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Abstract
Road network detection is critical to enhance disaster response and detecting a safe evacuation route. Due to expanding 
computational capacity, road extraction from aerial imagery has been investigated extensively in the literature, specifically 
in the last decade. Previous studies have mainly proposed methods based on pixel classification or image segmentation as 
road/non-road images, such as thresholding, edge-based segmentation, k-means clustering, histogram-based segmentation, 
etc. However, these methods have limitations of over-segmentation, sensitivity to noise, and distortion in images. This study 
considers the case study of Hawkesbury Nepean valley, NSW, Australia, which is prone to flood and has been selected for 
road network extraction. For road area extraction, the application of semantic segmentation along with residual learning 
and U-Net is suggested. Public road datasets were used for training and testing purposes. The study suggested a framework 
to train and test datasets with the application of the deep ResUnet architecture. Based on maximal similarity, the regions 
were merged, and the road network was extracted with the B-snake algorithm application. The proposed framework (base-
line + region merging + B-snake) improved performance when evaluated on the synthetically modified dataset. It was evident 
that in comparison with the baseline, region merging and addition of the B-snake algorithm improved significantly, achieving 
a value of 0.92 for precision and 0.897 for recall.
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1  Introduction

Recent advancements in aerial imagery have allowed the 
provision of high-resolution images that can distinguish 
roads. Road network extraction from aerial images has been 
applied for transportation management, road navigation, 
updating geographic information and urban planning. Road 
extraction from aerial imagery has been carried out using 

different methods, known as road area extraction/detection 
[2, 10, 11, 22]. Image segmentation and pixel classification 
have been the widely used methods for sorting road or non-
road images. For instance, a shape index feature, support 
vector machine (SVM), angular texture feature, and a fuzzy 
classifier have been proposed for road area extraction [3, 
15, 29]. A framework based on SVM facilitated road feature 
extraction from multi-spectral images [8]. Similarly, Yuan 
et al. [32] proposed a multi-stage road extraction method 
involving road grouping, segmentation, and medial axis 
point selection. Hierarchical graph-based image segmenta-
tion has also been proposed for unsupervised extraction [21]. 
Furthermore, the conditional random field (CRF) model has 
also been implemented for the said purpose [17]. However, 
the destruction caused by cars, trees, or surrounding features 
results in poor accuracy of these methods [21].

1.1 � Related work

Modern image segmentation and classification techniques 
are powered by deep learning technology. Deep learning 
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methods have progressed immensely in recent times. They 
have been utilised for interpreting remote sensing data, 
computer vision and solving other complex problems with 
higher performance and achieving better results [24, 26, 27]. 
In deep learning, applying multilayered models allows the 
processing of different levels of visual information on each 
layer. Local features are processed by lower layers, while 
higher layers assist in inferring more complex features. Road 
network extraction has been improved using deep learning 
methods. The First attempt to detect roads by deep learning 
methods was proposed by Mnih and Hinton [19] utilising 
restricted Boltzmann machines (RBMs). Other studies have 
also suggested better outcomes with the application of deep 
architecture. However, it is challenging to train due to the 
vanishing gradient. To facilitate training, a deep residual 
learning framework was suggested based on identity map-
ping to overcome training issues [35].

Similarly, to enhance segmentation accuracy, U-Net 
was proposed to concentrate map features instead of fully 
convolutional Networks with skip connection [1]. U-Net 
architecture is for semantic segmentation consisting of the 
expansive and contracting path. Zhang et al. [34] proposed a 
deep residual U-Net combining the strengths of deep learn-
ing methods and U-Net, built on the residual unit instead of 
basic neural units and removed the cropping operation from 
the network.

Image segmentation by analysing images at the object 
level instead of working at the pixel level is a well-adapted 
approach for high-resolution images that is robust and less 
noisy [6]. Therefore, the "Object-based Image Analysis 
(OBIA) approach improves the quality of segmentation 
results [13, 16, 18].

Road boundary detection techniques utilise lane pat-
terns (features) and road models. These techniques should 
be capable of maintaining the quality of road detection 
without being affected by the shadows, processing painted 
and unpainted roads, detecting the curved road, and detect-
ing both sides of the lane markings utilising parallel con-
straints  [24, 26, 27]. Wang et  al. [25] addressed these 
constraints by proposing a novel B-snake algorithm. This 
algorithm can define a wide range of lane structures rather 
than only straight and parabolic models. It utilises parallel 
knowledge of roads and is robust against external factors like 
noise, shadow, and missing and incorrect markings. B-snake 

exhibits local control and forms arbitrary shapes which assist 
in describing a different range of road shapes while retain-
ing compact representation. For instance, by increasing the 
control points, more complex shapes of roads with corner 
turns can be explained by the B-snake algorithm [28].

