by rotating the volume around anatomical land-
marks to replicate real head motion. A summary of the
anatomical landmarks used as centres of rotation and
realistic upper limits of the magnitude of patient head
rotations during treatment is described in the Supple-
mentary Materials. A head mask was created so the
deformation would only be applied to the head and
upper neck,with the inferior boundary on the neck being
defined manually,as approximately halfway between the
superior boundary of the shoulders, and the junction
between the occipital bone in the neck and the top
vertebrae.

2.2.2 Tumor motion

To simulate tumor motion, the contoured GTV volume
was rigidly shifted while the surrounding bones were
kept stationary. The DVF used to shift the GTV had a
Gaussian smoothing filter applied with a filter width 𝜎 =

2 mm. The use of the smoothing filter created a more
realistic deformation by ensuring that there was a grad-
ual and continuous change in the DVF magnitude from
the outside the boundary of the GTV to the centre of the
GTV.Although 𝜎 is a heuristic value, the value chosen for
this paper was based on similar instances of smooth-
ing organ boundaries in CT scans.36-38 The magnitudes
of the applied tumor shifts were based on realistically
large magnitudes of motion of the GTV during treat-
ment and depended on the tumor location, as tumor
motion during treatment is different for oropharyngeal,
laryngeal, and nasopharyngeal tumors. A discussion on
realistic magnitudes of tumor shifts during treatment is
provided in the Supplementary Materials.Since minimal
tumor motion has been observed in the LR direction
the magnitude of these shifts was set to 0.11,39 Simi-
larly, since nasopharyngeal tumors have minimal tumor
motion independent of the surrounding bony anatomy,
the magnitude of the GTV shifts in all directions for
nasopharyngeal tumors was set to 0. In total four vol-
umes were created to simulate the tumor motion: an
anterior and posterior GTV shift, and a superior and an
inferior GTV shift.

2.2.3 DVF creation

A flowchart showing how the final volumes were created
is shown in Figure 2.For each deformed training volume,
the head rotation and internal tumor motion DVFs were
calculated separately and then combined to create
the initial DVF estimation. For combined head rotation
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F IGURE 2 Flowchart for deforming the initial CT volume to simulate realistic motion.

motion (e.g., combination head flexion and internal
tumor motion) the individual head rotation DVFs were
similarly calculated for each type of motion separately
(e.g., head flexion deformation calculated separately to
internal tumor motion) and then combined to create the
initial head motion DVF. The initial DVFs of the head
rotation and the internal tumor motion were created
using the platipy library for python.40

To create realistic DVFs that reduce boundary arte-
facts, a combined rigid/non-rigid registration method
was used. The rigid/non-rigid registration method is a
non-rigid registration method developed by Staring et al.
which attempts to penalise non-rigid motion in user
defined regions and is described in more detail in the
Supplementary Material.41 To implement this registra-
tion algorithm, we first applied the initial DVF generated
by platipy to the planning CT to obtain an approxi-
mately deformed CT. We then created a bone mask
from the planning CT and used it to define a region
in which non-rigid motion was penalised. Finally, we
obtained the final DVF by registering the original plan-
ning CT to the approximately deformed CT using the
combined rigid/non-rigid registration method. The result
was a more realistic transformation in which bones
move rigidly and soft tissue non-rigidly. The registra-
tion process was completed using the elastix toolbox.42

This synthetic deformation method was converted into
a generalized software package for deforming the head
and neck in CT scans and is available in a public
repository (https://github.com/ACRF-Image-X-Institute/
CTHeadDeformation).

2.2.4 Synthetic deformations for creating
training data

A table summarizing the different training volumes cre-
ated (and the deformation magnitudes used to create

those volumes) for each patient is shown in Table 1. For
patients with oropharyngeal and laryngeal tumors, the
training data for each patient was derived from all 11
volumes (as annotated in Table 1). However, for patients
with nasopharyngeal tumors since no GTV shifts were
added, only volumes 1−7 (as annotated in Table 1)
were generated for each patient and used to produce
the training data. To robustly demonstrate the effective-
ness of the GTV segmentation method described in this
paper, the same deformations cannot be used to create
the training volume as well as the testing volume,but it is
also unrealistic to have the motion of the testing volume
larger than the training data. Hence, the head rotation
and GTV shift magnitudes used for training (shown in
Table 1) were twice as large as realistic upper limits of
head and GTV motion (as described in the Supplemen-
tary Material),so the testing data could be created using
realistic head and GTV deformations.

