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Chapter 1

Research Motivation

1.1 Foreword

The research presented in this thesis sets out to follow a data-motivated approach to mod-
elling interest rate dynamics. The data informing model construction includes interest
rate index prices namely the London Inter-Bank Offer Rate (LIBOR), Secured Overnight
Funding Rate (SOFR), Effective Fed Funds Rate (EFFR) as well as corresponding fu-
tures contract prices and options on those futures. The initial goal of the research was
to find a model that simultaneously reflects the empirical behaviour of the LIBOR index
and risk-neutral dynamics inferred from corresponding futures and options on futures. The
outcome of the research is a methodological contribution to empirical data analysis and a
new modelling approach motivated by empirical observation of the new SOFR benchmark
rate.

Initial data exploration suggested that the empirical behaviour of LIBOR evolves over
time and is possibly subject to regular regime changes. This observation led to the devel-
opment of a particle filter which can adapt and evolve an estimated posterior distribution
to streaming data. The adaptation is achieved by enriching a standard particle filter with
a genetic algorithm. The particle filter, extensively tested using simulated data, is able to
rapidly detect regime changes including different stochastic volatility states.

Analysis of real data using the new particle filter as well as the emergence of the Se-
cured Overnight Financing Rate (SOFR) as a replacement for LIBOR led to a change in
understanding of what constitutes constructing an empirically driven model of financial
data. The perhaps subtle insight is that financial data does not necessarily follow any par-
ticular model, rather it does exhibit persistent statistical features which can be replicated
by models. In effect, it is possible to create a model which produces the same statistical
properties as empirical data, without necessarily being able to find stable model parameters
that statistically fit empirical data.

The primary feature observed in SOFR is jumps which coincide with Federal Open
Market Committee (FOMC) changes to the Fed Funds policy target rate. At the same
time forward rates associated with those rates evolve in a continuous diffusive fashion.
Reconciling these two features within one modelling framework was the inspiration behind
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the model proposed in this thesis.
The first versions of the proposed model are based on Gaussian dynamics but also

facilitate model-free estimation, under certain assumptions, of forward states from futures.
Analysis of the forward states suggests the presence of non-Gaussian higher-order moments,
a statistical feature which motivates the addition of stochastic volatility to the model. More
specifically, the model is extended with stochastic volatility dynamics. This extension also
allows for calibration to interest rate options which imply excess leptokurtosis for risk-
neutral dynamics, usually characterised as the implied volatility smile. The rest of this
section outlines the motivation, background and original contributions of each phase of the
research.

1.2 Particle Filter With Accelerated Adaptation

In an ideal world, using a well-specified model entails estimating the model parameters
from historical data, and then applying the model with these parameters going forward,
i.e. out of sample. Indeed, the bulk of the empirical academic literature in finance takes
this approach. However, practitioners’ use of models, in particular for the pricing and risk
management of derivative financial products relative to observed prices for liquidly traded
market instruments, typically tends to depart from this ideal. Primacy is accorded to
model calibration over empirical consistency, i.e., choosing a set of liquidly traded market
instruments (which may include liquidly traded derivatives) as calibration instruments,
model parameters are determined so as to match model prices of these instruments as
closely as possible to observed market prices at a given point in time. Once these market
prices have changed, the model parameters (which were assumed to be constant, or at the
most time–varying in a known deterministic fashion) are recalibrated, thereby contradicting
the model assumptions. Legalising these parameter changes by expanding the state space
(e.g. via regime–switching or stochastic volatility models) shifts, rather than resolves, the
problem: for example in the case of stochastic volatility, volatility becomes a state variable
rather than a model parameter and can evolve stochastically, but the parameters of the
stochastic volatility process itself are assumed to be time–invariant. The limits of increasing
model complexity are determined by a combination of mathematical tractability and the
practicality of models. The result is a certain disparity between empirical research and how
models are used in practice. Proposed in this light is a practically motivated methodology
in the form of an adaptive particle filter which can rapidly detect discrepancies between the
assumed model and data including parameter changes and model misspecification.

Particle filtering is a sequential Monte Carlo method which has become popular for its
flexibility, wide applicability and ease of implementation. The origin of the particle filter is
widely attributed to Gordon, Salmond and Smith (1993) and theirs has remained the most
general filtering approach. It is an online filtering technique ideally suited for analysing
streaming financial data in a live setting. It seeks to approximate the posterior distribution
of latent (unobserved) dynamic states and/or model parameters by sets of discrete sample
values, where these sampled values are called particles. For a more comprehensive intro-
duction to particle filtering see Chen et al. (2003) for a general introduction and historical
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perspective; Johannes and Polson (2009), Lopes and Tsay (2011), and Creal (2012) for
reviews related to finance; Andrieu, Doucet, Singh and Tadic (2004), Cappé, Godsill and
Moulines (2007), Chopin, Iacobucci, Marin, Mengersen, Robert, Ryder and Schäfer (2011),
Kantas, Doucet, Singh and Maciejowski (2009), and Kantas, Doucet, Singh, Maciejowski
and Chopin (2015) for parameter estimation techniques. The theoretical perspective is
outlined by Del Moral and Doucet (2014) and covered in depth in Del Moral (2004, 2013).

Basic particle filter algorithms suffer from particle impoverishment, which can be broadly
described as the increase in the number of zero-weighted particles as the number of obser-
vations increases, resulting in fewer particles available for the estimation of the posterior. A
key distinguishing feature of most contemporary particle filters is the approach taken to deal
with the problem of particle impoverishment and it continues to be a focus of effort from
researchers. A variety of techniques have been proposed as a solution, the main approaches
are the use of sufficient statistics as per Storvik (2002), Johannes and Polson (2007), Polson,
Stroud and Müller (2008), and Carvalho, Johannes, Lopes and Polson (2010); maximising
likelihood functions as per Andrieu, Doucet and Tadic (2005) and Yang, Xing, Shi and
Pan (2008); and random perturbation or kernel methods as per West (1993a, 1993b), Liu
and West (2001), Carvalho and Lopes (2007), Flury and Shephard (2009), and Smith and
Hussain (2012).

The idea behind random perturbation, initially proposed by Gordon et al. (1993) in
the context of the estimation of dynamic latent states, is that by introducing an artificial
dynamic to the static parameters, the point estimates become slightly dispersed, effectively
smoothing the posterior distribution and reducing the degeneracy problem. This comes at
a cost of losing accuracy as the artificial dynamic embeds itself into the estimation. Moti-
vated in part by this issue, Liu and West (2001) introduce a random kernel with shrinking
variance, a mechanism which allows for a smoothed interim posterior, but where the dis-
persion reduces in tandem with the convergence of the posterior distribution. The method
proposed by Flury and Shephard (2009) is another example of this approach, introducing a
perturbation to the SIR filter just prior to the resampling stage such that new samples are
drawn from an already smoothed distribution, avoiding damage to the asymptotic prop-
erties of the algorithm. A common theme of these approaches is the assumption that the
parameters are fixed over the observation period. However, particle filters have also been
applied to estimate regime–switching models, see for example Carvalho and Lopes (2007)
and Bao, Chiarella and Kang (2012). To this end, in this thesis, the idea of random pertur-
bation is adapted to a more general parameter detection filter, pursuing a similar objective
as Nemeth, Fearnhead and Mihaylova (2014),1 who develop a particle filter for the estima-
tion of parameters subject to dynamic changes. This type of problem is usually motivated
by tracking manoeuvring targets, perhaps an apt metaphor for a financial market model
requiring repeated recalibration of model parameters as time moves on.

The contribution of this research to the literature is the introduction of a particle filter
with accelerated adaptation designed for the situation where the subsequent data in online
sequential filtering does not match the model posterior filtered based on data up to a current
point in time. This covers cases of model misspecification as well as sudden regime changes

1See also Nemeth, Fearnhead, Mihaylova and Vorley (2012).
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or rapidly changing parameters. The proposed filter is an extension of on-line methods for
parameter estimation which achieve smoothing using random perturbation. The accelerated
adaptation is achieved by introducing a dynamic to the random perturbation parameter,
allowing particle–specific perturbation variance; this combines with re-selection to produce
a genetic algorithm which allows for rapid adaptation to mismatching or changing dynam-
ics in the data. The similarity between particle filtering and genetic algorithms has been
noted before, see for example Smith and Hussain (2012), who use genetic algorithm muta-
tion as a resampling step in the SIR filter. The particle filter is reinforced to detect and
rapidly adapt to any discrepancies between the model and realised dynamic by exploiting
random perturbations, in a sense taking the opposite direction of methods in the literature
which seek to control random perturbation in order to remove biases in the estimation of
parameters assumed to be fixed.

This approach leads to a useful indicator of when changes in model parameters are being
signalled by the data. The effectiveness of this heuristic measure is based on the notion
that in the case of perfect model specification no additional parameter learning would be
required. This indicator can provide useful information for characterising the empirical
underlying dynamics without using highly complex models (meaning models which assume
stochastic state variables where the simpler model uses model parameters). This allows for
the use of a more basic model implementation to gain insight into more complex models and
to make data–driven choices on how the simpler models might most fruitfully be extended.
For example, the indicator will behave quite distinctly for an unaccounted regime change
in the dynamic as opposed to an unaccounted stochastic volatility dynamic.

The particle filter extended with accelerated adaptation is described in detail in Chapter
2. The remaining chapters focus on overnight rates, particularly SOFR, motivated by the
emergence of SOFR as the new benchmark for US interest rates.

1.3 Reconciling discontinuous short rate and continuous for-
ward rates

As the Secured Overnight Funding Rate (SOFR) is currently in the process of becoming the
key Risk–Free Rate (RFR) benchmark in US dollars, interest rate term structure models
need to be updated to reflect this. Historically, interest rate term structure modelling has
been based on rates of substantially longer time to maturity than overnight, either directly
as in the LIBOR Market Model,2 or indirectly, in the sense that even models based on
the continuously compounded short rate (i.e., with instantaneous maturity)3 are typically
calibrated to term rates of longer maturities, with any regard to a market overnight rate
at best an afterthought. However, with SOFR this situation is reversed: The overnight
rate now is the primary market observable, and term rates (i.e., interest rates for longer
maturities) will be less readily available and therefore must be inferred (for example from
derivatives prices).

2See Miltersen, Sandmann and Sondermann (1997), Brace, Gatarek and Musiela (1997) and Musiela
and Rutkowski (1997).

3Of these, Hull and White (1990) is the most prominent example.
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Thus the empirical idiosyncrasies of the overnight rate cannot be ignored when con-
structing interest rate term structure models in a SOFR–based world, and more than
longer-term rates, these idiosyncrasies are driven by monetary policy. The dynamics of
both SOFR and the closely related and more established Effective Fed Funds Rate (EFFR)
are closely examined. Already, by simple inspection one sees that models, in which the
short rate evolves as a diffusion, can no longer be justified by empirical data. Instead, the
primary driver of the short rate is the piecewise flat behaviour of the Federal Open Market
Committee (FOMC) policy target rate. Concurrently, it is observed that the forward rates
associated with the policy target rate evolve in a more diffusive manner. Reconciliation of
these two features is one of the main research contributions of the model proposed in this
thesis.

Modelling the target rate may seem not quite reflective of reality since the FOMC sets a
target range rather than a specific rate. However, documentary and empirical evidence are
presented to show that the target rate continues to exist via the Interest on Excess Reserves
(IOER). The IOER acting as the target rate is a deliberate strategy by the Federal Reserve,
which has proven effective at keeping the EFFR near the policy target.

Prior to 2021, a prominent empirical feature of SOFR dynamics, and to a lesser degree
EFFR dynamics is the occurrence of large spikes. The spikes tend to occur at predictable
times on the last day of the month and particularly the end of quarter and end-of-year
dates. Not all spikes occur on the last day of the month, such as the extreme spike in
September 2019. An explanation provided by the Federal Reserve4 for the September 2019
spike is that it occurred on a day on which large corporate tax receipts and Treasury bond
expiries caused a sharp imbalance in demand and supply in the repo market. Both the
reasons given occur on dates easily obtainable in advance, therefore arguably this spike
also could be classified as occurring on a predictable date. Using a similar approach to
modelling the target rates, the model is extended to allow for spikes occurring on known
dates.

It is not the intent of this research to conduct an econometric study of EFFR or SOFR
dynamics. However, as an illustration, the model is calibrated to Fed funds and SOFR
futures to show that Fed funds futures anticipate target rate changes well, and SOFR
futures anticipate end–of–month spikes in SOFR to some extent5. For the latter, this is in
line with full econometric studies in the literature, see e.g. Krueger and Kuttner (1996),
Robertson and Thornton (1997) and Fontaine (2016).

The literature refers to jumps with deterministic jump times as stochastic discontinu-
ities, see for example Kim and Wright (2014), Keller-Ressel, Schmidt and Wardenga (2018),
Fontana, Grbac, Gümbel and Schmidt (2020). The nomenclature reflects the treatment of
discontinuities as extensions to an existing continuous stochastic model. The approach in
the herein proposed model is distinctly different in that the discontinuity is the basis of the
model for the short rate, while simultaneously the forward rates for maturities beyond the

4See Feds Notes link https://www.federalreserve.gov/econres/notes/feds-notes/what-happened-in-
money-markets-in-september-2019-20200227.html.

5While it is possible to extend the research to SOFR swaps, this is not in the scope of this research.
The interaction between forward term structure and FOMC meeting dates is best reflected in futures
instruments.

8



next scheduled jump evolve as a continuous stochastic process.
Specific to SOFR, Heitfield and Park (2019) model forward rates using a step function,

assuming that rates remain constant for all dates between FOMC meetings. This is a static
approach for the purposes of calibrating a piecewise flat term structure. More recently,
Andersen and Bang (2020) provide a SOFR–inspired general spike model to enable the
extension of derivative pricing models to spikes. In the model proposed in Chapter 2 of the
present dissertation, spikes at known times are included as a special case. However, the
main focus of this research is on short rate discontinuities at known times.

Modelling discontinuities in the short rate is also attempted by Piazzesi (2001), Piazzesi
(2005) and more recently by Backwell and Hayes (2022). In these references, the discontinu-
ities are modelled as a jump process directly on the short rate. Piazzesi (2001) and Piazzesi
(2005) are able to adapt the model to approximate jumps at known times by increasing
the jump intensity around specific dates. Backwell and Hayes (2022) introduce dynamics
of auxiliary state variables to model jumps in the continuously compounded short rate,
i.e., modelling the size of jumps at known and at random times as well as the intensity of
the random jump process. In contrast, in this dissertation the forward rate term structure
is directly modelled, reflecting changing expectations of future policy target rates. This
obviates the need for auxiliary state variables. Arguably, these market expectations evolve
diffusively, the more so at times when policy rate changes are signalled well in advance by
the central bank. The piecewise constant paths of the short rate are then a consequence of
policy target rate changes becoming effective only at central bank meeting dates (regularly
scheduled or convened at relatively short notice). All iterations of the model presented in
this dissertation fit naturally in the general arbitrage–free framework of Heath, Jarrow and
Morton (1992) (HJM) and lend themselves to principal component analysis of the forward
term structure dynamics, where the (correlated) model factors can be directly mapped to
central bank decision dates, or transformed (via rotation) into a set of independent HJM
driving factors.

Thus, a key contribution of this research is to demonstrate that changing policy target
rate expectations are the primary driver of empirical forward rate dynamics. This is directly
reflected by the model, by design and as a result of the data-driven approach taken in this
thesis. The link between the forward rate term structure and FOMC dates aligns the
model directly with the fundamental economic behaviour of evolving policy rate change
expectations. This alignment, upon the empirical estimation of the model, yields several
novel insights linking interest rate modelling to the economic behaviour of interest rate
markets as detailed in Chapters 3, 4 and 5.

Several other papers focus on adapting existing models to SOFR without considering
discontinuities. These include Mercurio (2018) who uses a deterministic SOFR–OIS spread
with a short rate model for the OIS. Lyashenko and Mercurio (2019) propose an extension
to the LIBOR Market Model to accommodate the in–arrears setting nature of term rates
related to SOFR and overnight benchmark rates in general. Skov and Skovmand (2021)
show that a three–factor Gaussian arbitrage–free Nelson/Siegel model is well suited for
the SOFR futures market, but they do not include the time series of SOFR itself in their
estimation.

The empirical and economic motivation for the first iteration of the model, presented
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in Chapter 3, is detailed in the next section.

1.4 Empirical Motivation

Monetary Policy and short rate Models

The first stochastic model of the short rate is attributed to Merton (1973), who employed
a single–dimension Brownian motion as the driving dynamic. At least on cursory visual
inspection, the empirical data at the time, see Figure 1.1, did not contradict the mathemat-
ically tractable Gaussian assumption of the model. The next major development came from
Vasicek (1977), adding mean reversion, a strong empirical feature of rate dynamics. Mod-
elling mean reversion also aligned with the notion of open market operations by the Federal
Reserve trading desk managing the rate around the monetary policy target. Cox, Ingersoll
and Ross (1985) (CIR) modified the dynamics of the continuously compounded short rate
by scaling the volatility by the square root of the short rate, ensuring the non-negativity of
interest rates. The next milestone in short rate modelling was an extension of the Vasicek
model with time-dependent drift by Hull and White (1990), allowing the model to be fitted
to an initial term structure of interest rates observed in the market — this was critical
for use of the model to price interest rate derivatives. Heath, Jarrow and Morton (1992)
developed the general framework into which all diffusion–based arbitrage–free interest rate
term structure models must fit.

Starting around 2015, significant changes to the implementation of monetary policy
have had a dramatic impact on the EFFR, resulting in a substantial divergence between
its empirical behaviour and the dynamic assumptions of short rate models. The changes
trace back to the 2008 financial crisis, prior to which monetary policy was administered
primarily by direct intervention in the Fed Funds market to maintain the EFFR close to
the target rate set by the FOMC. The approach relied on open market operations by the
Federal Reserve trading desk resulting in the EFFR gravitating around the target rate with
varying degrees of volatility.6

Open market operations are carried out by the Federal Reserve trading desk whose
trading goal is to maintain the EFFR near the target rate. This involves monitoring the
market and counteracting trades which move the EFFR away from the target, in essence,
micro–managing market liquidity. The 2008 financial crisis included a crisis in liquidity
and the ability of the Federal Reserve’s trading desk to maintain the EFFR near the target
rate significantly deteriorated. The trading desk did not have the means to counteract the
dramatic drain in the supply of desperately demanded capital.

This was acknowledged by the Federal Reserve7 as one of the factors considered when
switching to a target range, initially set between 0 and 25 basis points. The Federal Re-
serve’s strategy in response to the financial crisis centred around two key policies: near-zero
interest rates and quantitative easing. The phases of quantitative easing became known as
QE 1/2/3 and involved selling Treasury bonds and purchases of various credit risky assets8

6See Hilton (2005) for an analysis of factors impacting EFFR volatility related to open market operations.
7See Federal Open Market Committee (2000-2020) December 2008, page 9.
8Such as Agency Debt, Mortgage Backed Securities and Term Auction Facilities, see Binder (2010).
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Figure 1.1: Empirical daily EFFR changes and the history of short rate models

in a bid to boost liquidity and credit conditions. The Federal Reserve’s injection of liquidity
resulted in an environment of elevated excess reserves9. By historical standards, the rise
in excess reserves was extreme and without precedent. As can be seen in Figure 1.2, it
increased from under $2 billion in September 2008 to $1 trillion by November 2009, before
reaching a high of over $2.5 trillion in October 2015.

In October 2008, the Federal Reserve began paying IOER10 to help control the EFFR
in response to increasing excess reserves. It was thought at the time that the IOER should
act as a lower bound for the EFFR since no institutions should want to lend below this
rate. As such, effective from October 9 the IOER was set to 75 basis points, with the
EFFR target rate at 150 basis points. In the following days, the EFFR was set well below
the target rate, including some days below the IOER. On October 23, to lift rates closer
to the target, IOER was increased to 110 basis points, in response EFFR rates increased
but were still setting below the IOER. Other adjustments were made in November under
the assumption of IOER acting as a lower bound. However, with EFFR persisting to settle
well below the IOER it became clear the assumption was incorrect.

At the FOMC meeting immediately following the introduction of the IOER, it was noted
that institutions not eligible to receive IOER were willing to sell (lend) funds at rates below
the IOER.11 However, it was not until December 2008, when together with the introduction
of the target range, the IOER was set at the target range upper limit of 25 basis points
in recognition that due to unique circumstances the IOER was acting as an upper bound
for the EFFR. The large surpluses in excess reserves eliminated the demand for reserve
loans. Instead, the Fed Funds rate was driven by Government Sponsored Institutions,

9Excess reserves are capital reserves held by financial institutions including banks in excess of the
regulatory requirement

10See Federal Open Market Committee (2000-2020) October 2008, page 7.
11See Federal Open Market Committee (2000-2020) October 2008, page 2.
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Figure 1.2: Excess reserves balance history

which do not earn interest on reserve balances, lending their excess reserves below the
IOER to institutions that would then earn the difference between the Fed Funds rate and
the IOER. In effect, by paying the IOER in a market flooded with liquidity, the Federal
Reserve became the borrower, rather than the lender of last resort.

Plans for reversal of the post-financial crisis expansionary policy were formally laid out
at the FOMC September 2014 meeting as the Policy Normalization Principles and Plans.12

The aim of the normalisation strategy was to bring the EFFR back to normal levels and
reduce the securities held by the Federal Reserve, thereby unwinding the excess reserves
held by banks. Prior to the financial crisis, controlling the supply of reserves via open
market operations was a key tool in controlling the Fed Funds rate. However, the Federal
Reserve has adopted the view that with banks using reserves for liquidity more than prior
to the crisis, it might be hard to predict demand for reserves and therefore open market
operations would not be effective at precisely controlling the EFFR.13 Instead, the new
normal will constitute the Federal Reserve keeping excess reserves just large enough to
remain on the flat part of the demand curve, a prerequisite condition for the use of the
IOER to control the EFFR.

Thus the conditions in the Fed Funds market are dramatically different to when short
rate models were first conceived. The flood of liquidity in excess reserves, by construction
aimed at removing any supply–demand gradient, has removed most of the volatility from
the short rate of interest, with changes in the short rate being mainly driven by changes
in the IOER, leading to jumps at known times (the FOMC meeting dates). Forward rates
are implied by traded market instruments. However, they continue to exhibit volatility
as the evolution of market expectations of FOMC actions is priced into forward–looking
instruments such as Fed Fund futures.

12See Federal Open Market Committee (2000-2020) September 2014, page 3.
13See Federal Open Market Committee (2000-2020) November 2018, page 3.
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Figure 1.3: EFFR and FOMC target rate history

Effective Federal Funds Rate

In this section, the EFFR is examined by breaking it down into distinct components. A
comparison of EFFR and the Fed Funds target rate since the beginning of 2015, see Figure
1.3, demonstrates the low volatility in deviations of EFFR from the target rate. The target
rate therefore must be a major component of the EFFR dynamics. Another feature of Fed
Funds empirical data in the earlier part of five years covered by Figure 1.3 are end–of–
month downward spikes. These spikes used to occur as a result of regulations prescribing
the last day of the month as a measurement day for reporting regulatory capital, resulting
in a temporary imbalance in the demand–supply for excess reserve funds14.

It is instructive to deconstruct the EFFR rE(t) rate into the two components, discon-
tinuous at known times, and a residual such that:

rE(t) = rP (t) + ∆rZ(t) + ζ(t) (1.1)

The first component rP , the policy target rate is directly observable as the IOER rate.
The second component, ∆rZ the end–of–month spike, can be deduced from the data. Here
any changes to the rate on the last trading day of the month regardless of magnitude are
counted as spikes, a sufficient approach for the qualitative analysis in this section. The
third component ζ captures any residual noise in addition to the first two components. The
variance of the daily changes in each component, shown in Figure 1.4, is an indicator of
the relative contribution of each component. It is clear that over the 5 years of data used
to produce these results, the target rate is the main factor in EFFR dynamics, followed by
the end–of–month spikes, with only a small contribution from the residual.

The existence of mean reversion in the residual is examined by finding an approximate
Hurst exponent h for the time series of ζ. The Hurst exponent relates the variance of the

14See https://www.forbes.com/sites/jonhartley/2017/03/31/how-european-regulators-are-hindering-the-
feds-ability-to-raise-interest-rates.
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Figure 1.4: EFFR breakdown in vertical order (i) target rates (ii) end–of–month spikes (iii)
residual (iv) variance contribution

lagged difference to the lag size as follows:

Var
[
ζ(t+ τ)− ζ(t)

]
∼ τ2h (1.2)

A Hurst exponent value of 0.5 indicates a Brownian motion, h < 0.5 indicates presence of
mean reversion. For the residual noise time series, the estimate is h = 0.31, see Figure 1.5,
indicating mean reversion.

In summary, the empirical characteristics of EFFR break down into the following com-
ponents: piecewise flat target rates, followed by spikes occurring on known days and mean
reverting residual noise. The correlation between the three components is close to zero,
with the exception of a slightly negative correlation between the residual and the target
rates. The negative correlation is due to a small lag between target rate changes and EFFR
adapting the full magnitude of the change, temporarily changing the spread in the opposite
direction to the target rate change.

Secured Overnight Funding Rate

Shortly following the well–publicised LIBOR manipulation scandals, the Financial Stabil-
ity Board and Financial Stability Oversight Council highlighted one of the key problems
related to the reference rate to be the decline in transactions underpinning LIBOR and the
associated structural risks to the financial system.15 As argued by Schrimpf and Sushko

15See The Alternative Reference Rates Committee (2018), page 1.
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Figure 1.5: Variance for the difference of the residual noise time series for different lags, compared
to theoretical Hurst exponent values

(2019), partly to blame for the decline in interbank term lending is the inflated excess re-
serves discussed in the previous section.16 In response, the Federal Reserve convened the
Alternative Reference Rates Committee (ARRC)17 to explore alternative reference rates. In
June 2017, the ARRC formally announced the Secured Overnight Financing Rate (SOFR)
as the replacement for LIBOR. A key criterion for the choice was the large volume of trans-
actions behind SOFR, translating to it being more representative of the bank’s funding
costs and less susceptible to manipulation. The calculation of SOFR is based on overnight
repo transactions, which in 2017 averaged around $700b in daily transactions18 (compared
to less than $1b for US dollar LIBOR).

Official SOFR fixings have been calculated as far back as 2014 and can be seen in
comparison to the target rate in Figure 1.6. Three features stand out, firstly SOFR appears
to fluctuate around a stepwise function, suggesting that similarly to EFFR the Fed Funds
target rate plays an important role in the SOFR dynamic. Another aspect is that SOFR is
substantially more volatile than EFFR. A third feature is the prominence of spikes, most of
which, similarly to EFFR, occur on the last trading day of the month. The end–of–month
spikes are related to the measurement of dealers’ balance sheet exposures at month–end
for regulatory purposes. This single snapshot approach incentivises the management of
exposures around reporting dates, which as explained in Schrimpf and Sushko (2019) has
been resulting in increases in the SOFR rate on end–of–month dates. Therefore the main
components of SOFR can be characterised as follows, see Figure 1.7:

16This suggests an interesting causal link between the financial crisis, the Federal Reserve response and
the emergence of SOFR by linking the decline in LIBOR transactions to excess reserves.

17See https://www.newyorkfed.org/arrc.
18For details see The Alternative Reference Rates Committee (2018), page 7.
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Figure 1.6: SOFR and FOMC target rate history

rS(t) = rP (t) + ∆rZ(t) + ∆rJ(t) + ζs(t) (1.3)

Here rS(t) is the SOFR observation at time t, rP (t) the policy target rate, ∆rZ(t) the
end–of–month SOFR spikes, ∆rJ(t) spikes not occurring on end–of–month dates and ζs(t)
the residual. The spikes not occurring on the last day of the trading month are the most
prominent in terms of contribution to the net variance over the period. However, this is due
to only one very large spike occurring in September 2019. This particular spike occurred
on a day of large corporate tax payments and Treasury bond expiries, therefore it could
be argued that the date was predictable. The next largest contribution comes from the
end–of–month spike component, followed closely by the policy target rate component.

In contrast to EFFR, the contribution from the residual component is in the same order
of magnitude as the target rate component as well as the end–of–month component. Using
the same approach as for EFFR, the SOFR residual also exhibits strong mean reversion
with an estimated Hurst parameter h = 0.24, see Figure 1.8. In summary, the components
of SOFR mostly mirror the components of EFFR, but with different contributions to the
overall variance.