This study proposes a deep residual dense U-Net method 
along with (1) region merging (merging the regions formed 
by segmentation) and (2) a B-snake algorithm for road detec-
tion. The regions which were road-like were assembled for 
the study. The merging criterion in the region merging algo-
rithm defines the cost of merging two regions which should 
be considered. The proposed framework for road network 
extraction is shown in Fig. 1. Moreover, the study utilises a 
boundary loss function in combination with BCE-dice loss 
[binary cross entropy criteria (BCE) and dice loss] for seg-
mentation to merge pixels along the road network and cancel 
pixels that were across the road network.

The study considers the case study of the Hawkesbury 
Nepean Valley, located northwest of Sydney, New South 
Wales (NSW), Australia for road detection during disaster 
scenarios. The organisation of the paper is as follows. Sec-
tion 2 defines the deep residual dense U-Net architecture and 
the lane boundaries modelling by the B-snake model. Sec-
tion 3 describes the results of the pre-processing, training of 
the data sets, and road extraction. Section 4 summarises the 
outcome of the proposed framework, which depicted better 
results on synthetically modified data sets.

2 � Methodology

This study proposes a Deep ResUnet architecture for training 
and testing on the datasets. The regions were merged based 
on maximal similarity, followed by road network extraction 
through the B-snake model. The system used during this 
project had the following specifications: 12th Gen Intel® 
Core™ i7-12700H (24 MB cache, 14 cores, 20 threads, up 
to 4.70 GHz Turbo).

2.1 � U‑Net

U-net is a convolution neural network consisting of max 
pooling, ReLU activation, concatenation, and convolution 
operations [33]. Collecting finer details while obtaining 

Fig. 1   Proposed framework for road network extraction
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high-precision results in semantic segmentation while keep-
ing semantic knowledge is vital. It is difficult to train a deep 
neural network with limited training datasets. It can be over-
come by applying a pre-trained network to the desired data-
sets. The extensive data augmentation in U-Net is another 
way to overcome the training issues. Its key contribution is 
the creation of shortcut connections and is found to be useful 
for tasks where the output and input are of similar size, and 
the output requires spatial resolution. The U-net efficiently 
creates segmentation masks. Replacing the basic unit with 
the residual unit significantly enhances the performance of 
U-Net.

2.1.1 � Residual Unit

The residual neural network is composed of units stacked 
in a sequence that assists in the training of the U-Net model 
and overcomes the degradation issues [9]. There is a stack of 
residual units in between. The residual unit is composed of 
ReLU activation, convolutional layers, batch normalisation, 
no pooling layer and using 3 × 3 kernels and preserving spa-
tial dimensions; these combinations impact the processing 
of the data. The residual unit is given below:

where xm, and xm+1 are the input and output of the mth resid-
ual unit, the residual function F (·), activation and identity 
mapping function f (ym) and h

(
xm
)
 , respectively, for a char-

acteristic one residual unit is given as h
(
xm
)
= xm.

2.1.2 � Deep ResUnet

The combination of U-net and residual neural networks 
has many benefits. It provides ease of training of the net-
work; the skip connection enhances the information propa-
gation and minimises degradation [19] (Fig. 2). It enables 
designing a neural network with fewer parameters and 
enhanced performance. For road area extraction, a Deep 
ResUnet 7-level architecture has been proposed [31]. The 
Deep ResUnet network comprises encoding, decoding, and 
bridge. The input image is encoded into a compact repre-
sentation converted into a pixel-wise image. The bridge 
connects encoding and decoding. The three components 
are residual units consisting of identity mapping (input and 
output units) and convolution blocks (consisting of ReLU 
activation, convolutional, and a BN layer).

Encoding and decoding path consists of 3 residual units 
(Fig. 2). For encoding path, instead of using the pooling 

ym = h
(
xm
)
+ F

(
xm,Wm

)

xm+1 = f
(
ym
)

operation, each unit is applied with a stride of two to the 
first convolution block. This reduces the feature map to 
its half size for multiscale learning. Stride alters the vol-
ume of movement over the image and compresses it. The 
encoded output volume is affected by the size of the filter. 
Before each unit chain of features, maps are up sampled 
from the corresponding encoding path for decoding. The 
multi-channel feature maps are converted into desired 
segmentation through a 1 × 1 convolution and a sigmoid 
activation layer after the last level of the decoding path 
(Fig. 2) [30]. The deconvolutional layers are utilised by 
the decoder to increase feature map size to the dimensions 
of the input image [12].

