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Sequential prediction has great value for resource allocation due to its capability in analyzing intents for next
prediction. A fundamental challenge arises from real-world interaction dynamics where similar sequences
involving multiple intents may exhibit different next items. More importantly, the character of volume
candidate items in sequential prediction may amplify such dynamics, making deep networks hard to capture
comprehensive intents. This paper presents a sequential prediction framework with Decoupled Progressive
Distillation (DePoD), drawing on the progressive nature of human cognition. We redefine target and non-target
item distillation according to their different effects in the decoupled formulation. This can be achieved through
two aspects: (1) Regarding how to learn, our target item distillation with progressive difficulty increases the
contribution of low-confidence samples in the later training phase while keeping high-confidence samples in
the earlier phase. And, the non-target item distillation starts from a small subset of non-target items from
which size increases according to the item frequency. (2) Regarding whom to learn from, a difference evaluator
is utilized to progressively select an expert that provides informative knowledge among items from the cohort
of peers. Extensive experiments on four public datasets show DePoD outperforms state-of-the-art methods in
terms of accuracy-based metrics.
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1 INTRODUCTION
Sequential prediction can infer what the next item will be from a volume of candidate items by
modeling sequential intents. Discovering the best practice for these methods would be useful
for improving demand-based resource allocation, such as user interests in recommender sys-
tems [9, 10, 62–64], criminal intents in predictive policing [22–24], and transit intents in location
prediction [44, 47]. Recently, sequential prediction methods have evolved from conventional Markov
chain models [19, 28, 50] to deep neural models. Many efforts in this space have achieved impressive
progress in learning dense vector representations of intents from observed item-item transitions.
Furthermore, high-quality intent representations are straightforward at improving prediction accu-
racy through calculating the correlation between the inferred intents and candidate items [24, 55].
However, in real-world interactions, human activities are continually affected by complicated

and volatile environments. Different next items may manifest after similar historical sequences,
which leads to inconsistent training samples. As shown in the left part of Figure 1, we summarize
three types of interaction dynamics that widely exist in long or short sequences:
• Sequence 1. Multifarious intents co-occur in a long interaction sequence. The evolving process
of real-world interactions usually reflects multiple and alternate sequential intents, for
example, both intent A and intent B are within Sequence 1. Even if two sequences share the
same items, the intents corresponding to the next item may also differ. As such, a part of
dynamics can be tracked from interaction diversity between individuals and items.
• Sequence 2. Short sequences suffer from the lack of discriminative information. This type of
interaction sequence may contain the shared fragment of intent A and intent B, which lacks
discriminative information. As such, multiple candidate next items may satisfy the observed
sequence and present in the next interaction. Therefore, inactive interactions bring further
dynamics into intent analysis.
• Sequence 3. Ubiquitous noise affects the learning of sequential intents. Environmental noise
makes people rarely observe sequences with clear discriminative information. Therefore,
the discovery of sequential intents is inherently difficult. It is a necessity to incorporate the
knowledge about dynamics into the dense representations of intents.

Despite the common existence of the above dynamics in interaction intents, it is worth noting that 
with the increment of candidate items, such dynamics may be further amplified [16, 36, 75]. In this 
situation, the training process may be susceptible to the observed inconsistency in sequence samples, 
posing challenges to capture a comprehensive intent. More specifically, based on the observed 
inconsistent training samples, deep prediction networks will suffer from model uncertainty [7, 29], 
wherein different networks generate distinctive model responses (see an example in Figure 8(a)).

Modeling dynamics of interaction intents in Sequential Prediction. Current sequential 
prediction methods generally expand the representation space of learnable intents, thus charac-
terizing the intent dynamics. As shown in the right part of Figure 1, distribution-based represen-
tation [9, 10] and multiple vector-based representation [24, 41, 42, 52, 64] are two of the most 
common types of approaches. For distribution-based representations (the dashed curve in Figure 1), 
several works [9, 10] typically employ Gaussian distributions to represent the dynamic uncertainty
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Fig. 1. An illustration of interaction dynamics involving multiple intents and distinctive intent representations.
The left part of the diagram describes three types of sequences that may present different next items in
the effect of interaction dynamics. And, the right part explains the distinctive representations of inferred
intents. The dashed curve and red dot denote the distribution-based [9, 10] and multiple vector-based intent
representations, respectively, each of which are common approaches used to model the interaction dynamics.

of inferred intent representations. Meanwhile, to facilitate the computation of representations,
most works [24, 52, 56, 63, 64] adopt multiple vector-based representations (the red dots in Fig-
ure 1) to capture various learnable intents and then integrate them into a comprehensive intent
representation. For example, the intent representations from Model 1 and Model 2 are both close to
the blue item, while the intent representation from Model 3 is close to the yellow item. How we
can fully exploit the difference among high-level intent representations is not a trivial problem. As
a promising knowledge transfer manner, knowledge distillation (KD) is able to make multiple deep
networks mimic each other and derive comprehensive intent representations simultaneously. This
technique has been widely applied in various fields, such as computer vision (CV) [6, 48], natural
language processing (NLP) [33, 49] and recommendation system (RS) [35, 82].

Knowledge Distillation Among Volume Items. As shown in the left bottom part of Figure 1,
each input sequence is associated with one next target item, while other related intents are covered
in volume non-target items. Vanilla KD-based sequential prediction methods [24, 31, 35, 82] mainly
distill knowledge among target and non-target item classes in a unified manner. When confronted
with volume classes, some recent works [13, 51, 75] in CV show that such a unified manner makes
the training model prone to high-confidence samples and suppresses the learning of other related
intents covered in non-target items, sincemore classes increase training difficulty. However, themost
difficult ImageNet dataset discussed in [75] consists of 1,000 classes. In sequential prediction tasks,
the candidate items that need to be classified typically range from hundreds of urban events [24]
to tens of thousands of web behaviors [10, 79]. As such, it still remains a challenge to effectively
accomplish KD within volume items.
To address the aforementioned problem, we propose a sequential prediction framework with

decoupled progressive distillation (DePoD for short) that consists of multi-peer prediction networks
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and a decoupled progressive distillation strategy. Basically, given multiple peer prediction networks,
they can independently infer distinctive intents corresponding to the next item and finally generate
different responses in the form of probability distributions. To better utilize the response differences
in volume candidates items, we revisit the mimicry strategy in KD and reveal different effects
of target and non-target items. Inspired by the progressive nature of human cognition [2, 37],
we believe that the knowledge among target and non-target items can be transferred between
multi-peer prediction networks by starting from sequence samples with easy target items and small
non-target items, and then gradually increasing their training difficulty level. As such, the proposed
DePoD is constructed on the foundation of three principles: (1) Progressive Difficulty. For target
item distillation in vanilla KD, we extend the learning of high-confidence samples in the earlier
training phase and make the training network focus on low-confidence samples that are hard to fit
in the later training phase. (2) Progressive Size. Non-target items are gradually added into the
training phase according to their frequency, which constructs a series of distillation sub-tasks with
increasing difficulty to enhance the learning of knowledge among these items. (3) Progressive
Selection. The training network first learns from the cohort of its peers, and then gradually selects
an expert that provides more informative knowledge by a difference evaluator. In summary, the
aforementioned two principles (1) and (2) address how to learn between two peers, and the last
principal (3) instructs whom to learn from among three or more peers.

Our work makes the following contributions:

• We propose a sequential prediction framework with decoupled progressive distillation (De-
PoD). This framework employs response difference among multiple peer prediction networks
to model the dynamics of interaction intents.
• To enhance KD within volume candidate items, we devise a decoupled progressive distilla-
tion strategy, including target item distillation with progressive difficulty, non-target item
distillation with progressive size and progressive peer selection.
• Results from extensive experiments on four public datasets, covering urban event and web
recommendation, demonstrate that DePoD achieves superior performance over state-of-the-
art methods in terms of accuracy-based Top-𝑁 metrics, and can flexibly integrate various
sequential prediction methods as sequence encoders.

Summarizing the rest of this paper, we first introduce our task in Section 2. Then, we explain
our motivation in Section 3, and present the details of our framework DePoD in Section 4. The
experimental setup, results and related analyses are reported in Section 5. We review the related
work in Section 6 and finally offer conclusions in Section 7.

2 TASK DEFINITION
Sequential prediction for next item is a basic task that can naturally extend to more complex
sequence-to-sequence prediction after reorganizing the historical sequence and prediction results
into a new input sequence.
Basically, sequential prediction contains objects O (e.g. users, urban regions) and items I (e.g.

behaviors, events). For each object 𝑜 ∈ O, the items that object 𝑜 interacted with are arranged in
chronological order, and form a historical sequence [item1, · · · , item𝑙 , · · · , item𝐿𝑜 ], where item𝑙 ∈ I
is the item interacted at time step 𝑙 and 𝐿𝑜 is the number of interactions. More formally, let
D = (X,Y) = {(𝒙𝑚,𝒚𝑚)}𝑀𝑚=1 be a training set with 𝑀 samples, where 𝒙𝑚 refers to the 𝑚th

𝒚

historical sequence with 𝐿 − 1 items and 𝒚𝑚 denotes the corresponding next item at time step 𝐿. 
𝐿 is the maximum length of a sequence. In this work, sequential prediction aims to learn a deep 
model F\ : X → Y that infers the probability distribution 𝒑 of candidate items where the item 
with the maximum probability is the prediction result ˆ. The notations are summarized in Table 1.
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Table 1. Notations and Descriptions. For convenience, we omit 𝑘 in some discussions.

Notations Description
O, |O| O is the set of objects, and |O| is size of O
I, |I | I is the set of items, and |I | is size of I
𝐿 The maximum length of input historical sequence
𝐾 , 𝑘 𝐾 is the total number of peers and 𝑘 is the index of peer
𝑑 The dimension of embedding tables
𝑾𝑬 The item look-up table

𝑬 ∈ R𝐿×𝑑 The embedding matrix of input historical sequence
𝒉(𝑘 ) The intent representation inferred by the 𝑘th peer encoder
𝒛 (𝑘 ) The logit of the 𝑘th encoder (model)
𝒑 (𝑘 ) The probability distribution of the 𝑘th encoder (model)
𝒑 (𝑘 )TI The probability distribution with respect to target item
𝒒 (𝑘 )NI The probability distribution with respect to non-target items

�̃� (𝑘 ) , �̃� (𝑘 )TI , �̃� (𝑘 )NI The probability distribution of corresponding peer (teacher).
∗ The index of target item (ground-truth)

𝜋 , Π 𝜋 is the current training epoch and Π is the total number of epochs
𝑡 𝑡 is the progress of current training epoch and its value is between 0 and 1
𝛼 The importance of earlier target item distillation
𝛾 The intensity of deliberate practice in later target item distillation
𝛽 The importance of non-target item distillation

Due to the existence of real-world interaction dynamics, especially in volume candidate items,
distinctive model responses will finally reflect in their output probability distributions. That is,
given 𝐾 different prediction networks, the probability distribution

𝒑 (𝑘 ) = [𝑝 (𝑘 )1 , · · · , 𝑝 (𝑘 )
𝑖
, · · · , 𝑝 (𝑘 )|I | ] ∈ R

1×|I | , where 𝑝 (𝑘 )
𝑖

=
exp(𝑧 (𝑘 )

𝑖
)∑ | I |

𝑗=1 exp(𝑧
(𝑘 )
𝑗
)

(1)

from the 𝑘th network may be different from others. Here, 𝒛 (𝑘 )
𝑖

is the corresponding logit of the 𝑖th
item. As such, this work aims to better exploit the response difference among multiple peers and
use them together to optimize their learning of intent representations.

3 REVISITING KNOWLEDGE DISTILLATION
KD adopts a mimicry strategy that employs cross-entropy (CE) or relative entropy to transfer
knowledge between teacher and student networks [21, 74, 75], which is particularly suitable for
modeling the dynamics of interaction intents. To enhance the distillation within volume items, we
first revisit the mimicry strategy and explain some findings that motivate our proposed DePoD.