The first iteration of the model introducing piecewise constant short rate and continu-
ously diffusive forward rate dynamics is detailed in Chapter 3. A time-homogenous version,
allowing empirical estimation of the model states, is presented in Chapter 4. The next
section discusses the motivation behind a stochastic volatility extension to the model.

1.5 Extending the model with stochastic volatility

The first version of the model is set in an HJM framework with a piecewise constant
volatility function to produce dynamics which are simultaneously piecewise constant for
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Figure 1.7: SOFR variance breakdown in vertical order (i) target rates (iii) non-eom spike (iii)
end–of–month spikes (iv) residual (v) variance contribution

Figure 1.8: Variance for the difference of SOFR residual time series for different lags, compared
to theoretical Hurst exponent values

the short rate and continuous for the forward rates. The approach is inspired directly by
the empirical behaviour of overnight rates, namely the Fed Funds rate and SOFR. This
initial version of the model focused on introducing the piecewise constant volatility and
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Figure 1.9: Empirical factor states(blue) compared with a normal distribution(red) quantile-
quantile plots

did not include any consideration of the empirical dynamics of forward rates. However,
forward rate states are derived from daily calibration of the piecewise constant structure to
Fed Funds and SOFR futures.

To continue to build on the empirically inspired model the empirical dynamics of the
forward rate states are examined. The empirical evidence as well as practical implications
including calibration to options, both point to an extension with stochastic volatility and
mean reversion. Additionally, an update of the analysis in the previous phase shows that
the spikes and the overnight rate to target rate spread have become less relevant and are
therefore excluded, resulting in this extension being focused entirely on stochastic volatility
and mean reversion extension.

The forward rate states were derived from the initial version of the model assuming a
piecewise flat structure between FOMC dates without any assumptions regarding the driv-
ing dynamics. The forward rate states are factorised using principle component analysis
to produce the volatility parameter structure and empirical states of the driving factors.
The time series of these factor states allows for empirical assessment of the factors driving
forward rate state dynamics. This includes a measurement of the fourth moment (leptokur-
tosis) of daily changes in the factor state time series as shown in Figure 1.9.

The quantile-quantile (QQ) plots shown in Figure 1.9 compare the expected quantile
values for a normal distribution (red line) against the empirical value (blue dots). All three
factors exhibit clear leptokurtosis, with excess kurtosis of 63, 10 and 2 for the first three
factors respectively. The presence of excess kurtosis can be caused by various underlying
processes, stochastic volatility is a common and parsimonious modelling choice to reproduce
this feature.

One of the consequences of linking the model to FOMC dates is that some of the
empirical results have a direct economic interpretation. As detailed earlier, the first factor
focuses on policy rate changes at the upcoming FOMC meeting while the higher factors tend
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Figure 1.10: SOFR v FOMC target rate history May 2020 to August 2022

Figure 1.11: SOFR breakdown in vertical order (i) target rates (ii) SOFR-Target Rate spread
(iii) variance contribution

to focus on FOMC meetings beyond the next one. Excess kurtosis is notably highest for the
first factor, suggesting a link between high leptokurtosis and the next FOMC meeting. This
is consistent with evidence from interest rate options which imply higher stochastic volatility
for shorter expiry options. Anecdotally, interest rate market participants tend to focus on
the next FOMC meeting date and the Federal Reserve tends to focus on managing the
expectations related to the next FOMC date. This tends to make the expectations related
to the next FOMC date most susceptible to news and changing economic circumstances: a
feasible economic explanation for the highlighted excess kurtosis observation.
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Another important aspect to consider is the calibration to interest rate options. In
general calibration to interest rate options requires some degree of freedom to calibrate the
skewness and convexity of implied volatilities for a range of strikes. Interest rate options
also tend to imply a term structure of volatility, skewness and convexity for a range of
expiries and forward terms. The initial versions of the model already provide the ability to
control volatility term structure with different factors affecting different forward rate terms.
Embedding stochastic volatility into each factor provides the ability to calibrate convexity
and skewness19 with some control of the term structure of those features inherited from the
factor term structure of the original model.

Spikes have been a well-publicised feature of SOFR and reflect imbalances in the un-
derlying overnight repo market. Spikes used to occur regularly at end of the month and
occasionally on the non-end of the month dates. The initial analysis, based on data from
Jan 2014 to May 2020, showed that the SOFR rate variance was largely dominated by
spikes followed by an even contribution from the target rate and the SOFR spread to the
target rate. A significant SOFR spike in September 2019 motivated the Federal Reserve to
take action and effectively stabilise the future benchmark rate. Since that time as can be
seen in Figure 1.10 spikes are no longer a feature of SOFR. The variance contribution now
breaks down to changes in the target rate (around 99% of variance), with the remainder of
the variance explained by the SOFR to target rate spread, see Figure 1.11. Consequently,
the model in Chapter 5. focuses on modelling the target rate component.

The addition of stochastic volatility reflects empirical behaviour and is a critical com-
ponent for interest rate option calibration, particularly for away from the money strikes.
Mean reversion also reflects empirical behaviour but also controls the steepening of the
forward curve resulting from the risk-neutral drift in HJM. Heston/Hull-White inspired
stochastic volatility in an HJM framework fits very well into the piecewise continuous for-
mulation in the initial version of the model. Having each factor in the model driven by
stochastic volatility dynamics provides the ability to control the term structure of volatili-
ties, stochastic volatilities and correlation, providing ample flexibility to calibrate to options
across different strikes and expiries while at the same time reflecting key empirical features
of the underlying forward rates.

The final phase of the research continues to take the data-driven approach and extends
the model based on further consideration of both empirical time series data as well as
cross-sectional calibration to interest rate options. It is particularly influenced by develop-
ments in the market and empirical data over the course of 2021 and 2022. Examining the
empirical dynamics of the forward rate driving factors yields evidence of excess kurtosis,
which motivates a stochastic volatility extension of the model. The empirical behaviour
of SOFR is revisited to find that most recently it is driven almost exclusively by the Fed
Funds target rate. In addition to stochastic volatility, mean reversion is identified as an
important feature to include in the extended model.

The extended model endows each factor associated with target rate dynamics with
its own stochastic volatility and mean reversion dynamic inspired by the Heston/Hull-
White(HHW) model. In literature, Heston/Hull-White usually refers to Heston (1993)

19Skewness is impacted by the correlation of stochastic volatility to forward rate volatility.
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stochastic volatility equity models with an interest rate driven by a Hull and White (1990)
model, see for example Grzelak, Oosterlie and Weeran (2008). In this thesis, HHW refers to
an interest rate term structure model along the lines of Hull and White (1990), where the
deterministic volatility is replaced by a volatility process similar to the one used in Heston
(1993). Using a multifactor HHW model within the HJM framework, the preceding chapter
volatility functions are defined in such a way as to generate short rates which are constant
between jump dates, while forward rate evolve diffusively (now with a stochastic volatility
and mean reversion). It is demonstrated how this model has the flexibility required for the
calibration to interest rate options.

Several papers consider various empirical aspects of SOFR. Skov and Skovmand (2021)
propose a Nelson-Siegel model and demonstrate it can, to a certain degree of accuracy,
reflect SOFR futures prices, albeit without taking into account the piecewise constant
nature of the underlying SOFR rate. Andersen and Bang (2020) address SOFR spikes
in their proposed model also without considering the SOFR rate as being driven by the
piecewise constant target rate. Heitfield and Park (2019) consider the same piecewise term
structure for cross-sectional calibration to futures only and without considering SOFR or
SOFR forward rate dynamics. Backwell and Hayes (2022) (discussed in Section 1.3 above)
conduct an empirical estimation of their model on Sterling (GBP) time series data, where
the overnight rate benchmark is the Sterling Overnight Index Average (SONIA). The model
presented in Chapter 5 considers the empirical behaviour of SOFR, SOFR forward rates
implied from futures as well as cross-sectional calibration to both futures and options.

The proposed model performs well in cross-sectional calibration due to having a sufficient
amount of variables which control various aspects of the model’s behaviour. This allows
the model to be calibrated across different maturities, underlying futures accrual periods
and option strikes. This flexibility in the context of cross-sectional calibration is similar to
prominent models deployed in practice. The SABR model, introduced by Hagan, Kumar,
Lesniewski and Woodward (2002), can be calibrated to implied volatility convexity and
skew across strikes. However, this approach generally requires a new calibration per option
expiry (and swap/forward rate tenor). Short rate models, such as Hull and White (1990),
are usually calibrated to only co-terminal swaptions chosen to match an underlying trade20

and a singular strike per swaption. The BGM model introduced in Brace et al. (1997) is
well suited for simultaneously calibrating to at the money swaptions across expiries and
tenors. Most comparable in terms of the ability to calibrate across expiry, underlying tenor
and strike are stochastic volatility extensions to BGM, see for example Piterbarg (2015) or
Karlsson, Pilz and Schlögl (2017).

An analysis of the behaviour of options in the accrual period implied by the proposed
model is also presented. Interest in this behaviour is mostly driven by the practicalities of
adapting existing LIBOR-based modelling to SOFR and therefore requires casting option
behaviour in the accrual period to the behaviour of the dynamics of partially set forward
term rates. In terms of accrual period behaviour, under simplifying assumptions the model
produces behaviour similar to the volatility decay proposed in Lyashenko and Mercurio
(2019). However, the model presented in this thesis handles the case of partially set forwards

20For example call dates in a callable note.
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naturally and also provides more granular insight into the decay characteristics of implied
volatility within the accrual period, leading to arguably more realistic behaviour.

Additionally, the proposed model reveals a connection between forward rate empirical
behaviour and short rate mean reversion. In the HJM framework, mean reversion is em-
bedded a priori as a decay function of forward rate volatilities. The specification of the
HJM volatility in the model proposed in Chapter 5 includes both a decay function and a
piecewise constant component21. However, remarkably the piecewise component derived
directly from empirical data without any shape restrictions closely resembles the decay
function associated with mean reversion.

The rest of the thesis is organised as follows. Chapter 2 presents a novel version of the
particle filter enhanced by a genetic algorithm which results in a rapid adaptation to regime
changes. Chapter 3 introduces the model approach which reflects piecewise constant short
rates and continuously diffusive forward rates. The next version of the model, presented
in Chapter 4, is defined to be time-homogeneous to allow for empirical estimation of the
model states. The model is extended with stochastic volatility in Chapter 5. Final remarks
are given in Chapter 6.

21To impose a piecewise forward rate structure corresponding to FOMC meeting dates.
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Chapter 2

Particle Filter with Accelerated
Adaptation1

This chapter presents the construction of a particle filter, which incorporates elements
inspired by genetic algorithms, to achieve accelerated adaptation of the estimated posterior
distribution to changes in model parameters. Specifically, the filter is designed for the
situation where the subsequent data in online sequential filtering does not match the model
posterior filtered based on data up to a current point in time. The examples considered
encompass parameter regime shifts and stochastic volatility. The filter adapts to regime
shifts extremely rapidly and delivers a clear heuristic for distinguishing between regime
shifts and stochastic volatility, even though the model dynamics assumed by the filter
exhibit neither of those features.

The remainder of this chapter is organised as follows. Section 2.1 recalls the basic
particle filter construction. Section 2.2 iteratively presents the evolution of the particle
filter methodology based on the existing literature, culminating in the Liu and West (2001)
filter, which forms the starting point of the filter with accelerated adaptation. Section
2.3 presents the particle filter incorporating additional elements inspired by genetic algo-
rithms, adding these elements step by step and providing examples demonstrating their
effectiveness. Section concludes.

2.1 Particle filter

2.1.1 General framework

Consider a sequence of Markovian discrete time states x1:t = {x1, ..., xt} and discrete ob-
servations y1:t = {y1, ..., yt}. In general, particle filtering is concerned with the filtering

1This chapter is based on the paper Gellert and Schlögl (2021a) with Erik Schlögl contributing in a
supervisory capacity.
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problem characterised by state-space equations:2

xt+1 = f(xt, dt) (2.1)
yt = g(xt, vt) (2.2)

with dt and vt as independent random sequences in the discrete time domain. The transition
density of the state p(xt+1|xt) and the observation likelihood p(yt|xt) are obtained from
equations (2.1) and (2.2). The objective of particle filtering is the sequential estimation of
the posterior density p(xt|y1:t) which can be expressed in the recursive Bayesian setting:3

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(2.3)

where p(xt|y1:t−1) is the prior and is determined by the integral:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2.4)

p(yt|y1:t−1) is the evidence and is determined by:

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|y1:t−1)dxt (2.5)

The continuous posterior is approximated in the particle filter by a discrete random
measure {x(i)

t , π
(i)
t }Ni=1 composed of sample values of the state x(i)

t with associated weights
π

(i)
t , and N denoting the total number of particles4 as follows:

p(xt|y1:t) ≈
N∑
i=1

δ{x(i)
t =xt}

π
(i)
t (2.6)

where δ is the Dirac delta function.

2.1.2 Filtering for parameters with directly observed states

The general state-space framework is a combination of state and observation dynamics.
The observation dynamics are useful in problems which require modelling of observation
uncertainty, for example applications involving physical sensors. In empirical finance the
observation usually consists of a directly observed price, which often is assumed not have any
inherent observation uncertainty. It does not mean state uncertainty cannot be modelled
but here unobserved states are artefacts of the modelling assumptions rather than physical
quantities of the system — stochastic volatility is one such example.

In this chapter the focus is on estimation of only model parameters, in order to present
the approach in the simplest setting where states are assumed to be directly observed — by

2Using notation from Chen et al. (2003).
3See Chen et al. (2003) for derivation.
4See Li, Bolic and Djuric (2015).
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adapting the results in existing literature in the appropriate manner, the approach would be
straightforward to extend to the estimation of latent state variables. Begin with a derivation
of the recursive Bayesian framework below. Similarly to Chen et al. (2003), the last step of
the derivation relies on the assumption that the states follow a first-order Markov process
and therefore p(xt|x1:t−1) = p(xt|xt−1). Let θ represent the parameter set, the parameter
posterior is

p(θ|x1:t+1) =
p(x1:t+1|θ)p(θ)
p(x1:t+1)

(2.7)

=
p(xt+1, x1:t|θ)p(θ)
p(xt+1, x1:t)

(2.8)

=
p(xt+1|x1:t, θ)p(x1:t|θ)p(θ)

p(xt+1|x1:t)p(x1:t)
(2.9)

=
p(xt+1|x1:t, θ)p(θ|x1:t)

p(xt+1|x1:t)
(2.10)

=
p(xt+1|x1:t, θ)p(θ|x1:t)∫
p(xt+1|x1:t, θ)p(θ|x1:t)dθ

(2.11)

=
p(xt+1|xt, θ)p(θ|x1:t)∫
p(xt+1|xt, θ)p(θ|x1:t)dθ

(2.12)

The above formulation establishes a recursive relationship between sequential posteriors.
The particle approximation is based on the discretisation of θ(i) as shown below. Introducing
weight notation π(i)

t+1 := p(θ(i)|x1:t+1) and the un-normalised weight π̂(i)
t+1:

π
(i)
t+1 ≈

p(xt+1|xt, θ(i))π
(i)
t

N∑
i=1

p(xt+1|xt, θ(i))π
(i)
t

=
π̂

(i)
t+1

N∑
i=1

π̂
(i)
t+1

(2.13)

After initialisation a basic filtering algorithm consists of iterative application of two
steps to calculate the above approximation. The update step is the calculation of π̂(i)

t+1 for
all i, and the normalisation step obtains the posterior estimates π(i)

t+1.

2.2 Implementation and numerical results

From this point, the chapter follows an iterative approach to demonstrate the evolution
of particle filter methodology as it exists in the current literature. Each iteration consists
of a definition of a particle filter algorithm, followed by a simulation study with a focus
on deficiencies which are used to motivate the next innovation. Each incremental addition
to the filter algorithm aims to resolve the deficiency found in the previous step. Thus this
section focuses on already existing techniques, leading up to the next section which contains
the main contributions of this chapter. This incremental process is initialised with the
most basic algorithm and simulation model chosen to represent a minimal implementation
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of a particle filter. The choice of a simple simulation model makes available a known
posterior distribution, providing a benchmark for measuring the performance of the filter.
The Kolmogorov–Smirnov statistic is used to measure performance. Although this is not a
common choice, it is particularly useful for measuring performance against the benchmark,
as well providing an intuitive measure for demonstrating particle impoverishment.

2.2.1 Preliminaries

Observation process

Begin with a basic Gaussian stochastic process, defined by the stochastic differential equa-
tion

dxt = σdWt (2.14)

whereWt denotes a standard Wiener process. Discrete observations used for the simulation
study are generated using the Euler-Maruyama discretisation, i.e.

∆xt = xt − xt−1 = σ∆Wt (2.15)

The particle filter presented in this section will be concerned with estimating the posterior
of p(σt|x1:t) given a set of observations x1:t generated by the above process. Note the use
of subscript in σt to associate the estimate with data up to time t.
The transition density for this process is given by:

p(xt|xt−1, σ) =
1√

2πσ2
e
−∆xt

2

2σ2
t (2.16)

Benchmark posterior

Finding the posterior of σ from observations generated by the above process is equivalent
to finding the posterior distribution of the variance given a set of Gaussian increments ∆xt.
An established result, based on Cochran’s theorem5, states that the distribution of σ2

t is
obtained from the chi-square distribution with n−1 degrees of freedom; χ2

n−1 according to:

σ̂2
t n

σ2
t

∼ χ2
n−1 (2.17)

where σ̂2
t is the maximum likelihood estimator; σ̂2

t =
∑
t ∆x2

t
n with n the number of obser-

vations. The theoretical posterior can be written as:

p(σt|x1:t) = χ2
n−1

(
σ̂2
t n

σ2
t

)
(2.18)

with cumulative distribution function (CDF):

F (σt) =

σt∫
0

χ2
n−1

(
σ̂2
t n

σ2
t

)
dσt (2.19)

5See Cochran (1934).
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Measuring performance

Assessing the performance of the particle filter in the presence of a theoretical benchmark
amounts to measuring the distance between two posterior distributions with respect to
increasing number of particles and increasing number of observations. The Kolmogorov-
Smirnov (KS) statistic, which measures the maximum distance between CDFs, seems a
natural choice. However, it is not commonly used in the literature, with Djuric and Míguez
(2010) providing one of the few examples of usage related to the particle filter. Define the
estimated CDF as

F ∗(σt) =
∑
i

I
(σ

(i)
t ≤ σt)

π
(i)
t .

The KS statistic measures the maximum distance between the theoretical F (σt) and esti-
mated posterior F ∗(σt):

KS = sup
σt
|F ∗(σt)− F (σt)| (2.20)

It must be stressed that this approach is limited in use for this specific case due to the avail-
ability of a known posterior. Within this limitation, it is a simple and effective approach for
demonstrating convergence, as well as demonstrating the issue of particle impoverishment;
including the efficacy of the Liu and West filter for resolving it.

Convergence

Convergence has been the subject of significant research and a wide range of results exist in
the literature. For detailed theoretical analysis see Chopin (2004), Del Moral and Doucet
(2014), Douc and Moulines (2007) and Doucet and Johansen (2009). For a comprehensive
survey of convergence results refer to Crisan and Doucet (2002). The present chapter
employs numerical testing of expected convergence results as a means to assess particle
filter performance. The numerical tests are based on the KS statistic relying on the basic
assertion that convergence of the KS statistic implies convergence of the estimated posterior
to the benchmark distribution:

sup
σt
|F ∗(σt)− F (σt)| −−−−→

N→∞
0 =⇒ F ∗(σt) −−−−→

N→∞
F (σt) (2.21)

Additionally, the KS statistic is used to assess convergence with respect to the number of
observations, where it proves to be an effective indicator of a known issue with particle
filters better known as particle impoverishment6.

2.2.2 Basic Filter (SIS)

A basic filtering algorithm consists of initialisation followed by iterative application of two
steps corresponding to (2.13). It is essentially an adaptation of the filter known as sequen-
tial importance sampling (SIS) for the detection of a static parameter. A filter for dynamic

6See Chen et al. (2003) p. 26 for an introduction to particle impoverishment.
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Figure 2.1: KS statistic for increasing number of particles (logarithmic scales)

state variables also would include a draw from the state variable transition kernel, see Chen
et al. (2003). The update step is the calculation of π̂(i)

t+1 for all i, and the normalisation
step obtains the posterior estimates π(i)

t+1. The algorithm is defined as follows:

1: Initilisation For each particle; draw N particles σ(i)
0 ∼ U(a, b) and π(i)

0 = 1
N

2: Sequentially for each observation:
2.1: Update For each particle update weight π̂(i)

t = π
(i)
t p(xt|xt−1, σ

(i)
t )

2.2: Normalisation For each particle π(i)
t =

π̂
(i)
t∑
π̂

(i)
t

The performance of the filter is tested numerically by rerunning it with an increasing num-
ber of particles given a fixed set of observations, and recording the KS statistic for each
run. The results are presented in Figure 2.1, showing the value of the KS statistic with
respect to the number of particles, both in log-space. Although convergence is evident, the
most prominent aspect of the results is instability as N → ∞. The instability indicates
that while there is an overall convergence trend, incremental increases in the number of
particles result in significant noise in the KS statistic. To better understand the reason
behind the instability, the theoretical (2.18) and the estimated posterior (2.6) PDF and
CDF are compared visually for a small number of particles. The PDF comparison is shown
in Figure 2.2. Each vertical line in the plot represents a particle weight π(i)

t and is shown
against the theoretical posterior7. The scaled comparison demonstrates a very good corre-
spondence between the estimated and theoretical shape of the PDF. It is also evident that
the estimation points are unevenly distributed, reflecting the randomly initialised particle
locations. The estimated and theoretical CDFs are compared in Figure 2.3. The KS statistic
corresponds to the maximum vertical distance between the two plots. Intuitively it appears
that the vertical distance between the CDFs is related to the horizontal distance between
adjacent estimation points, identifiable in the CDF as the end points of each piecewise flat

7Note the estimate and theoretical posterior are shown at different scales as the scaling of the estimate
depends on the number of particles, only converging to the scaling of the theoretical posterior as N →∞.
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Figure 2.2: Theoretical (red, lhs) and estimated (black, rhs) σ (horizontal) posterior.

Figure 2.3: Theoretical (red) and estimated (black) σ (horizontal) posterior CDF.

interval. It follows that the maximum vertical distance, i.e the KS statistic, is related to
the maximum distance between adjacent estimation points. The random initialisation of
the estimation points means that the maximum distance between adjacent points does not
decrease monotonically as N →∞, resulting in the instability observed in the KS statistic.

2.2.3 Equal Spacing

The above reasoning leads to a trivial improvement: if the point density locations are
equally spaced the maximum distance between adjacent points will decrease monotonically
as N → ∞. Further, even spacing guarantees that this maximum distance is minimised
for any given number of particles8.The initialisation in the filtering algorithm is altered to
reflect equally spaced estimation points:

8This does not guarantee the optimal estimation point distribution with respect to the KS statistic, but
the improvement in performance is substantial.

29



Figure 2.4: KS statistic or increasing number of particles (logarithmic scales), random (grey) vs
equally spaced (black) distribution of estimation point densities

1: Initilisation For each particle; let σ(i)
0 = (b−a)i

N and π(i)
0 = 1

N
2: Sequentially for each observation:
2.1: Update For each particle update weight π̂(i)

t = π
(i)
t p(xt|xt−1, σ

(i)
t )

2.2: Normalisation For each particle π(i)
t =

π̂
(i)
t∑
π̂

(i)
t

The convergence test from the previous section is rerun with the above adjustment. The
result, shown in Figure 2.4, clearly demonstrates that this simple change has resulted in a
faster and more stable rate of convergence.9 10 The reason for the improvement is evident
in the PDF Figure 2.5 and CDF Figure 2.6 and confirms the assertion from the previous
section. The shape of the PDF is preserved at equally spaced intervals which allows closer
and more consistent alignment between the CDFs, resulting in the elimination of noise from
the convergence of the KS statistic.

A well known problem with the basic particle filter is that the number of particles with
non-zero weights can only decrease with each iteration11. Zero weights occur when the
estimated posterior probability at a particular estimation point falls below the smallest
positive floating point number available for the computing machine on which the filter
is implemented. To demonstrate the problem, the proportion of zero weighted particles
is plotted against the number of observations in Figure 2.7. This weight degeneration is a
problem particularly for detection of dynamic state variables where it essentially diminishes
the sample domain. In this case the problem is largely solved by introducing a resampling
step where the zero weight particles are replaced by sampling from the non-zero weight
particles according to their relative estimated probabilities. For detection of static model

9This is somewhat related to research focusing on sequential Monte Carlo using quasi-random rather
than pseudo-random draws, see for example Gerber and Chopin (2015).

10Notably the convergence is linear in log-space suggesting the form sup |F ∗(σ) − F (σ)| ≤ C
N

echoing
theoretical results for the convergence of mean square error, see Crisan and Doucet (2002), section V.

11See Chen et al. (2003) p. 26 for a good summary.

30



Figure 2.5: Theoretical (red, lhs) and estimated (black, rhs) σ (horizontal) posterior for equally
spaced estimation points

Figure 2.6: theoretical (red) and estimated (black) σ (horizontal) posterior CDF for equally spaced
estimation points

Figure 2.7: Proportion of zero weight particles with increasing number of observations for the SIS
filter in log-space
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parameters, simply resampling only removes the zero weight particles but does not resolve
the sample impoverishment problem. Because the model parameters are assumed to be
fixed, resampling simply concentrates more particles on the same (diminishing) number of
estimation points. The resolution of this issue for static parameters will be demonstrated
over the next two sections.

2.2.4 Resampling: SIR Filter

The first step to reducing particle impoverishment is to redistribute the particles according
to the current posterior estimate, a technique called sample importance resampling (SIR).
This redistribution of particles replicates higher probability particles and discards any with
zero or very low weighting, thus resolving the problem highlighted in the previous section.
Various methods for resampling have been proposed in literature. This chapter uses sys-
tematic resampling, which can be found in the survey analysis of Hol, Schon and Gustafsson
(2006), where it is described as having the lowest discrepancy and reduced computation
complexity without deterioration of the estimate. The goal of the resampling step is to
transform the posterior distribution approximated by N particles of differing weights into
one approximated by N particles of equal weight. The resampling begins by generating N
ordered numbers:

uk =
(k − 1) + ũ

N
, with ũ ∼ U [0, 1), (2.22)

then reselecting the particles according to

σ
(k)
t = σ

(i)
t , with i s.t. uk ∈

[
i−1∑
s=1

π
(s)
t ,

i∑
s=1

π
(s)
t

)
(2.23)

The filtering algorithm is adjusted to include the resampling step:

1: Initialisation For each particle; let σ(i)
0 = (b−a)i

N and π(i)
0 = 1

N
2: Sequentially for each observation:
2.1: Update For each particle update weight π̂(i)

t = π
(i)
t p(xt|xt−1, σ

(i)
t )

2.2: Normalisation For each particle π(i)
t =

π̂
(i)
t∑
π̂

(i)
t

2.3: Resampling Generate a new set of particles:

p(σt|x1:t) ≈
N∑
i=1

δ{σ(i)
t =σt}

π
(i)
t −−−−−−→

resample
p(σt|x1:t) ≈

N∑
k=1

1

N
δ{σ(k)

t =σt}

As discussed, the above algorithm discards zero weighted particles (or, more accurately, is
likely to discard particles of very low weight), resolving the problem posed in the previ-
ous section. However, for static model parameter estimation, the particle impoverishment
persists, because resampling simply concentrates particles on the same estimation points.
Because the parameters are assumed to be fixed, their value does not change as it would
for dynamic state parameters. As the number of observations increases, the theoretical
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Figure 2.8: KS statistic for increasing number of observations for the SIR filter

posterior density becomes increasingly more concentrated around the maximum likelihood
estimate, in the limit approaching the Dirac delta measure. The key intuition to understand-
ing particle impoverishment is that the estimated posterior will concentrate the estimation
density on a single point after a finite number of observations rather than in the limit:
On each update of the weight π(i)

t the total weight becomes more and more concentrated
on the parameter value θ(i) of maximum likelihood given the observations, but for a finite
number of observations the parameter value of maximum likelihood does not necessarily
coincide with the “true” parameter of the data generating process, and for a finite number
of particles, the discretisation of the parameter space by the θ(i) will also mean that the
best possible θ(i) will not coincide with the exact “true” parameter. Therefore, in the limit,
the theoretical and estimated posterior will both be concentrated on a single point at dif-
ferent locations, with the estimate reaching this state after a finite amount of observations.
Once the estimate reaches this point the KS statistic is based on the one estimation point
(denote as σ∗) and equals max(1 − F (σ∗), F (σ∗)). As the theoretical posterior converges,
its PDF narrows until the single remaining estimation point is outside its numerically sig-
nificant domain; reflecting this the KS statistic approaches the maximum value of 1. This is
demonstrated numerically by running the particle filter over a large number of observations
and recording the KS statistic at each sequential estimate, as shown in Figure 2.8. The
KS statistic approaching 1 as the number of observations increases is an indicator of theo-
retical and particle filter posteriors diverging from each other as a consequence of particle
impoverishment. As an additional explanation, Figure 2.9 shows an example of a PDF for
an impoverished state of the particle filter, where the posterior is estimated by just four
particle locations. The example shows a state where the theoretical posterior has narrowed
as it converges. However, the spacing between the estimation points has not changed. This
will eventually lead to the posterior being estimated by a single point, which eventually will
fall outside of the theoretical posterior. One of the many approaches motivated by the
problem of particle impoverishment, initially proposed by Gordon et al. (1993), is to add
small random perturbations to every particle at each iteration of the filtering algorithm,
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Figure 2.9: Theoretical (red, lhs) and estimated (black, rhs) σ (horizontal) posterior demonstrat-
ing particle impoverishment.

that is

θt+1 = θt + ζt+1 (2.24)
ζt+1 ∼ N(0,Wt+1) (2.25)

where Wt+1 is a specified variance matrix. While this approach provides a framework for
addressing particle impoverishment, it does so at the cost of accuracy to the posterior
distribution. Any random perturbation to the fixed parameters introduces an artificial
dynamic resulting in potential overdispersion of the parameter estimate. For example, if
the variance Wt+1 of the random perturbation is constant, the constant value becomes
the minimum variance of the posterior estimate, i.e at some point the minimum variance
becomes larger than the variance of the theoretical posterior, almost exactly the opposite
effect to particle impoverishment. It is therefore desirable to have the perturbation variance
shrink in line with the posterior convergence such that it always remains only a relatively
small contributor to the estimation variance. One such approach which explicitly addresses
overdispersion is proposed by Liu and West (2001), and the literature refers to this as the
Liu and West filter.