2.3 cGAN segmentation method

To train a cGAN, two convolutional neural networks are
trained simultaneously. A generator network G takes an
input image x and creates a segmentation image G(x)
based on the training data. The discriminator network
D classifies whether the paired image xy came from
the training set or the generator network, as shown in
Figure 3.43

The cGAN was chosen for segmentation as the use
of the discriminator network in the cGAN allows for
the generation of unique and adaptive loss metrics.44,45

The DRR images (and in future patient kV images)
vary considerably for different patients depending on
the tumor location, and even between patients depend-
ing on the projection angle. The ability of the cGAN to
“learn” the loss function will ideally allow for the gen-
eration of patient-specific networks that can perform
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TABLE 1 A summary of the training volumes created for each patient. The magnitude of the tumor motion depends on the tumor location
and is shown in shown in more detail in the supplementary materials. No additional motion means that any tumor displacement resulting from
the applied deformation is only as a result of the head moving, and not from any additional internal organ motion.

Volume
number Head rotation Tumor motion Motion magnitude (deg/mm)

1 None No additional motion 0

2 Head rotation left No additional motion 5.0◦

3 Head rotation right No additional motion 5.0◦

4 Head tilt left No additional motion 6.4◦

5 Head tilt right No additional motion 6.4◦

6 Head nod up No additional motion 6.2◦

7 Head nod down No additional motion 6.2◦

8 None Superior GTV shift Oropharynx: 4 mm
Larynx: 7.6 mm
Nasopharynx: 0 mm

9 None Inferior GTV shift Oropharynx: 4 mm
Larynx: 7.6 mm
Nasopharynx: 0 mm

10 None Anterior GTV shift Oropharynx: 3.4 mm
Larynx: 4.4 mm
Nasopharynx: 0 mm

11 None Posterior GTV shift Oropharynx: 3.4 mm
Larynx: 4.4 mm
Nasopharynx: 0 mm

F IGURE 3 During training, the generator G creates image G(x) from the image x that was passed to the discriminator D which aims to
reject synthetic images and accept real segmentations y. This method efficiently trains the generator to produce accurate tumor segmentations
from H&N DRRs.

accurate tumor segmentation of the unique and vari-
able DRR images. In this paper, the aim of the cGAN
was to allow for segmentation of the GTV in DRRs.
However, to make the network optimization process
more efficient, the cGAN was trained to generate an
image showing a tumor DRR from a regular H&N DRR,
as shown in Figure 3.24 The output image generated
by the cGAN was then binarized to create the GTV
segmentation.

Our cGAN implementation used was based on the
pix2pix method which provides a general solution to
train a network to perform image-to-image transla-
tion (https://github.com/junyanz/pytorch-CycleGAN-
and-pix2pix).44 The cGAN was initialized with random
parameters and trained to optimize the loss function

G∗ = arg min
G

max
D

cGAN (G, D) + 𝜆L1 (G) (1)

 24734209, 2023, 7, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16388 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [26/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


4212 HEAD & NECK KV TUMOR SEGMENTATION

where 𝜆 is a constant (set to 100 for this implementation)
and for all expected values of x (Ex):

cGAN (G, D) = Ex,y [logD (x, y)]

+ Ex [log (1 − D (x, G (x)))] (2)

L1 = Ex,y‖y − G (x) ‖;1 (3)

A custom data loader was used to allow 16-bit
grayscale images to be used as input. A 70 × 70
PatchGAN44,46 was used for the discriminator architec-
ture and a 256 × 256 UNet44,47 for the generator archi-
tecture (architecture shown in Supplementary Material).
The training images of 550 × 550 pixels in size with a
pixel width of 0.388 mm were randomly cropped to a
size of 512 × 512 pixels during network training,and the
testing images had a size of 512 × 512 pixels.Both train-
ing and testing images had random Poisson noise (100
≤ 𝜆 ≤ 200) added to mimic the noise patterns of a kV
image.31