Fig. 2   The proposed deep Residual UNET architecture
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2.1.3 � Loss Function

Boundary loss for road boundaries (highly unbalanced 
segmentation) is being used. The loss function aims to get 
smoother outputs at the boundaries and enhance model 
output for two close parallel roads. To resolve the issue of 
highly unbalanced segmentation, a distance metric on the 
space of contours is formed. The boundary loss function was 
combined with BCE-Dice Loss [7].

2.2 � Region Merging

Region merging can be defined as the assembly of the raw 
regions produced by segmentation [14]. The grouping of 
similar regions is given as follows:

where the region after grouping relates to,P and before 
grouping the number of all segments is given as O.

The region merging algorithms are classified into

•	 Non-purposive grouping (NPG).
•	 Purposive grouping (PG).

Non-purposive grouping involves merging small regions 
into larger regions based on efficient segmentation. It merges 
with regions based on related characteristics such as pixel 
segmentation and marker refinement. It also merges regions 
relating to similar objects based on expected connections of 
joints between parts of the same object. On the other hand, 
PG is based on the distinct properties of the objects. Maxi-
mal similarity based region merging (MSRM) was intro-
duced as a region-merging approach by Ning et al. [20]. 
When the similarity rate is ascertained, an approach for 
locating image objects for merging is necessitated. Various 
heuristics can be applied to merging arbitrary object A with 
adjacent object B. Four strategies were proposed by Baatz 
[4]. These are (1) fitting, (2) best fitting, (3) local mutual best 
fitting and (4) global mutual best fitting. The roads appear 
as connected road segments in remote sensing images. The 
application of MSRM will assemble road segments and dis-
tinguish them from the rest [20]. The similarity between the 
arbitrary objects C and D is given as

where NHc and NHD give the normalised histograms of 
C and D, the quantity of bins for each colour channel is 
given by b, P = b3 and the element of histogram is given by 
i superscript. The similarity measure is given as:

G = {Gi, i = 1, 2,… ,P}, P < O,

Sim(C,D) =

P∑

1

√
NHi

c
⋅ HD,

MSRM belongs to the second category i.e., best fitting 
and the merging strategy implies that two arbitrary regions 
C and D can only merge when the following condition is 
applied:

where Nc gives C’s adjacent regions.

2.3 � B‑spline Snake

The B-spline snake algorithm is efficient for rapid and spon-
taneous contour outlining. The application of the snake 
algorithm is varied and has been used for segmentation, 
edge detection, shape modelling, and tracking motion. The 
active contours or snakes move under the impact of forces 
(both internal and external) from the curve and image data, 
respectively [23]. Cubic B-spline with fewer state variables 
provides more economical recognition of snake and are 
piecewise polynomial functions. They give local proxima-
tion to contours with limited control points or parameters. 
Four or more control points can represent the curves. With 
the addition of more control points, the flexibility of the 
curves enhances, which either permits variation in the curve 
or reduces continuity at certain points when multiple knots 
are utilised [5].

The segmented image calculates B-Spline by defining the 
control points after every connected (n = 64) pixel.

A cubic B-spline can be specified by m+ 1 control point 
Q0 , Q1 …, Qm and comprises m2 cubic polynomial curve 
segments, where each segment of the B-Spline is derived 
from its four neighbouring control points. The knots  in 
B-spline curve are the joints between the two segments of a 
curve. The equation for each curve segment is:

where “ s ” is the curve segment with a value 0–1 and “ i ” 
corresponds to curve segments. Applying B-splines as active 
contours is effective as they are continuous at each point and 
knot and smooth out the extracted features in the images. 
The number of control points controls the splines' flexibility 
or curvature. They also exhibit local control since changing a 
single control point will only change a small contour section. 
The pseudo-code for B-snake is given as below:

Sim(C,D) = cos−1

(
�������⃗NHC ⋅

�������⃗NHD

)
.

Sim()on,D=Imax (Sim(C,Ni
C
)),

Ui(s) =
(
1

6
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]
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1.	 Get output/segmentation mask using the proposed deep 
residual UNET architecture.

2.	 Apply region merging (Sect. 2.2), whereas maximal sim-
ilarity-based region merging (MSRM) involves merging 
small regions into larger regions based on efficient seg-
mentation.

3.	 The segmented image calculates B-spline by defining 
the control points after every connected (n = 64) pixel.

4.	 Perform minimisation using the non-maximal suppres-
sion on control points to calculate optimised B-spline 
segments.

2.4 � Minimisation Algorithm

The minimisation algorithm detects the minimum of 
the objective function  in the n-dimensional parameter 
space. Using the non-maximal suppression, control points 
were generated to calculate the B-spline segments. Control 
points were generated on the segmented image using non-
maximal suppression as follows:

a.	 The maximum distance between the peaks (n = 64) was 
defined.

b.	 For every row in the image, perform a sliding window 
operation and, on each step, all non-maximum values 
were inverted to a fixed negative number.

c.	 The same operation (b) was used to handle the non-
maximum values per column.

d.	 The pixels with a negative value to were set to zero.