2.2.5 Liu and West filter

To resolve the problem of over-dispersion, Liu and West (2001) put forward an approach
using a kernel interpretation of the random perturbation proposed by Gordon et al. (1993).
The idea of the kernel representation is that each parameter in the particle population exists
as a density instead of a single point. The overdispersion is resolved by linking the variance
of the kernel to the estimated posterior variance such that it shrinks proportionally to the
convergence of the estimated posterior. The practical application within the filter algorithm
is to draw the parameter from the kernel density for each particle at each iteration. The
kernel is expressed as a normal density N (σ|m,S) with meanm and variance S and replaces
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the Dirac delta density in equation (2.6):

p(σt|x1:t) ≈
N∑
i=1

π
(i)
t N (σ

(i)
t |m

(i)
t , h

2Vt) (2.26)

where Vt is the variance of the current posterior Vt = 1
N

∑
i

(σ
(i)
t − σt)2 and

m
(i)
t = cσ

(i)
t + (1− c)σt (2.27)

with c =
√

1− h2 and σt the mean of the current posterior. The filtering algorithm now
includes a kernel smoothing step where the posterior points are drawn from the kernel
defined in eq. (2.26):

1: Initialisation For each particle; let σ(i)
0 = (b−a)i

N and π(i)
0 = 1

N
2: Sequentially for each observation:
2.1: Update For each particle update weight π̂(i)

t = π
(i)
t p(xt|xt−1, σ

(i)
t )

2.2: Normalisation For each particle π(i)
t =

π̂
(i)
t∑
π̂

(i)
t

2.3: Resampling Generate a new set of particles:

p(σt|x1:t) ≈
N∑
i=1

δ{σ(i)
t =σt}

π
(i)
t −−−−−−→

resample
p(σt|x1:t) ≈

N∑
k=1

1

N
δ{σ(k)

t =σt}

2.4: Kernel smoothing For each particle apply σ(i)
t ∼ N (σ

(i)
t |m

(i)
t , h

2Vt)

Numerical results demonstrating the effectiveness of the Liu and West filter in reducing
particle impoverishment are shown in Figure 2.10. The KS statistic for the Liu and West
filter remains relatively constant as the number of observations increases, indicating that the
filter estimate convergence with respect to the number of observations is well aligned with
the theoretical posterior. The reason for the improvement is confirmed by a comparison
of the estimated posterior to the theoretical PDF, shown in Figure 2.11. The example
demonstrates the effectiveness of the kernel in estimating both the location and variance of
the theoretical posterior.

2.3 Parameter learning and change detection

This section continues to extend the particle filter, introducing techniques representing the
main research contribution of this chapter. The section begins by introducing a regime
shift to the Gaussian reference model in order to pose a more difficult filtering problem and
highlight the adaptive aspect of the Liu and West filter. It is shown that the adaptation
is a result of the combination of random perturbation and re-selection, forming a genetic
algorithm capable of adapting to parameter regime changes. After demonstrating the link
between adaptation speed and the size of the random perturbation, an extension to the
Liu and West filter which increases the kernel variance when required for adaptation is
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Figure 2.10: KS statistic for increasing number of observations SIR (grey) and Liu and West
(black)

Figure 2.11: Theoretical (red, lhs) and estimated (black, rhs) posterior for σ (horizontal) in the
Liu and West filter

proposed. This is achieved by exploiting the genetic algorithm embedded in the Liu and
West filter, thus allowing the size of parameter random perturbation to evolve as part of
the already existing process. The result is a filter capable of adapting to regime changes
and converging to the Liu and West filter when adaptation is not required. The capacity
of the filter to adapt to stochastic volatility is also illustrated. Finally, it is shown how
measuring the average adaptation at each iteration can provide useful information which
can be used to distinguish between different dynamics of the underlying data.

2.3.1 Regime shift

Consider a model where at time t = t∗ there is a change in volatility,

dxt = (σ1It<t∗ + σ2It≥t∗)dWt (2.28)
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Up to the time t∗, the above model is identical to (2.14) and the particle filter performs as
demonstrated in the previous section. In the case of the Liu and West filter, the range of the
posterior support will narrow in line with the converging theoretical posterior as the number
of observations increases up to time t∗. At the point t = t∗, two situations are possible,
the new value σ2 could lie either inside or outside the range of the estimated posterior. In
the case that it is inside, that is there are at least two particles such that σ(i)

t ≤ σ2 ≤ σ(j)
t ,

the weights of the particles closest to σ2 will start to increase and eventually the filter will
converge to the new value. However, in order to develop and illustrate a genetic algorithm
approach, this section will focus on the opposite case, where σ2 is outside the range of the
posterior. This situation will be labelled the adaptation phase.

In general, the posterior density, given enough observations, tends to converge around
the parameter values set in the simulation used to generate the observations. However, this
is not possible during the adaptation phase, since by definition the range of the posterior
does not encompass the new parameter value. In this case, the posterior will converge to
the point closest to the new value σ2, located at the boundary of the existing posterior
range. In the limit, all density will be focused on the single particle closest to σ2, that is:

π
(i)
t

p−→ 1 for i s.t. |σ2 − σ(i)
t | = inf

1≤j≤N
[|σ2 − σ(j)

t |] (2.29)

The presence of random perturbation, in the form of the kernel used in the Liu and West
filter, allows the posterior interval to expand and therefore decrease the distance of the
interval boundary to σ2. That is, there is a non-zero probability that the random perturba-
tion results in at least one of the new particle locations falling outside the current estimation
boundary. This is especially the case during the adaptation phase, where posterior density
is accumulated at the boundary. This translates to

P ( inf
1≤j≤N

[|σ2 − σ̃(j)
t |] < inf

1≤j≤N
[|σ2 − σ(j)

t |]) > 0, where σ̃
(j)
t ∼ N (σ

(j)
t |m

(j)
t , h2Vt) (2.30)

The random perturbation combines with the re-selection to form a genetic algorithm capable
of adapting the posterior to the new value by expanding the posterior such that inf[|σ2 −
σ

(j)
t |]→ 0, thereby allowing the posterior to shift towards σ2. In the Liu and West filter, the

kernel variance Vt is determined by the variance of the particles, which tends towards zero
as the particles become increasingly concentrated around the boundary. The variance is
prevented from reaching zero by the random expansion of the boundary, giving the posterior
incremental space and preventing collapse to a single point. The net result is a situation
where the two forces tend to balance out resulting in a relatively steady rate of boundary
expansion towards σ2. This is evident in Figure 2.12: after the regime change there is a
slow and relatively constant change in the estimate in the direction of σ2.

The adaptation demonstrated in this section stems from the combination of random
perturbation via the kernel and re-selection, creating a type of genetic algorithm. Although
adaptation is evident, it is very slow; the Liu and West filter was designed to smooth the
posterior without causing overdispersion, and not to rapidly adapt to model parameter
regime changes.
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Figure 2.12: Estimated expected value (black) vs simulation input value (red) of σt with regime
change after 10,000 steps for the Liu and West filter

2.3.2 Controlling the rate of adaptation

Equation (2.30) implies that the speed of adaptation is directly related to the speed of
expansion of the posterior interval, which in turn is driven by the size of the kernel variance
Vt. In the case of the Liu and West filter, the adaptation is slow since the variance of
the kernel depends on the variance of the posterior and therefore shrinks in line with the
convergence of the posterior. To illustrate the relationship between the size of the random
kernel variance and adaptation speed, an additional noise term φ is introduced into the
kernel used by Liu and West as follows:

p(σt|x1:t) ≈
N∑
i=1

π
(i)
t N (σ

(i)
t |m

(i)
t , h

2Vt + φ) (2.31)

The filtering algorithm becomes:

1: Initialisation For each particle; let σ(i)
0 = (b−a)i

N and π(i)
0 = 1

N
2: Sequentially for each observation:
2.1: Update For each particle update weight π̂(i)

t = π
(i)
t p(xt|xt−1, σ

(i)
t )

2.2: Normalisation For each particle π(i)
t =

π̂
(i)
t∑
π̂

(i)
t

2.3: Resampling Generate a new set of particles:

p(σt|x1:t) ≈
N∑
i=1

δ{σ(i)
t =σt}

π
(i)
t −−−−−−→

resample
p(σt|x1:t) ≈

N∑
k=1

1

N
δ{σ(k)

t =σt}

2.4: Kernel smoothing For each particle apply σ(i)
t ∼ N (σ

(i)
t |m

(i)
t , h

2Vt + φ)

Figure 2.13 and Figure 2.14 show filtering results with the above change for varying levels
of the noise term φ. The key aspect of the results is that increasing φ indeed increases the
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Figure 2.13: Comparing estimated posterior expected value (black) vs simulation input value
(red) of σt, when there is a regime change after 10,000 steps, using the Liu and West filter with
additional noise, for different values of φ (i) 0.1N (ii) 1.0N (iii) 10.0N (iv) 100.0N

adaptation speed, but at the cost of significant additional noise in the prediction.12

The regime shift, applied to the dynamics behind Figures 2.13 and 2.14, provides a test
case with a large sudden change at a specific point in time. As another test case, Figure
2.15 and Figure 2.16 considers a basic stochastic volatility model. In contrast to a regime
shift, changes in the model volatility are driven by a diffusion, testing the capability of the
filter to detect continuous, rather than sudden discrete changes. The process is defined by
the following system of SDEs:

dxt = αtdW1,t (2.32)
dαt = νdW2,t (2.33)

where W1,t and W2,t denote independent standard Wiener processes.

The filter is applied to the stochastic volatility model without any alteration from the
setup used to detect regime changes. As is apparent in particular in Figure 2.15(ii), some
degree of additional noise seems to help in the detection of the underlying value of α.
However, similarly to the regime shift, too much noise simply translates to a noisy estimate.
These results also highlight the resemblance to a filter configured to detect only a stochastic
volatility model, i.e., a filter set up to detect the state parameter α given a value of ν13. Each
iteration would contain an additional step where each particle’s α(i) is updated according
to the stochastic volatility dynamic. In this case, the additional noise parameter φ acts in
a similar fashion to the stochastic volatility parameter ν. The difference in the approach
highlights one of the motivating factors behind the method, the approach being presented

12Figure 2.12 results are equivalent to the above filter if one sets φ = 0.
13See Bao et al. (2012), Casarin (2004) for examples of stochastic volatility model detection.
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Figure 2.14: Comparing the change in estimated posterior expected value of σt, where there is a
regime change after 10,000 steps, using the Liu and West filter with additional noise, for different
values of φ (i) 0.1N (ii) 1.0N (iii) 10.0N (iv) 100.0N

Figure 2.15: Comparing estimated posterior expected value (black) vs simulation input value
(red) of α in the stochastic volatility model, using the Liu and West filter with additional noise, for
different values of φ (i) 0.1N (ii) 1.0N (iii) 10.0N (iv) 100.0N

does not have to assume prior knowledge of the underlying model, rather it can act as a
gauge for empirical assessment of data and with limited modelling assumptions can suggest
fruitful extensions toward more sophisticated models. In the regime shift example, the
noise parameter φ improved the adaptation speed at the cost of prediction noise. A high
level of φ is only desirable during the adaptation phase, at other times the ideal level of
φ would be zero. For the stochastic volatility example clearly there is some optimal level
of φ which achieves good filter performance without causing excessive noise. This is the
motivation for a methodology for automatically selecting the level of φ based on the data,
based on an examination of the behaviour of particles on the boundary of the posterior
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Figure 2.16: Comparing the change in estimated posterior expected value of α in the stochastic
volatility model, using the Liu and West filter with additional noise, for different values of φ (i) 0.1N
(ii) 1.0N (iii) 10.0N (iv) 100.0N

during the adaptation phase, which will be considered next.

2.3.3 Applying selection to the rate of adaptation

Results from the previous section show that the adaptation of the filter after a regime change
is driven by posterior boundary expansion resulting from random perturbation. During the
adaptation phase, there is a persistent concentration of density around the boundary of the
posterior closest to the new value. It is as though the particles seek to be as close as possible
to the new value and are pushing the posterior in this direction. Therefore the behaviour
of particles on the edge of the posterior should be quite different during the adaptation
phase than at other times. It remains to quantify this difference and use it to enhance the
performance of the filter.

One of the differences, already highlighted, is the concentration of posterior density
around the boundary during the adaptation phase. This is examined numerically by mea-
suring how much probability mass the update step moves into the pre-update tail of the
posterior. The measurement is made by first, before the update step, finding the lowest σ∗t
such that ∑

i

I
(σ

(i)
t ≥ σ∗t )

π
(i)
t ≤ p

when σ2 > sup[σ
(j)
t ] or the highest σ∗t such that∑

i

I
(σ

(i)
t ≤ σ∗t )

π
(i)
t ≤ p
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when σ2 < inf[σ
(j)
t ]. Following the update step, compute the amount of probability mass

which has moved beyond σ∗t , i.e. into the tail, using either
∑
i
I

(σ
(i)
t ≥ σ∗t )

π̂
(i)
t+1 when σ2 >

sup[σ
(j)
t ] or

∑
i
I

(σ
(i)
t ≤ σ∗t )

π̂
(i)
t+1 when σ2 < inf[σ

(j)
t ]. If the new cumulative density is higher

than p, it means that the density in the tail of the posterior has increased. If this measure
is persistently high through cycles of weight update and re-selection, it is a strong indicator
of regime change.

Indeed, Figure 2.17 generated with p = 0.05, reveals a notable increase in the weight
associated with the edge particles during the adaption phase. In the first case, the measure
persists at the maximum value of 1.0, reflecting the slow adaptation observed for this setting,
where for a substantial number of update steps all probability mass is shifted beyond σ∗t in
each step (i.e., because of the choice of small φ, the posterior moves toward the new “true
value” only in small increments). Consistent with the findings in the previous sections, the
speed of adaptation depends on the size of φ at the cost of noise in the results.14

Another quantity to consider is the size of the dispersion of each particle from the ap-
plication of the kernel. Define realised dispersion for each particle as the distance it has
moved from the current location due to the application of the kernel, denoted as |∆σ(i)

t |.
Consider the situation where all particles are in the same location, i.e the posterior exists
at one point. After the application of the kernel, it is obvious that the particles on the
edge of the posterior will have the highest realised dispersion. In the opposite situation
where the particles are very widely dispersed and the kernel variance is relatively small, the
relative position of the particle after application of the kernel will have minimal relation
with realised dispersion. Therefore the relation between realised dispersion and particle
location at the posterior boundary depends on the existing level of dispersion and relative
kernel variance. As already determined, during the adaptation phase the particles tend to
be very concentrated at the boundary, therefore are closer to the situation where they are
likely to exhibit a relation where particles located on the edges will tend to have higher
realised dispersion.

The combination of higher density and realised dispersion at the edge of the posterior
results in a selection bias of high realised dispersion particles during the adaptation phase.
This is verified numerically by recording the total realised dispersion

∑
i
|∆σ(i)

t | following

each re-selection step. The results are shown in Figure 2.18 and show a similar pattern to
the results in Figure 2.17, confirming the assertion.

The results so far have established a relationship between the value of φ and the adap-
tation speed, and a selection bias for particles with high realised dispersion during the
adaptation phase. Realised dispersion is a function of φ, which so far has been kept con-
stant, connecting the two results. Through its connection to realised dispersion, redefining

14Results for Figure 2.17 were generated with the identical filter configuration to the results shown in
Figure 2.13.
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Figure 2.17: Probability mass shifted beyond the 5% quantile on the edge of the posterior with
regime change after 10,000 steps, using the Liu and West filter with additional noise term φ equal
to (i) 0.1N (ii) 1.0N (iii) 10.0N (iv) 100.0N

φ to be non-constant will subject it to the same selection bias. To take advantage of this,
define φ(i) for each particle, initialised using φ(i) ∼ U(0, c). This way high values of φ
leading to high dispersion will tend to be selected during the adaptation phase increasing
adaptation speed. Conversely, low values of φ will tend to be selected when adaptation is
not required, reducing noise. The filtering algorithm now becomes:

1: Initialisation For each particle; let σ(i)
0 = (b−a)i

N , π(i)
0 = 1

N and φ(i) ∼ U(0, c)
2: Sequentially for each observation:
2.1: Update For each particle update weight π̂(i)

t = π
(i)
t p(xt|xt−1, σ

(i)
t )

2.2: Normalisation For each particle π(i)
t =

π̂
(i)
t∑
π̂

(i)
t

2.3: Resampling Generate a new set of particles:

p(σt|x1:t) ≈
N∑
i=1

δ{σ(i)
t =σt}

π
(i)
t −−−−−−→

resample
p(σt|x1:t) ≈

N∑
k=1

1

N
δ{σ(k)

t =σt}

2.4: Kernel smoothing For each particle apply σ(i)
t ∼ N (σ

(i)
t |m

(i)
t , h

2Vt + φ(i))

The algorithm is tested with the initial distribution set such that the expected value of φ
for each test is equivalent to the value set for the tests in the previous section. The results,
shown in Figure 2.19 and Figure 2.20, when compared to Figures 2.13 and 2.14, reveal a
significant reduction in noise coupled with an increase in the speed for charts (i) and (ii)
but a decrease for charts (iii) and (iv). The reduction in noise results from a selection bias
for low φ particles when not in the adaptation phase as discussed above. Conversely, the
increase in adaptation speed for charts (i) and (ii) results from a selection bias towards
higher φ particles during the adaptation phase. The slowdown in adaptation speed ob-
served in charts (iii) and (iv) occurs because before the adaptation phase high φ particles
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Figure 2.18: Realised dispersion after re-selection for simulated data with regime change after
10,000 steps, using the Liu and West filter with additional noise term φ equal to (i) 0.1N (ii) 1.0N (iii) 10.0N
(iv) 100.0N

Figure 2.19: Comparing estimated posterior expected value (black) vs simulation input value
(red) of σt with regime change after 10,000 steps, using the Liu and West filter with additional
noise parameter φ(i) ∼ U(0, c) with c set to (i) 0.2N (ii) 2.0N (iii) 20.0N (iv) 200.0N

tend to be eliminated from the particle population by the selection process. The filter is
also applied to the stochastic volatility model with results shown in Figure 2.21 and Figure
2.22. Similarly to the results for the regime change, there is an elimination of noise from
the results. However, particularly for charts (ii), (iii) and (iv), the results are very similar
to each other indicating that the selection process has converged on a similar level of α,
highlighting the ability of the filter to find the correct level of additional noise corresponding
to the constant stochastic volatility parameter.
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Figure 2.20: Comparing the change in estimated posterior expected value (black) vs simulation
input value (red) of σt with regime change after 10,000 steps, using the Liu and West filter with
additional noise parameter φ(i) ∼ U(0, c) with c set to (i) 0.2N (ii) 2.0N (iii) 20.0N (iv) 200.0N

Figure 2.21: Comparing estimated expected value (black) vs simulation input value (red) of
α in the stochastic volatility model for the Liu and West filter with additional noise parameter
φ(i) ∼ U(0, c) with c set to (i) 0.2N (ii) 2.0N (iii) 20.0N (iv) 200.0N

The above algorithm takes advantage of the existing selection process to increase the
adaptation speed when required and reduce noise in the results when adaptation is not
required. The detection of an increase in adaptation speed during the adaptation phase is
now embedded in the algorithm via the selection of the noise term. However, the speed of
adaptation remains relatively constant, bounded by the range of the initial distribution of
φ, which can only shrink as a result of the selection process. The next section describes a
method which overcomes this limitation and achieves accelerated adaptation.
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Figure 2.22: Comparing the change in estimated posterior expected value (black) vs simulation
input value (red) of α in the stochastic volatility model, using the Liu and West filter with additional
noise parameter φ(i) ∼ U(0, c) with c set to (i) 0.2N (ii) 2.0N (iii) 20.0N (iv) 200.0N

2.3.4 Accelerated adaptation: selectively increasing the rate of adapta-
tion

Adaptation in a particle filter is driven by a genetic algorithm resulting from a combina-
tion of selection and random perturbation. The speed of the adaptation is bounded by the
size of the parameter φ, which sets the level of variance of the random perturbation via
the smoothing kernel. To increase the speed of, or accelerate, the rate of adaptation, the
parameter φ needs to constantly increase during the adaptation phase. The idea to allow
φ itself to adapt this way, is to use the already existing genetic algorithm by subjecting
φ to both selection and random perturbation. The effectiveness of selection on φ has al-
ready been demonstrated in the last section. In this section the genetic algorithm for φ is
completed by adding a random perturbation; φ(i)

t+1 = φ
(i)
t e

∆φ
(i)
t , where ∆φ

(i)
t ∼ N (0, γ). To

reflect this, the algorithm is altered as follows:

1: Initialisation For each particle; let σ(i)
0 = (b−a)i

N , π(i)
0 = 1

N and φ(i)
0 ∼ U(0, c)

2: Sequentially for each observation:
2.1: Update For each particle update weight π̂(i)

t = π
(i)
t p(xt|xt−1, σ

(i)
t )

2.2: Normalisation For each particle π(i)
t =

π̂
(i)
t∑
π̂

(i)
t

2.3: Resampling Generate a new set of particles:

p(σt|x1:t) ≈
N∑
i=1

δ{σ(i)
t =σt}

π
(i)
t −−−−−−→

resample
p(σt|x1:t) ≈

N∑
k=1

1

N
δ{σ(k)

t =σt}

2.4: Noise parameter perturbation For each particle; φ(i)
t = φ

(i)
t−1e

∆φ
(i)
t where ∆φ

(i)
t ∼ N (0, γ)

2.5: Kernel smoothing For each particle apply σ(i)
t ∼ N (σ

(i)
t |m

(i)
t , h

2Vt + φ(i))
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Figure 2.23: Comparing estimated posterior expected value (black) vs simulation input value
(red) of σ with regime change after 10,000 steps, using the Liu and West filter with learning for
different values of γ (i)0.0001 (ii)0.001 (iii)0.01 (iv)0.1

Figure 2.24: Comparing the change in estimated posterior expected value (black) vs simulation
input value (red) of σ with regime change after 10,000 steps, using the Liu and West filter with
learning for different values of γ (i)0.0001 (ii)0.001 (iii)0.01 (iv)0.1

The ability of the proposed approach to accelerate adaptation is demonstrated by adding
noise parameter perturbation to the filter configuration used to produce the results shown
in Figure 2.19, chart (ii). The results, shown in Figure 2.23 and Figure 2.24 for increasing
values of γ, demonstrate a very effective acceleration of adaptation coupled with a signif-
icant reduction in noise compared to the implementation in the previous section. The
adaptation of the filter to a regime change demonstrates the ability to rapidly increase the
speed of adaptation when required. The same mechanism forces the additional noise to
decrease when the adaptation phase is finished. The decrease in the noise factor can be fur-
ther demonstrated with stochastic volatility model simulated data and the filter configured
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Figure 2.25: Comparing estimated posterior expected value (black) vs simulation input value
(red) of σ for stochastic volatility with learning for different values of γ (i)0.0001 (ii)0.001 (iii)0.01
(iv)0.1

Figure 2.26: Comparing estimated posterior expected value (black) vs simulation input value
(red) of σ for stochastic volatility with learning for different values of γ (i)0.0001 (ii)0.001 (iii)0.01
(iv)0.1

with a very high starting point for φ as in Figure 2.15, chart (iv). The results in Figure
2.25 and Figure 2.26 demonstrate how the particle filter learns to reduce excess noise for
increasing values of γ. It is also evident from the results, particularly Figure 2.24, that
the reduction in noise post-adaptation phase tends to be slower than the initial increase.
To speed up this reversal a dampening parameter is introduced in the next section.
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2.3.5 Dampening the rate of adaptation

The post-adaptation learning parameter decrease tends to be slower than the adaptation
increase because, relatively speaking, large observed changes are less likely to assume a low
volatility than small observed changes assuming high volatility. Therefore, during adapta-
tion low-noise particles are relatively less likely to survive than high-noise particles outside
of the adaptation phase. This bias can be counteracted with the introduction of a damp-
ening parameter in the form of a negative mean in the distribution used to perturb φ, that
is ∆φ

(i)
t in the learning step becomes ∆φ

(i)
t ∼ N (−κ, γ). The addition of the dampening

parameter also speeds up the convergence to the Liu and West filter when learning is not
required, that is, in the idealised situation where the model assumed by the filter actually
matches the observations. The filtering algorithm including the dampening factor becomes:

1: Initialisation For each particle; let σ(i)
0 = (b−a)i

N , π(i)
0 = 1

N and φ(i)
0 ∼ U(0, c)

2: Sequentially for each observation:
2.1: Update For each particle update weight π̂(i)

t = π
(i)
t p(xt|xt−1, σ

(i)
t )

2.2: Normalisation For each particle π(i)
t =

π̂
(i)
t∑
π̂

(i)
t

2.3: Resampling Generate a new set of particles:

p(σt|x1:t) ≈
N∑
i=1

δ{σ(i)
t =σt}

π
(i)
t −−−−−−→

resample
p(σt|x1:t) ≈

N∑
k=1

1

N
δ{σ(k)

t =σt}

2.4: Noise parameter perturbation For each particle; φ(i)
t = φ

(i)
t−1e

∆φ
(i)
t where ∆φ

(i)
t ∼

N (−κ, γ)

2.5: Kernel smoothing For each particle apply σ(i)
t ∼ N (σ

(i)
t |m

(i)
t , h

2Vt + φ(i))

The impact of the dampening parameter was tested on the regime shift data with the par-
ticle filter configured with a high learning parameter used to generate the results in chart
(iv) in Figure 2.23. The results for increasing values of the dampening parameter are shown
in Figure 2.27 and Figure 2.28. Although the dampening parameter does indeed reduce
estimate noise, it is important to note that the dampening parameter has to be set low
enough so as not to completely offset the impact from perturbation. It may also be possible
to evolve this parameter in the same manner as the noise parameter. However, this is not
attempted in this research.

