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Code intelligence leverages machine learning and data mining approaches to extract knowledge from large-
scale code corpora, with the aim of developing intelligent tools to improve the quality and productivity
of computer programming. Currently, there is already a thriving research community focusing on code
intelligence, with efforts ranging from software engineering, machine learning, data mining, natural language
processing, and programming languages. In this paper, we conduct a comprehensive literature review on deep
learning for code intelligence, from the perspectives of code representation learning, deep learning techniques,
and application tasks. We also benchmark several state-of-the-art neural models for code intelligence, and
provide an open-source toolkit for rapid prototyping deep-learning-based code intelligence models. In partic-
ular, we inspect the existing code intelligence models under the basis of code representation learning, and
provide a comprehensive overview for understanding the current status of code intelligence. Furthermore,
we publicly release the source code and data resources to provide the community with a ready-to-use bench-
mark, which can facilitate the evaluation and comparison of existing and future code intelligence models
(https://xcodemind.github.io). At last, we also point out several challenging and promising directions for
future research.

1 INTRODUCTION
Software development has been a complex and costly engineering task, which requires much
human effort. To improve the software development process and developer productivity, many
intelligent tools, e.g., code completion and code search, have been developed. Recently, significant
progress has been made to automate various software engineering activities using machine learning
techniques. As source code is the main artifact of software development, in this paper, we focus
our study on code intelligence, which is about empowering software developers with intelligent
tools through mining knowledge from large-scale code corpus.

With software becoming ubiquitous in our daily life, both open- and closed-source code reposito-
ries are growing to unprecedented sizes and complexity. For example, the platforms such as GitHub
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and StackOverflow have collected a large corpus of source code, also termed “Big Code” [4]. Powered
by this kind of data fuel and increasing computational power, artificial intelligence, especially deep
learning can make code intelligence feasible, showing the potential to change the landscape of
modern software development.

The realization of code intelligence requires synergy in the research among software engineer-
ing, machine learning, natural language processing (NLP), and programming languages. From
our investigation, precise and reliable code representation learning or code embedding, which
aims to efficiently and effectively encode the semantics of source code into distributed vector
representations, is the foundation for code intelligence. Such embedding vectors are then used in
many downstream tasks, such as code completion [108, 136, 181, 205], code search [69, 97, 216],
code summarization [8, 94, 98, 219, 264], type inference [5, 89, 172, 234], etc.

In terms of code embedding, significant progress has been made to apply deep learning and NLP
techniques to represent source code, in order to build intelligent tools to facilitate programming.
For example, analogous to word2vec [152] in NLP, Alon et al. [11] proposed code2vec, a distributed
representation of code, based on a collection of paths extracted from the Abstract Syntax Tree
(AST) of code. Furthermore, VenkataKeerthy et al. [214] proposed IR2Vec to represent programs
in the form of the LLVM-IR and capture the syntax and semantics of programs. Recently, as large
pre-trained language models (e.g., BERT [54]and GPT-3 [23]) have been widely applied to NLP,
many approaches [60, 74, 106] have been proposed to pre-train masked language models for source
code. Feng et al. [60] pre-trained a CodeBERT model for the bimodal programming language and
natural language, which has demonstrated positive results in multiple downstream tasks, such as
code search and code completion. In this paper, we examine deep-learning-based code intelligence
from the views of code representation learning, deep learning methods, and applications.
Related Surveys and Differences. From our literature review, there have been several related

surveys to ours. Allamanis et al. [4] carried out a comprehensive review on machine learning
approaches to modeling the naturalness of programming language. They mainly focus on machine
learning algorithms, especially probabilistic models, rather than deep-learning-based models. Re-
cently, Watson et al. [230], Wang et al. [223] and Yang et al. [249] conducted a thorough review of
the literature on applications of deep learning in software engineering research. They investigated
mostly software engineering and artificial intelligence conferences and journals, focusing on vari-
ous software engineering tasks (not limited to the source code) that are based on deep learning.
[53] is a report that summarizes the current status of research on the subject of the intersection
between deep learning and software engineering, as well as suggests several future directions. In
[146], the authors established a benchmark dataset called CodeXGLUE for code representation and
generation. In addition, several benchmark results especially based on pre-trained language models
(i.e., CodeBERT) are presented.

Different from [4] that focuses on traditional machine learning approaches, this paper puts more
emphasis on deep learning techniques for code intelligence. Different from [230], [223], [249],
and [53] that cover various tasks in broad software engineering, we narrow down our focus to
source code related tasks from the perspective of deep learning. In addition, we survey papers
from various fields including software engineering, programming languages, machine learning,
NLP, and security. Note that, as code intelligence based on deep learning is an emerging and active
research topic, we also include several high-quality unpublished papers that are released in arXiv.
This is because these unpublished works in arXiv can be seen as an indicator of future research.
Furthermore, existing surveys do not provide comprehensive benchmark evaluation results, nor do
they develop an open-source toolkit to facilitate further research. In this paper, we introduce an
open-source toolkit termed NaturalCC (standards for Natural Code Comprehension) [215] to ease
the prototyping of code intelligence models, as well as benchmark several state-of-the-art models.
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Fig. 1. Code intelligence tasks based on code representation learning.