Each patient-specific model was trained with a batch
size of 8 and a learning rate of 0.0002 using the Adam
optimiser. Each network was trained until the loss func-
tions reached an equilibrium.48,49 A plot of the loss
functions for one patient is shown in the Supplemen-
tary Material. The models were trained on a desktop
computer with two Intel Xeon Gold 6130 processors
(2.1 GHz) with 64 GB RAM and a NIVIDIA Quadro
P6000 Graphics Processing Unit (GPU). A patient-
specific network was trained for each patient as training
an effective patient-specific network requires less data
than a similar generalized network and will be applicable
to patients imaged using different imaging systems.

2.3.1 Training data

The training data consisted of sets of paired images: a
training H&N DRR and a corresponding training tumor
DRR obtained from the 3D contour of the primary
GTV. The training H&N and tumor DRRs were created
by forward x-ray projecting each CT and GTV volume
respectively using the RTK library.50 For each CT vol-
ume, 3600 pairs of DRRs were generated evenly in a
360◦ arc around the volume. For each oropharyngeal
and laryngeal patient, the training data were derived
from 11 CT volumes (the original planning CT and 10
deformed CTs) and for nasopharyngeal patients seven
CT volumes (the original planning CT and six deformed
CTs). In total, the training data consisted of 39 600
paired DRRs for patients with oropharyngeal and laryn-
geal tumors and 25 200 paired DRRs for patients with
nasopharyngeal tumors.

2.3.2 Testing data

To generate the testing data for each patient, the plan-
ning CT and contoured GTV were deformed again three
separate times, using the synthetic deformation method
used to create the training data,but with different magni-
tudes of head rotations and GTV shifts.The magnitudes
for the head rotations and GTV shifts used to create
the three testing CT volumes are shown in Table 2.
Additionally, the testing CT volumes had Gaussian noise
(𝜎 = 10−5mm−1) added to further differentiate the test-
ing volume from the training CT volumes.51 Each testing
CT volume and GTV volume were used to create the
testing dataset consisting of 360 paired DRRs evenly
spaced around a 360◦ range leading to a total of 1080
testing DRRs for each patient.

For each testing H&N DRR created, the trained gen-
erator network produced an image G(x) which was an
estimation of the testing tumor DRR. To obtain segmen-
tations from the predicted image G(x) and the ground
truth testing tumor DRR, both sets of images were nor-
malized and then binarized using a threshold of 0.1.
These binarized segmentations were then compared
to evaluate the accuracy of our cGAN segmentation
method.

2.3.3 No-tracking segmentations

The original GTV contour from the planning CT was
forward projected to create an additional set of testing
segmentations (referred to as no-tracking segmenta-
tions),which assumed no motion occurs and hence does
not track the GTV after the testing DVF is applied (as
shown in Figure 1). The size of the no-tracking dataset
was the same as the testing dataset. The no-tracking
segmentations were used to test the hypothesis that
the cGAN segmentation method improves the GTV seg-
mentation accuracy when compared with the current
standard of care (no GTV tracking). Hence the hypothe-
sis is true if the accuracy of the cGAN segmentations is
significantly greater than the accuracy of the no-tracking
segmentations.

2.4 Accuracy evaluation

To compare the accuracy of each segmentation, three
metrics were used: the centroid error, Dice Similarity
Coefficient (DSC), and mean surface distance (MSD).
In this paper, we hypothesised that our cGAN seg-
mentation method would improve the accuracy of GTV
segmentations when compared with the no-tracking
segmentations. The mean of each metric was calcu-
lated for every patient for both our cGAN segmenta-
tion method and the no-tracking segmentations. The
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TABLE 2 The magnitude and direction of the applied head rotations and tumor shifts used to deform the planning CT and contoured GTV
to create the testing data.