Decoupled Formulation of KD. Intuitively, for a training sample (𝒙𝑚,𝒚𝑚) ∈ D, a compre-
hensive next intent representation with high posterior [74] should be close to the most likely
next target item, and present different distances to non-target items according to the dynamics of
interaction intents. Therefore, it is necessary to analyze the effect of KD on target and non-target
items, respectively. However, their probability distribution 𝒑 (𝑘 ) is coupled by the softmax of logits
in Equation (1). To release non-target items, inspired by the independent model probabilities in [75],
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we further define the probability distribution 𝒑 (𝑘 )TI ∈ R1×2 with respect to target item (TI) as:

𝒑 (𝑘 )TI =

[
𝑝
(𝑘 )
∗ , 𝑝

(𝑘 )
\∗

]
=


exp(𝑧 (𝑘 )∗ )∑ | I |
𝑗=1 exp(𝑧

(𝑘 )
𝑗
)
,

∑ | I |
𝑙=1,𝑙≠∗ exp(𝑧

(𝑘 )
𝑙
)∑ | I |

𝑗=1 exp(𝑧
(𝑘 )
𝑗
)

 , (2)

and the probability distribution related to non-target items (NI) as

𝒒 (𝑘 )NI = [𝑞 (𝑘 )1 , · · · , 𝑞 (𝑘 )
𝑖
, · · · , 𝑞 (𝑘 )|I | ] ∈ R

1×( |I |−1) ,

𝑞
(𝑘 )
𝑖

=
exp(𝑧 (𝑘 )

𝑖
)∑ | I |

𝑗=1, 𝑗≠∗ exp(𝑧
(𝑘 )
𝑗
)
, 𝑠 .𝑡 .

| I |∑︁
𝑖=1,𝑖≠∗

𝑞
(𝑘 )
𝑖

= 1
(3)

where “∗” is the index of target item (ground-truth) and 𝑝 (𝑘 )∗ denotes the confidence of samples.
Then, we have 𝑝 (𝑘 )

𝑖
= 𝑞

(𝑘 )
𝑖
· 𝑝 (𝑘 )\∗ , and use tilde (∼) for the symbol of corresponding probability

distribution from a teacher network. The cross-entropy of KD can be rewritten as:

L (𝑘 )KD = CE(�̃� (𝑘 ) ∥𝒑 (𝑘 ) ) = −𝑝 (𝑘 )∗ log(𝑝 (𝑘 )∗ ) −
| I |∑︁

𝑖=1,𝑖≠∗
𝑝
(𝑘 )
𝑖

log(𝑝 (𝑘 )
𝑖
)

= −𝑝 (𝑘 )∗ log(𝑝 (𝑘 )∗ ) − 𝑝 (𝑘 )\∗
|I |∑︁

𝑖=1,𝑖≠∗
𝑞
(𝑘 )
𝑖

[
log(𝑞 (𝑘 )

𝑖
) + log(𝑝 (𝑘 )\∗ )

]
= −𝑝 (𝑘 )∗ log(𝑝 (𝑘 )∗ )︸             ︷︷             ︸

1○

−𝑝 (𝑘 )\∗ log(𝑝 (𝑘 )\∗ )︸          ︷︷          ︸
2○︸                                   ︷︷                                   ︸

Target: CE(�̃� (𝑘 )TI ∥𝒑
(𝑘 )
TI )

− 𝑝
(𝑘 )
\∗︸︷︷︸
3○

| I |∑︁
𝑖=1,𝑖≠∗

𝑞
(𝑘 )
𝑖

log(𝑞 (𝑘 )
𝑖
)︸                  ︷︷                  ︸

4○ Non-target:
L (𝑘 )NI =CE(�̃� (𝑘 )NI ∥𝒒

(𝑘 )
NI )

.

(4)

Our Analysis. The Equation (4) reformulates the vanilla KD loss into two parts, i.e. target item
part (term 1○ and term 2○), and non-target item part (term 4○) with the weight 𝑝 (𝑘 )\∗ (term 3○).
Drawing on the work of [75], the term 3○ suppresses the term 4○ on high-confidence samples
supervised by the teacher network. The term 2○ also suppresses the learning of low-confidence
samples. The decoupled formulation parses these rewarding parts (i.e., term 1○ and term 4○) that
exploit response difference to facilitate comprehensive intent representations. We conclude their
effects as follows:
• Why progressive difficulty? In line with [13, 51], we observe the term 1○ in the target item part
is related to the training difficulty of samples where the probability 𝑝 (𝑘 )∗ is the importance
weight. This will increase the contribution of high-confidence samples that are well-predicted.
However, inspired by curriculum learning [2], deep models tend to learn in a meaningful low-
to-high difficulty scheme, and tend to focus on some potential samples with low-confidence
in the later training phase. Especially in sequential prediction, low-confidence samples
commonly exist due to the real-world interaction dynamics between sequences and volume
candidate items. Such samples may also be informative and it is not advisable to neglect them
in the whole training process.
• Why progressive size? The term 4○ in the non-target item part transfers knowledge among
volume non-target items (i.e., dark knowledge [13, 75]). Such knowledge reflects the probabil-
ity differences that various non-target items corresponding to different intents present in the
next interaction, which is crucial for modeling their dynamics. Due to the challenging volume
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of items in sequential prediction, we suppose that it is difficult to directly make the training
network discriminate all non-target items. Furthermore, curriculum learning [2] inspires the
training of deep models by starting with a small subtask. We attempt to construct a small
subset of non-target items, and then gradually increase the size of this subset according to
the item frequency.
• Why progressive selection? Some works [45, 48, 83] observe that effective knowledge transfer
between two networks is up to a certain response difference, not smaller or larger. Given
multiple teachers, the training network will have more choices for finding an expert that
shows adequate difference, ultimately obtaining better performance. This can be motivated
by a progressive process where people (novice) first learns general knowledge from various
individuals in the earlier phase. With increasing experience, they gradually select an expert
who provides informative knowledge [1, 17].

Based on the above reformulation and conclusions, we propose a novel framework DePoD. In
particular, we add training progress 𝑡 = 𝜋/Π to achieve decoupled progressive distillation, where
𝜋 is the current training epoch and Π is the total epochs. The term 1○ from the 𝑘th prediction
network is denoted as L (𝑘 )One = −𝛼𝑝

(𝑘 )
∗ log(𝑝 (𝑘 )∗ ) where 𝛼 is a coefficient to adjust its importance. In

terms of the rewarding term 1○ and term 4○, our decoupled progressive distillation strategy can be
defined as follows:

L (𝑘 )KD ⇒ L
(𝑘 )
DePoD = Γ(𝑡,L (𝑘 )One ,L

(𝑘 )
DP )︸              ︷︷              ︸

Target: L (𝑘 )TI

+CE(�̃� (𝑘 )NI (𝑡)∥𝒒
(𝑘 )
NI (𝑡))︸                    ︷︷                    ︸

Non-target: L (𝑘 )NI

. (5)

For the target item part, we extend the earlier training phase (L (𝑘 )One ) and devise another learning
manner for the later training phase (L (𝑘 )DP ). Γ(·) is a function to switch the earlier and later training
according to 𝑡 . For the non-target item part, we employ the training progress 𝑡 to mask non-target
items in their probability distribution 𝒒 (𝑘 )NI . The effectiveness of different parts is discussed in the
experimental results in Section 5.3.

4 PROPOSED FRAMEWORK: DePoD
In this paper, our key idea is to capture the dynamics of interaction intents by enhancing the
distillation among target and volume non-target items according to the progressive nature of human
cognition [2, 37]. To this end, we propose an encoder-agnostic sequential prediction framework
(DePoD) that can integrate various sequential prediction models and make them learn from one
another. It consists of multi-peer prediction networks and a decoupled progressive distillation
strategy. The overall framework of DePoD is shown in Figure 2. In what follows, we start with
Multi-Peer PredictionNetworks to construct distinctive intent representations in Section 4.1, and
employTarget ItemDistillationwith Progressive Difficulty andNon-target ItemDistillation
with Progressive Size to transfer knowledge between two peers in Section 4.2 and Section 4.3,
respectively. Then, we present Progressive Peer Selection from a cohort of peers in Section 4.4
that is based on the foundation of target and non-target item distillation between two peers. Finally,
the Joint Optimization and holistic training procedure are both introduced in Section 4.5.

4.1 Multi-Peer Prediction Networks
As shown in the left of Figure 2, the multi-peer prediction networks mainly consist of a sequence
embedding module, an intent representation learning module with multiple peer encoders and a
next item prediction module. Note that multiple distinctive intent representations can be obtained
from each peer encoder. The embedding and prediction modules before and after encoders are
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Fig. 2. The framework of our proposed DePoD. DePoD mainly consists of multi-peer prediction networks
and a decoupled progressive distillation strategy. In particular, different encoders are first employed as peers
to derive multiple intent representations 𝒉(𝑘 ) with distinctive knowledge. Then, our decoupled progressive
distillation strategy utilizes their response difference and adaptively adjusts the learning priority of target
and non-target items. This makes the prediction network progressively model the dynamics of interaction
intents in the context of volume candidate items.

shared in the framework. This makes the encoders reach a common ground on the input and output
of sequence embedding, and focus on the modeling of various intents.

4.1.1 Sequence Embedding Module. Basically, an interaction sequence contains a sequence of
historical items 𝒙𝑚 = [item1, item2, · · · , itemL-1], the corresponding next item 𝒚𝑚 = [itemL], and
several “[mask]” tokens that replace the predicted items. To exploit the self-supervised information,
both mask language modeling (MLM) and next item prediction (NIP) can be applied in the training
phase, while only NIP is performed in the testing phase.
• Mask Language Modeling (MLM). It randomly masks a proportion of items in the historical
sequence 𝒙𝑚 , and further makes the remaining items predict them. With the enhancement of
MLM, more samples can be generated to train our progressive distillation framework.
• Next Item Prediction (NIP). Next item is our final goal that is performed in both the training
and testing phase in sequential prediction. To this end, a “[mask]” token is added at the end of
historical sequence 𝒙𝑚 at time step 𝐿. Together, they form an input sequence for our DePoD.

With the above masked items, each of them refers to a training sample for our progressive
distillation framework. Then, the input sequence is embedded into a 𝑑-dimensional representation
matrix 𝑬 = [𝒆1, 𝒆2, · · · , 𝒆𝐿] ∈ R𝐿×𝑑 through an item look-up table𝑾𝑬 ∈ R | I |×𝑑 . |I | is the number of
candidate items. If the follow-up encoder (such as Transformer) cannot capture position information,
we should further introduce another trainable matrix 𝑺 = [𝒔1, 𝒔2, · · · , 𝒔𝐿] ∈ R𝐿×𝑑 by following [55],
i.e., 𝑬 = 𝑬 +𝑺 . Finally, the embedding matrix 𝑬 is fed into different encoder branches simultaneously.

4.1.2 Intent Representation Learning Module. The intent representation learning module aims to
model item transitions in the input embedding matrix 𝑬 , and further infers the intent representation
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vector 𝒉(𝑘 ) = 𝑓 (𝑘 ) (𝑬) ∈ R1×𝑑 corresponding to the “[mask]” token where 𝑓 (𝑘 ) (·) denotes the 𝑘th
encoder. Then, the intent representation vector 𝒉(𝑘 ) is fed into the next item prediction module,
which generates the probability distribution over the item set. In practice, most deep neural meth-
ods devise a specific sequence structure (e.g., GRU, CNN, Transformer) to meet the requirement
of various scenarios. To this end, our DePoD is an encoder-agnostic learning framework that is
capable of integrating various sequential prediction methods (e.g., BERT4Rec [55], GRU4Rec [20]
and Caser [57]). In this paper, we mainly adopt the popular Transformer-based BERT4Rec as en-
coders [61], since it captures intents without respect to distance and shows promising performance
in a majority of tasks. Additionally, we conduct related experiments to investigate the effectiveness
of DePoD when integrating other sequential prediction methods with different sequence structures
in Section 5.4.1.

How to work with the follow-up decoupled progressive distillation. The dynamics of inter-
action intents will ultimately result in distinctive model responses. And, the aim of our decoupled
progressive distillation is to utilize their response difference in the forms of probability distribu-
tions and facilitate the learning of comprehensive intent representations. Here, multiple different
sequence encoders are an indispensable part to enable the discovery of interaction dynamics. These
encoders are regarded as peers for each other with distinctive knowledge, and respectively infer
intent representations 𝒉(𝑘 ) . Interestingly, some works [24, 38, 74] have shown that several identical
network structures with random initialization are sufficient to induce diversity and generate re-
sponse difference. Based on the findings of these studies, we adopt multiple identical Transformer
encoders [61] with different initialization as peers to capture the dynamics of interaction intents.
The combinations of different sequence structures are also discussed in Section 5.4.1.