2.3.6 Average perturbation as a relative measure

The particle filter proposed in this chapter allows rapid detection of parameter changes by
exploiting and enhancing the genetic algorithm aspect of a filter which includes random
perturbation and selection. However, every random perturbation results in a deterioration
of the quality of the posterior estimation, since the underlying assumption in the recursive
calculation of the particle weights is that the parameters of each particle are fixed. Ideally, if
the model assumption in the filter is reflected in the empirical data, the posterior estimation
would not require any additional noise. This leads to the idea that the amount of additional
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Figure 2.27: Comparing estimated posterior expected value (black) vs simulation input value
(red) of σ with regime change after 10,000 steps, using the Liu and West filter with learning for
different values of κ (i)0.01 (ii)0.02 (iii)0.03 (iv)0.04

Figure 2.28: Comparing the change in estimated posterior expected value (black) vs simulation
input value (red) of σ with regime change after 10,000 steps, using the Liu and West filter with
learning for different values of κ (i)0.01 (ii)0.02 (iii)0.03 (iv)0.04

noise used by the filter can serve as an indicator of model adequacy, as well as distinguish
between different dynamics present in the data set. Define this measure as the average of
the φ parameter calculated at each iteration:∑

i
φ(i)

N

The following offer some examples of how the behaviour of average φ can help to distinguish
and identify the dynamics of the underlying data.
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Figure 2.29: Comparison of average φ (log-scale) for the Gaussian model with different values of
filter perturbation variance γ (i) 1.0 (ii) 0.01 (iii) 0.001 (iv) 0.0001

Gaussian process

The Gaussian process as the underlying dynamic demonstrates the behaviour of the measure
when the data-generating process matches the assumption in the filter. As the estimated
parameter posterior converges increasingly less perturbation is required, reflecting the cor-
respondence between the filter assumption and underlying data. Simulation results shown
in Figure 2.29 confirm the convergence of φ for different values of the perturbation variance
parameter γ, expectedly high γ results in convergence noise highlighting the need for some
implementation-specific tuning of this parameter.

Regime change

The regime change is marked by a sharp increase in φ, reflecting sudden adaptation to the
new model state. Before and after the regime change the model is Gaussian and therefore
the behaviour of φ is similar to the previous section. The rate of convergence of φ is slower
for the higher σ following the regime change indicating a relationship between the rate of
convergence of φ and σ. The results are shown in Figure 2.30 for varying levels of γ.

Stochastic volatility

If the filter assumption does not match the dynamics of the underlying data, φ will not
tend to converge to zero. In the case of stochastic volatility, φ will tend towards a constant
value reflecting the constantly changing volatility, with the level of this value indicating the
level of stochasticity in the data. Figure 2.31 shows some examples of the behaviour of φ
for varying levels of stochasticity in the data, using γ = 0.001 corresponding to chart (iii)
in Figure 2.29.
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Figure 2.30: Comparison of average φ (log-scale) for the regime change model with different values
of filter perturbation variance parameter γ (i) 1.0 (ii) 0.01 (iii) 0.001 (iv) 0.0001

Figure 2.31: Comparison of average φ (log-scale) for the stochastic volatility model with different
values of stochastic volatility ν (i) 0.1 (ii) 0.2 (iii) 0.3 (iv) 0.4

2.4 Conclusion

The methodology in this chapter was arrived at by first recognising that the random per-
turbation technique applied in a particle filter results in a genetic–type algorithm capable
of adapting to changing parameters. At this point, an opposite direction to the approach
of Liu and West (2001) was taken, instead of remediating the overdispersion caused by
random perturbation, the random perturbation is allowed to freely evolve, enhancing the
adaptive capability of the particle filter. The approach is highly adaptive when required
and convergent conditional on the data matching modelling assumptions and no parameter
changes. Given that the level of adaptability is governed by the variance of the random
perturbation; the key insight of the approach is that an effective way of recognising the
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level of required variance is to incorporate its selection into the already existing genetic
algorithm framework. In terms of existing literature, it links particle filtering with genetic
algorithms for parameter learning, resulting in a filtering algorithm particularly useful for
parameter change detection and in the context of finance an effective on-line method for
measuring volatility.

The motivation behind the particle filter was to create a tool which would inform mod-
elling choices in a data-driven way. The original plan involved analysing the London In-
terbank Offer Rate(LIBOR) and its derivatives, mainly Eurodollar futures and options on
those futures. However, throughout the development of the particle filter, there were in-
creasing reports regarding the replacement of the LIBOR with SOFR. This prompted a
re-focus on SOFR and short rates in general as reflected in the remaining chapters of this
thesis.

53



Chapter 3

Reconciling Piecewise Constant Short
Rates And Continuous Forward
Rates1

This chapter introduces the first iteration of a model inspired by the empirical features
outlined in Section 1.3. To reflect the empirical features, assume a three–component model
driven by independent factors and construct it within the HJM framework. The three
components include a step component to reflect the central bank target rate dynamics, a
spike component for spikes occurring at known times and a continuous diffusion component
for the residual noise.

The rest of the chapter is organised as follows. Section 3.1 presents the model for
discontinuous short rates with continuous forward rates including both step and spike dis-
continuities. The model is presented within the Heath et al. (1992) (HJM) framework, and
also includes an additional Gaussian diffusion to account for residual noise. Results from
the calibration of the model to futures market data are presented in Section 3.2. Section
3.3 concludes.

3.1 Modelling Short Rates With Discontinuities At Known
Times

Define a set of independent Brownian motions W comprising of subsets of Brownian mo-
tions WP , WZ , W V related to the step, spike and continuous components respectively,
where WP = [WP

1 , ...,W
P
m ], WZ = [WZ

1 , ...,W
Z
n ] and where W = [W1, ...,Wm+n+1] =

[WP
1 , ...,W

P
m ,W

Z
1 , ...,W

Z
n ,W

V ]. Under the spot risk–neutral measure, in the HJM frame-
1This chapter is based on the paper Gellert and Schlögl (2021b) with Erik Schlögl contributing in a

supervisory capacity.
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work:

f(t, T ) = f(0, T ) +
m+n+1∑
i=1

t∫
0

σi(u, T )

T∫
u

σi(u, s)dsdu+
m+n+1∑
i=1

t∫
0

σi(s, T )dWi(s) (3.1)

Define:

σi(t, T ) = 1(i ≤ m)σPi (t, T ) + 1(m < i ≤ m+ n)σZi−m(t, T ) + 1(i = m+ n+ 1)σV (t, T )
(3.2)

Therefore:

m+n+1∑
i=1

t∫
0

σi(s, T )dWi(s) =

m∑
i=1

t∫
0

σPi (s, T )dWP
i (s)

+

n∑
i=1

t∫
0

σZi (s, T )dWZ
i (s)

+

t∫
0

σV (s, T )dW V (s)

(3.3)

and

m+n+1∑
i=1

t∫
0

σi(u, T )

T∫
u

σi(u, s)dsdu =

m∑
i=1

t∫
0

σPi (u, T )

T∫
u

σPi (u, s)dsdu

+

n∑
i=1

t∫
0

σZi (u, T )

T∫
u

σZi (u, s)dsdu

+

t∫
0

σV (u, T )

T∫
u

σV (u, s)dsdu

(3.4)

therefore

f(t, T ) = fP (t, T ) + fZ(t, T ) + fV (t, T ) (3.5)

where

fP (t, T ) = fP (0, T ) +

m∑
i=1

t∫
0

σPi (u, T )

T∫
u

σPi (u, s)dsdu+

m∑
i=1

t∫
0

σPi (s, T )dWP
i (s) (3.6)

fZ(t, T ) = fZ(0, T ) +

n∑
i=1

t∫
0

σZi (u, T )

T∫
u

σZi (u, s)dsdu+

n∑
i=1

t∫
0

σZi (s, T )dWZ
i (s) (3.7)
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Figure 3.1: Target rate and various forward rates implied by specific 30–day Fed Funds futures

fV (t, T ) = fV (0, T ) +

t∫

0

σV (u, T )

T∫

u

σV (u, s)dsdu+

t∫

0

σV (s, T )dW V (s) (3.8)

similarly for the short rate:

r(t) = rP (t) + rZ(t) + rV (t) (3.9)

and zero coupon bonds:

B(t, T ) = BP (t, T )BZ(t, T )BV (t, T ) (3.10)

The modelling of each component is now discussed in more detail.

3.1.1 Target Rate Step Model

The main empirical feature of the target rate is that it is piecewise flat between the FOMC
meeting dates at which a policy change has occurred. Most of the meetings are scheduled
at least one year ahead of time with the exception of emergency meetings.2

Although forward target rates do not trade directly, the nature of their dynamics can
be deduced from 30-day Fed Fund Futures which trade on the closely related EFFR rate.
Figure 3.1 shows the historical target rate and various forward rates implied from specific
futures contracts. The point at which the forward rates end and meet the target rate
coincides with the expiry of the futures contracts.3 In contrast to the overnight rate, the

2Since 2015 there have been 47 meetings (including 3 emergency meetings), of which 17 resulted in a
target rate change.

3Futures without an FOMC date in the reference month were chosen such that the target rate is expected
to be flat over the contract month and therefore the price of the futures reflects the expected target rate
for that month plus a spread rather than reflecting two flat periods before and after the FOMC date.
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dynamics of target rates are more diffusive and do not jump at deterministic dates. Jumps
conceivably could occur on unexpected dates, reflecting sudden large changes in market
sentiment. However, these are not captured by this model. The main contribution of this
model is that having observed that empirically the overnight rate (EFFR or SOFR) follows
dynamics determined primarily by jumps at known times, but forward rates follow primarily
diffusive dynamics, it reconciles these two (naively contradictory) observations.

An interpretation of the forward rates deduced from Fed fund futures is that they re-
flect the expectations of prospective FOMC target rate changes. The diffusive dynamics
of forward rates then reflect the nature of the changes in those expectations. From this
perspective, the expectations corresponding to each scheduled FOMC meeting are not inde-
pendent of each other. In some circumstances, for example, a change in the overall Federal
Reserve monetary policy stance, they will be positively correlated. In other cases, where for
example the aggregated change to the target rate over some period of time is anticipated
but the timing is less certain, the expectations may be negatively correlated to each other
as the expected timing but not the net outcome evolves.

Therefore the target rate model is motivated by the following empirical features. The
target rate represented by the short rate rP (t) must be piecewise flat with respect to t. The
forward rate with maturity T evolves diffusively with respect to t until the FOMC meeting
immediately preceding maturity T , reflecting the expectations of any FOMC policy target
rate change. A model is constructed which reconciles these features, reflecting both the
discontinuous nature of the short rate and diffusively evolving forward rates.

Forward Rates

Construct a model such that the forward rates are driven by the evolution of expectations
associated with FOMC target rate changes, where the target rate change for each scheduled
meeting date evolves under its own dynamic. The forward rate f(t, T ) dynamics under the
empirical measure can be written as follows:

fP (t, T ) = fP (0, T ) + α(t, T ) +
m∑
i=1

t∫
0

ξi(s, T )dZi(s) (3.11)

4 where fP (0, T ) is the initial term structure of forward rates, α(t, T ) a deterministic drift
and dZi(s) the Wiener increment corresponding to the ith FOMC date with correlation
dZi(t)dZj(t) = ρi,jdt. The volatility term is defined as follows:

ξi(t, T ) = ξi1(t < xi)1(T ≥ xi) (3.12)

where xi denotes the ith FOMC meeting date. The intuition behind this construction is
that each stochastic component corresponds to an FOMC date and any changes to the
target rate are carried forward from that date. The indicator function 1(T ≥ xi) ensures
that the ith factor is only applied to forwards with maturities greater or equal to xi. For
any maturities prior to the first meeting date T < x1, therefore 1(T ≥ xi) = 0, ∀i ≥ 1, thus

4For clarity throughout this paper indexed variables in the form ξi are constants.
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ensuring no diffusion for forward rates with maturities prior to the first FOMC meeting
date. The indicator function 1(t < xi) terminates the diffusion from the ith stochastic
component on the corresponding FOMC date.5 Solving the integral, see Appendix (A.2),
yields:

fP (t, T ) = fP (0, T ) + α(t, T ) +
m∑
i=1

ξi1(T ≥ xi)Zi(t ∧ xi) (3.13)

To demonstrate the behaviour of the model with an example, let x2 < T < x3 and t < x1:

fP (t, T ) = fP (0, T ) + α(t, T ) + ξ1Z1(t) + ξ2Z2(t) (3.14)

Here one sees that both stochastic components, corresponding to FOMC dates x1 and x2,
impact the forward rate up to time t. Any stochastic components beyond x2 do not apply
since the forward rate matures prior to x3. Now let x1 < t < x2:

fP (t, T ) = fP (0, T ) + α(t, T ) + ξ1Z1(x1) + ξ2Z2(t) (3.15)

In this case the first stochastic component terminates at x1, prior to t. That is, the expec-
tations of the target rate change at time x1 evolve diffusively only up until this date.

Short Rates

These forward rate dynamics create the piecewise dynamic in the short rate, which can be
derived from (3.11) by setting r(t) = f(t, t):

rP (t) = fP (t, t) = fP (0, t) + α(t, t) +
m∑
i=1

t∫
0

ξi(s, t)dZi(s) (3.16)

Solving the integral, see Appendix (A.3), yields:

rP (t) = fP (0, t) + α(t, t) +
m∑
i=1

ξi1(t ≥ xi)Zi(xi) (3.17)

From this it is evident that the short rate has no diffusion up until the first FOMC date
at which point it picks up all the diffusion from the forward rate accumulated up until this
point in time. To illustrate this, for t < x1:

rP (t) = fP (0, t) + α(t, t) (3.18)

for x1 < t < x2:

rP (t) = fP (0, t) + α(t, t) + ξ1Z1(x1) (3.19)

5By construction the diffusion coefficient is constant relative to each forward rate period, however the
total diffusion for any forward rate is an aggregate of these diffusive forward periods and therefore the
stochasticity of each forward rate is a function of the number of FOMC dates from t to the forward date
and is thus a function of t.
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for x2 < t < x3:

rP (t) = fP (0, t) + α(t, t) + ξ1Z1(x1) + ξ2Z2(x2) (3.20)

In general, the accumulated diffusion for the forward rates creates discontinuities in the
short rate on FOMC dates, reflecting the empirical behaviour for the target rate and the
associated forward rates.

Decomposition to Independent Components

The model can be easily transformed to independent components which will make it con-
sistent with the HJM framework, thus facilitating the derivation of risk–neutral dynamics.
Define Σ to be the covariance matrix of the vector dZ = [dZ1, ..., dZm]. To transform the
system to independent components, find a transformation matrix γ, such that Σ = γγT

which is applied using dZ = γdWP , to result in a vector of uncorrelated Wiener increments
dWP = [dWP

1 , ..., dW
P
m ]. Therefore:

dZi =
m∑
j=1

γi,jdW
P
j (3.21)

Rewrite the forward rate dynamics with respect to the uncorrelated components:

m∑
i=1

t∫
0

ξi(s, T )dZi(s) =

m∑
i=1

t∫
0

σi1(s < xi)1(T ≥ xi)dZi(s)

=

m∑
i=1

t∫
0

ξi1(s < xi)1(T ≥ xi)
m∑
j=1

γi,jdW
P
j (s)

=
m∑
j=1

t∫
0

σPj (s, T )dWP
j (s)

(3.22)

where

σPj (t, T ) =
m∑
i=1

ξiγi,j1(t < xi)1(T ≥ xi) (3.23)

It is also worth noting that this transformation lends itself to principal components analysis
(PCA). Thus, rather than requiring as many driving stochastic components as there are
FOMC meeting dates, the model can be driven by a smaller number of independent compo-
nents. The transformation is thus a factor reduction approach that even in a reduced factor
form retains the key modelling property of piecewise short rates and continuously diffusive
forward rates. That is in this form the short rate continues to pick up the accumulated
forward rate diffusion only on FOMC dates resulting in a piecewise constant short rate.
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Forward Rates Under the Spot Risk–Neutral Measure

It is now possible to formulate the risk neutral dynamics by using the result from HJM.
Under the spot risk–neutral measure:

fP (t, T ) = fP (0, T ) +
m∑
j=1

t∫
0

σPj (u, T )

T∫
u

σPj (u, s)dsdu+
m∑
j=1

t∫
0

σPj (s, T )dWP
j (s) (3.24)

Therefore, see (A.4) and (A.11):

fP (t, T ) = fP (0, T ) +
m∑
j=1

m∑
q=1

m∑
i=1

ξqξiγq,jγi,j1(T ≥ xq∨i)(T − xi)[t ∧ xq ∧ xi]

+
m∑
j=1

m∑
i=1

ξiγi,j1(T ≥ xi)WP
j (t ∧ xi)

(3.25)

Short Rates Under the Spot Risk–Neutral Measure

Short rate dynamics can are obtained as follows:

rP (t) = fP (0, t) +

m∑
j=1

t∫
0

σPj (u, t)

t∫
u

σPj (u, s)dsdu+
m∑
j=1

t∫
0

σPj (s, t)dWP
j (s) (3.26)

Therefore, see (A.5) and (A.12):

rP (t) = fP (0, t) +
m∑
j=1

m∑
q=1

m∑
i=1

ξqξiγq,jγi,j1(t ≥ xq∨i)(t− xi)[xq ∧ xi]︸ ︷︷ ︸
deterministic term (**)

+

m∑
j=1

m∑
i=1

ξiγi,j1(t ≥ xi)WP
j (xi)︸ ︷︷ ︸

stochastic term (*)

(3.27)

The stochastic term (*) follows piecewise constant dynamics, jumping almost surely at
each xi.6 Because at present, only the target rate is modelled, the paths of rP (t) should
be constant between FOMC meeting dates. This implies that the deterministic term (**)
should not depend on t, i.e., the dependence on t of the triple sum must cancel against the
dependence on t of the initial term structure fP (0, t).7 When considering a time horizon

6At this point, one might object that in reality, rates do not jump at every FOMC meeting date.
However, one could argue that this is because target rates are only updated in discrete increments. The
model could be extended to reflect this, but as a first approximation, we’ll accept the implication of a
continuous distribution of jump sizes, with jumps occurring at every FOMC meeting date.

7Note that the term (t − xi) appearing in the triple sum reflects a feature of a classical Gaussian term
structure model without mean reversion (as noted, for example, in Schlögl and Sommer (1998)), that the
term structure of forward rates endogenously steepens ever more (see also (3.25) above) as time passes —
this can be avoided by introducing mean reversion.
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of two years or less (as per the empirical section of this chapter), the triple sum in (**)
is practically flat in t, so this is consistent with an initial term structure fP (0, t) which is
approximately constant between FOMC meeting dates. Note that (3.27) implies that if the
paths of rP (t) are required to be constant between FOMC meeting dates, it is not correct
to arbitrarily choose an interpolation method for the initial term structure. In particular,
requiring piecewise constant paths of rP (t) precludes applying the popular Nelson/Siegel
interpolation to the initial term structure.8

Bond Prices

Bond prices can be written as follows:

BP (t, T ) = exp
(
−

T∫
t

fP (t, s)ds

)
=
BP (0, T )

BP (0, t)
exp
(
a(t, T ) + b(t, T )

)
(3.28)

where

a(t, T ) = −
T∫
t

m∑
j=1

m∑
q=1

m∑
i=1

ξqξiγq,jγi,j1(s ≥ xq∨i)(s− xi)[t ∧ xq ∧ xi]ds

= −
m∑
j=1

m∑
q=1

m∑
i=1

ξqξiγq,jγi,j [t ∧ xq ∧ xi]
T∫
t

1(s ≥ xq∨i)(s− xi)ds

= −
m∑
j=1

m∑
q=1

m∑
i=1

ξqξiγq,jγi,j [t ∧ xq ∧ xi][I1 − I2]

(3.29)

where

I1 =

T∫
0

1(s ≥ xq∨i)(s− xi)ds

=

T∫
xq∨i

(s− xi)ds = 1(T ≥ xq∨i)[T (
T

2
− xi)− xq∨i(

xq∨i
2
− xi)]

(3.30)

I2 =

t∫
0

1(s ≥ xq∨i)(s− xi)ds = 1(t ≥ xq∨i)[t(
t

2
− xi)− xq∨i(

xq∨i
2
− xi)] (3.31)

8Skov and Skovmand (2021) show that a three–factor Gaussian arbitrage–free Nelson/Siegel model is
well suited for the SOFR futures market, but they do not include the time series of SOFR itself in their
estimation, i.e., their objective is not to match the SOFR dynamics, which have a substantial piecewise flat
component.
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b(t, T ) =−
T∫
t

m∑
j=1

m∑
i=1

ξiγi,j1(s ≥ xi)WP
j (t ∧ xi)ds

= −
m∑
j=1

m∑
i=1

ξiγi,jW
P
j (t ∧ xi)

T∫
t

1(s ≥ xi)ds

= −
m∑
j=1

m∑
i=1

ξiγi,jW
P
j (t ∧ xi)1(T ≥ xi)[T − (t ∨ xi)]

(3.32)

Note that zero coupon bond prices are exponential affine functions of the WP
j (t ∧ xi).

However, unlike in classical Gauss/Markov HJM term structure models, here the entire
term structure cannot be represented as an exponential affine function of n factors.

3.1.2 Known Spike Time Model

In addition to the step-wise behaviour reflecting FOMC decisions modelled above, spikes
in the short rate have been a prominent feature of EFFR and particularly SOFR dynamics
until 2021. In this section, the approach is adapted to also model the occurrence of spikes
at known dates.

Spiked Forward Rates

The model for the spike component fZ of forward rates is constructed such that the spike
on each spike date zi is driven by its own independent factor. This allows the use the HJM
result to formulate fZ under the risk neutral measure:

fZ(t, T ) = fZ(0, T ) +

n∑
i=1

t∫
0

σZi (u, T )

T∫
u

σZi (u, s)dsdu+

n∑
i=1

t∫
0

σZi (s, T )dWZ
i (s) (3.33)

Assume that when spikes occur, they impact a fixed period hi starting from time zi.9 Let
Hi = [zi, zi + hi], the volatility function is defined as follows:

σZi (t, T ) = σZi 1(t < zi)1(T ∈ Hi) (3.34)

Therefore, see (A.6) and (A.14) :

fZ(t, T ) = fZ(0, T ) +
n∑
i=1

(
σZi
)2
1(T ∈ Hi)(T − zi)[t ∧ zi] +

n∑
i=1

σZi 1(T ∈ Hi)Wi(t ∧ zi)

(3.35)

9Usually this period of time would be equivalent to 1 day but could be more if for example it is a
SOFR rate set on a Friday, therefore applying for compounding and averaging payoff calculations over the
weekend.
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To demonstrate the behaviour of the model with an example, let T ∈ H2 and t < z1:

fZ(t, T ) = fZ(0, T ) +
(
σZ2
)2

(T − z2)t+ σZ2 W2(t) (3.36)

Here the interpretation is that the fZ only evolve when T ∈ Hi up to the minimum of time
t or zi, the beginning of the period Hi.

Spiked Short Rates

By this construction, the spike component of the short rate follows the spiked trajectory:

rZ(t) = fZ(t, t) = fZ(0, t) +
n∑
i=1

t∫
0

σZi (u, t)

t∫
u

σZi (u, s)dsdu+
n∑
i=1

t∫
0

σZi (s, t)dWZ
i (s)

(3.37)

Therefore, see (A.7) and (A.15):

rZ(t) = fZ(0, t) +
n∑
i=1

(
σZi
)2
1(t ∈ Hi)(t− zi)zi +

n∑
i=1

σZi 1(t ∈ Hi)Wi(zi) (3.38)

From this it is evident that the short rate is deterministic until the spike interval over
which a spike applies, with a magnitude which includes the associated forward rate diffusion
accumulated up to the beginning of the interval. For example let t ∈ H2:

rZ(t) = fZ(0, t) +
(
σZ2
)2

(t− z2)z2 + σZ2 W2(z2) (3.39)

Spiked Bond Prices

The spike component of the bond prices can be written as follows:

BZ(t, T ) = exp
(
−

T∫
t

fZ(t, s)ds

)
=
BZ(0, T )

BZ(0, t)
exp
(
a(t, T ) + b(t, T )

)
(3.40)

a(t, T ) = −
T∫
t

n∑
i=1

(
σZi
)2
1(s ∈ Hi)(s− zi)[t ∧ zi]ds

= −
(
σZi
)2

[t ∧ zi]
T∫
t

1(s ∈ Hi)(s− zi)ds

= −
(
σZi
)2

[t ∧ zi][I1 − I2]

(3.41)

where

I1 =

T∫
0

1(s ∈ Hi)(s− zi)ds = 1(T ≥ zi)
[
h2
i

2
∧ (T − zi)2

2

]
(3.42)
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and

I2 =

t∫
0

1(s ∈ Hi)(s− zi)ds = 1(t ≥ zi)
[
h2
i

2
∧ (t− zi)2

2

]
(3.43)

and

b(t, T ) = −
T∫
t

n∑
i=1

σZi Wi(t ∧ zi)1(s ∈ Hi)ds

= −
n∑
i=1

σZi Wi(t ∧ zi)
T∫
t

1(s ∈ Hi)ds

= −
n∑
i=1

σZi Wi(t ∧ zi)([(T − zi) ∧ (T − t) ∧ hi ∧ (zi + hi − t)] ∨ 0)

(3.44)

3.1.3 Modelling the Diffusive Residual

An empirical feature of the residual noise component of both EFFR and SOFR is mean
reversion. Since the initial bond term structure is most naturally contained in the initial
target rate term structure, the mean-reverting model proposed in Vasicek (1977) should be
sufficient to model the noise component of short rates. The model is presented based on
the results shown in Carmona (2007). The dynamics of the diffusive residual are given by:

drV (t) = (θ − βrV (t))dt+ σV dW V (t) (3.45)

The solution is given by:

rV (t) = e−βtrV (0) + (1− e−βt) θ
β

+ σV
t∫

0

e−κ(t−s)dW V (s) (3.46)

With forward rates:

fV (t, T ) = rV (t)e−β(T−t) +
θ

β

(
1− e−β(T−t)

)
− θ2

2β2

(
1− e−β(T−t)

)2

(3.47)

The diffusive residual component of the zero coupon bond price is given by:

BV (t, T ) = a(t, T )eb(t,T )r(0) (3.48)

with

b(t, T ) = −1− e−β(T−t)

β
(3.49)

and

a(t, T ) =
4θβ − 3σ2

4β3
+

(σV )2 − 2αβ

2β2
T +

(σV )2 − αβ
β3

e−βT − (σV )2

4β3
e−2βT (3.50)
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3.2 Calibration to Futures Contracts

This section presents results calibrating the model to Fed Funds and SOFR futures data.
Fed Fund futures are used to calibrate the target rate term structure, which is then used as
the basis for calibration to SOFR futures, from which the term structure of forward rates
related to end–of–month spikes is inferred. The time series of calibrated EFFR and SOFR
forward rates are used to examine how well the market anticipates FOMC policy target
rate changes as well as end–of–month spikes. The time series of SOFR forward rates is
then used to compare the forward-looking SOFR term rates to LIBOR.

3.2.1 30 day Fed Funds futures

Fed Funds futures contracts10 are based on the arithmetic average of the EFFR, denoted
rE over the specified contract month. Define m as the number of months from the current
trading month (m = 0), τm,i := as the date corresponding to day i in month m with nm
denoting the total days in month m.

Define the futures contract index for reference month m at time t as F̃m(t), the value
of a single contract is $4,167 × F̃m(t). The terminal value of the contract is determined
as F̃m(τm,nm) = 100 − Rm where Rm is the arithmetic average of the daily EFFR fixing
during the contract month, settled on the first business day after the final fixing date.

Defining Rm := 100
nm

nm∑
i=1

rE(τm,i), the terminal payoff is:

F̃m(τm,nm) = 100−Rm = 100

(
1− 1

nm

nm∑
i=1

rE(τm,i)

)
Using the generic futures pricing theorem,11 the expected value at t of the futures contract
index F̃m under the spot risk neutral measure is:

Fm(t) = Et[F̃m(τm,nm)] = 100

(
1− 1

nm

nm∑
i=1

Et[rE(τm,i)]

)
(3.51)

The current futures contract continues to trade during the observation month, therefore
the valuation needs to account for already observed values of rE :

F0(t) = 100

(
1− 1

n0

( n0∑
i=1

1(t>τ0,i)rE(τ0,i) +

n0∑
i=1

1(t≤τ0,i)Et[rE(τ0,i)]

))
(3.52)

Calibration

Fed Funds futures contracts are available for each calendar month approximately 3 years
ahead of time. However, the liquidity beyond 1 year deteriorates and therefore the cali-
bration is limited to the first 12 contracts. The availability of contracts for each calendar

10Source:https://www.cmegroup.com/markets/interest-rates/stirs/30-day-federal-
fund.contractSpecs.html.