Testing volume
number Head rotation

Rotation
magnitude

Tumor shift
direction Tumor shift magnitude

1 (25% of training
magnitude)

Axial Rotation—left 1.25◦ Superior Oropharynx—1.0 mm
Larynx—1.9 mm
Nasopharynx—0 mm

Lateral Bending—left 1.6◦ Anterior Oropharynx—0.85 mm
Larynx—1.1 mm
Nasopharynx—0 mm

Head extension 1.55◦ L/R 0 mm

2 (50% of training
magnitude)

Axial Rotation—left 2.5◦ Superior Oropharynx—2.0 mm
Larynx—3.8 mm
Nasopharynx—0 mm

Lateral Bending—left 3.2◦ Anterior Oropharynx—1.7 mm
Larynx—2.2 mm
Nasopharynx—0 mm

Head extension 3.1◦ L/R 0 mm

3 (75% of training
magnitude)

Axial Rotation—left 3.75◦ Superior Oropharynx—3.0 mm
Larynx—5.7 mm
Nasopharynx—0 mm

Lateral Bending—left 4.8◦ Anterior Oropharynx—2.55 mm
Larynx—3.3 mm
Nasopharynx—0 mm

Head extension 4.65◦ L/R 0 mm

averaged metric values were used to test the hypothe-
ses using a paired 1-tail Mann-Whitney U test with a
significance level of α = 0.05.

The segmentation centroid error was used to mea-
sure the localization accuracy of our cGAN segmenta-
tion when compared to the ground truth segmentation.
The centroid error was calculated in the kV imaging
frame of reference where u is in the lateral direction and
v is in the SI direction.The combined centroid error in the
u and v directions was also calculated and is reported
as the absolute centroid error magnitude.

The DSC was used to estimate how similar the shape
of our cGAN and no-tracking segmentations were to
the ground truth segmentations.52 Similarly the MSD
was also calculated, which measured the average dis-
tance (in mm) between the outline of the predicted and
ground truth segmentations.53 The MSD decreases as
the accuracy of the segmentation increases.

3 RESULTS

The centroid error, DSC and MSD of our cGAN seg-
mentations for all testing data for all patients are shown
in Table 3. Analysis of the change in segmentation
accuracy due to the different magnitudes of head rota-
tions and GTV shifts is shown in the Supplementary
Material. For all patients the mean ± standard devia-
tion cGAN segmentation centroid error in the u (lateral)
and the v (vertical) directions was −0.0 ± 1.0 mm

and 0.1 ± 0.9 mm, respectively. Additionally, for all
patients, the 95th percentile centroid error in the u and
v directions were [−1.4, 1.3] mm and [−1.4, 1.6] mm,
respectively. The absolute centroid error of our cGAN
segmentation 1.1 ± 0.8 mm was for all patients, with
the 95th percentile error of [0.3, 2.3] mm. This is
shown in comparison to the centroid error of the no-
tracking segmentations in Figure 4. Using a paired
1-tail Mann-Whitney U test, our cGAN segmentation
method significantly reduced the absolute segmenta-
tion centroid error when compared to the no-tracking
segmentations (p < 0.001). Each patient-specific cGAN
network took an average of 3 h to train.

For all patients the mean ± standard deviation DSC
and MSD values for our cGAN segmentation were
0.90 ± 0.03 and 1.6 ± 0.5 mm, respectively, with the
95th percentile error for the DSC and MSD being [0.85,
0.94] and [0.9, 2.5] mm, respectively. The distribution of
both the DSC and MSD values for our cGAN segmenta-
tion method are shown in comparison to the no-tracking
segmentations in Figure 4. Using a paired 1-tail Mann-
Whitney U test, our cGAN segmentation significantly
reduced the MSD (p = 0.031) when compared to the
no-tracking segmentations. The cGAN segmentation
method did not significantly improve the DSC when com-
pared to the no-tracking method (p = 0.294221) and
only significantly improved the DSC for the Orophar-
ynx tumors (p < 0.0001) but not for the Larynx
(p = 0.203) and reduced the DSC for the Nasopharyx
(p < 0.0001).
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4214 HEAD & NECK KV TUMOR SEGMENTATION

TABLE 3 The centroid error, DSC and MSD values for the predicted cGAN segmentations. All values are mean ± standard deviation. The
best result for each tumor location group for each metric is highlighted by*.