4.1.3 Next Item Prediction Module. Multiple encoders generate different intent representations
𝒉(𝑘 ) to infer the masked item and all of them are fed into the shared next item prediction module
one-by-one. In this module, to enhance the alignment between different representations, we first
devise an additional feed forward layer that is identically applied to the output of each peer encoder.
Inspired by the work of [61], the item look-up table𝑾𝑬 is reused as the weight of the pre-softmax
linear transformation. Formally, the logit 𝒛 (𝑘 ) ∈ R1×|I | of the 𝑘th peer encoder is defined as follows:

𝒛 (𝑘 ) = GeLu(𝒉(𝑘 )𝑾𝑂 + 𝒃𝑂 )𝑾𝑇
𝐸 + 𝒃𝐸, (6)

where𝑾𝑶 ∈ R𝑑×𝑑 is the trainable parameter matrix, and 𝒃𝑶 ∈ R1×𝑑 and 𝒃𝑬 ∈ R1×|I | are the biases.
Based on the logit 𝒛 (𝑘 ) , probability distributions𝒑 (𝑘 ) ,𝒑 (𝑘 )TI , 𝒒 (𝑘 )NI can be derived from Equations (1),

(2) and (3), respectively. These distinctive responses from peers provide additional information
to model the dynamics of interaction intents and will be exploited in our follow-up decoupled
progressive distillation in Equation (5). In the context of volume candidate next items, we further
introduce how to utilize the response difference in target item distillation (Section 4.2) and non-
target item distillation (Section 4.3) between two peers. They are the foundation of distillation
among multi-peer prediction networks (Section 4.4).

4.2 Target Item Distillation with Progressive Difficulty

As discussed in Section 3, the probability 𝑝 (𝑘 )∗ in the target item part has a strong relationship with
training difficulty of the input sequence sample. As a result, vanilla KD will make each prediction
network prone to the samples with high-confidence supervised by its peers, and the samples with
low-confidence will reduce their contributions in the overall training signal. However, starting
from samples that are easy to learn, i.e., high-confidence samples, is just an early phase in human
cognition [37]. Following curriculum learning [2], deep learning models tend to benefit from
potential low-confidence samples in the later training phase. Such samples may also be informative
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yet hard to fit, and it is not advisable to ignore them in the whole training process. Furthermore,
deliberate practice [1, 17] provides a complementary training manner with mimicry, where teachers
usually instruct individuals to obtain higher performance by refining less accomplished behaviors.
To this end, we propose to distill target items by gradually enhancing low-confidence samples.

Deliberate Practice. Inspired by several cognitive theories [1, 2, 17], we first devise a novel
target item distillation loss that can compensate the weakness of term 1○ and focus on the low-
confidence samples in the later training phase, namely deliberate practice. Initially, the novel target
item distillation loss L (𝑘 )DP can be defined as follows:

L (𝑘 )DP = −𝜓𝐷𝑃 (𝑝 (𝑘 )∗ ) · 𝑙𝑜𝑔(𝑝 (𝑘 )∗ ), (7)

where 𝑝 (𝑘 )∗ is the prediction probability of ground-truth from its peer and𝜓𝐷𝑃 (·) is a function of
𝑝
(𝑘 )
∗ that refers to the intensity of deliberate practice. In terms of the response difference between

the 𝑘th training network and its peer, the deliberate practice intensity 𝜓𝐷𝑃 (𝑝 (𝑘 )∗ ) is expected to
adjust the learning of low-confidence samples via the following aspects:

(1) Excessively low confidence samples could also possibly be noise. Over-fitting such noisy
samples will hurt the generalization performance [66]. As such, the 𝑘th network should not
highlight it in the later deliberate practice phase.

(2) For the sample with consistently correct (or consistently wrong) responses, its probabilities
𝑝
(𝑘 )
∗ and 𝑝 (𝑘 )∗ are relatively larger (or smaller) in overall samples. In this case, the deliberate

practice intensity should be relatively smaller (or larger) to reduce (or amplify) the loss.
(3) For the sample with inconsistent responses, the value of deliberate practice intensity need to

be between the two situations mentioned in aspect (2) above, which enables us to distinguish
samples better. In this way, the correctly predicted network will enhance the learning of
this sample to avoid being wrong or result in catastrophic forgetting [59] in the following
training, while the wrongly predicted network will also consider the correct response to
produce appropriate gradients.

In this work, we devise a simple yet effective 𝜓𝐷𝑃 (𝑝 (𝑘 )∗ ) = (1 − 𝑝 (𝑘 )∗ )𝛾 that satisfies the above
aspects, where 𝛾 is a coefficient to adjust the deliberate practice intensity. In particular, to avoid
over-fitting excessively low confidence samples, we assume that a sample is highly possible to be
noise if it cannot be well-predicted by all networks (∀𝑘 network). Hence, the probability from its
peer can be truncated as follows:

𝑝
(𝑘 )
∗ =

{
1, rank(𝑝 (∀𝑘 )∗ ) < Y · |B|
𝑝
(𝑘 )
∗ , otherwise

(8)

where Y is the truncation proportion, |B| is the batch size of training samples and rank(·) denotes
the probability rank among all training samples in ascending order. Finally, for the 𝑘th network,
the loss can be formally defined as:

L (𝑘 )DP = −(1 − 𝑝 (𝑘 )∗ )𝛾 · 𝑙𝑜𝑔(𝑝 (𝑘 )∗ ). (9)

Progressive Target Item Loss. The conventional term ○1 in Equation (4) concerns the high-
confidence samples that works in the earlier training phase, and our proposed deliberate practice 
in Equation (9) aims to further exploit low-confidence samples that have the potential for boosting 
performance in the later training phase. To combine the training manners, a progressive training
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process can be devised as follows:

L (𝑘 )TI (�̃�
(𝑘 )
TI ∥𝒑

(𝑘 )
TI ) =


L (𝑘 )One, if 𝑡 < 𝜏0,
𝜏𝑟L (𝑘 )One + (1 − 𝜏𝑟 )L

(𝑘 )
DP , if 𝜏0 ≤ 𝑡 ≤ 𝜏1

L (𝑘 )DP , if 𝑡 > 𝜏1
(10)

where 𝑡 = 𝜋/Π denotes the progress of the current training epoch. Here, 𝜏0 and 𝜏1 (𝜏0 < 𝜏1) are the
predefined parameters to ensure sufficient training of different phases. For the intermediate training
phase, we introduce a uniform distribution to generate a random number rand(0, 1) between 0
and 1 in each iteration to switch the training manners. And 𝜏𝑟 is equal to 1 when 𝑡 < rand(0, 1),
otherwise it is 0.

4.3 Non-target Item Distillation with Progressive Size
Non-target item distillation in the term 4○ of Equation (4) transfers the knowledge between peers.
Such knowledge reflects the probability differences in non-target items present over the next
interaction, which is beneficial for modeling the dynamics of interaction intents. However, volume
non-target items increases the complexity of the knowledge, resulting in the challenge of enabling
prediction networks to better discriminate their probability differences.

Progressive Non-target Item Loss. Inspired by curriculum learning [2], the introduction of
such knowledge can start from a sub-task with small non-target items, and then gradually increase
its size. To this end, instead of directly exposing all non-target items, they can be added into the
training process gradually by constructing an increasing subset. Specifically, a masking vector
𝒄 = [· · · , 0, · · · , 1, · · · ] ∈ R1×|I | is introduced to present the non-target items that the training
network needs to discriminate in the next iteration. The probability distribution of non-target items
can be rewritten as:

𝒒 (𝑘 )NI (𝑡) =
[
𝑞
(𝑘 )
1 , 𝑞

(𝑘 )
2 , · · · , 𝑞 (𝑘 )|I |

]
= softmax(𝒛 (𝑘 ) − 1000 · 𝒄),

s. t. 𝑐∗ = 1 and
| I |∑︁

𝑖=1,𝑖≠∗
𝑐𝑖 =

{
(1 − 𝑡) · |I|, if 𝑡 < 𝜏1
0, otherwise

(11)

where 𝑐𝑖 is an element in the masking vector 𝒄 , 𝑡 = 𝜋/Π denotes the training progress and 𝜏1
(𝜏0 < 𝜏1) is a predefined parameter to ensure the sufficient training of all non-target items. Here,
the value of masked non-target item and target item in 𝒄 is set to 1, otherwise 0. For numerical
stability, we use a relatively large constant of 1,000 to remove the contributions of masked items.
Thus, the progressive non-target item loss for the 𝑘th peer can be defined as follows:

L (𝑘 )NI

(
�̃� (𝑘 )NI (𝑡)∥𝒒

(𝑘 )
NI (𝑡)

)
= −𝛽 ·

| I |∑︁
𝑖=1

𝑞
(𝑘 )
𝑖

log(𝑞 (𝑘 )
𝑖
), (12)

where 𝛽 is a coefficient that adjusts the importance of non-target item distillation and 𝑞 (𝑘 )
𝑖

is the
corresponding probability in the probability distribution �̃� (𝑘 )NI (𝑡) of its peer.

How to Generate Masking Vectors. For non-target item distillation, the masking vector 𝒄 is
our major contribution. With the advance of training process 𝑡 , the masked non-target items will
gradually decrease and finally degrade to a one-hot vector of label, which makes the training
network continuously receive knowledge related to the newly added non-target items. As such,
how to sample non-target items and generate the masking vector 𝒄 is an inevitable problem,
which impacts the learning order of non-target items. Since item frequency is an important factor
that affects the prediction performance in many sequential prediction tasks [25, 39], we consider
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Fig. 3. Process of progressive peer selection via a trainable difference evaluator. In the earlier phase, the 𝑘th
encoder (Peer 𝑘) learns from the cohort of its peers, and with the increment of training progress 𝑡 , Peer 𝑘
gradually turns to the sample-wise learning from an expert.

sampling masked non-target items based on a frequency-based distribution. In the frequency-
based proposal, according to our empirical findings in Section 5.4.2, we find that the effect of item
frequency varies with the real-world scenarios.

4.4 Progressive Peer Selection
The Range of Response Difference. The aforementioned target and non-target distillation

mainly utilize the response difference between two peers to model the dynamics of interaction
intents. These are the foundation of distillation among our multi-peer prediction networks (three or
more peers), enabling any two of them to learn from each other and further boost the performance.
Intuitively, we may hope the difference between the model 𝒑 (𝑘 ) and its peer �̃� (𝑘 ) are as large as
possible to push the distillation. However, the range of their response difference𝐺 can be inferred
as follows:

𝐺 = ∥𝒑 (𝑘 ) − �̃� (𝑘 ) ∥1 = ∥(𝒑 (𝑘 ) −𝒚) − (�̃� (𝑘 ) −𝒚)∥1 ≥ ∥𝒑 (𝑘 ) −𝒚∥1 − ∥�̃� (𝑘 ) −𝒚∥1, (13)

where 𝒚 is the one-hot embedding of the ground-truth, and

𝐺 = ∥𝒑 (𝑘 ) − �̃� (𝑘 ) ∥1 < ∥𝒑 (𝑘 ) −𝒚∥1 (14)

when its peer shows superior performance. As such, their response difference ought to be neither 
too large nor too small. Some works [45, 48, 83] have observed performance degradation in overly 
large differences in various scenarios. The empirical evidence regarding sequential predictions are 
also present in Section 5.3.5. In this work, to adaptively and dynamically find a peer with adequate 
difference, we develop sample-wise progressive peer selection via a trainable difference evaluator.

Difference Evaluator. Specifically, the evaluator calculates the difference correlations between 
any two peers, and then transforms their correlations into difference scores. The peer with adequate 
difference can be selected progressively according to the difference scores. First, as  shown in 
Figure 3, multiple encoders are peers for each other. Given the intent representation 𝒉(𝑘 ) from the 
𝑘th encoder (Peer 𝑘), the difference evaluator dynamically calculates[the difference scores vi a] a 
dot-product operator between 𝒉(𝑘 ) and the representations 𝑯𝑝

(𝑘 ) 
= 𝒉(1) , · · · , 𝒉( 𝑗 ) , · · · , 𝒉(𝐾 ) ∈
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R(𝐾−1)×𝑑 ( 𝑗 ≠ 𝑘) from its peers. Inspired by the query-key matching manner in [61], the evaluation
process can be formulated as follows:

𝒆 (𝑘 )𝑞 = 𝒉(𝑘 )𝑾𝑞 + 𝒃𝑞,

𝑬 (𝑘 )
𝑘

= 𝑯 (𝑘 )𝑝 𝑾𝑘 + 𝒃𝑘 = [𝒆 (1)
𝑘
, · · · , 𝒆 ( 𝑗 )

𝑘
, · · · , 𝒆 (𝐾 )

𝑘
], where 𝑗 ≠ 𝑘

𝒂 (𝑘 )
𝐷

= 𝒆 (𝑘 )𝑞 (𝑬 (𝑘 )𝑘
)
T
,

(15)

where 𝑾𝑞 ∈ R𝑑×𝑑 and 𝒃𝑞 ∈ R1×𝑑 are the trainable parameter matrix and bias of query vector
𝒆 (𝑘 )𝑞 ∈ R1×𝑑 , and 𝑾𝑘 ∈ R𝑑×𝑑 and 𝒃𝑘 ∈ R1×𝑑 are the trainable parameter matrix and bias of key
matrix 𝑬 (𝑘 )

𝑘
∈ R(𝐾−1)×𝑑 . Here, the correlation between peer 𝑘 and other peers can be established

through calculating their query-key vector 𝒂 (𝑘 )
𝐷
∈ R1×(𝐾−1) . Their difference scores can be derived

by a nonlinear transformation as:

𝒔 (𝑘 )
𝐷

= Tanh(𝒂 (𝑘 )
𝐷

𝑾𝐷 + 𝒃𝐷 ), (16)

where𝑾𝐷 ∈ R(𝐾−1)×(𝐾−1) and 𝒃𝐷 ∈ R1×(𝐾−1) are the trainable parameter matrix and bias, respec-
tively. Here, 𝒔 (𝑘 )

𝐷
∈ R1×(𝐾−1) contains the difference scores between peer 𝑘 and other peers.