11See Cox, Ingersoll and Ross (1981).
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month makes the Fed Funds futures particularly useful for extracting information regarding
expected target rate changes, which are scheduled 8 times per year and never twice in the
same month. Calibrating the expected policy target rate jumps from Fed Funds futures is
performed by making the following assumptions.

Firstly the initial term structure of f(0, T ) is assumed to be piecewise flat between
FOMC meeting dates. This aligns the initial term structure to the driving factors of the
target rate model and therefore the daily changes in the calibrated f(0, T ) vector provides
an empirical estimate for the dynamics of f(t, T ). To simplify the calibration, it is assumed
that the impact of the drift component is negligible, particularly if the calibration is used
to obtain the empirical dynamics of the forward rate based on daily increments obtained
from the calibration. The spikes are a secondary component of EFFR empirical dynamics
and are ignored in the calibration. Additionally, a constant spread between EFFR and the
target rate is calibrated, which is equivalent to assuming zero volatility in the Gaussian
residual noise component of the model.

Observable market prices exist in the form of the current bid and offer and the last
observed price, which reflects a trade at either the bid or the offer levels at the time of
the transaction. At any given time the true market state is at some point between the bid
and offer prices. Closing prices which are recorded at the end of each day’s trading session
also reflect either the bid or the offer. Therefore the closing price could be either the offer,
inferring that the bid is one price fluctuation below the closing price, or conversely inferring
that the offer is one price fluctuation above the closing price. Based on this reasoning,
a minimum price fluctuation size tolerance is embedded in the calibration error em(t) for
month m:

em(t) = (|Fm(t)− F̃m(t)| − hm)+

Where the minimum fluctuation of the index for month m as hm with h0 = 0.0025 and
hm = 0.005 for m 6= 0. The error bounds result in better solution stability, and less
subject to bid-ask fluctuations in the cross-sectional and longitudinal data. The calibration
is performed using a genetic algorithm approach based on the method developed in Chapter
2

Fed Fund futures implied forward rates as a predictor of FOMC decisions

To analyse the dynamics of the stepwise model forward rates, the calibration is performed on
daily data in the period from January 2015 to September 2020. Additionally, the agreement
between actual target rate changes and the corresponding change inferred from the initial
term structure of calibrated forward rates is measured. This demonstrates how well the
futures market was able to predict target rate changes in the test period. It is also a
good indicator of the ability of the model to translate futures data into a meaningful term
structure of anticipated target rate changes.

An R-squared is calculated between actual target rate changes ∆rP (xi) and correspond-
ing initial forward rate term structure inferred changes fP (0, xi) − fP (0, xi − h), grouped
by the number of days in the forward rate term, that is the number of days between the cal-
ibration date corresponding to t = 0 and xi. The results in Figure 3.2 show the R-squared
for an increasing number of days between xi and the calibration date. For comparison, the
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Figure 3.2: R-squared of EFFR realised vs forward rates for different forward periods

same calculation is shown with the same piecewise flat assumption but with discontinuity
dates naively set to coincide with futures contract maturities (dashed line).

The results show a clear correspondence between actual and anticipated target rate
changes. The correspondence deteriorates as the forward term increases but still shows
evidence of some anticipation for terms over 200 days. The results comprise a mixture
of good long-term anticipation of rate increases and poor anticipation of rate decreases.
This can be attributed to the well-communicated and regular increases in the target rate
during the normalisation phase following near-zero target rates. The rapid drop in target
rates at the beginning of 2020 was not expected by the market, excluding this period would
substantially improve the R-squared results.

3.2.2 SOFR Futures

SOFR futures are available in monthly and quarterly contract period lengths. The SOFR
1M futures contracts12 are defined to reflect the specification of the Fed Funds 30 day
futures with SOFR replacing the EFFR as the reference rate. Therefore the pricing formulas
described in the previous section also apply to SOFR 1M futures.

In contrast to the monthly contracts, the final payoff of the SOFR 3M futures contracts13

compounds SOFR, denoted by rs, over IMM quarterly dates,14 aligning the dates of the
contracts to the LIBOR–referenced quarterly Eurodollar futures. Define q as the number of
IMM quarters from the current trading quarter (q = 0), τ∗q,i := as the date corresponding

12Source:https://www.cmegroup.com/education/brochures-and-handbooks/sofr-futures-contract-
specifications.html.

13Source:https://www.cmegroup.com/education/brochures-and-handbooks/sofr-futures-contract-
specifications.html.

14Third Wednesday of March, June, September and December.
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to day i in quarter q with nq denoting the total days in quarter q. The SOFR 3M futures
contract terminal payoff is:

F̃ s3q (τq,nq) = 100−Rs3q
where Rs3 is based on SOFR compounded over the reference quarter:

Rs3 = 100× 360

nq

[ nq∏
i=1

{
1(τq,i∈b)

(
1 +

dirs(τq,i)

360

)}
− 1

]
where b is the set of US government securities business days and di the number of days the
rate rs(τq,i) applies.15 Using two approximations which greatly simplify calculations but
have an insubstantial numerical impact, see section 4.3.5 for numerical justification, the
expected value at t of the futures contract index F̃ s3q under the spot risk neutral measure
is:

F s3q (t) = Et[F̃
s3
q (τq,nq)] = 100

(
1− 360

nq

[ nq∏
i=1

{
1(τq,i∈b)

(
1 +

diEt[rs(τq,i)]

360

)}
− 1

])
(3.53)

The current futures continues to trade during the observation quarter, therefore the valua-
tion needs to account for already observed values of rs:

F s30 (t) = Et[F̃
s3
q (τ0,n0)] = 100

(
1− 360

n0

[ n0∏
i=1

{
1(τ0,i∈b)

(
1 +

dir
∗
s(τ0,i)

360

)}
− 1

])
(3.54)

where r∗s(τ0,i) = 1(t>τ0,i)rs(τ0,i) + 1(t≤τ0,i)Et[rs(τ0,i)]

Calibration

Similarly to Fed Funds futures, SOFR 1M futures are available for each calendar month
with liquidity approximately 1 year ahead and SOFR 3M futures are available between
quarterly IMM dates approximately 2 years ahead of expiry. Calibrating the target rate
term structure to Fed Fund futures allows the use of SOFR futures to extract information
regarding the expected SOFR end–of–month spikes. To calibrate the spike component of
the model to SOFR futures, similar assumptions in the case of Fed Fund futures are taken.

The SOFR term structure is assumed to consist of the target rate term structure ob-
tained from Fed Fund futures, an end–of–month spike specific to the SOFR rate and a
SOFR-specific spread. The drift component of the spike is ignored assuming it has a negli-
gible effect on the inferred spike forward dynamics. The spread is assumed constant for all
forwards, which is equivalent to the assumption of zero volatility for the noise component.
The treatment related to the bid-ask spread is applied in the same way as for Fed Fund
futures.

15di is equal to one plus the number of consecutive business days immediately following τq,i.
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Figure 3.3: R-squared of SOFR realised vs forward rates for different forward periods

SOFR futures implied forwards as a predictor of SOFR spikes

Calibration is performed for all available SOFR futures data since the commencement of
trading in June 2018. The agreement between expected SOFR spikes and actual spikes is
measured by calculating the R-squared between end–of–month changes in the SOFR rate
∆r(zi) and the corresponding forward spike fZ(0, zi) − fZ(0, zi − h). The comparison is
grouped by the number of days between the calibration date corresponding to t = 0 and
zi. The results in Figure 3.3 show the R-squared for an increasing number of days between
zi and the calibration date.

The results reveal some evidence of short-term anticipation of spikes close to the spike
date. This is particularly true for the last trading day of the futures contract because the
trading activity in the repo market from which the day’s SOFR rate is calculated occurs
simultaneously with trading in the futures market. The contrast to the high R-squared for
target rate jumps anticipated by Fed Funds futures comes from the fact that FOMC target
rate changes are communicated well ahead of time, particularly for rate increases, while
the SOFR spikes depend on liquidity conditions, which are only anticipated in a short
time frame, if at all. However, the most negative impact on the results is not a lack of
anticipation of spikes, rather it is the over-anticipation of spikes, particularly when spikes
do not occur.

3.2.3 Term rate dynamics

One of the approaches considered as the replacement for the LIBOR indexation of loan terms
is a rate based on retrospectively compounding SOFR over the same term, see Figure 3.4
for a historical comparison. Both rates appear to follow the same underlying trend, this
is related to the target rate term structure, which underlies all interest rates. LIBOR also
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Figure 3.4: SOFR 3m rolling compounded rate compared to LIBOR

exhibits considerably more volatility. This is because the SOFR compounded rate is a
rolling compounding calculation of already set rates, with only one new rate rolled in the
calculation on each day. LIBOR, on the other hand, is a forward-looking term rate and is
not subject to the volatility reduction from rolling compounding. The two rates, therefore,
are not really comparable, which highlights one aspect of substantial problems with any
proposal to replace LIBOR with a compounded SOFR.16

The calibration presented in the previous section enables a more analogous comparison
of LIBOR and the SOFR forward-looking spot term rate. The SOFR term rates are calcu-
lated according to the compounding formula used to calculate SOFR 3M futures terminal
payoff, using the daily forward rates obtained from the calibration.

The calculated spot SOFR 3M term rate is shown in Figure 3.5 in comparison to spot
LIBOR. The rates are well correlated, approximately 50% of the LIBOR variance can be
attributed to the SOFR 3M term rate. The impact of SOFR spikes dissipates over a 3-
month compounding period, instead, the term rate is mostly driven by the target rate term
structure. In turn, this shows that a significant proportion of LIBOR dynamics is driven by
the target rate term structure exposed in the modelling framework. From this perspective,
one can think of LIBOR trading at a spread to the term rates implied from the target
rate term structure. One would expect this spread to be partly due to credit risk, but not
entirely, since the term rate extracted from SOFR futures is not a “true” term rate in the
sense that market participants could actually borrow at this rate17 — one would therefore
expect this spread also to include a “funding liquidity risk” component analogous to the one

16Other problems include the disconnect due to credit risk between SOFR and the cost of funding of
private–sector banks, see Berndt, Duffie and Zhu (2020).

17If one takes into account a borrower’s risk of not being able to refinance roll–over borrowing at (a
constant spread to) a benchmark rate, this gives rise to additional basis spreads as observed in the market,
see Alfeus, Grasselli and Schlögl (2020).
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Figure 3.5: Spot SOFR 3m Term Rate vs LIBOR

Figure 3.6: SOFR 3m Term Rate/LIBOR spread Spot vs Sep-2020 3M Term Rate

found in the LIBOR/OIS spread by Backwell, Macrina, Schlögl and Skovmand (2019).
It is also interesting to compare the spot and forward LIBOR to SOFR spread. As

shown in Figure 3.6, the spread in the forward rates appears more stable, especially during
the market turmoil in February and March of 2020. This is also in contrast to the large
instability exhibited by the repo rates during the financial crisis of 2008, see Andersen and
Bang (2020) for details. This is most likely due to Federal Reserve increasing operations
in the repo market as a response to the September 2019 spike, which also appears to have
eliminated end-of-month spikes.18

18See Federal Open Market Committee (2000-2020) September 2019 page 5.
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3.3 Conclusion

The model introduced in this chapter reflects key empirical features present in short rate
data. Calibration to futures showed that the piecewise structure imposed by the model
induces better predictability of FOMC policy rate changes. This indicates the model is
capturing significant information contained in derivative prices. However, the model in
this form cannot be properly estimated since each factor relates to a specific FOMC date,
therefore is not relevant in a general sense. The next iteration of the model presented in the
next chapter overcomes this problem by defining the HJM volatility in a time-homogenous
way.
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Chapter 4

Adjusting For Time Homogeneity1

This chapter introduces a time-homogeneous version of the model introduced in the previous
chapter. This allows the estimation of forward rate driving factors and their empirical states.
The connection to FOMC dates allows for an intuitive economic interpretation of the model
and empirical results. Comparison to the existing literature on the ability of the model to
replicate historical futures prices is also provided in this chapter.

The rest of the chapter is organised as follows. The time-homogeneous version of the
model is presented in Section 4.1. The approach to empirical analysis is detailed in section
4.2 and empirical results are presented in section 4.3. Section 4.4 concludes.

4.1 Model

4.1.1 Forward Rates

The model for forward rates is constructed such that they are driven by the evolution of
expectations associated with FOMC target rate changes, where the target rate change for
each scheduled meeting date evolves under its own dynamic. The forward rate f(t, T )
dynamics under the empirical measure can be written as follows:

f(t, T ) = f(0, T ) + α(t, T ) +
n∑
i=1

t∫
0

ξi(s, T )dZi(s) (4.1)

where f(0, T ) is the initial term structure of forward rates, α(t, T ) a deterministic drift
and dZi(s) the Wiener increment corresponding to the ith driving Brownian motion with
correlation dZi(t)dZj(t) = ρi,jdt. The volatility term is defined as follows:

ξi(t, T ) = ξi1(i ≤ At,T ) (4.2)

where At,T reflects the number of meeting dates between t and T :

At,T :=
∣∣{x1, ..., xm|t < xi ≤ T}

∣∣ (4.3)
1This chapter is based on a forthcoming revision of the paper Gellert and Schlögl (2021b) with Erik

Schlögl contributing in a supervisory capacity.
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where xi denotes the ith FOMC meeting date. The intuition behind this construction is
that each stochastic component corresponds to evolving expectations related to an FOMC
policy decision based on its order from the current state time.2 The indicator function
1(i ≤ At,T ) ensures that the ith factor is only applied to forwards impacted by the relevant
policy decision. Solving the integral yields:

t∫
0

ξi1(i ≤ As,T )dZi(s) = ξi


0, i > A0,T

Zi(xı̄(T )), i > At,T , i ≤ A0,T

Zi(t), i ≤ At,T , i ≤ A0,T

= ξi1(i ≤ A0,T )Zi(t ∧ xı̄(T ))

(4.4)

where ı̄(T ) = A0,T − i+ 1. Therefore:

f(t, T ) = f(0, T ) + α(t, T ) +

n∑
i=1

ξi1(i ≤ A0,T )Zi(t ∧ xı̄(T )) (4.5)

To demonstrate the behaviour of the model with an example, let x2 < T < x3 and t < x1:

f(t, T ) = f(0, T ) + α(t, T ) + ξ1Z1(t) + ξ2Z2(t) (4.6)

Here one sees that both stochastic components, corresponding to FOMC dates x1 and x2,
impact the forward rate up to time t. Any stochastic components beyond x2 do not apply
since the forward rate matures prior to x3. Now let x1 < t < x2:

f(t, T ) = f(0, T ) + α(t, T ) + ξ1Z1(t) + ξ2Z2(x1) (4.7)

In this case both stochastic components apply to the period from t = 0 to t = x1 since
in that interval there are two meetings dates until forward time T . Once the first meeting
occurs at t = x1 the second stochastic component no longer applies since there is only
one remaining meeting to T , the first component continues until time t. This reflects the
dependency of the volatility function on the number of meetings dates between the current
and forward time, which is what makes this version of the model time homogeneous in
contrast to the version introduced in the previous chapter.

4.1.2 Short Rates

These forward rate dynamics create the piecewise dynamic in the short rate, which can be
derived from (4.1) by setting r(t) = f(t, t):

r(t) = f(t, t) = f(0, t) + α(t, t) +

n∑
i=1

t∫
0

ξi(s, t)dZi(s) (4.8)

2This is distinct from the previous chapter where each stochastic component was related to specific
FOMC date. The approach shown in this chapter makes the model time homogeneous (thus allowing
empirical estimation) and also more consistent with empirical behaviour where forward rate dynamics are
a function of cardinality of meeting dates between the forward date and t.
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Solving the integral yields:

t∫
0

ξi1(i ≤ As,t)dZi(s) = ξi

{
0, i > A0,t

Zi(xı̄(t)), i ≤ A0,t

= ξi1(i ≤ A0,t)Zi(xı̄(t))

(4.9)

Therefore:

r(t) = f(0, t) + α(t, t) +

n∑
i=1

ξi1(i ≤ A0,t)Zi(xı̄(t)) (4.10)

From this it is evident that the short rate has no diffusion up until the first FOMC date
at which point it picks up all the diffusion from the forward rate accumulated up until this
point in time. To illustrate this, for t < x1:

r(t) = f(0, t) + α(t, t) (4.11)

for x1 < t < x2:

r(t) = f(0, t) + α(t, t) + ξ1Z1(x1) (4.12)

for x2 < t < x3:

r(t) = f(0, t) + α(t, t) + ξ1Z1(x2) + ξ2Z2(x1) (4.13)

In general, the accumulated diffusion for the forward rates creates discontinuities in the
short rate on FOMC dates, reflecting the empirical behaviour for the target rate and the
associated forward rates.

4.1.3 Decomposition to Independent Components

The model can be easily transformed to independent components which will make it con-
sistent with the HJM framework, thus facilitating the derivation of risk–neutral dynamics.
Define Σ to be the covariance matrix of the vector dZ = [dZ1, ..., dZn]. To transform the
system to independent components, find a transformation matrix γ, such that Σ = γγT

which is applied using dZ = γdW , to result in a vector of uncorrelated Wiener increments
dW = [dW1, ..., dWn]. Therefore:

ξidZi =
n∑
j=1

σjγi,jdWj (4.14)

75



Rewrite the forward rate dynamics with respect to the uncorrelated components:

n∑
i=1

t∫
0

ξi(s, T )dZi(s) =

n∑
i=1

t∫
0

ξi1(i ≤ At,T )dZi(s)

=

n∑
i=1

t∫
0

1(i ≤ At,T )

n∑
j=1

σjγi,jdWj(s)

=

n∑
j=1

t∫
0

σj(s, T )dWj(s)

(4.15)

where

σj(t, T ) = σj

n∑
i=1

γi,j1(i ≤ At,T ) (4.16)

4.1.4 Forward Rates Under the Spot Risk–Neutral Measure

Formulate the risk neutral dynamics by using the result from HJM. Under the spot risk–
neutral measure:

f(t, T ) = f(0, T ) +

n∑
j=1

t∫
0

σj(u, T )

T∫
u

σj(u, s)dsdu+

n∑
j=1

t∫
0

σj(s, T )dWj(s) (4.17)

Similarly to (4.5) for the stochastic component and using (4.16) for the drift component:

f(t, T )− f(0, T ) =

n∑
j=1

n∑
q=1

n∑
i=1

σ2
j γq,jγi,j

t∫
0

1(q ≤ Au,T )

T∫
u

1(i ≤ Au,s)dsdu

+

n∑
j=1

n∑
i=1

σjγi,j1(i ≤ A0,T )Wj(t ∧ xı̄(T ))

(4.18)

Where:

t∫
0

1(q ≤ Au,T )

T∫
u

1(i ≤ Au,s)dsdu =

t∫
0

1(q ≤ Au,T )(T − xı̂(u))
+du (4.19)

where ı̂(u) = A0,u + i. The integral
t∫

0

1(q ≤ Au,T )(T − xı̂(u))
+du is an integral over a

simple piecewise constant function. While it is possible to solve the integral it is best left
in this form. The solution expression appears over complicated since it needs to account
for distinct logical combinations of t, T, q and i.
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4.1.5 Short Rates Under the Spot Risk–Neutral Measure

Short rate dynamics can are obtained as follows:

r(t) = f(0, t) +
n∑
j=1

t∫
0

σj(u, t)

t∫
u

σj(u, s)dsdu+
n∑
j=1

t∫
0

σj(s, t)dWj(s) (4.20)

Similarly to (4.10) and (4.18):

r(t)− f(0, t) =
n∑
j=1

n∑
q=1

n∑
i=1

σ2
j γq,jγi,j

t∫
0

1(q ≤ Au,t)(t− xı̂(u))
+du

︸ ︷︷ ︸
deterministic term (**)

+

n∑
j=1

n∑
i=1

σjγi,j1(i ≤ A0,t)Wj(xı̄(t))︸ ︷︷ ︸
stochastic term (*)

(4.21)

4.1.6 Bond Prices

Bond prices can be written as follows:

B(t, T ) = exp
(
−

T∫
t

f(t, s)ds

)
=
B(0, T )

B(0, t)
exp
(
a(t, T ) + b(t, T )

)
(4.22)

where

a(t, T ) = −
n∑
j=1

n∑
q=1

n∑
i=1

σ2
j γq,jγi,j

T∫
t

t∫
0

1(q ≤ Au,s)(s− xı̂(u))
+duds (4.23)

b(t, T ) = −
n∑
j=1

n∑
i=1

σjγi,j

T∫
t

1(i ≤ A0,s)Wj(t ∧ xı̄(s))ds (4.24)

4.2 Empirical approach

The previous section presented a forward rate model where a piecewise continuous forward
rate structure induces discontinuities in the SOFR rate. Assuming Gaussian dynamics
the HJM framework was used to derive a closed-form solution for forward rate dynamics.
Estimation of the model requires the vector γi,j and volatility term σj for each factor j.
Aided by the intuition of this framework, in this section, the Gaussian dynamics assumption
is relaxed to demonstrate an approach which allows a model agnostic estimation of the
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vectors γi,j and their empirical states. This allows close examination of the empirical
behaviour of the model factors to inform further development of the model to resemble the
empirical dynamics of the observed states.

SOFR forward rate term structures are not directly observable but can be inferred from
the relevant futures contract prices. SOFR futures have been trading since May 2018 and
consist of monthly and quarterly contracts to align them with respectively 30 day Fed Fund
futures and Eurodollar Libor-based contracts. The contracts are available up to a forward
period limited to approximately 2 years covered by liquidly traded futures contracts. The
period of observation used for this section begins in June 2018 to capture the first full
month of trading through to June 2021 consisting of 757 trading dates for which SOFR
futures end-of-day settlement prices are available. The notation used in this section reflects
the discrete nature of the empirical observations, SOFR futures payoffs and aligns with the
discrete forward rate term structure of the model.

Define the observation period as a set of discrete dates (t0, ..., tn) corresponding to
trading days for SOFR futures. A set of SOFR futures settlement prices consisting of 1m
and 3m futures, denoted as F 1

j (ta) and F 3
j (ta) respectively, is observed on each date. The

subscript j indicates the position of the contract maturity, e.g. F 1
3 (ta) is the third maturing

1m contract from ta.
Denote the corresponding model price as F̂ 1

j (t) and F̂ 3
j (t). Using the generic futures

pricing theorem, where Eβ denotes the expectation under the spot risk neutral measure:

F̂ 1
j (ta) = Eβ

[
F̂ 1
j (τ1

j (ta))
∣∣Fta] = 100− 100

D1
j (ta)

[
S1
j (ta) +G1

j (ta)

]
(4.25)

where τ1
j (ta) is the terminal date and D1

j (ta) is the number of calendar dates in the
reference period of the contract. S1

j (ta) accounts for the accrued SOFR fixings if the
contract is trading during the reference period:

S1
j (ta) =

(t∗a−1)∧N1
j (ta)∑

i=n1
j (ta)

r(ti)di (4.26)

where t∗a is the index of time ta, n1
j (ta) is the index of the first date in the reference

period and N1
j (ta) is the index of the last date in the reference period. di is the number

of calendar days the rate at time ti applies to in order to include accrual over non trading
dates. The upper limit for the sum reflects that the SOFR is published the day following
its reference date. G1

j (ta) represents the sum of the SOFR forward rates relevant to the
reference period:

G1
j (ta) = Eβ

[
G1
j (τ

1
j (ta))

∣∣Fta] =

N1
j (ta)∑

i=t∗a∨n1
j (ta)

Eβ

[
r(ti)

∣∣Fta]di (4.27)
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where

Eβ

[
r(ti)

∣∣Fta] = Eβ

[
fP (ta, tk) +

n∑
j=1

tk∫
ta

σPj (u, t)

tk∫
u

σPj (u, s)dsdu+

n∑
j=1

tk∫
ta

σPj (s, tk)dW
P
j (s)

∣∣∣∣Fta]
(4.28)

= fP (ta, tk) +
n∑
j=1

tk∫
ta

σPj (u, t)

tk∫
u

σPj (u, s)dsdu (4.29)

The price of the quarterly SOFR futures is based on the compounding payoff defined
for the contract:

F̂ 3
j (ta) = 100− 100

[
S3
j (ta)G3

j (ta)

]
360

D3
j (ta)

(4.30)

S3
j (ta) accounts for the compounded SOFR fixings if the contract is trading during the

reference period:

S3
j (ta) =

(t∗a−1)∧N3
j (ta)∏

i=n3
j (ta)

(
1 +

r(ti)di
360

)
(4.31)

G3
j (ta) represents the compounding of the SOFR forward rates relevant to the reference

period:

G3
j (ta) = Eβ

[ N3
j (ta)∏

i=t∗a∨n3
j (ta)

(
1 + r(ti)

di
360

)∣∣∣∣Fta] (4.32)

The following two approximations greatly simplify calculations but have an insubstantial
numerical impact, see Section 4.3.5 for numerical justification.

G3
j (ta) ≈

N3
j (ta)∏

i=t∗a∨n3
j (ta)

(
1 + Eβ

[
r(ti)

∣∣Fta] di360

)
(4.33)

Furthermore, the convexity correction due to the distinction between expectations under
the spot and forward measures is ignored by setting:

Eβ

[
r(ti)

∣∣Fta] ≈ f(ta, ti) (4.34)

For each day in the observation period assume forward rates are piecewise constant
between FOMC dates and solve:

f(ta) = arg min
f(ta)

O(ta) (4.35)
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where f(ta) is the vector of forward rates f(ta, ti) which are piecewise constant between
FOMC dates. The objective function is defined as the sum of square errors between the
price given f(ta) and the market price for monthly and quarterly futures:

O(ta) =
∑
j

(F̂ 1
j (ta)− F 1

j (ta))
2 +

∑
j

(F̂ 3
j (ta)− F 3

j (ta))
2 (4.36)

The vector f(ta) can instead be expressed as a step function of the forward rate:

f(ta, T ) = f0(ta, T ) +
n∑
i=1

vi(ta)1(i ≤ Ata,T ) (4.37)

from which a vector of discrete forward rate levels (f0(ta), ..., fn(ta)) can be extracted,
where:

fk(ta) = f0(ta) +
k∑
i=1

vi(ta) (4.38)

vi correspond to changes in FOMC policy rate change expectations which form the basis of
the model. To obtain the empirical dynamics observe the changes in vi. For any dates ta
not immediately following an FOMC meeting:

∆vi(ta) = vi(ta)− vi(ta−1), ta−1 /∈ {x0, ..., xn} (4.39)

For dates following an FOMC meeting the effect of rolling the FOMC meeting index needs
to be considered:

∆vi(ta) = vi(ta)− vi+1(ta−1), ta−1 ∈ {x0, ..., xn} (4.40)

vn+1 is by definition not observed, therefore truncate the estimate to n − 1 FOMC dates.
Define a matrix of ∆vi(ta) observations.

V =

∆v1(t1) . . . ∆vn−1(t1)
...

. . .
∆v1(tm) . . . ∆vn−1(tm)

 ∈ Rm×(n−1) (4.41)

The matrix V can be factorised using principal component decomposition:

S = VW (4.42)

where W ∈ R(n−1)×(n−1) is a matrix of column wise eigenvectors of the matrix VTV. The
eigenvectors represent a new basis which factorises the matrix V into n − 1 independent
factors. The matrix S ∈ Rm×(n−1) denotes the empirical states of the independent factors.