From the control points, the initial B-spline segments 
were calculated. Sample k = 20 points were taken along 
each spline segment. The sample points' distances (in the 
expected direction to the spline) were calculated along 
the 4 splines to the closest edge. The above steps were 
repeated till less than k% of control points were moved 
(k = 60). Cycle through each control point to find the con-
tribution to 4 spline segments. For each pixel in a neigh-
bourhood surrounding the current control point following 
steps were followed:

a.	 For the 4 splines the control point was recalculated to 
check if the control point needs to be moved.

b.	 The distances (in the expected direction to the spline) of 
the sample points along the 4 splines to the closest edge 
were evaluated

c.	 The control point was moved to the neighbourhood point 
which had the smallest sum of distances.

3 � Experiments and Results

The Hawkesbury Nepean Valley region, NSW, Australia 
was selected for road extraction. For this, the Massachu-
setts roads dataset's online data source was used (Table 1). 
The training datasets (Fig. 3) contained 1105 images with 
a corresponding labelled mask. While in the test dataset, 
there were 13 images with 13 corresponding labelled masks.

4 � Data Collection and Pre‑processing

This study selected Hawkesbury Nepean valley, NSW, Aus-
tralia to detect road networks because this region is prone 
to floods each year. With road network detection, disaster 
response can be enhanced and a safe route for evacuation 
could be selected. Additionally, Massachusetts road datasets 
were used.

During pre-processing, the training dataset contained 
1105 images of size (1500*1500), but we had the corre-
sponding labelled mask for only 804 (73%) images. So only 
images having corresponding masks were utilised for train-
ing (Fig. 4). The Table 1. Describes the statistical overview 
of Massachusetts roads dataset.

Out of 804 images with masks, there are images with 
white patches in them but had labelled data for those 
white patch regions. Such images diminish the model 
performance and therefore were not used during train-
ing. Each of the remaining images and masks was then 
resized to (1536*1536) and then broken into nine images 
of size (512*512). The benefits of splitting images were 
a more extensive training dataset and more options for 

Table 1   Describe the statistical 
overview of the Massachusetts 
Roads Dataset

Height Width Area road_pixels bg_pixels road_pixels_per bg_pixels_per

Count 804.0 804.0 804.0 804.000000 8.040000e+02 804.000000 804.000000
Mean 1500.0 1500.0 2,250,000.0 117,340.655473 2.132659e+06 5.215140 94.784860
Std 0.0 0.0 0.0 75,938.547720 7.593855e+04 3.375047 3.375047
Min 1500.0 1500.0 2,250,000.0 2913.000000 1.807388e+06 0.129467 80.328356
25% 1500.0 1500.0 2,250,000.0 55,667.750000 2.082287e+06 2.474122 92.546100
50% 1500.0 1500.0 2,250,000.0 101,626.500000 2.148374e+06 4.516733 95.483267
75% 1500.0 1500.0 2,250,000.0 167,712.750000 2.194332e+06 7.453900 97.525878
Max 1500.0 1500.0 2,250,000.0 442,612.000000 2.247087e+06 19.671644 99.870533
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augmentation. Each of the nine images can have different 
augmentation at run time, reducing the chance of overfit-
ting. Also, it resulted in a bigger batch size as more images 
of smaller size can be loaded into limited GPU memory 
compared to larger images. A few more random crops of size 
(512*512) from size (1536*1536) images were also taken 
to increase the dataset. To avoid data duplication, the ran-
dom crops do not overlap with nine cropped images. These 
images were randomly rotated by either 90 degrees or 270 

degrees. After pre-processing, a total of 7240 images were 
obtained for training. All 13 images from the testing set 
were correct and used directly during model performance 
evaluation.

4.1 � Training

The training set was divided into an 85:15 ratio to obtain 
6150 training images and 1090 validation images. 

Fig. 3   Synthetically added flood region using Massachusetts Roads Dataset

Fig. 4   Massachusetts roads dataset, image and its segmented mask used for training
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Tensorflow v2 and TensorFlow Keras were used to build 
the UNET model [33]. Around 15–20% image synthesis was 
achieved.

4.2 � Augmentation

A Runtime augmentation was performed on the training 
dataset to increase dataset variety with a combination of 
horizontal and vertical flips having a probability of 0.5. 
Brightness augmentation was done to improve the model 
deal in low-light situations. Tensorflow dataset API is used 
to pre-process data before feeding it into the model.