Patient number
Centroid error—v
(mm)

Centroid error—u
(mm)

Absolute centroid
error magnitude
(mm) DSC MSD (mm)

Oropharynx

1 0.7 ± 0.7 0.1 ± 0.9 1.2 ± 0.5 0.90 ± 0.01 1.5 ± 0.2

2 −0.3 ± 0.6* 0.2 ± 0.6 0.9 ± 0.4* 0.92 ± 0.01 1.1 ± 0.2*

3 −0.8 ± 0.8 −0.5 ± 0.7 1.2 ± 0.5 0.92 ± 0.01 1.6 ± 0.2

4 0.7 ± 0.5 −0.2 ± 0.7 1.0 ± 0.5 0.89 ± 0.03 1.6 ± 0.4

5 0.7 ± 0.7 −0.1 ± 0.7* 1.0 ± 0.5 0.92 ± 0.01 1.9 ± 0.3

All oropharynx 0.2 ± 0.9 −0.1 ± 0.7 1.1 ± 0.5 0.91 ± 0.02 1.5 ± 0.4

Larynx

6 −0.6 ± 0.5 0.1 ± 0.8 1.0 ± 0.5 0.90 ± 0.02 1.3 ± 0.3*

7 0.7 ± 0.6 0.2 ± 0.6 1.0 ± 0.5 0.87 ± 0.02 1.6 ± 0.3

8 −0.2 ± 0.9* 0.0 ± 0.6* 1.0 ± 0.6 0.92 ± 0.02* 1.3 ± 0.3*

9 −0.7 ± 1.0 0.0 ± 0.6* 1.2 ± 0.6 0.86 ± 0.03 1.5 ± 0.3

10 −0.3 ± 0.4 0.1 ± 0.6 0.7 ± 0.4* 0.91 ± 0.02 1.3 ± 0.3*

All larynx −0.2 ± 0.9 0.1 ± 0.7 1.0 ± 0.5 0.89 ± 0.03 1.4 ± 0.3

Nasopharynx

11 0.9 ± 0.8 0.2 ± 1.5 1.7 ± 0.9 0.91 ± 0.02 2.3 ± 0.5

12 −0.3 ± 0.5* 0.0 ± 0.9 0.9 ± 0.5 0.90 ± 0.02 2.1 ± 0.4

13 0.9 ± 1.0 −0.2 ± 1.1 1.4 ± 1.0 0.92 ± 0.02 2.0 ± 0.6

14 −0.4 ± 0.5 0.0 ± 0.5* 0.7 ± 0.4* 0.94 ± 0.01* 1.4 ± 0.3*

15 0.1 ± 0.6 −0.3 ± 2.3 1.3 ± 2.0 0.89 ± 0.06 1.4 ± 0.3

All nasopharynx 0.3 ± 0.9 −0.1 ± 1.4 1.2 ± 1.2 0.91 ± 0.04 1.8 ± 0.7

Total

All H&N patients 0.1 ± 0.9 −0.0 ± 1.0 1.1 ± 0.8 0.90 ± 0.03 1.6 ± 0.5

An example of our cGAN segmentation for several
DRRs at different projection angles is shown in Figure 5
and video showing our cGAN segmentations for all
projection angles is shown in Video S1.Figure 5 demon-
strates an example of the typical accuracy of the cGAN
segmentations achieved by this method for one H&N
cancer patient.

4 DISCUSSION

In this paper, we investigated the feasibility of a realis-
tic data augmentation methods to assist in markerless
tumor segmentation method for detecting and seg-
menting the primary GTV in DRRs for H&N cancer
patients. We have demonstrated that we can use a
synthetic CT deformation method to augment the train-
ing data by realistically deforming the planning CT.
The results demonstrated that our cGAN segmen-
tation method increased the accuracy of the GTV
segmentation compared to the current standard of
care. Our cGAN segmentation method detected the
centroid of the GTV in DRRs with an accuracy of

1.1 ± 0.8 mm and segmented tumors in DRRs with
DSC and MSD value of 0.90 ± 0.03 and 1.6 ± 0.5 mm,
respectively.