Progressive Selection. The idea of progressive peer selection follows that people (novices)
are prone to learning various general knowledge from a cohort in the earlier learning phase,
then gradually turn to an expert teacher who provides more informative knowledge in the later
phase [1, 17]. To this end, we then introduce the training progress 𝑡 = 𝜋/Π and a Gumbel-Softmax
function [30] to gradually derive one-hot weight vector of peers. This process can be written as:

𝑠
(𝑘 )
𝑂,𝑖

=

exp
(
(𝑠 (𝑘 )
𝐷,𝑖
+ 𝑔𝑖 )/(1 − 𝑡)

)
∑𝐾−1
𝑗=1 exp

(
(𝑠 (𝑘 )
𝐷,𝑗
+ 𝑔 𝑗 )/(1 − 𝑡)

) , for 𝑖 = 1, · · · , 𝐾 − 1 (17)

where 𝒔 (𝑘 )
𝑂

=

[
𝑠
(𝑘 )
𝑂,1 , · · · , 𝑠

(𝑘 )
𝑂,𝑖
, · · · , 𝑠 (𝑘 )

𝑂,𝐾−1

]
∈ R1×(𝐾−1) is the weight vector, and 𝑔𝑖 is drawn from

the Gumbel distribution. Finally, the probability distribution of the 𝑘th encoder’s teacher can be
computed as:

�̃� (𝑘 )TI = 𝒔 (𝑘 )
𝑂
· [𝒑 (1)TI , · · · ,𝒑

( 𝑗 )
TI , · · · ,𝒑

(𝐾 )
TI ], for 𝑗 = 1, · · · , 𝐾 and 𝑗 ≠ 𝑘,

�̃� (𝑘 )NI = 𝒔 (𝑘 )
𝑂
· [𝒒 (1)NI , · · · , 𝒒

( 𝑗 )
NI , · · · , 𝒒

(𝐾 )
NI ], for 𝑗 = 1, · · · , 𝐾 and 𝑗 ≠ 𝑘.

(18)

The above �̃� (𝑘 )TI and �̃� (𝑘 )NI correspond to the probability distributions in distillation loss in Equa-
tions (10) and (12), respectively. And, these distillation losses and the cross-entropy loss of ground-
truth together join during the optimization in Section 4.5. The training of the difference evaluator
is under the supervision of the final prediction performance.
Why Gumbel-Softmax? Compared to the conventional softmax function, Gumbel-Softmax [30]

introduce a Gumbel distribution that enables random exploration among peers in the earlier training
phase. This can help the training network obtain various knowledge from peers. With the increment
of the training progress 𝑡 , the softmax temperature (1 − 𝑡) is annealed and gradually select an
expert peer with adequate difference as its teacher in the later training phase. Note that depicting
the optimal response difference is still an open-ended problem. We believe that there exist other
potential methods over ensemble multiple peer prediction networks. These do not contradict our
motivation of decoupled progressive distillation within volume items, and may work together with
our target and non-target item distillation.
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Algorithm 1 Training Procedure of DePoD.
Input: the training set (𝒙𝑚,𝒚𝑚) ∈ D, the peer number 𝐾 , the current training epoch 𝜋 and the

total epoch Π, the coefficients 𝛼 , 𝛾 and 𝛽 for adjusting progressive distillation
Output: the parameters Θ of DePoD
1: Randomly initialize all parameters Θ ;
2: for each training batch (𝒙𝑚,𝒚𝑚) do
3: Update training progress 𝑡 = 𝜋/Π
4: Obtain 𝒉(𝑘 ) from encoders and compute 𝒑 (𝑘 ) , 𝒑 (𝑘 )TI , 𝒒 (𝑘 )NI in Equations (1), (2) and (11)
5: for each peer encoder 𝑘 do
6: Select its teacher from peers according to Equation (18)
7: Compute L (𝑘 )TI and L (𝑘 )NI according to Equations (10) and (12)
8: Compute cross-entropy L (𝑘 )CE according to the ground-truth
9: end for
10: L ← ∑𝐾

𝑘=1 (L
(𝑘 )
CE + L

(𝑘 )
TI + L

(𝑘 )
NI )

11: Update all parameters to minimize L;
12: end for
13: return Θ

4.5 Joint Optimization
We jointly optimize the conventional cross-entropy loss of ground-truth and the progressive
distillation loss as a holistic decoupled progressive distillation framework:

min
Θ
L =

𝐾∑︁
𝑘=1
(L (𝑘 )CE + L

(𝑘 )
DePoD) =

𝐾∑︁
𝑘=1
(L (𝑘 )CE + L

(𝑘 )
TI + L

(𝑘 )
NI ), (19)

where 𝐾 denotes the number of peer encoders and Θ is the parameters of the multi-peer prediction
network and the difference evaluator. L (𝑘 )CE = CE(𝒚∥𝒑 (𝑘 ) ) is the cross-entropy between the ground-
truth and the prediction probability distribution of the 𝑘th peer.
The overall training procedure of DePoD is presented in Algorithm 1. The parameters are

initialized in Line 1. For each epoch, the training progress will be updated in Line 3. The distinctive
intent representations are inferred in Line 4. For each peer encoder, we first select the teacher in
Line 6, and then conduct distillation in Line 7. The cross-entropy of ground-truth (Line 8) is jointly
learned with distillation loss in Line 10. Finally, we update the network parameters in Line 11 and
repeat the above steps until the last epoch.

Time Complexity. The trainable parameters of different modules are summarized in Table 2.
To learn these parameters, it will take multi-round training for each training sample, including
the forward propagation in multi-peer prediction networks and the computation of progressive
distillation loss. Their time complexity is related to different hyper-parameters, including the length
of sequence 𝐿, the dimension of intent representation 𝑑 , the number of items |I |, the number of
peers 𝐾 , the batch size |B| and the training progress 𝑡 .
• Multi-peer PredictionNetworks. Intent representation learning is themost time-consuming
module that employs multi-layer sequential encoding to infer intent representation vectors.
Since our DePoD is an encoder-agnostic learning framework, the time complexity depends on
the specific sequence structures. For example, in terms of the representative Transformer [61],
the time complexity is 𝑂 (𝐿2 · 𝑑).
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Table 2. The number of trainable parameters in different modules.

Module Parameter number Description
Sequence Embedding Module |I | ∗ 𝑑 + 𝐿 ∗ 𝑑 The embedding of items and their relative

position information.

Intent Representation Learning Module ∝ (𝐾 ∗ 𝑑) The parameter number depends on a spe-
cific sequence encoder and it is propor-
tional to peer number 𝐾 and intent rep-
resentation dimension 𝑑 .

Next Item Prediction Module 𝑑 ∗ (𝑑 + 1) + |I| The weights and bias of alignment and pre-
softmax transformation.

Difference Evaluator 𝑑 ∗ (𝑑 + 1) ∗ 2 + 𝐾 ∗ (𝐾 + 1) The parameters of computing query and
key vectors and the nonlinear transforma-
tion of difference scores.

• Target Item Distillation. Target item distillation first requires calculating the probability
distribution with respect to target item, where time complexity is 𝑂 (1). Then, the time
complexity of finding excessively low confidence samples is 𝑂 ( |B|log( |B|)). Finally, the
computation of progressive target item loss is 𝑂 (1). Therefore, considering the above steps,
the overall time complexity of target item distillation is approximately 𝑂 ( |B|log( |B|)).
• Non-target Item Distillation. The time complexity of calculating the probability distribu-
tion with respect to non-target items is 𝑂 ( |I| − 1). Due to the construction of an increasing
subset, the time complexity of sampling a non-target item is 𝑂 ((1 − 𝑡) · |I|) that is related
to the training progress. The computation of progressive non-target item loss is 𝑂 (|I| − 1).
Therefore, the overall time complexity of non-target item distillation is 𝑂 (|I|).
• Progressive Peer Selection. The progressive peer selection employs the query-keymatching
to evaluate peers where the time complexity is𝑂 (𝐾2 ·𝑑). And, the time complexity of Gumbel-
Softmax is 𝑂 (𝐾). Therefore, the overall time complexity of progressive peer selection is
𝑂 (𝐾2 · 𝑑).

Based on the above analysis, we can conclude that the time complexity in our progressive distillation
is 𝑂 ( |I|), since sequential prediction task generally contains a large candidate item set. It’s worth
noting that this is a rough approximation, and the actual implementation details and optimizations
can affect the practical running time.

5 EXPERIMENT
The proposed DePoD utilizes the decoupled progressive distillation among target and non-target
items to enhance the modeling of interaction dynamics, which will optimize the learning of intent
representations. To validate its effectiveness, we conduct extensive experiments to answer the
following research questions:

• RQ1: What is the performance of our DePoD as compared to state-of-the-art sequential
prediction methods?
• RQ2: Do different parts in our DePoD framework contribute to the prediction performance?
• RQ3:What is the effect of coefficients (i.e., 𝛼 , 𝛾 , 𝛽) in DePoD when varying their values?
• RQ4: Does our framework DePoD facilitate the representation learning of next intent?
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Table 3. Dataset statistics.

Urban Event Web Recommendation

NYC16 CHI18 Beauty Toys
# Objects (regions/users) 3,229 2,692 22,363 19,412
# Items (events/behaviors) 440 246 12,101 11,924
# Interactions 473,887 264,314 198,502 167,597
Avg. interactions per object 146.76 98.18 8.88 8.63

5.1 Experimental Setup
5.1.1 Dataset. Considering the interaction dynamics widely exist in long or short sequences (avg.
interactions per object), our proposed DePoD is evaluated on four real-world datasets covering
urban and web spaces. The statistics across the datasets are shown in Table 3. The urban event
datasets with relatively long sequence are prone to presenting multifarious intents (Sequence 1 in
Figure 1), while the web recommendation datasets with less interactions may lack discriminative
information (Sequence 2). And the real-world environment may impose noise interference on both
of them (Sequence 3).

For the urban event datasets, NYC161 and CHI182 record the crime events of New York in 2016
and Chicago in 2018, respectively. These records mainly contain the fields of crime regions, time
occurred, and event types. Following the work of [24], to deal with fine-grained prediction, we
divide time into different slots at every 3 hours. And a simple event model [60] is employed to
describe regions by using geographical information and events by using time slots and event types.
The benchmark Amazon review datasets Beauty and Toys are from the work of [79], which is
known for high sparsity.

For data preprocessing, we follow the common strategy in [10, 24, 55], and remove the inactive
objects with fewer than five items. The last item of each object is used for testing, and the item
before the last is a validation set. We set the maximum length of a sequence as 200 for urban
event datasets (following [24]) and 100 for web recommendation datasets (following [10]). For the
sequences beyond the maximum, we split them from right to left. And if the length is less than the
maximum length, we add extra “padding” tokens to the right.

5.1.2 Evaluation Metrics. Following [55, 79], we evaluate the ranking performance by top-𝑁 Hit
Ratio (HR@𝑁 ), Top-𝑁 Normalized Discounted Cumulative Gain (NDCG@𝑁 ), and Mean Reciprocal
Rank (MRR). 𝑁 is set as {1, 5, 10} and HR@1 is equal to NDCG@1 when 𝑁 = 1. All metrics are
derived from the principle of the higher, the better. To speed up evaluation, we follow a common
strategy in [55, 62, 64] and pair each ground-truth with 100 randomly sampled negative items that
the object has not interacted with according to their popularity. The metrics for the process are
defined as:

NDCG@𝑁 =
1
|O|

∑︁
𝑜∈O

1(𝑟𝑜 ≤ 𝑁 )
log2 (𝑟𝑜 + 1)

,

HR@𝑁 =
1
|O|

∑︁
𝑜∈O

1(𝑟𝑜 ≤ 𝑁 ),

MRR =
1
|O|

∑︁
𝑜∈O

1(𝑟𝑜 ≤ 𝑁 )
𝑟𝑜

.