4.3 � Model architecture

The model uses U-net architecture to segment small objects 
from large images. This capability makes U-net an excel-
lent candidate for satellite imagery segmentation problems 
[36]. The benefit of using this model for road extraction is 
that the residual units ease the training of deep networks. 
The connections within the network ease the propagation 

of information without degradation, thus allowing the 
designing of a network with few parameters with better 
performance.

4.4 � Training schedule

At the outset, the model was trained for the first ten epochs 
with a combination of boundary loss and BCE-dice loss, as 
shown in Fig. 5. Later the model was only optimised using 
BCE-dice loss for image mask prediction, as shown in Fig. 6.

Learning Rate Decay is an advanced technique to opti-
mise and generalise Deep Neural Networks (DNN), and its 
methods are widely applied. In our approach, we observed 
a decay of 20% in the learning rate after a cycle size of 5 
epochs, as shown in Fig. 5. Whilst training, after every batch 
update, the cyclical learning rate decay slowly increases the 
learning rate.

Following graphs in Fig. 5 show training progress:

•	 Redline implies validation data.
•	 Orange line implies training data.

Fig. 5   a–c Initial training for ten epochs with both boundary loss and BCE-dice loss

Fig. 6   Image mask prediction
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As seen in Table 2a–c, performance was significantly lost 
when the proposed methods were evaluated on an unseen 
dataset. It is due to different abilities to generalise knowl-
edge between seemingly identical tasks, as the area on the 
image was synthetically modified for a flood. However, the 
proposed framework (baseline + region merging + B-snake) 
achieved better performance when evaluated on a syntheti-
cally modified dataset. It is evident that in comparison with 
baseline region merging and the addition of B-snake, sig-
nificant improvement was achieved through the proposed 
framework with a value of 0.92 for precision and 0.897 for 
recall. A Tensor board visualisation example for validation 
samples is shown in Fig. 7.

4.5 � Inference

For inference on test images, each image was divided into 
(512*512), like the training pre-processing and the model 
prediction is then stitched together to produce a predicted 

mask of size (1500*1500). To get a binary image from the 
prediction output, a thresholding of 0.5 was applied on each 
mask. Any pixel with a value above 0.5 was a positive road 
pixel. Small blobs (white patches) of false positives were 
removed.

5 � Conclusion

Thus, a framework was suggested to enhance road network 
extraction. The framework was based on deep residual 
dense U-Net, region merging based on similarity and a 
B-snake algorithm. The study utilised a boundary loss 
function in combination with BCE-Dice loss for segmenta-
tion to merge the pixels along the road and cancel the pix-
els across the road network. A case study of Hawkesbury 
Nepean valley was considered for road network extraction. 
The Massachusetts roads dataset was used for training and 
testing the data. In the training datasets, there were 1105 

Table 2   (a–c): Proposed methods evaluated on (a) without synthetically modified dataset (b) with synthetically modified datasets, (c) Perfor-
mance of proposed methods

(a)

Height Width Area Road_pixels Water_pixels Bg_pixels Road_pixels_per Water_pixels_per Bg_pixels_per

Count 793.0 793.0 793.0 793.0 793.0 793.0 793.0 793.0 793.0
Mean 1500.0 1500.0 2,250,000.0 117,524.1 0.0 2,132,475.9 5.2 0.0 94.8
Std 0.0 0.0 0.0 76,277.6 0.0 76,277.6 3.4 0.0 3.4
Min 1500.0 1500.0 2,250,000.0 2913.0 0.0 1,807,388.0 0.1 0.0 80.3
25% 1500.0 1500.0 2,250,000.0 55,487.0 0.0 2,080,765.0 2.5 0.0 92.5
50% 1500.0 1500.0 2,250,000.0 101,582.0 0.0 2,148,418.0 4.5 0.0 95.5
75% 1500.0 1500.0 2,250,000.0 169,235.0 0.0 2,194,513.0 7.5 0.0 97.5
max 1500.0 1500.0 2,250,000.0 442,612.0 0.0 2,247,087.0 19.7 0.0 99.9

(b)

Height Width Area Road_pixels Water_pixels Bg_pixels Road_pixels_per Water_pixels_per Bg_pixels_per