Table 3 shows the magnitude of the mean cen-
troid error for all patients was approximately 1 mm.
This suggests that our cGAN segmentation method
can accurately localize the GTV in DRR images. Accu-
rate detection of the GTV is a crucial step in the
implementation of image-guided RT methods.54 Sim-
ilarly, the mean DSC and MSD values of 0.90 and
1.6 mm, respectively suggest that our cGAN segmenta-
tion method can accurately segment the GTV in DRR
images. The ability to adapt to the changing shape
of the GTV would enable real-time adaptive RT that
can not only modify the treatment beam location but
also adapt to changes in the shape of the GTV vol-
ume. Future work will look to evaluate whether our
cGAN segmentation method can be used to implement
markerless image-guided RT or adaptive RT for H&N
patients.

Most markerless tracking results described in other
literature present the 3D localization error instead of
the error in each 2D image, making direct accuracy
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HEAD & NECK KV TUMOR SEGMENTATION 4215

F IGURE 4 Violin plots showing the distribution of the accuracy metrics for our cGAN segmentation (blue) compared with the no-tracking
segmentations (orange) for the different tumor locations. The metrics shown are the magnitude of the absolute centroid error (top), the Dice
Similarity Coefficient (middle) and mean surface distance (bottom). The width of the violin plot at each y value corresponds to the frequency of
that value.

F IGURE 5 Example of our cGAN
segmentation (red) and the no-tracking
segmentation (blue) in comparison to the
ground truth segmentation (green) for
different projection angles.
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4216 HEAD & NECK KV TUMOR SEGMENTATION

comparisons difficult. Zhao et al. developed a deep
learning method for identifying a rectangular bound-
ing box containing the prostate location in DRRs and
acquired kV projections at three specific angles (0◦, 90◦,
135◦).55 They were able to estimate the tumor position
in the generated DRRs with a mean accuracy of 1.58-
1.67 mm,however this accuracy was only demonstrated
for those three projection angles. A similar method was
applied for pancreatic tumors with a mean absolute
distance between the predicted and actual tumor cen-
troid of less than 2.6 mm.25 A deep-learning method
for generating GTV contours in DRRs was applied for
lung tumors, which resulted in DSC values of 0.81–
0.98. These results show that our cGAN segmentation
method has similar levels of accuracy to other deep
learning based markerless GTV detection methods.

The time taken for the trained network to generate an
estimate of the GTV segmentation was approximately
0.01 s per image. This demonstrates that this method
has a small latency, which is a feature of deep learn-
ing methods as has been noted previously.23 This short
latency, as well as a mean absolute accuracy of 1.1 mm
suggest that real-time tracking of H&N tumors, which
requires a system latency of less than 0.5 s, is feasible.56

The training of the cGAN prioritized accuracy over train-
ing time to prove that cGANs can be used to accurately
segment DRR images. Future work can optimize the
training process to further reduce the training time, by
experimenting with the number of training images, as
well as the training parameters such as step length.

The images that were used to train and test our
cGAN segmentation method in this paper were DRR
images. This is a limitation of the HNSCC dataset
that was used, as this dataset has only one CT per
patient,with no available kV images.However, the use of
DRRs instead of real kV images in this paper ensures
an accurate ground truth location for each test image,
enabling an accurate quantification of the GTV segmen-
tation effectiveness. In a clinical environment, our cGAN
segmentation method would detect and segment the
GTV in kV images acquired during RT fractions. How-
ever, intrafraction motion during treatment would make
it difficult to establish an accurate GTV location in any
kV images acquired during treatment.9,10 We view this
study as a necessary but not sufficient study toward the
long-term goal of clinical implementation. Future work
will focus on clinically acquired data for which there is
no direct ground truth.