(20)

1https://data.cityofnewyork.us/browse?q=Arrest
2https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
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where 1(·) is an indicator function that returns 1 when the condition is satisfied, otherwise it is 0.
And 𝑟𝑜 is the rank of the ground-truth of object 𝑜 ∈ O based on its prediction probabilities.

5.1.3 Implementation Details. Our experimental environment mainly consists of NVIDIA TITAN
XP GPU with 12G memory, Python 3.8 and Pytorch 1.10.0. The proposed method3 is trained from
scratch by using Adam optimizer with linear decay and a batch size of 256 for 100 training epochs.
For sequence encoders, we integrate various sequential prediction methods with different se-

quence structures. The Transformer-based BERT4Rec [55] shows the best performance. Therefore,
we mainly tune the hyper-parameters and report the results under the integration of BERT4Rec.
Specifically, we mask 15% items in the historical sequence and perform both MLM and NIP in the
training phase by following BERT4Rec. We set the number of multi-head layers as 2, the number
of heads as 2, the dimension of embedding as 64 and the dimension of the intermediate layer as
256. The threshold of learning progress 𝜏0 and 𝜏1 are set as 0.2 and 0.7, respectively to ensure
sufficient training time for different phases, and the truncation proportion Y is set as 0.01. For
the coefficients in our DePoD, 𝛼 , 𝛾 , and 𝛽 are tuned through grid search on the validation set
from {1, 3, 5, 7, 9}, {0, 0.5, 1.0, 1.5, 2.0} and {1, 3, 5, 7, 9}, respectively. After the grid search, the final
coefficient groups (𝛼,𝛾, 𝛽) are (5, 1, 1), (3, 1, 3), (5, 1.5, 7) and (3, 0.5, 5) for NYC16, CHI18, Beauty
and Toys, respectively.

5.1.4 Baselines. To evaluate the effectiveness of our DePoD, we compare it with 12 representative
works related to interaction dynamics, including novel urban event prediction methods [22, 24,
78], sequential recommendation methods [10, 55, 64, 66, 79], deep ensemble [81] and distillation
methods [24, 31, 74, 75]. We reproduce R-CE [66], Bagging [81], DML [74] and DKD [75] based
on BERT4Rec, and implement other methods by utilizing the codes provided by the authors. The
results of all methods are reported under the optimal hyper-parameter settings in our experiments.

Urban Event Prediction Methods:

• DuroNet [22]: A noise-robust urban event model for predicting crime counts. To adapt it to
our task, we replace its objectives with cross-entropy to achieve event item classification.
• Informer [78]: A long sequence time-series forecasting method that solves dynamics by
exploiting long-term information. Similar to DuroNet, we also reformulate its loss function
to adapt for the classification problem.
• HAIL [24]: A novel distillation based sequential prediction framework that employs mutual
exclusivity knowledge from peers to address implicitly hard interactions caused by dynamics.

Sequential Recommendation Methods:

• BERT4Rec [55]: BERT4Rec exploits bi-directional information for users’ behavior prediction.
If the number of peer encoders is set to 1, our proposed DePoD will degrade to BERT4Rec.
• R-CE [66]: A denoising implicit feedback strategy for recommendation.We apply this strategy
for BERT4Rec as a baseline of weakening the contribution of dynamic interaction samples.
• S3-Rec [79]: A mutual information maximization-based sequential recommendation method
that aims to amplify the intrinsic data correlation. Since extra attribute information is not
employed in our work, we just adopt its MIP and SP object functions for fair comparison.
• HyperRec [64] HyperRec employs multiple sequential hypergraphs to model dynamic
preferences of users.
• STOSA [10] A novel distribution based sequential recommendation method that incorporates
dynamic uncertainty into the modeling of item transitions.

3https://github.com/hukx-issac/DePoD
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Deep Ensemble and Distillation Methods:
• Bagging [81]: A simple bagging based method. We apply this method for five BERT4Rec
models where each model is trained with 70% randomly sampled training data. The output
probability distribution is the average of all models.
• DML [74]: An online mutual distillation method that directly learns the probability distribu-
tions between two peers. We integrate this distillation manner with BERT4Rec.
• BiCAT [31]: A novel self-knowledge distillation based sequential recommendation method
that employs augmented and original sequences to enhance intent representations.
• DKD [75]: A novel decoupled knowledge distillation method. Our DePoD will degrade to it
after removing the decoupled progressive distillation strategy.

5.2 Overall Performance Comparison (RQ1)
We report the performances of two kinds of DePoD according to the number of peer encoders:
• DePoD: This is the primary version of DePoD that only adopts two peer encoders (𝐾=2),
which makes a fair comparison against baselines in limited GPU memory. We present the
metrics of both peers for a comparison between their performance difference. With the model
setting described in Section 5.1.3, the number of trainable parameters is about 0.2 million in
the intent representation learning module.
• DePoD(multi): This is the full version of DePoD where the number of peer encoders is five
(𝐾=5), which incurs more computation resource. We set a small batch size 64 to save more
network parameters in limited GPU memory, which is different from our default setting 256.
For conciseness, we report the average of all peers in each metric. The number of trainable
parameters is about 0.5 million in the intent representation learning module while the number
in the progressive selection module is about 8.35 thousands.

The performance and running efficiency of different methods on urban event and web recommen-
dation datasets are presented in Table 4 and Table 5, respectively. Note that although we adopt 
multiple peer encoders in the training phase, we can just keep any one peer in the testing phase, 
since KD makes them produce similar performances. In conclusion, we have the following findings:

5.2.1 The Advantage of DePoD Over All Baselines. From Table 4 and Table 5, we can observe 
that with few exceptions, HAIL and STOSA are the strongest baselines in urban event and web 
recommendation datasets, respectively. Despite their success in specific scenarios, our proposed 
DePoD consistently outperforms all baselines. And, the full version DePoD(multi) can further 
amplify the performance advantage in most metrics. Especially in the largest Beauty dataset, 
DePoD(multi) achieves 9.83%, 12.05% and 12.14% improvements in terms of NDCG@5, HR@5 and 
MRR, respectively. These observations demonstrate that our DePoD can effectively model different 
types of dynamics of interaction intents by progressively exploiting the distinctive model responses 
over volume candidate items.

Compared to Informer, BERT4Rec and S3-Rec, DePoD employs the distinctive model responses 
between multiple prediction networks to optimize the learning of intent representations. Compared 
to DuroNet and R-CE, the main difference of DePoD lies in the distillation of non-target items 
which provide knowledge among non-target items. Compared to STOSA, the superiority of DePoD 
indicates distribution-based representation is less competitive than multiple vector-based represen-
tation, especially for long sequences, which is in line with findings in [12, 18, 53]. The Bagging 
method focuses on result fusion while incurring more computation resource in both training and 
testing phases. Compared to Bagging, distillation-based methods (e.g., HAIL, DML, BiCAT and 
our DePoD) perform knowledge fusion and achieve comparable or even better performance with 
higher iteration speed and less running memory. Compared to HAIL, HyperRec, DML and BiCAT,



DePoD

Table 4. The performance comparison on the urban event datasets. The numbers in Bold and Underline
denote the best and sub-optimal results, respectively. The row “Improv.” means the relative improvement
of our best result over the best baseline result. The row “p-value” refers to the significance level in t-test by
comparing the five results of DePoD(multi) with the average of DePoD. The columns “speed” and “memory”
indicate the iteration speed and GPU memory cost in the training (or testing) phase.

Method NYC16

NDCG@1 NDCG@5 NDCG@10 HR@5 HR@10 MRR speed(iter/s) memory(GB)

DuroNet [22] 0.0622 0.1777 0.2270 0.2926 0.4460 0.1833 ∼9.3(12.4) ∼3.3(1.6)
Informer [78] 0.1059 0.2108 0.2540 0.3165 0.4500 0.2160 ∼1.1(12.8) ∼9.6(1.8)
HAIL [24] 0.3140 0.4131 0.4461 0.5070 0.6141 0.4113 ∼6.2(12.3) ∼3.3(0.7)

BERT4Rec [55] 0.2870 0.3927 0.4267 0.4908 0.5955 0.3901 ∼14.5(12.3) ∼2.4(0.8)
R-CE [66] 0.2471 0.3301 0.3599 0.3986 0.4921 0.3375 ∼5.3(12.3) ∼2.3(0.8)
S3-Rec [79] 0.2533 0.3315 0.3681 0.4103 0.5240 0.3391 ∼3.8(6.0) ∼6.2(2.8)

HyperRec [64] 0.0790 0.1266 0.1418 0.1682 0.2159 0.1424 ∼4.5(12.9) ∼2.9(0.9)
STOSA [10] 0.2725 0.3713 0.4143 0.4642 0.5974 0.3727 ∼4.9(6.2) ∼2.8(1.7)
Bagging [81] 0.2982 0.4022 0.4346 0.5050 0.6050 0.3983 ∼5.1(1.8) ∼11.2(1.2)
DML [74] 0.2927 0.3997 0.4317 0.5005 0.5999 0.3949 ∼6.2(12.1) ∼3.3(1.1)
BiCAT [31] 0.2942 0.4120 0.4554 0.5109 0.6107 0.4083 ∼5.3(12.0) ∼8.5(0.7)
DKD [75] 0.3032 0.4083 0.4419 0.5042 0.6079 0.4059 ∼6.1(12.1) ∼3.4(1.2)

DePoD (Peer 1) 0.3311 0.4335 0.4642 0.5290 0.6240 0.4297
∼6.4(12.3) ∼3.4(1.2)DePoD (Peer 2) 0.3311 0.4337 0.4637 0.5302 0.6228 0.4295

Avg. DePoD 0.3311 0.4336 0.4640 0.5296 0.6234 0.4296

Avg. DePoD(multi) 0.3357 0.4418 0.4729 0.5389 0.6352 0.4370 ∼7.8(12.3) ∼2.5(1.2)
p-value 6.17e-04 1.18e-04 4.45e-06 1.22e-02 6.46e-05 2.89e-05 - -

Improv. +6.91% +6.95% +3.84% +5.48% +3.44% +6.25% - -

Method CHI18

NDCG@1 NDCG@5 NDCG@10 HR@5 HR@10 MRR speed(iter/s) memory(GB)

DuroNet [22] 0.0676 0.1757 0.2236 0.2923 0.4421 0.1802 ∼9.8(10.6) ∼3.3(1.5)
Informer [78] 0.1174 0.2200 0.2660 0.3228 0.4650 0.2259 ∼1.9(12.4) ∼9.6(1.8)
HAIL [24] 0.3584 0.4684 0.5026 0.5683 0.6742 0.4631 ∼6.2(14.3) ∼3.3(0.7)

BERT4Rec [55] 0.3491 0.4619 0.4965 0.5638 0.6712 0.4562 ∼13.7(14.3) ∼2.3(0.7)
R-CE [66] 0.2426 0.3127 0.3450 0.3822 0.4832 0.3240 ∼7.8(14.3) ∼2.3(0.7)
S3-Rec [79] 0.3132 0.3923 0.4293 0.4736 0.5888 0.3978 ∼3.5(6.5) ∼6.2(2.8)

HyperRec [64] 0.0353 0.0776 0.1025 0.1319 0.2058 0.0893 ∼4.8(14.1) ∼2.4(0.9)
STOSA [10] 0.2975 0.4090 0.4505 0.5126 0.6415 0.4050 ∼5.3(7.15) ∼2.8(1.7)
Bagging [81] 0.3184 0.4367 0.4746 0.5431 0.6605 0.4312 ∼5.0(1.2) ∼11.0(1.2)
DML [74] 0.3510 0.4645 0.4992 0.5654 0.6731 0.4588 ∼6.3(14.5) ∼3.2(1.2)
BiCAT [31] 0.3247 0.4192 0.4610 0.5108 0.6400 0.4218 ∼5.4(12.2) ∼8.8(0.7)
DKD [75] 0.3536 0.4683 0.5004 0.5717 0.6716 0.4610 ∼6.2(14.5) ∼3.3(1.2)

DePoD (Peer 1) 0.3915 0.5046 0.5363 0.6059 0.7036 0.4969
∼6.3(14.3) ∼3.3(1.2)DePoD (Peer 2) 0.3908 0.5039 0.5361 0.6048 0.7039 0.4965

Avg. DePoD 0.3912 0.5043 0.5362 0.6054 0.7038 0.4967

Avg. DePoD(multi) 0.3974 0.5061 0.5381 0.6056 0.7042 0.4990 ∼7.7(14.3) ∼2.4(1.2)
p-value 1.09e-06 8.10e-04 1.28e-03 0.50 0.15 2.21e-05

Improv. +10.88% +8.05% +7.06% +5.98% +4.45% +7.75% - -

DePoD delves into different effects of target and non-target item distillation. And, similar with the
augmented sequences in BiCAT, the MLM training adopted in our DePoD can also employ more
samples to enhance the learning of intent representations. Compared to DKD, we further develop a
decoupled progressive distillation strategy to help DePoD achieve better performance.
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Table 5. The performance comparison on the web recommendation datasets. The numbers in Bold and
Underline denote the best and sub-optimal results, respectively. The row “Improv.” means the relative im-
provement of our best result over the best baseline result. The row “p-value” refers to the significance level in
a t-test by comparing the five results of DePoD(multi) with the average of DePoD. The columns “speed” and
“memory” indicates the iteration speed and GPU memory cost in the training (or testing) phase.