Count 817.0 817.0 817.0 817.0 817.0 817.0 817.0 817.0 817.0
Mean 1500.0 1500.0 2,250,000.0 115,577.2 46,763.1 2,087,659.7 5.1 2.1 92.8
Std 0.0 0.0 0.0 74,616.5 99,861.0 75,293.7 3.3 0.4 3.3
Min 1500.0 1500.0 2,250,000.0 2844.8 3.156.2 1,779,748.6 0.1 1.3 79.1
25% 1500.0 1500.0 2,250,000.0 54,566.7 38,302.9 2,039,278.2 2.4 1.7 90.6
50% 1500.0 1500.0 2,250,000.0 100,285.0 46,863.0 2,103,427.7 4.5 2.1 93.5
75% 1500.0 1500.0 2,250,000.0 165,262.6 55,033.2 2,148,424.4 7.3 2.4 95.5
max 1500.0 1500.0 2,250,000.0 432,499.9 64,554.8 2,208,715.8 19.2 2.9 98.2

(c)

Method Mean_iou Mean_precision Mean_recall Mean_F1

Epoch—10 0.6041 0.7204 0.7907 0.7521
Epoch—30 (last) 0.6067 0.7275 0.7862 0.7534
Epoch—24 (baseline) 0.6171 0.7315 0.7975 0.7612
Region merging 0.8334 0.863 0.875 0.867
Region merging + B-snake 0.894 0.92 0.897 0.908
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images and 804 with a corresponding labelled mask, while 
in the test dataset, there were 13 images with 13 corre-
sponding labelled masks. Only images having correspond-
ing masks were utilised for training. Tensorflow v2 and 
TensorFlow Keras were used to build the UNET model. 
Around 15–20% of image synthesis was achieved for the 
study. It was observed that network evaluation on unseen 
datasets experienced a loss in performance. The reason 
was due to varying abilities to gather information from 
similar tasks slightly modified for floods. However, the 
proposed framework depicted better results on syntheti-
cally modified data sets. A precision of 0.92 and recall of 
0.897 was achieved, respectively. Implementation of the 
boundary loss function in combination with BCE-Dice 
loss for segmentation was selected as a learning strategy 
for the study; however, if higher weightage is applied to 
the proposed method, the non-road regions also start to 
merge the pixel resulting in poor segmentation.

Acknowledgements  The authors would like to thank CDRI and Natu-
ral Hazards Research Australia for their support in conducting this 
research.

Author contributions  Methodology, HSM and AWAH; investigation, 
AWAH and STW; writing—original draft preparation, HSM, DS, RI 
and AWAH; writing—review and editing, AWAH, MRI, and STW; 
supervision AWAH and STW. All authors have read and agreed to the 
published version of the manuscript.

Funding  This research received no external funding.

Data availability statement  Codes are available and will be provided 
upon reasonable request to the corresponding author.

Declarations 

Conflict of interest  The authors declare no conflict of interest.

Institutional review board statement  Not applicable.

Informed consent  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Abdollahi A, Bakhtiari HRR, Nejad MP. Investigation of SVM 
and level set interactive methods for road extraction from google 
earth images. J Indian Soc Remote Sens. 2018;46(3):423–30. 
https://​doi.​org/​10.​1007/​s12524-​017-​0702-x.

	 2.	 Abdollahi A, Pradhan B. Integrated technique of segmentation 
and classification methods with connected components analysis 
for road extraction from orthophoto images. Expert Syst Appl. 
2021;176:114908. https://​doi.​org/​10.​1016/j.​eswa.​2021.​114908.

	 3.	 Abdollahi A, Pradhan B, Shukla N, Chakraborty S, Alamri A. 
Deep learning approaches applied to remote sensing datasets 
for road extraction: a state-of-the-art review. Remote Sens. 
2020;12(9):1444. https://​doi.​org/​10.​3390/​rs120​91444.

	 4.	 Baatz M. Multi resolution segmentation: an optimum approach 
for high quality multi scale image segmentation. Paper pre-
sented at the Beutrage zum AGIT-symposium. Salzburg, Hei-
delberg, 2000. 2000.

	 5.	 Bi D. A motion image pose contour extraction method based on 
B-spline wavelet. Int J Antennas Propag. 2021;2021.

	 6.	 Calderero F, Marques F. Region merging techniques using infor-
mation theory statistical measures. IEEE Trans Image Process. 
2010;19(6):1567–86. https://​doi.​org/​10.​1109/​TIP.​2010.​20430​
08.

	 7.	 Cheng T, Wang X, Huang L, Liu W. Boundary-preserving mask 
r-CNN. Paper presented at the European conference on com-
puter vision. 2020.

	 8.	 Das S, Mirnalinee TT, Varghese K. Use of salient features for 
the design of a multi-stage framework to extract roads from 
high-resolution multi-spectral satellite images. IEEE Trans 

Fig. 7   Comparison of B-splines (B-snake) with a simple snake

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12524-017-0702-x
https://doi.org/10.1016/j.eswa.2021.114908
https://doi.org/10.3390/rs12091444
https://doi.org/10.1109/TIP.2010.2043008
https://doi.org/10.1109/TIP.2010.2043008


46	 Human-Centric Intelligent Systems (2023) 3:37–46

1 3

Geosci Remote Sens. 2011;49(10):3906–31. https://​doi.​org/​
10.​1109/​TGRS.​2011.​21363​81.