DRRs have a greater quality than kV images acquired
during treatment.Even though Poisson noise was added
to make the DRRs used in this study more similar to
kV images, Poisson noise does not model all addi-
tional sources of artefacts and noise.31 The difference
in image quality between DRR and kV images means
that a cGAN network trained on DRRs may decrease
in accuracy when applied to kV images. In the future,
the methodology presented in this paper will be used

to evaluate our cGAN segmentation method on kV
images23,24 or by adding more realistic noise to the
DRRs to attempt to replicate kV images.29,30

Similarly, the deformation method used to create the
testing data approximated patient motion based on
available data on H&N motion. The rigid/non-rigid regis-
tration method used to generate DVFs attempts to keep
the bones rigid while all other tissue can be non-rigidly
deformed. Adil Al-Mayah et al. used a biomechanical
based finite element analysis to simulate deformation of
the upper vertebrae and H&N,57 which could be inves-
tigated in the future to potentially refine the generated
deformations and allow for realistic deformation of all
tissue. Pukala et al. developed a method for realistically
deforming a cone-beam CT image to match a second
cone-beam CT image of the same patient from a dif-
ferent treatment fraction.58,59 However, this method only
allows for the transformation from one scan to another
scan, and cannot be used to make additional, realistic
deformations. Hence there is scope to further optimise
the deformation algorithms to generate more realistic
synthetic deformations.

During RT for H&N cancer, the PTV often includes
nearby lymph nodes as targeting these nodes this can
prevent cancer recurrence.60,61 While this work focused
on tracking the primary GTV in DRRs, our cGAN seg-
mentation method could be easily adapted to segment
nearby organs of interest which are also likely to be
affected by patient motion. This is demonstrated in
this paper by the accurate detection and segmentation
results for patients with tumors of different shapes,sizes,
and locations. Future work could investigate multi-target
tracking methods to allow for the tracking of the primary
GTV as well as surrounding organs for either targeting
or avoidance.

Our cGAN segmentation method described in this
paper was demonstrated using DRRs. As radiographs
are a planar imaging modality, our method can only esti-
mate motion in the same plane as the DRR. In marker-
based tumor tracking applications, methods have been
developed for using the marker locations in kV images to
estimate the 3D position and rotation of the tumor.62,63

It is thought that this 3D position estimation method can
be adapted such that markerless 3D position and motion
estimation is possible, either by using the location of the
segmentation centroid or points on the segmentation
outline instead of the marker locations.64 An accurate
estimation of the 3D position and motion of the tumor
would allow for improved dose delivery through the use
of beam adaptation methods65 or gated treatments.63

Currently for H&N cancer RT treatments, kV images
are mainly acquired prior to treatment to assist in accu-
rately positioning the patient.7 For real-time tumor track-
ing of H&N tumors, additional kV images would have
to be acquired during treatment at regular intervals.14

The acquisition of these images would result in extra
imaging dose to the patient. Future development of this
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HEAD & NECK KV TUMOR SEGMENTATION 4217

method should quantify the increase in dose caused
by the acquisition of these additional kV images and
evaluate the risk associated with this additional dose.

The immobilization masks that are used to restrict
motion of H&N patients during RT cause anxiety and
distress in a significant number of patients.66,67 If mask-
free RT can be achieved without a reduction in the
accuracy of the dose delivery, then this would lead
to better H&N cancer patient experience. While our
cGAN segmentation method described in this paper has
been developed for patients wearing the mask during
treatment, future work will look to extend the marker-
less tumor detection framework described in this paper
to allow for H&N cancer radiation therapy treatments
without the need for an immobilization mask.

5 CONCLUSION

In conclusion we have demonstrated the feasibility of
our cGAN segmentation method in detecting and seg-
menting the primary GTV location in DRRs of H&N
cancer patients. The centroid accuracy of our cGAN
segmentation was −0.0 ± 1.0 mm in the u (Lateral)
direction and 0.1 ± 0.9 mm and v (SI) directions.
The DSC and MSD of our cGAN template segmenta-
tion was 0.90 ± 0.03 and 1.6 ± 0.5 mm, respectively
when compared with the ground truth segmentation.
When comparing the centroid error and MSD, the
accuracy of our cGAN segmentation method was signifi-
cantly greater than the no-tracking segmentations which
assumed no motion.Accurate segmentation of the GTV
can enable to tracking of the tumor during H&N RT treat-
ment, leading to better dose delivery and better patient
outcomes.
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