Method Beauty

NDCG@1 NDCG@5 NDCG@10 HR@5 HR@10 MRR speed(iter/s) memory(GB)

DuroNet [22] 0.0678 0.1291 0.1544 0.1881 0.2665 0.1398 ∼14.4(29.3) ∼1.6(0.9)
Informer [78] 0.0140 0.0393 0.0564 0.0650 0.1188 0.0607 ∼1.4(23.1) ∼5.2(1.1)
HAIL [24] 0.1031 0.1779 0.2070 0.2488 0.3396 0.1859 ∼4.7(22.3) ∼6.2(2.2)

BERT4Rec [55] 0.0953 0.1599 0.1862 0.2207 0.3025 0.1701 ∼7.4(22.3) ∼3.9(2.3)
R-CE [66] 0.0138 0.0351 0.0496 0.0573 0.1025 0.0553 ∼15.7(22.3) ∼3.9(2.3)
S3-Rec [79] 0.0705 0.1534 0.1929 0.2344 0.3589 0.1636 ∼7.5(20.7) ∼2.7(1.5)

HyperRec [64] 0.0440 0.0957 0.1231 0.1470 0.2326 0.1122 ∼14.3(34.9) ∼5.5(4.9)
STOSA [10] 0.1172 0.1892 0.2173 0.2573 0.3444 0.1919 ∼16.1(31.0) ∼1.6(1.2)
Bagging [81] 0.0964 0.1827 0.2183 0.2548 0.3649 0.1913 ∼3.6(1.5) ∼14.0(3.7)
DML [74] 0.0963 0.1659 0.2025 0.2469 0.3607 0.1758 ∼4.1(21.6) ∼7.5(1.7)
BiCAT [31] 0.0825 0.1714 0.2075 0.2571 0.3690 0.1777 ∼16.9(23.1) ∼2.7(0.7)
DKD [75] 0.1013 0.1878 0.2129 0.2495 0.3651 0.1808 ∼3.9(21.5) ∼7.6(1.7)

DePoD (Peer 1) 0.1194 0.2008 0.2314 0.2773 0.3720 0.2078
∼4.0(22.3) ∼8.1(1.7)DePoD (Peer 2) 0.1183 0.2011 0.2310 0.2794 0.3723 0.2072

Avg. DePoD 0.1189 0.2010 0.2312 0.2784 0.3722 0.2075

Avg. DePoD(multi) 0.1232 0.2078 0.2420 0.2883 0.3943 0.2152 ∼3.9(22.3) ∼8.4(1.7)
p-value 2.85e-02 1.37e-04 1.59e-05 2.72e-04 3.09e-06 3.27e-04 - -

Improv. +5.12% +9.83% +11.37% +12.05% +6.86% +12.14% - -

Method Toys

NDCG@1 NDCG@5 NDCG@10 HR@5 HR@10 MRR speed(iter/s) memory(GB)

DuroNet [22] 0.0298 0.0688 0.0958 0.1087 0.1931 0.0894 ∼13.6(25.3) ∼1.6(0.9)
Informer [78] 0.0128 0.0358 0.0535 0.0593 0.1148 0.0585 ∼1.4(23.0) ∼5.2(1.1)
HAIL [24] 0.1158 0.1894 0.2181 0.2583 0.3476 0.1984 ∼4.5(20.2) ∼6.1(2.2)

BERT4Rec [55] 0.0935 0.1783 0.2134 0.2594 0.3685 0.1874 ∼8.7(20.2) ∼3.9(2.3)
R-CE [66] 0.0157 0.0292 0.0399 0.0429 0.0763 0.0494 ∼13.4(20.2) ∼3.9(2.3)
S3-Rec [79] 0.0610 0.1402 0.1800 0.2190 0.3424 0.1534 ∼7.4(22.4) ∼2.8(1.5)

HyperRec [64] 0.0813 0.1464 0.1740 0.2090 0.2949 0.1584 ∼14.5(31.8) ∼5.5(5.0)
STOSA [10] 0.1299 0.2026 0.2295 0.2710 0.3544 0.2052 ∼17.3(29.5) ∼1.6(1.2)
Bagging [81] 0.0973 0.1817 0.2159 0.2616 0.3672 0.1904 ∼ 3.5(1.6) ∼14.5(3.6)
DML [74] 0.0993 0.1832 0.2169 0.2618 0.3691 0.1919 ∼4.1(20.0) ∼7.5(1.7)
BiCAT [31] 0.0803 0.1618 0.1983 0.2412 0.3543 0.1714 ∼16.7(22.8) ∼2.7(0.7)
DKD [75] 0.1007 0.1821 0.2170 0.2622 0.3705 0.1916 ∼4.0(19.8) ∼7.5(1.7)

DePoD (Peer 1) 0.1303 0.2190 0.2518 0.3032 0.3999 0.2248
∼4.1(20.2) ∼8.0(1.7)DePoD (Peer 2) 0.1299 0.2167 0.2498 0.2992 0.4048 0.2234

Avg. DePoD 0.1301 0.2179 0.2508 0.3012 0.4024 0.2241

Avg. DePoD(multi) 0.1402 0.2239 0.2551 0.3024 0.3995 0.2303 ∼3.9(20.2) ∼8.3(1.7)
p-value 8.19e-06 4.73e-05 1.38e-05 3.57e-02 1.78e-03 1.72e-05

Improv. +7.91% +10.51% +11.15% +11.88% +9.26% +12.23% - -

5.2.2 Small Performance Difference Between Peers. DePoD consists of multiple peer encoders 
and each of them will output a prediction result. It is a problem to decide which one will be employed 
in the testing stage. Fortunately, we find that the performance difference is marginal between the 
Peer 1 and Peer 2, since KD makes them learn from each other. This means the selection of encoders
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can be random and take less effect in deployment. More observations about performance difference
can be found in Section 5.4.1 and Section 5.6.2.

5.2.3 Higher Prediction Accuracy in More Peers. Compared to the primary DePoD, we find
that with few exceptions, DePoD(multi) with a small batch size achieves better performance in
most metrics. And, the p-value is less than 0.05 or even 0.01, indicting significance in performance
improvement. In particular, the values of NDCG@1 between DePoD and STOSA are close in
Toys and Beauty, while DePoD(multi) shows better performance in NDCG@1. This indicates
that employing the diversity of more peers can further boost prediction performance, while their
computation cost increases accordingly.

5.2.4 Effect of Item Number in Urban and Web Datasets. Compared with DePoD, De-
PoD(multi) exhibited better improvements in web recommendation datasets than that in urban
event datasets. And, in terms of significance level, we can also obverse some exceptions in the
HR@{5,10} in CHI18. This is because the item number in urban event datasets is less than those in
web recommendation datasets, which reduces the difficulty of modeling dynamics of interaction
intents. And, hit ratio is a relatively simple metric that only considers the number of correct
responses without their ranking positions. It demonstrates a relationship between the number of
peers and items whereby more items will increase interaction dynamics and require more peers to
capture diverse intents.

5.2.5 Comparable Efficiency in Deployment. The last two columns of Table 4 and Table 5
shows the iteration speed and memory of different methods, respectively. Due to the distillation
among multiple peers, our proposed DePoD needs to compute more parameters and gradients. As
such, DePoD results in relatively low iteration speed and highmemory occupation compared tomost
baselines in the training phase. Nevertheless, the iteration speed of DePoD still outperforms several
vector-based methods (e.g., HAIL, DKD, HyperRec) and the distribution-based STOSA method in
urban event datasets with long sequences. What is more, if we keep only one peer encoder in the
testing phase, the efficiency of DePoD can be boosted higher, and achieve comparable speed and
memory with the baseline methods. In real-work applications, it is generally acceptable to obtain
better performance by employing more computation resources in the training phase. Our proposed
DePoD does not bring much burden in the testing phase or deployment.

5.3 Ablation Study (RQ2)
To investigate the plausibility of our proposed target and non-target item distillation, we set four
variants of DePoD with two peer encoders:
• ¬TI+: This variant removes the deliberate practice of target item in the later training stage,
i.e., L (𝑘 )DP in Equation (10), and retains L (𝑘 )One during the whole training process.
• ¬TI: This variant removes the target item distillation and only adopts non-target item distil-
lation with progressive size, i.e., L =

∑𝐾
𝑘=1 (L

(𝑘 )
CE + L

(𝑘 )
NI )

• ¬NI+: This variant removes the progressive size setting in Equation (11) and just adopts the
vanilla non-target item distillation, i.e., term 4○, in Equation (4).
• ¬NI: This variant removes the non-target item distillation and only adopts target item
distillation with progressive difficulty, i.e., L =

∑𝐾
𝑘=1 (L

(𝑘 )
CE + L

(𝑘 )
TI ).

• ¬PE: This variant removes the trainable matrix 𝑺 that encodes the relative position informa-
tion of sequential items.

The average results of different peers in terms of NDCG@5 are reported in Figure 4. Moreover,
we compare the proposed progressive peer selection with several representative peer ensemble
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Fig. 4. Ablation study of our DePoD on four datasets (NDCG@5). “¬” indicates that the corresponding
objective is removed in the training phase, while the remaining objectives are kept. “+” denotes our decoupled
progressive distillation.

strategies (e.g., attention, direct selection) in Table 6 and validate its effectiveness with a different
number of peers in Figure 5. In summary, we can make the following observations:

5.3.1 Effectiveness of Target Item Distillation with Progressive Difficulty. From the variant
¬TI+ (yellow bar) of Figure 4, we can observe a clear performance degradation after removing
deliberate practice in the later training phase. And this degradation is more significant in web
recommendation datasets with relatively large candidate items (about 3.24% in Beauty and 10.94%
in Toys). Moreover, by comparing ¬TI+ and ¬TI (blue bar), we can see that their performance
difference is marginal in the web recommendation datasets, while L (𝑘 )One in the earlier training
phase shows negative effect on urban event datasets. The above observations demonstrate that the
contribution of vanilla target item distillation L (𝑘 )One is limited in most cases, which is in line with
the previous work [75]. Importantly, our proposed deliberate practice in target item distillation can
effectively improve performance by focusing on the potential low-confidence samples.

5.3.2 Effectiveness of Non-target Item Distillation with Progressive Size. By comparing the
variant ¬NI+ (green bar), we find that DePoD consistently outperforms ¬NI+ on all datasets. This
observation clearly indicates the effectiveness of our proposed decoupled progressive distillation
strategy within non-target items. Moreover, when further removing the whole non-target item
distillation, the performance of ¬NI (purple bar) degrades, especially in web recommendation
datasets. The above observations reveal that the current approach is not the optimal way to directly
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Table 6. Average Performance of different peer ensemble strategy with five peer encoders. “↓” refers to
performance degradation when comparing the means of two peer encoders.

Dataset Progressive Peer Selection Attention [82] Selection w/ Large Difference Selection w/ Small Difference

NDCG5 HR@5 MRR NDCG5 HR@5 MRR NDCG5 HR@5 MRR NDCG5 HR@5 MRR

Urban Event NYC16 0.4418 0.5389 0.4370 0.4354 0.5348 0.4304 0.4349 0.5323 0.4304 0.4343 0.5317 0.4297
CHI18 0.5061 0.6056 0.4990 0.4712↓ 0.5768↓ 0.4638↓ 0.4728↓ 0.5813↓ 0.4640↓ 0.4728↓ 0.5779↓ 0.4656↓

Web
Recommendation

Beauty 0.2078 0.2883 0.2152 0.1982↓ 0.2783 0.2061↓ 0.2043 0.2846 0.2114 0.2030 0.2831 0.2105
Toys 0.2239 0.3024 0.2303 0.2147↓ 0.2930↓ 0.2213↓ 0.2191 0.2955↓ 0.2262 0.2207 0.2988↓ 0.2273

expose the global knowledge among non-target items, and our decoupled progressive distillation
strategy can effectively ease this problem.