In order to estimate a reduced factor model, truncate the matrices such that W∗ =
W[{1, ..., n−1}, {1, ..., b}] ∈ R(n−1)×b and S∗ = S[{1, ...,m}, {1, ..., b}] ∈ Rm×b. The matrix
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V∗ = S∗(W∗)T represents changes in FOMC policy rate change expectations corresponding
to the reduced factor truncation. Let sj(ta) be the (a, j) element of matrix S∗ and let wi,j
be the (i, j) element of matrix W. Then:

∆v∗i (ta) =
b∑

j=1

sj(ta)wi,j (4.43)

From which the truncated jump states can be obtained as follows:

v∗i (ta) = ∆v∗i (ta) +

{
v∗i (ta−1) , ta−1 /∈ {x0, ..., xn}
v∗i+1(ta−1) , ta−1 ∈ {x0, ..., xn}

(4.44)

where the initial state is obtained from the calibration, i.e. v∗i (t0) = vi(t0), therefore:

v∗i (ta) = vi(t0) +
a∑

a∗=1

∆v∗i∗(ta∗) = vi(t0) +
a∑

a∗=1

b∑
j=1

sj(ta∗)wi,j (4.45)

where i∗ = i+Ata∗ ,ta denoting the number of FOMCmeetings between ta∗ and ta. Therefore
the truncated forwards rates can be written as follows:

f∗(ta, T ) = f0(ta, T ) +
n∑
i=1

(
vi(t0) +

a∑
a∗=1

b∑
j=1

sj(ta∗)wi,j

)
1(i ≤ Ata,T )

= f0(ta, T ) +
n∑
i=1

(
vi(t0) +

a∑
a∗=1

b∑
j=1

sj(ta∗)wi,j

)
1(i ≤ Ata,T )

= f0(ta, T ) +
n∑
i=1

vi(t0)1(i ≤ Ata,T ) +
n∑
i=1

a∑
a∗=1

b∑
j=1

sj(ta∗)wi,j1(i ≤ Ata,T )

= f0(ta, T ) +
n∑
i=1

vi(t0)1(i ≤ Ata,T ) +
b∑

j=1

n∑
i=1

wi,j1(i ≤ Ata,T )
a∑

a∗=1

sj(ta∗)

(4.46)
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Taking the increment over time, for ta−1 /∈ {x0, ..., xn}:

∆f∗(ta, T ) = f∗(ta, T )− f∗(ta−1, T )

= f0(ta, T ) +
n∑
i=1

vi(t0)1(i ≤ Ata,T ) +
b∑

j=1

n∑
i=1

wi,j1(i ≤ Ata,T )
a∑

a∗=1

sj(ta∗)

− f0(ta−1, T )−
n∑
i=1

vi(t0)1(i ≤ Ata−1,T )−
b∑

j=1

n∑
i=1

wi,j1(i ≤ Ata−1,T )
a−1∑
a∗=1

sj(ta∗)

=
b∑

j=1

n∑
i=1

wi,j1(i ≤ Ata,T )

( a∑
a∗=1

sj(ta∗)−
a−1∑
a∗=1

sj(ta∗)

)

=
b∑

j=1

n∑
i=1

wi,j1(i ≤ Ata,T )sj(ta)

(4.47)

The above equation connects the empirical results to the model as follows. First write
the forwards rates without the drift component for a reduced factor model:

fP (t, T ) = fP (0, T ) +
b∑

j=1

n∑
i=1

γi,j1(i ≤ A0,T )σjW
P
j (t ∧ xı̄(T )) (4.48)

Taking the increment between ta−1 and ta in the case where Ata−1,ta = 0

∆fP (ta, T ) = fP (ta, T )− fP (ta−1, T )

= fP (0, T ) +
n∑
j=1

n∑
i=1

γi,j1(i ≤ A0,T )σjW
P
j (ta ∧ xı̄(T ))

− fP (0, T )−
n∑
j=1

n∑
i=1

γi,j1(i ≤ A0,T )σjW
P
j (ta−1 ∧ xı̄(T ))

=

n∑
j=1

n∑
i=1

γi,j1(i ≤ A0,T )σj

(
WP
j (ta ∧ xı̄(T ))−WP

j (ta−1 ∧ xı̄(T ))

)
(4.49)

Now:

WP
j (ta ∧ xı̄(T ))−WP

j (ta−1 ∧ xı̄(T )) =

{
WP
j (ta)−WP

j (ta−1) , ta−1 < xı̄(T )

0 , ta > xı̄(T )

(4.50)

therefore:

WP
j (ta ∧ xı̄(T ))−WP

j (ta−1 ∧ xı̄(T )) = 1(i ≤ Ata,T )
(
WP
j (ta)−WP

j (ta−1)
)

(4.51)
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Let ∆WP
j (ta) = WP

j (ta)−WP
j (ta−1):

∆fP (ta, T ) =
n∑
j=1

n∑
i=1

γi,j1(i ≤ Ata,T )σj∆W
P
j (ta) (4.52)

Comparing equations Eq.(4.47) and Eq.(4.52) it is apparent that the empirical results
are connected to the model with wi,j = γi,j and sj(ta) = σj∆W

P
j (ta).

4.3 Empirical Results

4.3.1 Factor decomposition

The estimation described in the previous section produces an empirically based decompo-
sition into the piecewise forward rate structures corresponding to the modelling approach
proposed in this chapter. The decomposition informs a dimension reduction effected by
removing factors which do not significantly impact estimated dynamics. In order to choose
the appropriate level of factor reduction the relationship between the number of factors and
the total root mean square error (RMSE) is examined. Define the total RMSE as:

e(b) =

√√√√ m∑
a=1

O(ta)

m
(4.53)

where b is the number of factors used to obtain the forward rates from the calibration.
Figure 4.1 suggests that over the sample period factors 8 and above are redundant. The
HJM framework allows for the inclusion of any number of factors, therefore the number of
factors becomes a choice between modelling accuracy and parsimony.

The estimated λ vectors reflect the empirical dynamics of policy rate expectations.
Therefore they offer an interesting economic interpretation of the driving dynamics of for-
ward rates, especially those with short maturities. Figure 4.2 shows the λ vectors corre-
sponding to the top three factors. The factors reflect the general level across the term
structure (factor 1), the gradient (factor 2) and curvature (factor 3). The general shape of
these vectors aligns with their parametrised counterparts in the Nelson-Siegel model (see
Nelson and Siegel (1987)).

The modelling setup proposed in this chapter interprets forward rates as an accumula-
tion of expected policy rate changes. Therefore the decomposition weight vectors can be
cast as factorised policy rate change expectations, where the resulting λ vectors correspond
directly to factors in the proposed model. An interesting insight emerges regarding the dy-
namics of forward rates. As shown in Figure 4.2, the λ vector corresponding to factor 1 is
concentrated mostly on the first element, revealing that parallel changes in the forward rate
term structure are equivalent to changing expectations regarding the next FOMC policy
rate change.

Although these results are based on the short end of the term structure, this connection
can be conceptually extended to longer terms. Parallel changes have been long known to
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Figure 4.1: Total calibration RMSE given number of factors

Figure 4.2: λ vectors for the first three factors

be the primary driver of term structure dynamics, these results reveal that parallel forward
curve changes are directly related to changing expectations related to the first FOMC date.
The connection between FOMC policy rate expectations and parallel changes in the forward
curve is a key insight stemming from this modelling approach.

The second factor is similarly concentrated on the first element but with a distinctive
change in the opposite direction for the remaining values. The magnitude of the first
element is smaller than the sum of the remaining values which gives rise to an opposite
change in the forward rates between the first and last forward with a smooth transition
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Figure 4.3: Forward rate level vectors for the first three factors

in between. For the forward curve, this is a gradient change, which again is typical for
the second factor in term rate dynamics. Although the interpretation is that this captures
dynamics where the expected aggregate changes in policy rates do not change, the timing
of those changes does. For example, the expectations of a rate rise increase for the next
meeting. However, the aggregate expected level does not change therefore the expectations
of rate rises decrease for subsequent meetings. An equivalent interpretation is that the
second factor represents a negative correlation between the expectations related to the next
policy rate change with the remaining term structure. Again this is a key insight, connecting
FOMC policy rate change expectations and a long-known shape of the second factor for
term structure changes.

The third factor, which appears as a curvature change in the forward rate term struc-
ture, is actually quite similar to the second factor. It also represents a negative correlation
involving the next policy rate change. However, this time focusing mostly on the relation-
ship with the second FOMC meeting rather than the remaining term structure. Similarly
to factor 2, the interpretation is related to the aggregate outcome over the next two meet-
ings remaining fairly constant while allowing for uncertainty regarding the timing of the
change. The insight from this interpretation can be extended even further. The top three
factors, which cover most of the forward rate dynamics, are all related to the next policy
rate change and the resulting implications for the expectations of subsequent policy rate
changes.

4.3.2 Calibration performance

A notable feature of the calibration error shown in Figure 4.1 is that it does not converge
to zero, meaning that even a full-factor model is not able to perfectly calibrate to futures
prices on a cross-sectional basis. Futures are readily tradable basic derivative instruments
and as such, it is an arbitrage requirement that they are fully reconciled by pricing models.
In general, cross-sectional calibration performance depends on the number and nature of
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instrument M0 M1 M2 M3 M4 M5 M6 Q0 Q1 Q2 Q3 Q4
1 factor 1.2 1.7 6.6 12.8 19.6 26.0 30.7 7.2 22.9 36.3 47.4 68.6
2 factor 1.1 1.4 1.5 1.4 2.2 2.6 2.6 0.8 2.1 1.9 5.0 10.6
3 factor 1.1 1.4 1.5 1.3 1.6 1.5 1.3 0.8 1.0 1.0 1.1 2.1

Skov & Skovmand 2.9 3.1 3.3 2.6 2.1 1.6 1.6 0.9 1.3 1.8 0.9 1.8

Figure 4.4: RMSE table for monthly(M) and quarterly(Q) contracts, comparing results between
different number of factors for the proposed model and results published in Skov and Skovmand
(2021)

factors since they translate directly to degrees of freedom in the calibration. The results
indicate that there are still residual errors which could be addressed by the inclusion of spikes
as per the previous chapter. However, the aim is to first determine the set of primary factors
that explain as much of the cross-sectional fit, state dynamics and short-rate dynamics as
possible. From this perspective and for a more granular understanding define the calibration
error per instrument as a root mean square error (RMSE):

exj (b) =

√∑
a(F̂

x
j (ta)− F xj (ta))2

m
(4.54)

The RMSE results for the first three factors in the model are shown Figure 4.4. A
distinct feature of SOFR futures is the existence of both monthly and quarterly futures with
overlapping reference periods. An approach which would yield zero calibration error would
be to choose interpolation points on each of the futures maturity dates, thus lining up the
calibration factors directly to the instruments. This approach has a much-reduced ability
to predict FOMC policy rate changes 3 and therefore does not align well with empirical
short-rate dynamics.

FOMC meetings occur eight times per year, therefore the choice of piecewise flat regions
between FOMC dates results in fewer degrees of freedom than there are instruments even in
the full factor model. This could be mitigated with the addition of further factors such as
the spike and a mean-reverting spread factor proposed in the previous chapter. A factor for
end-of-month spikes would provide an extra degree of freedom aligned with each monthly
future. However, the main purpose of this section is to compare to published results by
Skov and Skovmand (2021).

To allow the comparison the results are produced over the same period and instruments
as the aforementioned paper. The results produced by Skov and Skovmand (2021) show a
significant deterioration for the first three monthly contracts, which does not seem to occur
in the model proposed in this chapter. This could be explained by as well as highlighting a
key difference between the two models. Both models are three-factor models and the state
vectors show similar characteristics. However, in the Nelson-Siegel model used by Skov and
Skovmand (2021), the forward structures are continuous as opposed to piecewise flat as
proposed in this model. It is observed as part of this empirical research that short expiry

3As shown in section 3.2.1.
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Figure 4.5: R-squared of FOMC policy rate change vs forward rates for different forward periods

futures are particularly sensitive to the forward rate structure, with the proposed piecewise
structure being able to better align with the front monthly futures.

4.3.3 Policy rate change prediction

In this section, the analysis discussed in section 3.2.1 is repeated for the calibration per-
formed in this chapter. However, this time the information is extracted directly from SOFR
futures. Similarly to section 3.2.1, the r-squared is calculated between expected and actual
policy rate changes for different forward rate periods. However, this time focusing on for-
ward rates derived directly from SOFR futures. As shown in Figure 4.5 there is a strong
indication that policy rate changes are increasingly well anticipated as the length of the for-
ward rate period decreases. Additionally, there is a distinction between well-communicated
policy rate increases and the more sudden nature of policy rate decreases, see Figure 4.6.

The expectations reflected in the model are directly related to FOMC policy rate changes
which tend to be well communicated ahead of time. One exception is in the case of crisis
situations where the Federal Reserve has suddenly sharply decreased the policy rate without
much advance warning. Therefore there should be increasingly good agreement between the
actual and expected policy rate changes as the forward period to the next FOMC meeting
decreases. This agreement should be better for rate increases which were well communicated
than the decreases which were associated with emergency Federal Reserve action.

The drop in correspondence at the very short end of the forward rate period for policy
rate increases can also be attributed to noise in the SOFR rate which is reflected in short
forward rates in the form of a spread to the policy target rate, making it difficult to precisely
disentangle changes in spread and changes to policy rate change expectations.
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Figure 4.6: R-squared of FOMC policy rate change vs forward rates for different forward periods
split by up and down changes

Figure 4.7: comparison of actual (black) and model(red) SOFR to the target rate spread between
2018-2021(LHS) and between May-2020 and July 2021(RHS)

4.3.4 SOFR spread from calibration

Another aspect captured by the calibration is the SOFR spread to the target rate. This
is reflected in the forward rate before the first FOMC meeting date, corresponding to the
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Figure 4.8: Daily changes in the states of estimated factors

first term in Eq.(4.37). Since spikes are not included, in some cases the presence of spikes
and expectations of the spike is also reflected in the SOFR spread and the calibration,
particularly in the period when spikes are present. For the SOFR spread spikes results in
an elevated spread on the day and a few days following the spike. As shown in the previous
chapter there is evidence that the expectation of spikes is embedded in futures prices and it
is possible to extract this expectation in calibration. However, the focus of this chapter is
the estimation of the main driving dynamics of SOFR forward term structure and therefore
spike estimation is not repeated.

The very large spike in September 2019 resulted in active intervention by the Federal
Reserve to stabilise SOFR. Since then they have mostly disappeared with one exception in
March 2020. The calibrated spread corresponds very well to the actual spread in the post-
spike period, see Figure 4.7. In the period where spikes are present, it follows the spread
reasonably well but there are discrepancies related to the spikes. These results highlight
that the dynamics of the forward rate maturing before the first FOMC date are driven by the
SOFR spread. The correspondence between the actual spread and the calibrated spread
shows that the piecewise structure facilitates the accurate extraction of this information
from futures.

4.3.5 Risk neutral drift estimate

The empirical results presented in this chapter relied on two key simplifying assumptions,
mostly motivated by computational speed, allowing empirical analysis across a broader
range of data. The calibration was performed with zero drift, assuming it is negligible
over the test period. The other assumption relates to Eq. (4.32), which approximates
the expectation of the compounded rates by compounding the expected rates, violating
Jensen’s inequality. The error resulting from the two approximations can be quantified by
the adjustment which would be required to obtain the strictly correct price.

The adjustments to a set of futures used for the calibration are calculated using Monte
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Jensen Jensen + drift
contract adjustment(bp) 95% ci (2m paths) adjustment(bp) 95% ci (2m paths)

M0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M1 -0.0042 -0.0199 0.0116 0.0085 -0.0072 0.0243
M2 0.0110 -0.0103 0.0322 -0.0133 -0.0345 0.0080
M3 0.0059 -0.0218 0.0337 0.0124 -0.0154 0.0401
M4 -0.0084 -0.0452 0.0284 0.0000 -0.0369 0.0368
M5 -0.0028 -0.0424 0.0367 -0.0373 -0.0768 0.0022
M6 -0.0221 -0.0674 0.0232 -0.0101 -0.0554 0.0351
M7 0.0521 -0.0008 0.1049 -0.0078 -0.0606 0.0449
M8 -0.0401 -0.0952 0.0149 -0.0986 -0.1537 -0.0436
M9 0.0339 -0.0268 0.0946 -0.0248 -0.0855 0.0359
M10 0.0397 -0.0260 0.1054 -0.0778 -0.1434 -0.0121
M11 0.0167 -0.0518 0.0853 -0.0301 -0.0987 0.0384
M12 0.0044 -0.0685 0.0773 -0.1067 -0.1796 -0.0338
Q0 -0.0018 -0.0102 0.0066 0.0049 -0.0036 0.0133
Q1 0.0018 -0.0296 0.0332 -0.0367 -0.0681 -0.0052
Q2 -0.0034 -0.0518 0.0450 -0.0280 -0.0764 0.0203
Q3 -0.0645 -0.1266 -0.0023 -0.0857 -0.1478 -0.0235
Q4 -0.0798 -0.1553 -0.0043 -0.1991 -0.2747 -0.1235
Q5 -0.0633 -0.1528 0.0262 -0.3142 -0.4037 -0.2246
Q6 -0.0857 -0.1854 0.0140 -0.3932 -0.4929 -0.2935
Q7 -0.2121 -0.3214 -0.1028 -0.5277 -0.6369 -0.4185

Table 4.1: Jensen inequality and drift Impact of assumptions on futures

Carlo simulation using volatilities estimated from the empirical states. The results, showing
both the Jensen inequality adjustment and the drift adjustment are presented in Table 4.1.
Jensen’s inequality should only impact quarterly futures and indeed for all the monthly
futures, the zero adjustments is within the 95% confidence interval. The maximum adjust-
ment amounts to around half a basis point for the eighth quarterly contract.

The adjustments are relatively small(and economically insignificant), particularly for
the contracts used to obtain the results in section 4.3.2, with the maximum adjustment
for the fifth quarterly contract at around 0.2 basis points. Including the adjustments in
the calibration would result in a slight change in the calibration state therefore the RMSE
reported in section 4.3.2 would increase by less than the adjustment if at all. The ad-
justments are stable over time and therefore the change in states from the adjustments is
also stable over time. Therefore the adjustments would have a minimal contribution to the
daily change states. Since the covariance used for the PCA reduction is estimated from the
change in states, the adjustments are not expected to change the covariance estimate or
the reduced factor model.
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4.4 Conclusion

The reformulated model presented in this chapter allowed for a time-homogeneous esti-
mation of the driving factors and their states. This allows an analysis of the factor state
dynamics. This analysis is used to motivate a stochastic volatility extension to the model
which is presented in the next chapter.
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Chapter 5

Stochastic Volatility Extension1

5.1 Introduction

This chapter introduces the final version of the model proposed in this thesis. The model
includes a stochastic volatility extension, where volatility follows dynamics inspired by
Heston (1993). It constitutes a tractable multi-factor, stochastic volatility model which
incorporates piecewise constant short-rate dynamics and diffusive forward-rate dynamics
introduced in previous chapters. Calibrating to prices for options on SOFR futures, a good
fit to the market is achieved across available maturities and strikes in a single, consistent
model. The model also provides novel insights into SOFR term rate behaviour (and implied
volatilities) within the SOFR term rate accrual periods, as well as into empirical mean
reversion dynamics. The empirical motivation for this Chapter was outlined in Section 1.5.

The rest of the chapter is organised as follows. The stochastic volatility version of the
model is introduced in Section 5.2. The resulting term rate dynamics in the context of
accrual period behaviour, mean reversion and option calibration are examined in Section
5.3. Cross-sectional calibration results are presented in Section 5.4. Section 5.5 concludes
the chapter.

5.2 Model

5.2.1 HJM with a piecewise volatility function

The model introduced in Chapter 3, produces dynamics where the short rate is constant
between specified dates while the forward rates evolve as a continuous diffusion. This is
achieved within the HJM framework by specifying a volatility function which results in
discontinuities in the short rate. The change in the short rate at the point in time when the
discontinuity occurs reflects the accumulated diffusion of the corresponding forward rates.
This reflects empirical behaviour where changes in the short rate occur at known times due

1This chapter is based on the paper Brace, Gellert and Schlögl (2022) with Erik Schlögl contributing in
a supervisory capacity and Alan Brace contributing notes on which Section 5.2.2 introducing the Heston
stochastic volatility model, is based.
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to FOMC policy rate changes while the expected value of those changes continuously over
time. The model begins with the standard HJM result for forward rate dynamics with N
factors:

f(t, T ) = f(0, T ) +

N∑
j=1

t∫
0

σj(u, T )

T∫
u

σj(u, s)dsdu+

N∑
j=1

t∫
0

σj(s, T )dWj(s) (5.1)

Define σj(t, T ) as a piecewise constant function between FOMC meeting dates:

σj(t, T ) = σj

n∑
i=1

γi,j1(i ≤ At,T ) (5.2)

where n is the total number of meetings dates and At,T reflects the number of meeting
dates between t and T :

At,T :=
∣∣{x1, ..., xm|t < xi ≤ T}

∣∣ (5.3)

σj and γi,j scales the variance of each factor. σj allows control of the overall level of variance
and is the key variable used in calibration to option prices. γi,j scales the volatility based
on the number of FOMC meeting dates between t and T . It can be empirically derived
to reflect the covariance structure between forward rates.2 Solving the stochastic integral
yields:

fP (t, T )− fP (0, T ) =
n∑
j=1

n∑
q=1

n∑
i=1

σ2
j γq,jγi,j

t∫
0

1(q ≤ Au,T )

T∫
u

1(i ≤ Au,s)dsdu

+

n∑
j=1

n∑
i=1

σjγi,j1(i ≤ A0,T )WP
j (t ∧ xı̄(T ))

(5.4)

where ı̄(T ) = A0,T − i + 1. The solution reveals that the total variance is an increasing
function of the number of meeting dates between 0 and T , up to the minimum of t and the
last meeting date before T . This implies that the variance of the forward rate is zero if the
forward date occurs prior to the next meeting date.

5.2.2 HJM with a piecewise stochastic volatility function

The stochastic volatility extension of the model in Chapter 4 proposed in this chapter
draws inspiration from an approach endowing a Hull and White (1990) interest rate terms
structure model with stochastic volatility. The quasi-Gaussian HHW, presented in this
section, builds on the Gaussian Hull-White model by adding a Heston stochastic volatility
component. Start with a 1-factor quasi-Gaussian model (QG1) model with HJM defined
volatility:

σ(t, T ) = χ(t)φ(T ) (5.5)
2This is derived in Chapter 4 using principal component analysis and is in fact given by the eigenvectors

stemming from the analysis.
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where χ(t) is generally stochastic, and integrate from 0 to t the SDE for the instantaneous
forward f(t, T ) under the spot measure, resulting in

df(t, T ) = F (t, T )dt+ σ(t, T )dW (t) where F (t, T ) = σ(t, T )

T∫
t

σ(t, u)du (5.6)

=⇒ f(t, T )− f(0, T ) =

t∫
0

F (s, T )ds+ φ(T )

t∫
0

χ(s)dW (s) (5.7)

Then set T = t and differentiate with respect to t to express the spot r(t) in the form

r(t)− f(0, t) = x(t) =

t∫
0

F (s, t)ds+ φ(t)

t∫
0

χ(s)dW (s), x(0) = 0

dx(t) =
d

dt

{ t∫
0

F (s, t)ds

}
dt+ φ′(t)

t∫
0

χ(s)dW (s) + φ(t)χ(t)dW (t)

=
d

dt

[ t∫
0

F (s, t)ds

]
dt+

φ′(t)

φ(t)

[
x(t)−

t∫
0

F (s, t)ds

]
dt+ σ(t, t)dW (t)

(5.8)

Define

φ(T ) = exp
(
−

T∫
0

λ(v)dv

)
=⇒ φ′(t)

φ(t)
= −λ(t) (5.9)

χ(t) = σ(t)exp
( t∫

0

λ(v)dv

)
=⇒ σ(t, T ) = χ(t)φ(T ) = σ(t)exp

(
−

T∫
t

λ(v)dv

)
(5.10)

therefore

F (t, T ) = σ2(t)exp
(
−

T∫
t

λ(v)dv

) T∫
t

exp
(
−

u∫
t

λ(v)dv

)
du, F (t, t) = 0 (5.11)

Hence σ inherits the stochasticity of χ, σ(t, t) = σ(t) and the SDE changes to

dx(t) =

{
d

dt

[ t∫
0

F (s, t)ds

]
+ λ(t)

t∫
0

F (s, t)ds

}
dt− λ(t)x(t)dt+ σ(t)dW (t) (5.12)
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in which the part of the drift term involving F (t, T ) simplifies to

Φ(t) = F (t, t) +

t∫
0

∂

∂T
F (s, T )

∣∣∣∣
T=t

ds+ λ(t)

t∫
0

F (s, t)ds

=

t∫
0

σ2(s)exp
(
− 2

t∫
s

λ(v)dv

)
ds =

t∫
0

σ2(s, t)ds

(5.13)

The volatility σ(.) is made stochastic by incorporating a Heston process v(.) in it:

σ(t)→ σ(t)
√
v(t) (5.14)

which constitutes an affine system under the HJM spot measure:

dx(t) = [Φ(t)− λ(t)x(t)]dt+ σ(t)
√
v(t)dW (t), x(0) = 0

dΦ(t) = [σ2(t)v(t)− 2λ(t)Φ(t)]dt,Φ(0) = 0

dv(t) = θ(t)(1− v(t))dt+ α(t)
√
v(t)dU(t), v(0) = 1

(5.15)

with

〈dW (.), dU(.)〉(t) = ρdt (5.16)

Bond price dynamics can be written as follows (see Appendix B for derivation):

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
exp
(
− Λ(t, T )y(t)− 1

2
Φ(t)Λ2(t, T )

)
(5.17)

where:

Λ(t, T ) =

∫ T

t
exp
(
−
∫ u

t
λ(v)dv

)
du (5.18)

Φ(t) =

∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (5.19)

5.2.3 Piecewise Heston HJM

The idea behind the stochastic volatility extension of the model is that each factor evolves
with its own independent Heston stochastic volatility. That is, each factor in the piecewise
HJM model is extended in the same manner as HW in the HHW model. Thereby, the
model proposed inherits the piecewise constant structure but is instead driven by Heston
rather than Gaussian dynamics.
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This set-up provides ample flexibility to calibrate to volatility term structure (since
each factor uniquely impacts different aspects of the forward rate term structure), as well
as option implied volatility skew and smile across different expiries. The level of flexibility
is regulated by the choice of the number of factors and the time dependence of the HHW
variables. Notably in the absence of the indicator function and for n = 1, the model
collapses to the HHW.

Starting with the standard HJM multifactor framework:

f(t, T ) = f(0, T ) +

N∑
j=1

t∫
0

σj(u, T )

T∫
u

σj(u, s)dsdu+

N∑
j=1

t∫
0

σj(s, T )dWj(s) (5.20)

Define the HJM volatility as follows:

σj(t, T ) =
n∑
i=1

I{i≤A(t,T )}χj(t)φj(T )γi,j (5.21)

where

φj(T ) = exp
(
−
∫ T

0
λj(s)ds

)
(5.22)

and

χj(t) = σj(t)
√
vj(t)exp

(∫ t

0
λj(s)ds

)
(5.23)

v(t) evolves with a Heston dynamic:

dv(t) = θ(t)(1− v(t))dt+ α(t)
√
v(t)dU(t), v(0) = 1 (5.24)

with

〈dWj(.), dUj(.)〉(t) = ρjdt (5.25)

and

〈dWi(.), dUj(.)〉(t) = 0, for i 6= j (5.26)

The bond price dynamics for a single factor3 can be written as (See Appendix B for
3The multifactor expression is trivial but notationally complicated.
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derivation.):

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
(5.27)

=
B(0, T )

B(0, t)
exp
(
−
η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1)− Λxη(T )−1

(t, T )yη(T )−1(t)

(5.28)

−
η(T )−2∑
k=η(t)

η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1)−
η(T )−2∑
k=η(t)

Λxk(t, xk+1)yk(t) (5.29)

− 1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)}

(5.30)

− 1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)} (5.31)

−
η(T )−2∑
k=η(t)

1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)} (5.32)

−
η(T )−2∑
k=η(t)

1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)}
)

(5.33)

5.2.4 SOFR term rates

The LIBOR to SOFR transition imposes on the market a change from rates set for a longer-
term (usually 3 months) to rates with an effective term of 1 business day. Transitioning
to daily frequency for derivative instruments would not be desirable for many reasons,
including burdening the system with a large increase in transaction volumes to settle daily
flows. Instead, the market is adopting an approach where instruments are still defined with
longer term rates. However, those term rates are now calculated using either compounding
or averaging of SOFR over the term. These rates are better known as term SOFR.