	 9.	 Gao L, Song W, Dai J, Chen Y. Road extraction from high-
resolution remote sensing imagery using refined deep residual 
convolutional neural network. Remote Sens. 2019;11(5):552.

	10.	 Kahraman I, Karas IR, Akay AE. Road extraction techniques 
from remote sensing images: a review. ISPRS international 
archives of the photogrammetry, remote sensing and spatial 
information sciences, vol. XLII-4/W9. 2018. p. 339–42. https://​
doi.​org/​10.​5194/​isprs-​archi​ves-​XLII-4-​W9-​339-​2018.

	11.	 Lian R, Wang W, Mustafa N, Huang L. Road extraction meth-
ods in high-resolution remote sensing images: a comprehen-
sive review. IEEE J Sel Top Appl Earth Observ Remote Sens. 
2020;13:5489–507. https://​doi.​org/​10.​1109/​JSTARS.​2020.​
30235​49.

	12.	 Liu B, Yu X, Zhang P, Tan X, Yu A, Xue Z. A semi-supervised 
convolutional neural network for hyperspectral image classifica-
tion. Remote Sens Lett. 2017;8(9):839–48. https://​doi.​org/​10.​
1080/​21507​04X.​2017.​13310​53.

	13.	 Luo J, Guo C-E. Perceptual grouping of segmented regions in 
color images. Pattern Recogn. 2003;36(12):2781–92. https://​doi.​
org/​10.​1016/​S0031-​3203(03)​00170-5.

	14.	 Maboudi M, Amini J, Hahn M. Objects grouping for segmenta-
tion of roads network in high resolution images of urban areas. Int 
Arch Photogramm Remote Sens Spat Inf Sci. 2016;41:897.

	15.	 Maboudi M, Amini J, Malihi S, Hahn M. Integrating fuzzy object-
based image analysis and ant colony optimisation for road extrac-
tion from remotely sensed images. ISPRS J Photogramm Remote 
Sens. 2018;138:151–63. https://​doi.​org/​10.​1016/J.​ISPRS​JPRS.​
2017.​11.​014.

	16.	 Maboudi M, Amini J (2015) Object based segmentation effect on 
road network extraction from satellite images. In: Proceedings of 
the 36th Asian conference on remote sensing, Manila, Philippines, 
October 2015. pp. 19–23.

	17.	 Mahdi G. Hierarchical Bayesian regression with application in 
spatial modeling and outlier detection. University of Arkansas; 
2018.

	18.	 Mayer H, Hinz S, Bacher U, Baltsavias E. A test of automatic road 
extraction approaches. Int Arch Photogramm Remote Sens Spat 
Inf Sci. 2006;36(3):209–14.

	19.	 Mnih V, Hinton GE. Learning to detect roads in high-resolution 
aerial images, Berlin, Heidelberg. 2010.

	20.	 Ning J, Zhang L, Zhang D, Wu C. Interactive image segmenta-
tion by maximal similarity-based region merging. Pattern Recogn. 
2010;43(2):445–56.

	21.	 Shuai H, Xu X, Liu Q. Backward attentive fusing network with 
local aggregation classifier for 3D point cloud semantic segmen-
tation. IEEE Trans Image Process. 2021;30:4973–84. https://​doi.​
org/​10.​1109/​TIP.​2021.​30736​60.

	22.	 Steger C, Glock C, Eckstein W, Mayer H, Radig B. Model-based 
road extraction from images. In: Automatic extraction of man-
made objects from aerial and space images. Springer; 1995. pp. 
275–84.

	23.	 Wang F, Li Y. Mapping road based on multiple features 
and B-GVF snake. Int J Pattern Recognit Artif Intell. 
2020;34(14):2050035.

	24.	 Wang S, Mu X, Yang D, He H, Zhao P. Road extraction from 
remote sensing images using the inner convolution integrated 
encoder-decoder network and directional conditional random 
fields. Remote Sens. 2021;13(3):465. https://​doi.​org/​10.​3390/​
rs130​30465.

	25.	 Wang Y, Shen D, Teoh EK. Lane detection using spline model. 
Pattern Recogn Lett. 2000;21(8):677–89.

	26.	 Wang S, Yang H, Wu Q, Zheng Z, Wu Y, Li J. An improved 
method for road extraction from high-resolution remote-
sensing images that enhances boundary information. Sensors. 
2020;20(7):2064. https://​doi.​org/​10.​3390/​s2007​2064.