5.3.3 Varying Importance between Target and Non-target Item Distillation. To further
investigate the importance of target and non-target item distillation, we compare the performance
among variants ¬TI, ¬NI and the original framework DePoD (red bar). We find that both target and
non-target item distillation take positive effect on prediction performance. In particular, non-target
item distillation is more important than target item in web recommendation and shows comparable
contribution with target item distillation in urban event prediction. This is because the volume of
items vary with different scenarios.

5.3.4 Effectiveness of Relative Position Information. After removing the relative position
information, we find that the prediction performance of the variant ¬PE (gray bar) shows sig-
nificant degradation. And, the value of its NDCG@5 metrics is also lower than other variants.
This observation indicates that relative position information is the foundation of our sequential
prediction task. It models the order of items within a historical sequence and further affects the
inference of next intent. Therefore, to better capture the dynamics of interaction intents, relative
position information is crucial for our decoupled progressive distillation.

5.3.5 Effectiveness of Progressive Peer Selection. The proposed progressive peer selection
aims to gradually find a teacher with adequate difference, transferring informative knowledge. To
validate its effectiveness, we investigate it from the following three aspects:

Selection vs. Attention. The proposed progressive peer selection can degrade to an attention-
based ensemble manner [82] after removing the training progress 𝑡 in Equation (17). From Table 6,
we find that the improvement of attention-based ensemble manner is limited and even degrades the
prediction performance. Notably, our proposed progressive peer selection consistently outperforms
the attention-based ensemble manner and boosts the prediction performance. In line with the work
of [74], it indicates that the attention-based ensemble manner can produce a powerful teacher with
high posterior probabilities at the ground-truth item, which reduces the diversity of knowledge
among items and contradicts the objective of online distillation. Our progressive peer selection can
avoid weighting average and exploit informative knowledge by gradually selecting one adequate
peer in the later training phase.

Progressive Selection vs. Direct Selection. Besides progressive peer selection, the teacher is
also directly selected according to the cosine distances between their intent representations 𝒉(𝑘 ) .
In this setting, a large cosine distance refers to a large difference between the training network and
the corresponding peer, and vice versa. From Table 6, we can observe that the proposed DePoD
with progressive peer selection consistently outperforms the selection with a large difference and
a small difference. This demonstrate our decoupled progressive distillation requires an adequate
difference, not larger or smaller.
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Fig. 5. Average Performance trend of DePoD with the growing number of peers.

Effect of the Number of Peers. From Figure 5, we observe that the performance of our proposed
DePoD is improved by increasing the numbers of peers. In particular, we notice the margin between
two peers and one peer is larger than other situations. And the difference between four peers and
five peers is relatively slight, indicating an upper limit for peers. This observation is helpful to
select a good trade-off between the prediction performance and training costs according to the
practical computation conditions.

5.4 Further Probing
5.4.1 Integration with Different Sequence Encoders. The proposed DePoD is a general
framework that can integrate various sequential prediction methods as encoders. To validate the
flexibility of our DePoD, we attempt the following representative sequential prediction methods
with different sequence structures:
• Caser [57]: This is a CNN-based sequential prediction method that models a sequence as an
“image” in the time. It embeds the whole sequence into an intent presentation vector, which
cannot further be enhanced by MLM.
• GRU4Rec [20]: It is a conventional GRU-based sequential predictionmethod that just performs
NIP training in the original setting.
• GRU4Rec∗: Based on GRU4Rec, we further apply both MLM and NIP in the process of model
training.
• BERT4Rec [55]: This is a popular Transformer-based sequential method. It adopts both MLM
and NIP in the training phase, which is our default setting.

Table 7 shows the results of different combinations of the above methods. We have the following
findings: (1) Comparing with a solo method, DePoD shows significant performance improvement
when combining identical methods into a same framework. In particular, GRU4Rec∗+GRU4Rec∗
even shows superior performance than a solo BERT4Rec in the NYC16 dataset. (2) MLM shows great
benefits for our DePoD, since it generates more samples to train the prediction framework with
decoupled progressive distillation. For example, GRU4Rec+GRU4Rec only shows 6.32% improvement
over GRU4Rec in Beauty in terms of NDCG@5, while the relative improvement is 23.87% by
comparing GRU4Rec∗+GRU4Rec∗ and GRU4Rec∗. (3)When combining different sequence structures,
DePoD reduces their performance difference. We further compare the results of different structures
with the average of combining identical structures, and find they almost fail to obtain better
improvement (this observation is in line with [74]). In most situations, the stronger method shows
performance degradation (↓), while the weaker method obtains performance gains (↑). Some obvious
exceptions are mainly in the large web recommendation datasets without MLM. This indicates the
importance of MLM for our DePoD, and large diversity within different structures may not bring

ACM Trans. Inf. Syst., Vol. 37, No. 4, Article 111. Publication date: November 2023.
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Table 7. Performance comparison of our proposed DePoD in terms of two peer encoders when combining
different sequential prediction methods. “↑” and “↓” denote the performance variation when combining
different methods into a same framework, compared to the average of combining identical methods.

Task Encoder NYC16 CHI18 Beauty Toys

NDCG5 HR@5 MRR NDCG5 HR@5 MRR NDCG5 HR@5 MRR NDCG5 HR@5 MRR

NIP

Caser 0.3093 0.4007 0.3170 0.2965 0.3770 0.3093 0.1049 0.1572 0.1200 0.0677 0.1061 0.0859

Caser 0.3265 0.4162 0.3292 0.3178 0.4094 0.3244 0.1143 0.1715 0.1278 0.0738 0.1150 0.0916
+Caser 0.3270 0.4168 0.3295 0.3181 0.4108 0.3243 0.1143 0.1678 0.1286 0.0730 0.1132 0.0913

Avg. 0.3278 0.4165 0.3294 0.3180 0.4101 0.3244 0.1143 0.1697 0.1282 0.0734 0.1141 0.0915

GRU4Rec 0.2614 0.3465 0.2730 0.2932 0.3856 0.2989 0.0917 0.1423 0.1060 0.0453 0.0768 0.0674

GRU4Rec 0.2881 0.3669 0.2964 0.2998 0.3881 0.3066 0.0969 0.1467 0.1123 0.0701 0.1119 0.0873
+GRU4Rec 0.2885 0.3676 0.2966 0.2998 0.3881 0.3066 0.0980 0.1481 0.1131 0.0698 0.1106 0.0873

Avg. 0.2883 0.3673 0.2965 0.2998 0.3881 0.3066 0.0975 0.1474 0.1127 0.0700 0.1113 0.0873

Caser 0.2921↓ 0.3719↓ 0.2995↓ 0.3026↓ 0.3908↓ 0.3098↓ 0.0642↓ 0.1044↓ 0.0840↓ 0.0563↓ 0.0939↓ 0.0764↓
+GRU4Rec 0.2919↑ 0.3716↑ 0.2995↑ 0.3025↑ 0.3930↑ 0.3077↑ 0.0647↓ 0.1048↓ 0.0842↓ 0.0557↓ 0.0922↓ 0.0761↓

MLM+NIP

GRU4Rec∗ 0.3549 0.4528 0.3530 0.4467 0.5475 0.4422 0.1282 0.1848 0.1413 0.1154 0.1777 0.1293

GRU4Rec∗ 0.4043 0.5014 0.4011 0.4606 0.5613 0.4552 0.1589 0.2236 0.1696 0.1621 0.2286 0.1733
+GRU4Rec∗ 0.4037 0.5005 0.4009 0.4608 0.5617 0.4552 0.1587 0.2243 0.1690 0.1608 0.2266 0.1725

Avg. 0.4040 0.5009 0.4010 0.4607 0.5615 0.4552 0.1588 0.2240 0.1693 0.1615 0.2276 0.1729

BERT4Rec 0.3927 0.4908 0.3901 0.4619 0.5638 0.4562 0.1599 0.2207 0.1701 0.1783 0.2594 0.1874

BERT4Rec 0.4335 0.5290 0.4297 0.5046 0.6059 0.4969 0.2008 0.2773 0.2078 0.2190 0.3032 0.2248
+BERT4Rec 0.4337 0.5302 0.4295 0.5039 0.6048 0.4965 0.2011 0.2794 0.2072 0.2167 0.2992 0.2234

Avg. 0.4336 0.5296 0.4296 0.5043 0.6054 0.4967 0.2010 0.2784 0.2075 0.2179 0.3012 0.2241

GRU4Rec∗ 0.4033↓ 0.4992↓ 0.4008↓ 0.4720↑ 0.5758↑ 0.4643↑ 0.1942↑ 0.2690↑ 0.2009↑ 0.2060↑ 0.2797↑ 0.2135↑
+BERT4Rec 0.4259↓ 0.5240↓ 0.4215↓ 0.4779↓ 0.5836↓ 0.4693↓ 0.1946↓ 0.2687↓ 0.2020↓ 0.2074↓ 0.2811↓ 0.2151↓

Table 8. Average Performance of differentmaskingmanners in our non-target item distillationwith progressive
size. “Uniform” and “Frequency” refer to sample non-target items according to the uniform distribution
or the frequency-based distribution, respectively. “Masking” (or “Non-masking”) denotes that the sampled
non-target items are set to 1 (or 0) in the masking vector 𝒄 , while the other values are set as 0 (or 1).

Dataset Frequency, Non-masking Uniform, Masking Frequency, Masking

NDCG5 HR@5 MRR NDCG5 HR@5 MRR NDCG5 HR@5 MRR

Urban Event NYC16 0.4336 0.5296 0.4296 0.4296 0.5301 0.4238 0.4299 0.5290 0.4247
CHI18 0.5043 0.6054 0.4967 0.5053 0.6064 0.4973 0.4993 0.6003 0.4924

Web
Recommendation

Beauty 0.1972 0.2744 0.2039 0.1981 0.2755 0.2050 0.2010 0.2784 0.2075
Toys 0.2028 0.2773 0.2111 0.2004 0.2752 0.2091 0.2179 0.3012 0.2241

adequate response difference. (4) BERT4Rec+BERT4Rec consistently achieves the best performance,
and the GRU4Rec∗+BERT4Rec is the sub-optimal model. The above observations demonstrate
the effectiveness and flexibility of our DePoD. Moreover, in line with [45, 74], a large response
difference caused by different sequence structures (e.g., Caser+GRU4Rec, GRU4Rec∗+BERT4Rec)
may not beneficial for training models to converge to a more robust minima.

5.4.2 How to Mask Non-target Items? In Section 4.3, non-target item distillation with pro-
gressive size gradually introduces the knowledge among non-target items, which needs to sample
non-target items and mask them in the vector 𝒄 . To further investigate the effect of item frequency,
we consider sampling masked non-target items based on the uniform distribution, or a distribution
that is in direct proportion to item frequency. Table 8 presents the average results of different mask-
ing manners. We observe that different scenarios show distinctive preference for high frequency
items. Specifically, web recommendation datasets tend to learn the items with high frequency in
the later training phase, while urban event datasets prefer the items with low frequency. This
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Fig. 6. Performance trend of DePoD by tuning the coefficients. All other coefficients are kept unchanged.

observation is in line with our experience where popular items in web datasets should be suppressed
in personalized recommendations [25]. On the contrary, the high-frequency crime events need to
be prevented with priority in urban scenarios.

5.5 Parameter Sensitivity (RQ3)
To investigate the impacts of major coefficients, we tune their values in a vanilla target item
distillation, deliberate practice and non-target item distillation under the optimal settings reported
in Section 5.1.3, and present the average performance on the testing datasets in Figure 6.

5.5.1 Coefficient 𝛼 of Earlier Target Item Distillation. Figure 6(a) presents the impact of
varying 𝛼 in the range {1, 3, 5, 7, 9}. We make the following three observations: (1) As the coefficient
𝛼 increases, the performance becomes better at first. This is because the target item distillation in 
the earlier phase mainly focuses on the high-confidence samples that can reduce the effect of noise.
(2) When the 𝛼 surpasses a certain threshold, the performance begins to drop against 𝛼 further 
increasing. The reason is that overemphasizing high-confidence samples cannot make use of the 
diversity of training samples and may neglect some informative samples. (3) By comparing the 
results, three or five seems like a reasonable setting for the value of 𝛼 .
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(a) BERT4Rec (one encoder without decoupled progres-
sive distillation)
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(b) DePoD (decoupled progressive distillation between two
BERT4Rec-based peers)

Fig. 7. Visualization of t-SNE transformed intent representations inferred from three similar user interaction
sequences and their relevant item representations from the item look-up table𝑾𝐸 on the Beauty testing
set. The color is used to distinguish the representations from a different user interaction sequence. The
diamond “♦” represents the inferred next intent, the triangle “▲” represents the next target item and the
star“★” represents the selected popular non-target item that the user has not interacted with.