A LIBOR term would be defined by the start date Ti and an end date Tk of the period
over which it applies. A SOFR term for the corresponding dates is defined as a set of
discrete dates {Ti, , , Tk} on which SOFR is observed. The most common definition of term
SOFR is based on compounding over the term (usually 3m):

S(Ti, Tk) = τi,k

[ k∏
j=i

(1 + s(Tj)δj)− 1

]
(5.34)

where τi,k is the year fraction of the term length and s(t) is the SOFR observed set for Tj .
δj is the year fraction of the period between Tj and Tj+1 to account for days on which SOFR
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is not observed (weekends and holidays). Note that for the empirical results presented in
this section it is assumed that the daily SOFR rate is approximated by the continuous short
rate r(t).

5.2.5 Pricing Futures

Define a 3M SOFR futures contract F (Ti, Tk) with accrual period starting at Ti and ending
at Tk, with payoff measurable at Tk:

F (Ti, Tk) = 100

(
1− S(Ti, Tk)

)
(5.35)

where δi,k is the year fraction between Ti and Tk. Using the generic futures pricing
theorem the expected value at t under the spot risk neutral measure β of the futures
contract is:

F (t, Ti, Tk) = Eβ

[
F (Ti, Tk)|Ft

]
(5.36)

5.2.6 Pricing Options on Futures

Options on 3M SOFR futures exist for a variety of strikes and expiries. Although they are
specified with American style exercise, here they are used to approximate European style
implied volatilities as is common in practice. The impact of the American exercise is not
assessed in this chapter, instead, the options are used to demonstrate the ability of the
model to calibrate to a variety of strikes and expiries. The value of a call option at time t,
expiring at Te < Ti with strike K on the futures contract is given by the expectation under
the spot risk-neutral measure as:

C(t, Te, F (Ti, Tk),K) = Eβ

[
1

β(Te)
(F (Ti, Tk)−K)+|Ft

]
(5.37)

5.2.7 Monte Carlo Simulation

As an initial proof of concept, particularly the ability of the model to calibrate to SOFR op-
tions, the following simulation is implemented. Rewriting to isolate stochastic components
from Eq.(5.20) requiring Monte Carlo simulation:

t∫
0

σj(s, T )dWj(s) =
n∑
i=1

I{i≤A(t,T )}γi,jφj(T )

t∫
0

σj(s)
√
vj(s)exp

(∫ s

0
λj(q)dq

)
dWj(s)

(5.38)
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Setting constant parameters σj(s) = σj and λj(q) = λj :

t∫
0

σj(s)
√
vj(s)exp

(∫ s

0
λj(q)dq

)
dWj(s) = σj

t∫
0

√
vj(s)e

sλjdWj(s) (5.39)

The stochastic component is approximated as follows:

t∫
0

√
vj(s)e

sλjdWj(s) ≈
1

N

N∑
p=1

g(t) (5.40)

where

gj(t) =

t∫
0

√
vj(s)e

sλjdWj(s) (5.41)

calculated with Euler discretisation:

∆gj(s) =
√
vj(s)e

sλj∆Wj(s) (5.42)

where ∆Wj(s) ∼ N(0,
√

∆t), vj(s) = vj(s−∆t) + ∆vj(s) and:

∆vj(s) = θ(1− vj(s−∆t))∆t+ α
√
vj(s−∆t)∆Uj(s), vj(0) = 1 (5.43)

where ∆Uj(s) ∼ N(0,
√

∆t) and 〈∆Wj(.),∆Uj(.)〉(s) = ρj∆t

5.3 Term rate dynamics

5.3.1 Factor Sensitivities

Calibration to interest rate options requires the model to fit the first four moments of
terminal distributions across different expiries and tenors. The moments of a terminal
distribution at a specific expiry are usually characterised in terms of implied volatilities
across different strikes. In this representation, the first moment corresponds to a horizontal
shift in the implied volatilities (across strikes), the second moment a vertical shift (across
all implied volatilities), the third moment a gradient shift and the fourth moment a shift
in convexity.

Using a model calibration on 10-June-2022 to the first four quarterly SOFR options
including all available strikes, the sensitivity of implied volatilities to the model parameters
is examined. Starting with σ, see Figure 5.1, it is apparent that changing this variable
results in a parallel shift in the implied volatilities, thereby controlling the second moment.
The table in Figure 5.1, shows how different factors impact different expiries with factor 1
focusing on short expiries, while factors 2 and 3 increasingly focus on the longer expiries,
providing calibration flexibility across the term structure.
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Figure 5.1: (LHS)Implied volatility for different values of σ.(RHS) ATM implied volatility sensi-
tivity across contracts to changes in σ

The α parameter determines the level of stochastic volatility in the model and is asso-
ciated with the fourth moment. As shown in Figure 5.2, changing the α parameter results
in a change in convexity as well the level of volatilities. Control of just convexity, without
changing ATM volatilities is possible by combining offsetting changes in the σ parameter.
As per the σ parameter, the table in Figure 5.2 shows a different impact on convexity
from different factors across expiries enabling the model to calibrate to different stochastic
volatility term structures.

The ρ parameter determines the correlation between the stochasticity of the volatility
and the forward rates. As can be seen in Figure 5.3, changing the ρ parameter results in
a gradient change in implied volatilities corresponding to a change in the third moment.
Similarly to the other parameters, the impact on implied volatility skewness varies from
different factors across expiries allowing the model to calibrate to different correlation term
structures.

λ and θ are two variables associated with mean reversion. The λ parameter controls the
mean reversion of the forward rates while the θ parameter controls the mean reversion of the
stochastic volatility level. From an implied volatility perspective, as shown in Figure 5.4, the
mean reversion parameters work in reverse to their corresponding volatility parameters. The
λ parameters offset the impact from σ and result in a parallel change in implied volatility in
the opposite sign to the change in the parameter. The θ parameter reverses the α parameter
and therefore results in both a level and convexity change in the implied volatilities.

The model proposed has the flexibility to attempt simultaneous calibration to implied
volatilities across both strikes and expiries. Additional flexibility for calibration comes from
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Figure 5.2: (LHS) Implied volatility for different values of α. (RHS) Implied volatility convexity
(measured as the second derivative of implied volatility as a function of strike) sensitivity across
contracts to changes in α

Figure 5.3: (LHS) Implied volatility for different values of ρ. (RHS) Implied volatility skew
(measured as the first derivative of implied volatility as a function of strike) sensitivity across
contracts to changes in ρ
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Figure 5.4: (LHS) Implied volatility for different values of λ (RHS) implied volatility for different
values of θ

the ability to define the variables as functions of time. In the next section, the model’s
ability to calibrate to options on SOFR futures is demonstrated.

5.3.2 Accrual period

A prevalent approach in the LIBOR to SOFR transition, as reflected in the literature, see
Lyashenko and Mercurio (2019), is the adaptation of existing LIBOR-based modelling to
SOFR. A trivial but highly practical problem stemming from this approach is the behaviour
of options in the accrual period of the SOFR term rate, i.e. for term forwards S(Ti, Tk) at
time Ti < t ≤ Tk. This occurs when the expiry of the option is set past the beginning of
the accrual period.

Examples of impacted options are in arrears SOFR caps and exchange-traded options
on 1M SOFR futures4. Options on averaging and compounding SOFR term rates can
be considered as average rate options on the short rate. However, existing LIBOR-based
pricing models simply treat SOFR term rates like a LIBOR term rate set in arrears (i.e.,
observed at the end of its accrual period). These models do not have an in-built capacity
to cater for the compounding or averaging aspect of SOFR. This means that these models
need to be adapted (in an arbitrary fashion) for the behaviour of SOFR within the accrual
period. This is done by making the implied volatility a function of the accrual period.
Hence, in the LIBOR-based models, SOFR essentially continues to be treated like LIBOR,

4Options on 3M futures expire prior to the accrual period, hence are not impacted by accrual period
behaviour.
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where accrual period behaviour is absorbed into the implied volatility behaviour. To this
effect, Lyashenko and Mercurio (2019) suggest that implied volatility is a linearly decaying
function of the accrual time.

The model proposed in this thesis handles the case of partially set forwards naturally
and also provides an alternative insight into the decay characteristics of implied volatility
within the accrual period. The model presented is a factor model of the daily SOFR for-
ward rates. Therefore the entire term structure of daily SOFR is available at any forward
simulation point without additional simulation cost. The appropriate dynamics are em-
bedded in the partially set term forwards by evolving each SOFR forward rate up to its
observation/accrual time. As shown in Figure 5.5, setting a constant sigma and removing
the indicator functions in the HJM volatility function results in a linearly decaying im-
plied volatility. Although the result is consistent with Lyashenko and Mercurio (2019), it
is directly reflective of model behaviour rather than derived to improve the accrual period
behaviour of term structure models.

The model proposed in this thesis assumes that all forward rate volatility is driven by
FOMC meetings and therefore there is zero volatility in the period between the end of the
accrual period and the last FOMC meeting within the accrual period. The insight from this
modelling set-up, as shown in Figure 5.5, results in an accelerating decay in implied volatility
to zero at the final meeting date before the end of the accrual period. This analysis does
ignore the volatility of the SOFR to policy target rate spread. However, empirical spread
variance is relatively small suggesting the implication on the accrual period dynamics is
likely to be accurate.

This dynamic can also be tested against the behaviour of options on 1M SOFR which
began listing in early 2022. These options expire just before the end of the accrual period
and therefore one should observe a drop in implied volatility as the expiry rolls over an
FOMC date. However, at this point there is no liquidity in this market. Therefore prices
are not subject to price discovery and as such testing is not pursued for now.

5.3.3 Mean reversion

Mean reversion is embedded in the model in the definition of σj(t, T ) which can be rewritten
as follows:

σj(t, T ) = σj(t)
√
vj(t)exp

(
−
∫ T

t
λj(s)ds

) n∑
i=1

I{i≤A(t,T )}γi,j (5.44)

The mean reversion is reflected in the term exp
(
−
∫ T
t λj(s)ds

)
and is a function of (T − t).

The γi,j vector scales the volatility function based on the number of FOMC meetings
between t and T and as such has an inherent dependence on T − t. Therefore for a given
λj(s) function, it is possible to define γi,j such that:

n∑
i=1

I{i≤A(t,T )}γi,j ≈ exp
(
−
∫ T

t
λj(s)ds

)
(5.45)
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Figure 5.5: Accrual period term volatility comparing a flat volatility assumption to the calibrated
model

That is, it is possible to set λj = 0 and instead mimic mean-reverting dynamics with
the appropriate choice of γi,j . In Chapter 4, γi,j is derived from the PCA of forward states
implied from SOFR and Fed Funds futures. The states are derived assuming a piecewise flat
structure between FOMC dates without any assumptions regarding the driving dynamics, in
turn allowing for empirical assessment of the state dynamics. The first factor, i.e for j = 1,
explains a large proportion (around 80%) of the forward state variance. It has a clear
economic interpretation of focusing forward rate dynamics on the changing expectations
related to the change in policy rate at the FOMC date immediately following t. This
in itself is a powerful and intuitively agreeable insight; forward rate dynamics are largely
driven by changing expectations of the next move in the policy rate. However, critical to
the mean-reverting behaviour is that γi,j has the opposite sign between γ1,1 and γi,1 for
i > 1.

Inspection of the empirically derived γi,j vector for j = 1, reveals that it is now possible
to choose λj(s) such that:

exp
(
−
∫ T

t
λj(s)ds

)
≈

n∑
i=1

I{i≤A(t,T )}γi,j (5.46)

by setting:

λj(s) =

{
0.9, s− t < 0.5

0.08, otherwise
(5.47)

which results in the comparison shown in Figure 5.6, demonstrating it how it is possible to
replicate the calibrated γi,j vector with an appropriate choice of λj(s). It is clear that most
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Figure 5.6: Comparison of exp
(
−
∫ T

t
λj(s)ds

)
(red) and

∑n
i=1 I{i≤A(t,T )}γi,j(black)

of the difference stems from the continuous and piecewise definitions, but both approaches
are very similar in terms of embedding dynamics which can be interpreted as mean reversion.

It is evident that the empirically derived γi,j imposes mean-reverting dynamics in the
model. Therefore, the estimation of the proposed model creates an implicit connection be-
tween forward rate dynamics driven by the next policy rate change and the mean-reverting
behaviour of the short rate. That is mean reversion is detectable in the correlation structure
of the expectation of FOMC policy rate changes.

5.4 Calibration to options

The ability to calibrate to cross-sectional option data is an important feature of interest
rate models. Although it violates the time consistency of the model, it is standard industry
practice to recalibrate interest rate models daily to vanilla instruments such as swaptions
and caps. Although calibration using options on futures is less common, options on SOFR
futures have been some of the first SOFR-related option instruments to trade since the
inception of the new benchmark. It is also the only SOFR-related option traded directly on
an exchange, meaning that the price information is widely available for research purposes.

At the time of writing, most of the market liquidity in options on SOFR futures is
concentrated on the front four options on 3M SOFR futures. This set of options is coincident
with the empirical research in the previous chapters, which focused on the underlying 3M
SOFR futures. Arguably, shorter expiry interest rate options are the most difficult to
calibrate due to steep and highly variable term structures in implied volatilities and implied
kurtosis as is evident in the data set used for this section, making it a good test set to assess
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the model’s calibration capability.
For the calibration, take the γ parameters from the empirical estimation performed in

Chapter 4. The remaining parameters σ, α, λ, θ and ρ are calibrated to option prices.
In the calibration, σ controls the general level of volatility, the mean-reversion parameter
λ gives some control of volatility levels across expiries. α controls the level of kurtosis,
the stochastic volatility mean reversion parameter α gives some control of kurtosis across
expiries. The correlation parameter ρ controls the implied volatility skew.

Each of the model calibration parameters can be defined as a function of time. Combined
with the ability to choose the number of HJM factors, this provides significant flexibility
in the model for calibration. Begin by performing the calibration with the parameters
constant across time before adding time-dependent parameters. The results are presented
as a comparison of normal volatilities implied from the bid/offer prices based on settlement
price information on the 10-June-2022 with the calibrated model 5% confidence interval
based on simulation results.

The calibration results shown in Figure 5.7, show that the model can calibrate general
volatility levels, skew and convexity. However, it does not exactly match market-implied
volatilities. A main feature of market implied volatilities is the sharply declining convexity
as a function of expiry. Another feature is the term structure in skew slightly declining as
a function of expiry. As can be seen in Table 5.1, with constant parameters the calibration
focuses on α0, which is the stochastic volatility parameter associated with the first factor.
This understates the convexity on the first expiry and overstates for the longest expiry,
thus effectively freezing factor 2 and 3 stochastic volatility (α1, α2) at zero. These results
suggest the introduction of time-dependent stochastic volatility parameters.

Define the parameters of the stochastic volatility as a function of t, piecewise constant
between the option expiry dates. As shown in Figure 5.8 this change provides enough flex-
ibility across different expiries to result in a large improvement in calibration performance.
With the added time dependence flexibility, the first stochastic volatility parameter α0 has
increased for short expiries and decreased for longer expiries to improve the results obtained
with constant parameters.

This example demonstrates the flexibility of the model. Based on the calibration with
constant parameters, one can make an informed choice concerning which parameters could
be made time-dependent to benefit the calibration. Only three of the fifteen available
parameters were changed to achieve substantially better calibration results, albeit for a
limited set of calibration instruments. This same approach could be repeated for a larger
set of more traditional calibration instruments, making other parameters time-dependent
or increasing the number the factors if required.

5.5 Conclusion

The model proposed in this chapter is an outcome of a data-driven approach focused on
the new SOFR benchmark. Primarily it accounts for the piecewise constant nature of
SOFR, an ability inherited from the previous version of the model. Analysis of the factor
dynamics implied by the piecewise constant model led to a stochastic volatility extension
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Figure 5.7: Calibration results using constant model parameter for options expiring on 4 different
dates. Comparing market prices bid and offer (black) and calibrated model 95% Monte Carlo
confidence interval (red)

utilising Heston/Hull-White inspired stochastic volatility dynamics for each HJM factor.
These empirically inspired features also allowed the model to be calibrated to interest rate
options across different expiries, forward times and strikes.

Final remarks and a summary of the thesis are provided in the next section.
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Figure 5.8: Calibration results using time dependent model parameters for options expiring on 4
different dates. Comparing market prices bid and offer (black) and calibrated model 95% Monte
Carlo confidence interval (red)
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parameters constant time dependent
σ1 0.0081 0.00663
σ2 0.006 0.00587
σ3 0.0041 0.00447
λ1 0.01 0.02
λ2 0.0 0.004
λ3 0.16 0.35
α1 1.57 [3.142, 1.35, 3.2, 0.86]
α2 0.82 [0.76, 0.66, 0.6, 0.22]
α3 0.0 [3.0, 0.6, 0.5, 4.1]
ρ1 -0.2 -0.14
ρ2 0.0 -0.025
ρ3 0.0 -0.83
θ1 0.0 0.1
θ2 0.0 0.0
θ3 0.0 11.0

Table 5.1: Calibrated models using showing constant and time dependant parameters
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Chapter 6

Final Summary

The research presented in this thesis began with the development of a particle filter capable
of adapting to regime changes and detecting stochastic volatility levels. The methodology
was arrived at by first recognising that the random perturbation technique applied in a par-
ticle filter results in a genetic–type algorithm capable of adapting to changing parameters.
At this point, an opposite direction to the approach of (Liu and West 2001) was taken,
instead of remediating the over-dispersion caused by random perturbation, the random
perturbation is allowed to freely evolve, enhancing the adaptive capability of the particle
filter. The approach is highly adaptive when required and convergent conditional on the
data matching modelling assumptions and no parameter changes. Given that the level of
adaptability is governed by the variance of the random perturbation; the key insight of
the approach is that an effective way of recognising the level of required variance is to
incorporate its selection into the already existing genetic algorithm framework. In terms of
existing literature, it links particle filtering with genetic algorithms for parameter learning,
resulting in a filtering algorithm particularly useful for parameter change detection and in
the context of finance an effective on-line method for measuring volatility.

The motivation behind the particle filter was to create a tool which would inform mod-
elling choices in a data-driven way. The original plan involved analysing the LIBOR rate
and its derivatives, mainly Eurodollar futures and options on those futures. Exploratory
analysis, employing the particle filter, combined with the emergence of SOFR as the new
benchmark rate led to a refinement in the understanding of data-driven research in finance.
Financial data does not necessarily follow any particular model, instead, it has particular
statistical features which can be replicated by models. Therefore the research on which this
thesis is based takes the approach of identifying empirical features in SOFR and proposing
a model whose primary features reflect those identified in empirical data.

The key empirical behaviour motivating the first version of the model is the piecewise
constant trajectory of short rates. Simultaneously, forward rates are found to behave in
a mostly diffusive manner. Incorporating this structure into a model and calibrating this
model to SOFR futures yielded empirical state dynamics. The state dynamics based on
daily calibration exhibit clear leptokurtosis, motivating a stochastic volatility extension of
the model. Consequently, stochastic volatility with the inherent correlation between the
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volatility and state factors allows for effective calibration to options on SOFR futures.
The piecewise behaviour of short rates can be attributed to the setting of the policy

target rate by the FOMC and the intervention by the Federal Reserve which forces both
EFFR and SOFR to closely follow the target rate. This is a contemporary aspect of short-
rate behaviour emerging following the financial crisis in 2009, before which the short rate
could be observed to evolve in a much more diffusive manner. Although initially, SOFR did
exhibit significant noise, including pronounced spikes, since 2021 has also predominantly
followed the target rate.

On the other hand, the behaviour of SOFR forward rates cannot be directly observed,
instead, it is inferred from SOFR futures. The observed diffusive behaviour of forward rates
led to the following key insight. While short rates follow the target rate and are therefore
mostly piecewise constant, the market expectations related to those changes evolve in a
diffusive manner. Forward rates reflect market expectations of short rates in the future and
therefore inherit the continuously diffusive behaviour. The model presented in this paper
is based on the idea that the expectations related to each FOMC date are each driven by
a separate factor. In this modelling setup, the forward rate term structure is cast into a
correlated system of FOMC date-specific diffusive factors, which naturally yields piecewise
constant short rates. The first iteration of the model aims to succinctly demonstrate this
concept.

The first iteration of the model achieves the desired behaviour by defining the HJM
volatility with indicator functions which act to assign each HJM volatility to a specific
FOMC date. Each forward rate segment between FOMC dates evolves separately. As a
result, discontinuities are created at the segment endpoints, i.e. the FOMC dates. The
short rate inherits the discontinuous structure from this system. An embedded assumption
of this approach is that on the FOMC date the short rate is fully determined by the
forward rate structure, i.e. all information about the move is embedded in the forward
rate. A justification for this assumption is related to the timing of the information transfer
from the actual policy target rate change: when the new policy target rate is announced
the affected short rate does not happen until the next day, therefore at announcement time
the market is still trading the effected rate as a forward rate.

The next iteration of the model is an adaption to facilitate empirical estimation. The
indicator functions are changed such that each factor is related to FOMC dates based
on their order from the current state time. This allowed for time-consistent estimation
as empirical dynamics can be related to each other regardless of the time frame. This
adaptation does not change the nature of the model, rather it can be considered a remapping
of the relationship between factors and FOMC dates.

The final version of the model was motivated by the observation of leptokurtosis in the
estimated factor states. Leptokurtosis can be produced by many modelling approaches,
the choice of stochastic volatility presents as the most tractable and pragmatic choice.
This facilitates the calibration to options across different expiries, forward rate periods
and strikes. The ability of the combined model to calibrate to options is demonstrated on
options on 3M SOFR futures.

The model presented aims to replicate only three features of interest rates: piecewise
constant short rates, continuously diffusive forward rates and leptokurtosis in the forward
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rate process. However, linking the model directly to FOMC dates1 has yielded several key
results and insights, ranging from economic interpretation of the estimated model factors,
the ability to extract predictive information content related to FOMC policy rate changes
from market data, calibration to options and insight regarding accrual period behaviour
and mean reversion.

The factorisation of the calibrated model using PCA yields a structure where each factor
element corresponds to the order of FOMC meeting dates. Similarly to the more common
approach of factorising the forward rates directly, the first factor accounts for around 80%
of the system variance. The characteristic of the first factor is that is dominated by the
first element which corresponds to the next (relative to current state time) FOMC date.
Therefore the dominant element in the dominant factor relates directly to the upcoming
FOMC date. In the model, forward rates are obtained through an aggregation of policy rate
changes up to the forward time, therefore a factor with a dominant first element corresponds
to a parallel shift in the forward rate term structure. A parallel shift is known to be the
primary factor in a PCA decomposition of forward rates. Therefore the model presented in
this paper links the predominant factor known in interest rates to expectations related to
the next FOMC meeting.

Another key result is the ability of the model to extract predictive information regarding
policy rate changes from SOFR and Fed Funds futures. Predictive information embedded
in market-traded instruments is not surprising, part of the FOMC strategy is to carefully
manage market expectations. By modelling those expectations directly, the model extracts
this information resulting in a high degree of prediction accuracy. The model itself does
not perform the prediction, rather it extracts the predictive information already embed-
ded in futures contracts. Capturing this information should be important for pricing and
managing the risk of derivative instruments. If features of a model do not match well to
empirical behaviour, implied prices and risk management reflect model-induced artefacts
which deviate from empirical reality.

The calibration has also been shown to reflect the empirical target rate to SOFR spread
without this spread being used as an input into the calibration algorithm. Similarly to
predicting FOMC policy rate changes, this means that the information regarding the spread
is extracted from futures prices by the calibration. This result constitutes further evidence
that the modelling setup, specifically the embedded forward rate structure is successful at
extracting information from market instruments reflecting empirical data of the underlying
SOFR.

Another more direct aspect of calibrating to futures is the ability of the model to recover
the actual futures prices. The model proposed in this paper does give up some calibration
accuracy in exchange for extracting more accurate empirical information. However, for a
three-factor model, it compares favourably to the recently published research by Skov and
Skovmand (2021), particularly for short-expiry futures. It would be possible to reduce the
calibration error to futures further with the addition of spike factors.

In the context of cross-sectional calibration, stochastic volatility allows the model to cal-
ibrate to skewness and convexity across strikes, a prominent feature in interest rate options

1Arguably the most important set of dates in the interest rate calendar.
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prices. Time-dependent parameters inherited from Heston/Hull-White and dependence on
forward time inherited from the model proposed in Chapter 3 and Chapter 4 combine to
provide flexibility in the calendar time and forward time dimension. Hence, the model
definition produces a large degree of flexibility for calibration to interest rate options. This
was demonstrated on options on SOFR futures. However, the model could be adapted to
other calibration instruments such as caps and swaptions.

The data-driven approach has resulted in a model directly connected to FOMC meeting
dates, the most important regular economic event in US interest rate options markets. Ar-
guably, other significant economic events and data funnel into FOMC policy rate decisions
as well as expectations of the decisions reflected in derivative pricing. The connection to
FOMC meeting dates is made through a component in the HJM volatility function inducing
piecewise short rates, a key feature of the model. The calibration of this feature to a history
of SOFR futures prices has revealed a connection between interest rate mean reversion and
FOMC policy rate expectations.

The primary driver of SOFR futures prices are changing expectations related to the next
FOMC meeting which in turn tends to be negatively correlated with changes in expectations
to subsequent meetings creating variance decay as a function of forward time. Historically,
the Federal Reserve in managing economic cycles acts to mean revert interest rates. The
market expects the Federal Reserve to continue to act this way and using our modelling set
up this expectation is detectable in the evolution of SOFR futures prices.