	27.	 Wang W, Yang N, Zhang Y, Wang F, Cao T, Eklund P. A review 
of road extraction from remote sensing images. J Traff Transp Eng 
(Engl Ed). 2016;3(3):271–82. https://​doi.​org/​10.​1016/j.​jtte.​2016.​
05.​005.

	28.	 Wang Y, Teoh EK, Shen D. Structure-adaptive B-snake for seg-
menting complex objects. Paper presented at the Proceedings 
2001 international conference on image processing (Cat. No. 
01CH37205). 2001.

	29.	 Xin J, Zhang X, Zhang Z, Fang W. Road extraction of high-reso-
lution remote sensing images derived from DenseUNet. Remote 
Sens. 2019;11(21):2499. https://​doi.​org/​10.​3390/​rs112​12499.

	30.	 Xu Y, Xie Z, Feng Y, Chen Z. Road extraction from high-resolu-
tion remote sensing imagery using deep learning. Remote Sens. 
2018;10(9):1461.

	31.	 Yang X, Li X, Ye Y, Zhang X, Zhang H, Huang X, Zhang B. Road 
detection via deep residual dense u-net. Paper presented at the 
2019 international joint conference on neural networks (IJCNN). 
2019.

	32.	 Yuan Y, Xun G, Jia K, Zhang A. A multi-view deep learning 
framework for EEG seizure detection. IEEE J Biomed Health 
Inform. 2018;23(1):83–94. https://​doi.​org/​10.​1109/​JBHI.​2018.​
28716​78.

	33.	 Zhang Z, Liu Q, Wang Y. Road extraction by deep residual u-net. 
IEEE Geosci Remote Sens Lett. 2018;15(5):749–53.

	34.	 Zhang Z, Wang Y, Liu Q, Li L, Wang P. A CNN based functional 
zone classification method for aerial images. In: 2016 IEEE inter-
national geoscience and remote sensing symposium (IGARSS). 
pp. 5449–52. 2016. https://​doi.​org/​10.​1109/​IGARSS.​2016.​77304​
19.

	35.	 Zhao J, Fang Y, Li G. Recurrence along depth: deep convolutional 
neural networks with recurrent layer aggregation. Adv Neural Inf 
Process Syst. 2021;34:10627–40.

	36.	 Zhuang L, Zhang Z, Wang L. The automatic segmentation of 
residential solar panels based on satellite images: a cross learn-
ing driven U-Net method. Appl Soft Comput. 2020;92: 106283.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TGRS.2011.2136381
https://doi.org/10.1109/TGRS.2011.2136381
https://doi.org/10.5194/isprs-archives-XLII-4-W9-339-2018
https://doi.org/10.5194/isprs-archives-XLII-4-W9-339-2018
https://doi.org/10.1109/JSTARS.2020.3023549
https://doi.org/10.1109/JSTARS.2020.3023549
https://doi.org/10.1080/2150704X.2017.1331053
https://doi.org/10.1080/2150704X.2017.1331053
https://doi.org/10.1016/S0031-3203(03)00170-5
https://doi.org/10.1016/S0031-3203(03)00170-5
https://doi.org/10.1016/J.ISPRSJPRS.2017.11.014
https://doi.org/10.1016/J.ISPRSJPRS.2017.11.014
https://doi.org/10.1109/TIP.2021.3073660
https://doi.org/10.1109/TIP.2021.3073660
https://doi.org/10.3390/rs13030465
https://doi.org/10.3390/rs13030465
https://doi.org/10.3390/s20072064
https://doi.org/10.1016/j.jtte.2016.05.005
https://doi.org/10.1016/j.jtte.2016.05.005
https://doi.org/10.3390/rs11212499
https://doi.org/10.1109/JBHI.2018.2871678
https://doi.org/10.1109/JBHI.2018.2871678
https://doi.org/10.1109/IGARSS.2016.7730419
https://doi.org/10.1109/IGARSS.2016.7730419

	Road Network Detection from Aerial Imagery of Urban Areas Using Deep ResUNet in Combination with the B-snake Algorithm
	Abstract
	1 Introduction
	1.1 Related work

	2 Methodology
	2.1 U-Net
	2.1.1 Residual Unit
	2.1.2 Deep ResUnet
	2.1.3 Loss Function

	2.2 Region Merging
	2.3 B-spline Snake
	2.4 Minimisation Algorithm

	3 Experiments and Results
	4 Data Collection and Pre-processing
	4.1 Training
	4.2 Augmentation
	4.3 Model architecture
	4.4 Training schedule
	4.5 Inference

	5 Conclusion
	Acknowledgements 
	References