5.5.2 Coefficient 𝛾 of Deliberate Practice. Figure 6(b) presents the impact of varying 𝛾 in the
range {0.0, 0.5, 1.0, 1.5, 2.0}. We can observe that, with few exceptions, the performance of DePoD
first rises, and then falls after a certain threshold when increasing the coefficient 𝛾 . The reason is
that 𝛾 is related to the sensitivity of peer variation, thus we should tune this coefficient to find an
adequate value.

5.5.3 Coefficient 𝛽 of Non-target Item Distillation. Figure 6(c) presents the impact of varying
𝛽 in the range {1, 3, 5, 7, 9}. We have the following two observations: (1) We observe that the
performance first rises before falling in most datasets, except for NYC16. This is because the non-
target item distillation provides knowledge among non-target items at the beginning. However,
if the value 𝛽 is beyond a certain threshold, overemphasizing non-target item will suppress the
contribution of the target item. For the NYC16, its threshold may be relatively low and thus show
overall drop and fluctuations with 𝛽 increasing. (2) Different types of datasets reflect distinct
demand for knowledge among non-target items. Specifically, the coefficient 𝛽 is relatively small in
urban event datasets, while large in web recommendation datasets. The reason lies in the volume
of candidate items, in which large sets of items can amplify the dynamics of interaction intents.

5.6 Case Study (RQ4)
5.6.1 Analysis of inferred intent representations. To investigate how the proposed decoupled pro-
gressive distillation strategy facilitates the comprehensive intent representations learning, we
follow a pipeline proposed in [68] to perform the t-SNE transformation. Considering the size and
clarity of the figure, we randomly select three similar user sequences paired with 21 related items
(including next target item and 20 popular non-target items) that the user has not interacted with
in the testing Beauty dataset. The intent representations inferred by BERT4Rec and our DePoD are
plotted in Figure 7(a) and Figure 7(b), respectively. There are three observations:
• Close to the target items from other similar sequences. By observing the intent rep-
resentations from three similar sequences, we find that compared to BERT4Rec, the intent
representation inferred by our DePoD is not only close to its own target item, but also close
to the target items from other similar sequences. This indicates our DePoD can facilitate the
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Fig. 8. Heatmap of prediction results in the Beauty test set. The number in each cell refers to the negative
log-likelihood, i.e., −log(𝑝∗), that is related to whether the user interacts with the ground-truth item.

learning of comprehensive intent representations by employing distinctive knowledge from
multiple peers.
• Close to the most likely next target item. By comparing the representation distance
between an intent (diamond) and its next target item (triangle), we find that DePoD learns
a closer intent representation to the next item than BERT4Rec, especially for “user A” and
“user C”. This demonstrates that our target item distillation with progressive difficulty can
facilitate a better intent representation corresponding to the next target item.
• Separable representations of non-target items. We further observe that the non-target
items (star) are distributed in the lower right corner of users (diamond) in BERT4Rec and
the angle between the user and two farthest non-target items is below 90 degrees. For
DePoD, we find the non-target items are located on the left and right side of users, and
the angle between the user and two farthest non-target items is close to 180 degrees. The
above observations demonstrate that the representations of non-target items in DePoD are
more separable than those in BERT4Rec. In other words, DePoD can model the interaction
dynamics effectively, and the inferred comprehensive intent representation presents different
distances to non-target items.

5.6.2 Visualization of inferred next target item probabilities. Our work mainly employs the response
difference between multi-peer prediction networks to model the dynamics of interaction intents.
As such, to investigate how our proposed DePoD exploits the difference between networks, the
negative log-likelihood of inferred next target item probabilities from 20 randomly selected users
are shown in Figure 8. Comparing Figure 8(a) and Figure 8(b), we have the following observations:
• Consistent color and close number in Figure 8(b). The color and number in each cell of
Figure 8(b) are more consistent than those of Figure 8(a). This indicates that our DePoD effec-
tively transfers knowledge between different networks and reduce their response difference,
thus modeling the dynamics of interactions intents.
• Relatively small value in the colorbar of Figure 8(b). We find the maximum value in
the colorbar of Figure 8(a) is 25, while that of Figure 8(b) is 18. This demonstrates that our
DePoD does not overemphasize the intent corresponding to target item whilst considering
the other intents covered in volume non-target items.
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6 RELATEDWORK
In this section, we briefly review the related works and present their main differences to our
proposed DePoD. In particular, we focus on three areas: (i) sequential prediction, (ii) knowledge
distillation and (iii) progressive learning.

6.1 Sequential Prediction
Sequential prediction methods have been applied in many domains, such as sequential recommenda-
tion [10, 55, 64, 66, 79], click-through rate estimation [46, 71] and urban computing [22, 24, 78]. For
handling of interaction dynamics, they mainly focus on the optimization of intent representations
and can be grouped into two categories: vector-based methods, and distribution-based methods.

Vector-based methods are in the spotlight of the research community, and can be further divided
into three subcategories. Firstly, most methods commonly introduce extra side information to cope
with the lack of discriminative information, e.g., user profiling [15], item attributes [79], cross-
domain knowledge [69, 77], geographical information [39, 58] and environmental situations [27].
As the side information is not always available in the setting of sequential prediction tasks, some
methods try to maximize the exploitation of observed historical sequences such as long-term
information [8, 78], or temporal context [55, 73]. Secondly, without introducing side information,
denoising-based methods [14, 66] focus on the exploration of high-quality samples and take the
samples that cannot learn well as noise. Despite their effectiveness on small scenarios containing
abundant training samples, these methods simply that regard interaction dynamics as noise will
inevitablly to waste precious data resources. Thirdly, a line of works [4, 22, 24, 31, 64] are proposed
to model interaction dynamics in sequential prediction, which is one of the best practices for making
use of limited training data. DuroNet [22] devises a noise-robust structure to reduce the effect of
local outliers in crime counts. HyperRec [64] tries to construct multiple sequential hyper-graphs
to capture user preference and utilize attention to obtain aggregative representations. MTD [26]
integrates intra- and inter-session transition dynamics by developing a position-aware attentive
mechanism. More recent works [4, 24, 31] make multiple prediction models to learn from each
other and employ the output probability distribution from the other to capture dynamic intents.
SoftRec [4] focuses on well-designed soft targets to model the ambiguity of unobserved feedback.
BiCAT [31] generates pseudo-prior items to address the cold-start problem. HAIL [24] collects the
mutual exclusivity knowledge to mine implicitly hard interactions.

Along with the modeling of interaction dynamics, distribution-based methods [9, 10, 32] present
a similar motivation to multiple vector-based methods [24, 64]. DT4SR [9] and GeRec [32] adopt
Gaussian embedding to expand the representation of users and items. And, STOSA [10] further
introduces uncertainty into pattern learning and develops stochastic attention via Wasserstein
distance4. Despite their success and impressive theoretical explanation, the limitation mainly lies
in the prior distribution, since the analytical solutions of most distributions are still unsolved in
mathematics. More importantly, compared with multiple vector-based methods, some empirical
studies [12, 18, 53] show prior distributions may impose restrictions on search spaces and lead to a
sub-optimal prediction model.
Most of the above work optimizes the sequential pattern representations through network

structures or representation manners. Based on their works, our DePoD further focuses on the
effect of response difference on model training. In particular, we employ knowledge distillation to
explicitly model the interaction dynamics. To enhance distillation among volume items, we devise
a decoupled progressive distillation strategy to schedule the learning of different items.

4A distance function between probability distributions motivated by the idea of optimal transport. At present, we can only
find its analytical solution in a few distributions, such as one-dimensional distributions and Gaussian distributions.
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6.2 Knowledge Distillation
Knowledge distillation (KD) can be traced from model compression [21], where an efficient student 
model tries to mimic the responses from a cumbersome teacher model. Recently, the distillation 
scheme has been evolving from offline [21] to  online [74, 76] training where multiple models 
reciprocally learn from each other and thus improve themselves together. In the scheme of online 
distillation, our work is mainly related to the logit knowledge, which presents straightforward 
and high-level semantic information in the output probability distributions, yet still needs to be 
fully exploited. Furthermore, on the basis of distillation between two sequential networks, we also 
investigate response difference among three or more networks.

Most logit distillation works mainly impose regularization and strictness [65] on softened labels 
and have achieved great success in CV and NLP. Cho et al. [5] point out that the logits from early 
stopped teachers can reduce the mismatch capacity between teachers and students. Mirzadeh et 
al. [45] further introduce an intermediate-sized network as teacher assistant to fill in the capacity 
gap. Inspired by the practice in CV and NLP, several works [4, 31, 70, 82] also apply KD in sequential 
prediction. Zhu et al. [82] attempt different KD schemes and propose an ensemble CTR estimation 
method. Xia et al. [70] focus on device recommendation systems and develop a self-supervised KD 
framework to obtain a compressed model. In contrast, some works [4, 24, 31] aim to obtain better 
prediction performance via distillation. BiCAT [31] and SoftRec [4] take advantage of augmented 
sequences and well-designed soft targets through self-distillation, respectively. HAIL [24] proposes 
mutual exclusivity distillation to acquire hints from the unlikelihood of teachers’ correct responses. 
Furthermore, to make use of the heterogeneity knowledge from multiple teachers, a line of works 
focus on the ensemble of logits, including averaged or attentive aggregation [3, 74, 82], iterative 
learning [13, 54] and adaptive knowledge amalgamation [43].

The above works distill knowledge in a unified way, which does not consider the different effects 
of target and non-target item parts. More recently, DKD [75] initially reveals the suppression 
of non-target term by target term and provides a flexible distillation formulation, offering more 
unexplored spaces to improve target and non-target learning. Our work differs from them by 
devising a decoupled progressive distillation strategy to adapt from volume candidate items.

6.3 Progressive Learning
Progressive learning can be tracked in human cognitive progress where people gradually learn 
knowledge as they grow up. Various practices occur within this concept, such as curriculum 
learning [2, 40, 67], deliberate practice [1, 17] and continual learning [11]. Our work is mainly 
related to curriculum learning and deliberate practice in which they both follow a predefined 
easy-to-hard scheme. For the widely used curriculum learning, most existing works [34, 72, 80] 
focus on the difficulty of training samples. For example, Jin et al. [34] employs the optimization 
trajectory of a teacher model to construct an easy-to-hard sequence of learning target. Zhou et 
al. [80] utilize cross-entropy and variance to present the difficulty and uncertainty of training data. 
Zhang et al. [72] train multiple teacher models and distinguish easy and hard instances via a crossed 
manner. In this paper, we combine the knowledge distillation and curriculum learning to extend 
the current level. Besides the sample difficulty in target item distillation, the difficulty of sub-tasks 
and teachers are also defined in non-target item distillation and progressive peer selection.

7 CONCLUSION AND FUTURE WORK
In this work, we highlight the dynamics of interaction intents in sequential prediction, especially 
for those with volume candidate items. To this end, we propose a sequential prediction framework 
with decoupled progressive distillation (DePoD) that is inspired by the progressive nature of
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human cognition to enhance distillation among multi-peer prediction networks, thus modeling the
interaction dynamics. Basically, multi-peer prediction networks present distinctive model responses
in the impact of interaction dynamics. To enhance distillation among volume candidate items, we
reveal the effects of target and non-target items according our theoretical analysis, and further
develop a decoupled progressive distillation strategy. In particular, we address two issues: (1) (How
to learn?) The target item distillation with progressive difficulty and non-target item distillation,
with progressive size starting from an easy and small point and gradually developing toward a
hard training scheme, which encourages comprehensive intent representations; (2) (Whom to learn
from?) The progressive peer selection employs a trainable difference evaluator to gradually select
an expert with adequate response difference, which further enhances the target and non-target
distillation. Extensive experiments on four public datasets show that DePoD achieves superiority
over state-of-the-art methods on a set of accuracy-based metrics.
Notwithstanding the impressive problem and promising performance, our DePoD framework

still has some limitations. On the one hand, our DePoD still needs to be extended to more complex
sequential prediction tasks. These tasks may cover more side information or prediction demands,
e.g., multi-modal sequential prediction and sequence-to-sequence prediction. On the other hand,
DePoD follows the online distillation scheme, which incurs relatively large computation resources
in the training phase. In the future, other distillation schemes can be investigated to alleviate this
problem, such as self-distillation.
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