The approach in this thesis has been to allow empirical data to inform the modelling
choices. The approach aimed to identify and create a model which reflects key empirical
features of SOFR. The result is a model which has yielded more than the original goal.
The model accommodates cross-sectional calibration arguably better than leading industry
models in addition to providing genuine economic insights related to the evolution of interest
rates.
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Appendix A

For a Brownian motion W (t):

t∫
0

1(s < x)dW (s) = W (t ∧ x) (A.1)

Therefore we have the following solutions to various stochastic integrals appearing in this
paper:

t∫
0

ξi1(s < xi)1(T ≥ xi)dZi(s) = ξi1(T ≥ xi)Zi(t ∧ xi) (A.2)

t∫
0

ξi1(s < xi)1(t ≥ xi)dZi(s) = ξi1(t ≥ xi)Zi(xi) (A.3)

t∫
0

n∑
i=1

ξiλi,j1(s < xi)1(T ≥ xi)dWP
j (s) =

n∑
i=1

ξiλi,j1(T ≥ xi)WP
j (t ∧ xi) (A.4)

t∫
0

n∑
i=1

ξiλi,j1(s < xi)1(t ≥ xi)dWP
j (s) =

n∑
i=1

ξiλi,j1(t ≥ xi)WP
j (xi) (A.5)

t∫
0

σZi 1(s < zi)1(T ∈ Hi)dW
Z
i (s) = σZi 1(T ∈ Hi)W

Z
i (t ∧ zi) (A.6)

t∫
0

σZi 1(s < zi)1(t ∈ Hi)dW
Z
i (s) = σZi 1(t ∈ Hi)W

Z
i (zi) (A.7)
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Solving the drift term
t∫

0

σPj (u, T )
T∫
u
σPj (u, s)dsdu, we have:

T∫
u

σPj (u, s)ds =

T∫
u

n∑
i=1

ξiλi,j1(u < xi)1(s ≥ xi)ds

=

n∑
i=1

ξiλi,j1(u < xi)

T∫
u

1(s ≥ xi)ds

(A.8)

where:

T∫
u

1(s ≥ xi)ds =


0, T < xi

T − xi, u < xi, T ≥ xi
T − u, u ≥ xi

(A.9)

therefore:

T∫
u

σPj (u, s)ds =
n∑
i=1

ξiλi,j1(u < xi)1(T ≥ xi)(T − xi) (A.10)

therefore:

t∫
0

σPj (u, T )

T∫
u

σPj (u, s)dsdu

=

t∫
0

n∑
q=1

ξqλq,j1(u < xq)1(T ≥ xq)
n∑
i=1

ξiλi,j1(u < xi)1(T ≥ xi)(T − xi)du

=

n∑
q=1

ξqλq,j1(T ≥ xq)
n∑
i=1

ξiλi,j1(T ≥ xi)(T − xi)
t∫

0

1(u < xq)1(u < xi)du

=
n∑
q=1

n∑
i=1

ξqξiλq,jλi,j1(T ≥ xq∨i)(T − xi)[t ∧ xq ∧ xi]

(A.11)

Similarly:

t∫
0

σPj (u, t)

t∫
u

σPj (u, s)dsdu =
n∑
q=1

n∑
i=1

ξqξiλq,jλi,j1(t ≥ xq∨i)(t− xi)[xq ∧ xi] (A.12)
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Solving
t∫

0

σZi (u, T )
T∫
u
σZi (u, s)dsdu:

T∫
u

σZi (u, s)ds =

T∫
u

σZi 1(u < zi)1(s ∈ Hi)ds

= σZi 1(u < zi)

T∫
u

1(s ∈ Hi)ds

= σZi 1(u < zi)1(T ≥ zi)[hi ∧ (T − zi)]

(A.13)

therefore

t∫
0

σZi (u, T )

T∫
u

σZi (u, s)dsdu

=

t∫
0

σZi 1(u < zi)1Hi(T )σZi 1(u < zi)1(T ≥ zi)[hi ∧ (T − zi)]du

=
(
σZi
)2
1(T ∈ Hi)[hi ∧ (T − zi)]

t∫
0

1(u < zi)du

=
(
σZi
)2
1(T ∈ Hi)(T − zi)[t ∧ zi]

(A.14)

Similarly:

t∫
0

σZi (u, t)

t∫
u

σZi (u, s)dsdu =
(
σZi
)2
1(t ∈ Hi)(t− zi)zi (A.15)
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Appendix B

B.1 Single dimensional case

Define the following:

σ(t, T ) = χ(t)φ(T ) (B.1)

φ(T ) = exp
(
−
∫ T

0
λ(v)dv

)
(B.2)

χ(t) = σ(t)exp
(∫ t

0
λ(v)dv

)
(B.3)

Λ(t, T ) =

∫ T

t
exp
(
−
∫ u

t
λ(v)dv

)
du (B.4)

Φ(t) =

∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (B.5)
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HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s) (B.6)

= f(0, T ) +

∫ t

0
χ(s)φ(T )

∫ T

s
χ(s)φ(u)duds+

∫ t

0
χ(s)φ(T )dW (s) (B.7)

= f(0, T ) +

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
(B.8)

×
∫ T

s
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ u

0
λ(v)dv

)
duds (B.9)

+

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
dW (s) (B.10)

= f(0, T ) +

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)∫ T

s
exp
(
−
∫ u

s
λ(v)dv

)
duds (B.11)

+

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.12)

= f(0, T ) +

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λ(s, T )ds (B.13)

+

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.14)

let

y(t) =

∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λ(s, t)ds (B.15)

+ exp
(∫ T

t
λ(v)dv

)∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.16)

substitute

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.17)

=

y(t)−
∫ t

0 σ
2(s)exp

(
−
∫ t
s λ(v)dv

)
Λ(s, t)ds

exp
(∫ T

t λ(v)dv

) (B.18)
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f(t, T ) = f(0, T ) +

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λ(s, T )ds (B.19)

+

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.20)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) (B.21)

+

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λ(s, T )ds (B.22)

− exp
(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λ(s, t)ds (B.23)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + exp

(
−
∫ T

t
λ(v)dv

)
(B.24)

×
∫ t

0
σ2(s)

{
exp
(∫ T

t
λ(v)dv

)
exp
(
−
∫ T

s
λ(v)dv

)
Λ(s, T ) (B.25)

− exp
(
−
∫ t

s
λ(v)dv

)
Λ(s, t)

}
ds (B.26)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + exp

(
−
∫ T

t
λ(v)dv

)
(B.27)

×
∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

){
Λ(s, T )− Λ(s, t)

}
ds (B.28)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)
(B.29)

×
∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (B.30)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + Φ(t)Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)
(B.31)
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therefore: ∫ T

t
f(t, u)du (B.32)

=

∫ T

t

(
f(0, u) + exp

(
−
∫ u

t
λ(v)dv

)
y(t) (B.33)

+ Φj(t)Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

))
du (B.34)

=

∫ T

t
f(0, u)du+ y(t)

∫ T

t
exp
(
−
∫ u

t
λ(v)dv

)
du (B.35)

+ Φ(t)

∫ T

t
Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

)
du (B.36)

=

∫ T

t
f(0, u)du+ Λ(t, T )y(t) + Φ(t)

∫ T

t
Λ(t, u)dΛ(t, u) (B.37)

=

∫ T

t
f(0, u)du+ Λ(t, T )y(t) +

1

2
Φ(t)Λ2(t, T ) (B.38)

Therefore, bond price:

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
exp
(
− Λ(t, T )y(t)− 1

2
Φ(t)Λ2(t, T )

)
(B.39)

B.2 Single dimensional case with piecewise continuous short
rate

Define the following:

σ(t, T ) =
n∑
i=1

I{i≤A(t,T )}χ(t)φ(T )γi (B.40)

φ(T ) = exp
(
−
∫ T

0
λ(v)dv

)
(B.41)

χ(t) = σ(t)exp
(∫ t

0
λ(v)dv

)
(B.42)

Λ(t, T ) =

∫ T

t
exp
(
−
∫ u

t
λ(v)dv

)
du (B.43)

Λa(t, T ) =

∫ T

a
exp
(
−
∫ u

t
λ(v)dv

)
du (B.44)

Φ(t) =

∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (B.45)
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B.2.1 Trivial case t < T < x1

HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

t
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s) = f(0, T ) (B.46)

∫ T

t
f(t, u)du =

∫ T

t
f(0, u)du (B.47)

Therefore, bond price:

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
(B.48)

B.2.2 Basic case t < x1 < T < x2

∫ T

t
f(t, u)du =

∫ x1

t
f(t, u)du+

∫ T

x1

f(t, u)du (B.49)

=

∫ x1

t
f(0, u)du+

∫ T

x1

f(t, u)du (B.50)

To solve
∫ T
x1
f(t, u)du, restrict T ∈ [x1, x2] and t < x1, HJM result:
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f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s) (B.51)

= f(0, T ) +

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γi (B.52)

×
∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds (B.53)

+

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γidW (s) (B.54)

= f(0, T ) +

∫ t

0
χ(s)φ(T )γ1

∫ T

s
I{s<x1}I{u>x1}χ(s)φ(u)γ1duds (B.55)

+

∫ t

0
χ(s)φ(T )γ1dW (s) (B.56)

= f(0, T ) + γ2
1

∫ t

0
χ(s)φ(T )I{s<x1}

∫ T

s
I{u>x1}χ(s)φ(u)duds (B.57)

+ γ1

∫ t

0
χ(s)φ(T )dW (s) (B.58)

= f(0, T ) + γ2
1

∫ t

0
χ(s)φ(T )

∫ T

s
I{u>x1}χ(s)φ(u)duds (B.59)

+ γ1

∫ t

0
χ(s)φ(T )dW (s) (B.60)

= f(0, T ) + γ2
1

∫ t

0
χ(s)φ(T )

∫ T

x1

χ(s)φ(u)duds+ γ1

∫ t

0
χ(s)φ(T )dW (s) (B.61)

= f(0, T ) + γ2
1

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
(B.62)

×
∫ T

x1

σ(s)exp
(∫ s

0
λ(v)dv

)
exp
(
−
∫ u

0
λ(v)dv

)
duds (B.63)

+ γ1

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
dW (s) (B.64)

= f(0, T ) + γ2
1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)∫ T

x1

exp
(
−
∫ u

s
λ(v)dv

)
duds (B.65)

+ γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.66)

= f(0, T ) + γ2
1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx1(s, T )ds (B.67)

+ γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.68)
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let

y(t) = γ2
1

∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λx1(s, t)ds (B.69)

+ exp
(∫ T

t
λ(v)dv

)
γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.70)

substitute

γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) =

y(t)− γ2
1

∫ t
0 σ

2(s)exp
(
−
∫ t
s λ(v)dv

)
Λx1(s, t)ds

exp
(∫ T

t λ(v)dv

)
(B.71)

f(t, T ) = f(0, T ) + γ2
1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx1(s, T )ds (B.72)

+ γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.73)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) (B.74)

+ γ2
1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx1(s, T )ds (B.75)

− γ2
1exp

(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λx1(s, t)ds (B.76)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1exp
(
−
∫ T

t
λ(v)dv

)
(B.77)

×
∫ t

0
σ2(s)

{
exp
(∫ T

t
λ(v)dv

)
exp
(
−
∫ T

s
λ(v)dv

)
Λx1(s, T ) (B.78)

− exp
(
−
∫ t

s
λ(v)dv

)
Λx1(s, t)

}
ds (B.79)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1exp
(
−
∫ T

t
λ(v)dv

)
(B.80)

×
∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

){
Λx1(s, T )− Λx1(s, t)

}
ds (B.81)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) (B.82)

+ γ2
1Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (B.83)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1Φ(t)Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)
(B.84)

129



therefore:∫ T

x1

f(t, u)du =

∫ T

x1

(
f(0, u) + exp

(
−
∫ u

t
λ(v)dv

)
y(t) (B.85)

+ γ2
1Φ(t)Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

))
du (B.86)

=

∫ T

x1

f(0, u)du+ y(t)

∫ T

x1

exp
(
−
∫ u

t
λ(v)dv

)
du (B.87)

+ γ2
1Φ(t)

∫ T

x1

Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

)
du (B.88)

=

∫ T

x1

f(0, u)du+ Λx1(t, T )y(t) + γ2
1Φ(t)

∫ T

x1

Λ(t, u)dΛ(t, u) (B.89)

=

∫ T

x1

f(0, u)du+ Λx1(t, T )y(t) +
1

2
γ2

1Φ(t){Λ2(t, T )− Λ2(t, x1)} (B.90)

therefore: ∫ x1

t
f(t, u)du+

∫ T

x1

f(t, u)du =

∫ T

t
f(0, u)du+ Λx1(t, T )y(t) (B.91)

+
1

2
γ2

1Φ(t){Λ2(t, T )− Λ2(t, x1)} (B.92)

Therefore, bond price:

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
(B.93)

=
B(0, T )

B(0, t)
exp
(
− Λx1(t, T )y(t)− 1

2
γ2

1Φ(t){Λ2(t, T )− Λ2(t, x1)}
)

(B.94)
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B.2.3 More general case t < x1 < T

In general we will need
∫ T
xa
f(t, u)du where T < xa+1, therefore restrict T ∈ [xa, xa+1] and

t < x1, HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s) (B.95)

= f(0, T ) +

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γi (B.96)

×
∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds (B.97)

+

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γidW (s) (B.98)

= f(0, T ) +

∫ t

0
χ(s)φ(T )

a∑
i=1

γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds (B.99)

+

∫ t

0
χ(s)φ(T )

a∑
i=1

γidW (s) (B.100)

Now∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjdu = χ(s)
n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)du (B.101)

∫ T

s
I{j≤A(s,u)}φ(u)du =

∫ x1

s
I{j≤A(s,u)}φ(u)du+

a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du (B.102)

+

∫ T

xa

I{j≤A(s,u)}φ(u)du (B.103)

=
a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+

∫ T

xa

I{j≤A(s,u)}φ(u)du (B.104)
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Therefore:

n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)du =

n∑
j=1

γj

a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du (B.105)

+

n∑
j=1

γj

∫ T

xa

I{j≤A(s,u)}φ(u)du (B.106)

=
a−1∑
j=1

γj

∫ xa

xj

φ(u)du+
a∑
j=1

γj

∫ T

xa

φ(u)du (B.107)

=

a−1∑
j=1

γj

∫ T

xj

φ(u)du+ γa

∫ T

xa

φ(u)du (B.108)

=

a∑
j=1

γj

∫ T

xj

φ(u)du (B.109)
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Therefore:

f(t, T ) = f(0, T ) +

∫ t

0
χ(s)φ(T )

a∑
i=1

γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds (B.110)

+

∫ t

0
χ(s)φ(T )

a∑
i=1

γidW (s) (B.111)

= f(0, T ) +

∫ t

0
χ(s)φ(T )

a∑
i=1

γiχ(s)
a∑
j=1

γj

∫ T

xj

φ(u)duds (B.112)

+

∫ t

0
χ(s)φ(T )

a∑
i=1

γidW (s) (B.113)

= f(0, T ) +

a∑
i=1

a∑
j=1

γiγj

∫ t

0
χ(s)φ(T )

∫ T

xj

χ(s)φ(u)duds (B.114)

+

a∑
i=1

γi

∫ t

0
χ(s)φ(T )dW (s) (B.115)

= f(0, T ) +

a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
(B.116)

×
∫ T

xj

σ(s)exp
(∫ s

0
λ(v)dv

)
exp
(
−
∫ u

0
λ(v)dv

)
duds (B.117)

+
a∑
i=1

γi

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
dW (s) (B.118)

= f(0, T ) +
a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
(B.119)

×
∫ T

xj

exp
(
−
∫ u

s
λ(v)dv

)
duds (B.120)

+

a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.121)

= f(0, T ) +

a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxj (s, T )ds (B.122)

+

a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.123)
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let

ya(t) =
a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λxj (s, t)ds (B.124)

+ exp
(∫ T

t
λ(v)dv

) a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.125)

substitute
a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.126)

=

ya(t)−
∑a

i=1

∑a
j=1 γiγj

∫ t
0 σ

2(s)exp
(
−
∫ t
s λ(v)dv

)
Λxj (s, t)ds

exp
(∫ T

t λ(v)dv

) (B.127)
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f(t, T ) = f(0, T ) +
a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxj (s, T )ds (B.128)

+
a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) (B.129)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
ya(t) (B.130)

+

a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxj (s, T )ds (B.131)

−
a∑
i=1

a∑
j=1

γiγjexp
(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λxj (s, t)ds

(B.132)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) +

a∑
i=1

a∑
j=1

γiγjexp
(
−
∫ T

t
λ(v)dv

)
(B.133)

×
∫ t

0
σ2(s)

{
exp
(∫ T

t
λ(v)dv

)
exp
(
−
∫ T

s
λ(v)dv

)
Λxj (s, T ) (B.134)

− exp
(
−
∫ t

s
λ(v)dv

)
Λxj (s, t)

}
ds (B.135)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

a∑
i=1

a∑
j=1

γiγjexp
(
−
∫ T

t
λ(v)dv

)
(B.136)

×
∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

){
Λxj (s, T )− Λxj (s, t)

}
ds (B.137)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
ya(t) (B.138)

+
a∑
i=1

a∑
j=1

γiγjΛ(t, T )exp
(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds

(B.139)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
ya(t) (B.140)

+
a∑
i=1

a∑
j=1

γiγjΦ(t)Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)
(B.141)
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therefore:∫ T

xa

f(t, u)du =

∫ T

xa

(
f(0, u) + exp

(
−
∫ u

t
λ(v)dv

)
ya(t) (B.142)

+

a∑
i=1

a∑
j=1

γiγjΦ(t)Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

))
du (B.143)

=

∫ T

xa

f(0, u)du+ ya(t)

∫ T

xa

exp
(
−
∫ u

t
λ(v)dv

)
du (B.144)

+
a∑
i=1

a∑
j=1

γiγjΦ(t)

∫ T

xa

Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

)
du (B.145)

=

∫ T

xa

f(0, u)du+ Λxa(t, T )ya(t) +

a∑
i=1

a∑
j=1

γiγjΦ(t)

∫ T

xa

Λ(t, u)dΛ(t, u)

(B.146)

=

∫ T

xa

f(0, u)du+ Λxa(t, T )ya(t) +
1

2

a∑
i=1

a∑
j=1

γiγjΦ(t){Λ2(t, T )− Λ2(t, xa)}

(B.147)

define η(t) = min{k|xk > t}, now:

∫ T

t
f(t, u)du =

∫ xη(t)

t
f(t, u)du+

∫ T

xη(T )−1

f(t, u)du+

η(T )−2∑
k=η(t)

∫ xk+1

xk

f(t, u)du (B.148)

=

∫ T

t
f(0, u)du+ Λxη(T )−1

(t, T )yxη(T )−1
(t) (B.149)

+
1

2

xη(T )−1∑
i=1

xη(T )−1∑
j=1

γiγjΦ(t){Λ2(t, T )− Λ2(t, xη(T )−1)} (B.150)

+

η(T )−2∑
k=η(t)

(
Λxk(t, xk+1)yk(t) +

1

2

k∑
i=1

k∑
j=1

γiγjΦ(t){Λ2(t, xk+1)− Λ2(t, xk)}
)

(B.151)
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Therefore, bond price:

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
(B.152)

=
B(0, T )

B(0, t)
exp
(

Λxη(T )−1
(t, T )yxη(T )−1

(t) (B.153)

+
1

2

xη(T )−1∑
i=1

xη(T )−1∑
j=1

γiγjΦ(t){Λ2(t, T )− Λ2(t, xη(T )−1)} (B.154)

+

η(T )−2∑
k=η(t)

(
Λxk(t, xk+1)yk(t) +

1

2

k∑
i=1

k∑
j=1

γiγjΦ(t){Λ2(t, xk+1)− Λ2(t, xk)}
))
(B.155)

B.2.4 General case t < T

In general we will need
∫ T
xa
f(t, u)du where T < xa+1, therefore restrict T ∈ [xa, xa+1] and

t < T . Define η(t) = min{b|xb ≥ t}, now HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s) (B.156)

= f(0, T ) +

∫ t

xη(t)−1

σ(s, T )

∫ T

s
σ(s, u)duds+

η(t)−2∑
b=0

∫ xb+1

xb

σ(s, T )

∫ T

s
σ(s, u)duds

(B.157)

+

∫ t

xη(t)−1

σ(s, T )dW (s) +

η(t)−2∑
b=0

∫ xb+1

xb

σ(s, T )dW (s) (B.158)

therefore in general we need to solve
∫ t
xb
σ(s, T )

∫ T
s σ(s, u)duds and

∫ t
xb
σ(s, T )dW (s)

where t ∈ [xb, xb+1]. Now:∫ t

xb

σ(s, T )dW (s) =

∫ t

xb

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γidW (s) (B.159)

=

∫ t

xb

χ(s)φ(T )

a−b∑
i=1

γidW (s) (B.160)

=
a−b∑
i=1

γi

∫ t

xb

σ(s)exp
(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
dW (s) (B.161)

=

a−b∑
i=1

γi

∫ t

xb

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s) (B.162)
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Also:∫ t

xb

σ(s, T )

∫ T

s
σ(s, u)duds =

∫ t

xb

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds

(B.163)

=

∫ t

xb

χ(s)φ(T )

a−b∑
i=1

γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds

(B.164)

=

∫ t

xb

χ(s)φ(T )
a−b∑
i=1

γiχ(s)
n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)duds

(B.165)

Now, implicitly with s ∈ [xb, t]:∫ T

s
I{j≤A(s,u)}φ(u)du =

∫ x1

s
I{j≤A(s,u)}φ(u)du+

a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du (B.166)

+

∫ T

xa

I{j≤A(s,u)}φ(u)du (B.167)

=
a−1∑
k=b+1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+

∫ T

xa

I{j≤A(s,u)}φ(u)du (B.168)

Therefore:

n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)du =

n∑
j=1

γj

a−1∑
k=b+1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du (B.169)

+

n∑
j=1

γj

∫ T

xa

I{j≤A(s,u)}φ(u)du (B.170)

=

a−b−1∑
j=1

γj

∫ xa

xb+j

φ(u)du+

a−b∑
j=1

γj

∫ T

xa

φ(u)du (B.171)

=

a−b−1∑
j=1

γj

∫ T

xb+j

φ(u)du+ γa−b

∫ T

xa

φ(u)du (B.172)

=

a−b∑
j=1

γj

∫ T

xb+j

φ(u)du (B.173)
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Therefore:∫ t

xb

σ(s, T )

∫ T

s
σ(s, u)duds =

∫ t

xb

χ(s)φ(T )

a−b∑
i=1

γiχ(s)

n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)duds

(B.174)

=

∫ t

xb

χ(s)φ(T )
a−b∑
i=1

γi

a−b∑
j=1

γj

∫ T

xb+j

χ(s)φ(u)duds (B.175)

=
a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

χ(s)φ(T )

∫ T

xb+j

χ(s)φ(u)duds (B.176)

=
a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

σ(s)exp
(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
(B.177)

×
∫ T

xb+j

σ(s)exp
(∫ s

0
λ(v)dv

)
exp
(
−
∫ u

0
λ(v)dv

)
duds (B.178)

=
a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)∫ T

xb+j

exp
(
−
∫ u

s
λ(v)dv

)
duds (B.179)

=
a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds (B.180)

Rewrite (B.156):

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s) (B.181)

= f(0, T ) +

η(t)−2∑
b=0

{∫ xb+1

xb

σ(s, T )

∫ T

s
σ(s, u)duds+

∫ xb+1

xb

σ(s, T )dW (s)

}
(B.182)

+

∫ t

xη(t)−1

σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

xη(t)−1

σ(s, T )dW (s) (B.183)

= f(0, T ) +

η(t)−2∑
b=0

{ a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds (B.184)

+

a−b∑
i=1

γi

∫ xb+1

xb

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s)

}
(B.185)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds (B.186)

+

a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s) (B.187)
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let

ya(t) =

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp
(
−
∫ t

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, t)ds

(B.188)

+ exp
(∫ T

t
λ(v)dv

) a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s) (B.189)

substitute

a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s) (B.190)

=

ya(t)−
∑(a−η(t)+1)

i=1

∑(a−η(t)+1)
j=1 γiγj

∫ t
xη(t)−1

σ2(s)exp
(
−
∫ t
s λ(v)dv

)
Λx(η(t)−1+j)

(s, t)ds

exp
(∫ T

t λ(v)dv

)
(B.191)

Define

Φ(u, t) =

∫ t

u
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (B.192)
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therefore

a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds (B.193)

+
a−b∑
i=1

γi

∫ xb+1

xb

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s) (B.194)

= exp
(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) (B.195)

+
a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds (B.196)

−
a−b∑
i=1

a−b∑
j=1

γiγjexp
(
−
∫ T

xb+1

λ(v)dv

)∫ xb+1

xb

σ2(s)exp
(
−
∫ xb+1

s
λ(v)dv

)
Λxb+j (s, xb+1)ds

(B.197)

= exp
(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) +

a−b∑
i=1

a−b∑
j=1

{
γiγjexp

(
−
∫ T

xb+1

λ(v)dv

)
(B.198)

×
[ ∫ xb+1

xb

σ2(s)

{
exp
(∫ T

xb+1

λ(v)dv

)
exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T ) (B.199)

− exp
(
−
∫ xb+1

s
λ(v)dv

)
Λxb+j (s, xb+1)

}
ds

]}
(B.200)

= exp
(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) +

a−b∑
i=1

a−b∑
j=1

γiγjΛ(xb+1, T )exp
(
−
∫ T

xb+1

λ(v)dv

)
(B.201)

×
∫ xb+1

xb

σ2(s)exp
(
− 2

∫ xb+1

s
λ(v)dv

)
ds (B.202)

= exp
(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) +

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, T )exp
(
−
∫ T

xb+1

λ(v)dv

)
(B.203)
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and

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds (B.204)

+

a−η(t)+1∑
i=1

γi

∫ t

xη(t)+1

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s) (B.205)

= exp
(
−
∫ T

t
λ(v)dv

)
ya(t) (B.206)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds (B.207)

−
(a−η(t)+1)∑

i=1

(a−η(t)+1)∑
j=1

γiγj (B.208)

× exp
(
−
∫ T

t
λ(v)dv

)∫ t

xη(t)−1

σ2(s)exp
(
−
∫ t

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, t)ds (B.209)

= exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

{
γiγjexp

(
−
∫ T

t
λ(v)dv

)
(B.210)

×
[ ∫ t

xη(t)−1

σ2(s)

{
exp
(∫ T

t
λ(v)dv

)
exp
(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T ) (B.211)

− exp
(
−
∫ t

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, t)

}
ds

]}
(B.212)

= exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΛ(t, T )exp
(
−
∫ T

t
λ(v)dv

)
(B.213)

×
∫ t

xη(t)−1

σ2(s)exp
(
− 2

∫ t

s
λ(v)dv

)
ds (B.214)

= exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)
(B.215)
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Therefore:

f(t, T ) = f(0, T ) +

η(t)−2∑
b=0

{ a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds

(B.216)

+
a−b∑
i=1

γi

∫ xb+1

xb

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s)

}
(B.217)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds (B.218)

+

a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s) (B.219)

= f(0, T ) +

η(t)−2∑
b=0

{
exp
(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) (B.220)

+
a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, T )exp
(
−
∫ T

xb+1

λ(v)dv

)}
(B.221)

+ exp
(
−
∫ T

t
λ(v)dv

)
ya(t) (B.222)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)
(B.223)

= f(0, T ) +

η(t)−2∑
b=0

exp
(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) + exp

(
−
∫ T

t
λ(v)dv

)
ya(t) (B.224)

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, T )exp
(
−
∫ T

xb+1

λ(v)dv

)
(B.225)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)
(B.226)
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therefore:∫ T

xa

f(t, u)du =

∫ T

xa

(
f(0, u) +

η(t)−2∑
b=0

exp
(
−
∫ u

xb+1

λ(v)dv

)
ya(xb+1) (B.227)

+ exp
(
−
∫ u

t
λ(v)dv

)
ya(t) (B.228)

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, u)exp
(
−
∫ u

xb+1

λ(v)dv

)
(B.229)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

))
du (B.230)

=

∫ T

xa

f(0, u)du+

η(t)−2∑
b=0

ya(xb+1)

∫ T

xa

exp
(
−
∫ u

xb+1

λ(v)dv

)
du (B.231)

+ ya(t)

∫ T

xa

exp
(
−
∫ u

t
λ(v)dv

)
du (B.232)

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)

∫ T

xa

Λ(xb+1, u)exp
(
−
∫ u

xb+1

λ(v)dv

)
du (B.233)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)

∫ T

xa

Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

)
du (B.234)

=

∫ T

xa

f(0, u)du+

η(t)−2∑
b=0

Λxa(xb+1, T )ya(xb+1) + Λxa(t, T )ya(t) (B.235)

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)

∫ T

xa

Λ(xb+1, u)dΛ(xb+1, u) (B.236)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)

∫ T

xa

Λ(t, u)dΛ(t, u) (B.237)

=

∫ T

xa

f(0, u)du+

η(t)−2∑
b=0

Λxa(xb+1, T )ya(xb+1) + Λxa(t, T )ya(t) (B.238)

+
1

2

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xa)} (B.239)

+
1

2

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xa)} (B.240)
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now∫ T

t
f(t, u)du =

∫ xη(t)

t
f(t, u)du+

∫ T

xη(T )−1

f(t, u)du+

η(T )−2∑
k=η(t)

∫ xk+1

xk

f(t, u)du (B.241)

=

∫ T

t
f(0, u)du+

η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1) + Λxη(T )−1

(t, T )yη(T )−1(t)

(B.242)

+
1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)} (B.243)

+
1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)} (B.244)

+

η(T )−2∑
k=η(t)

[ η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1) + Λxk(t, xk+1)yk(t) (B.245)

+
1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)} (B.246)

+
1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)}
]

(B.247)

=

∫ T

t
f(0, u)du (B.248)

+

η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1) (B.249)

+ Λxη(T )−1
(t, T )yη(T )−1(t) (B.250)

+

η(T )−2∑
k=η(t)

η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1) (B.251)

+

η(T )−2∑
k=η(t)

Λxk(t, xk+1)yk(t) (B.252)

+
1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)} (B.253)

+
1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)} (B.254)

+

η(T )−2∑
k=η(t)

1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)} (B.255)

+

η(T )−2∑
k=η(t)

1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)} (B.256)
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Therefore, bond price:

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
(B.257)

=
B(0, T )

B(0, t)
exp
(
−
η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1) (B.258)

− Λxη(T )−1
(t, T )yη(T )−1(t) (B.259)

−
η(T )−2∑
k=η(t)

η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1) (B.260)

−
η(T )−2∑
k=η(t)

Λxk(t, xk+1)yk(t) (B.261)

− 1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)}

(B.262)

− 1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)} (B.263)

−
η(T )−2∑
k=η(t)

1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)} (B.264)

−
η(T )−2∑
k=η(t)

1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)}
)

(B.265)
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