As a complementary to CodeXGLUE [146] which intends to create a benchmark dataset for code
understanding and generation especially based on pre-trained code models, we place an emphasis
on developing the infrastructures for various model implementations and providing users with the
ability to conduct rapid prototyping. Compared with CodeXGLUE, our toolkit contains more tools
that may be used in the pipeline of building code intelligence models, with higher flexibility.
Our Contributions. This paper is for researchers and practitioners who are interested in

the intersection between code intelligence and deep learning, especially in intelligent software
engineering, NLP, and programming languages. In this paper, we first present a comprehensive
review of the research efforts on deep learning for code intelligence. We then move a step forward to
building an open-source toolkit NaturalCC for code intelligence, which implements many stat-of-
the-art models over different downstream tasks. In addition, NaturalCC is well-modularized and is
simple to adapt to new tasks and models. Using NaturalCC, we also benchmark the performance
of each model across 4 downstream tasks, e.g., code summarization, code search, code completion,
and type inference. The major contributions of this paper are summarized as follows.
• We conduct a comprehensive review on deep learning for code intelligence. Specifically, we have

collected 257 papers from various top-tier venues and arXiv, covering multiple domains including
software engineering, artificial intelligence, NLP, programming languages, and security.

• We benchmark the performance of 13 leading models across four different tasks (i.e., code
summarization, code search, code completion, and type inference). All the resources, datasets
and source code are publicly available at http://xcodemind.github.io.

• We introduce NaturalCC, an open-source toolkit that has integrated many state-of-the-art
baselines on different tasks, in order to facilitate research on code intelligence. Researchers in
the fields of software engineering, natural language processing, and other fields can benefit from
the toolkit for quick prototyping and replication.

2 SURVEY METHODOLOGY
2.1 A Unified View from Code Representation Learning
We propose to summarize existing deep-learning-based approaches to code intelligence from the
lens of code representation learning in this paper. As shown in Figure 1, for code representation
learning, researchers first extract features that potentially describe the semantics of code, and
then design various neural networks to encode them into distributed vectors. Code representation
learning can be viewed as the foundation for different downstream applications. Based on the
characteristic of each application, the downstream applications can be divided into three groups:
(1) Classification-based. In these tasks (e.g., code classification, vulnerability detection, and type
inference), a classifier layer (e.g., softmax) is used to map the code embeddings to labels/classes.
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(2) Similarity-based. In these tasks (e.g., code clone detection and code search), Siamese neural
network structure [43] is often adopted, where dual encoders are used to encode the source code
and natural-language query into embedding vectors. Based on the two embeddings of code and
query, a constraint (such as triplet loss function) is always used to regularize the similarity between
them. (3) Generation-based. In these tasks (e.g., code completion, code summarization, program
translation, program synthesis, and program repair), source code, natural-language descriptions
or programs written in another programming language are desired to be generated, given a code
snippet. These tasks usually follow the encoder-decoder paradigm, where an encoder network is
used to represent the semantics of code, and a decoder network (e.g., RNN) is designed to generate
sequences, e.g., natural-language descriptions or source code. Additionally, we categorize the
learning paradigms into four groups: supervised learning, unsupervised learning, self-supervised
learning, and reinforcement learning.

2.2 Paper Selection
Deep learning for code intelligence has been studied in many related research communities. In
this paper, we review high-quality papers selected from top-tier conferences and journals, ranging
from software engineering, programming languages, NLP, and artificial intelligence, to security.
Overall, we have identified 32 publication venues, as shown in the Supplementary Materials. We
first manually check the publication list of the venues and obtain an initial collection of papers.
Particularly, we search the aforementioned venue names in DBLP1 and their corresponding content
of proceedings. Two authors of this paper who have more than five-year experience in deep learning
for code intelligence then work collaboratively to manually filter out those papers that may be
related to code intelligence by checking the titles or quickly going through the abstract. For those
large conferences (e.g., AAAI and IJCAI) that accept thousands of papers per year, we first filter
out those papers whose titles contain the keywords of “code” or “program”, and then manually
check them.

Based on this initial collection of papers, we start to augment it through keyword searching. We
systematically search DBLP and Google Scholar using the following keywords: “code representa-
tion”, “program comprehension”, “code embedding”, “code classification”, “vulnerability detection”,
“bug finding”, “code completion”, “type inference”, “code search/retrieval”, “code clone detection”,
“code summarization”, “program translation”, “program synthesis”, and “program repair”, with a
combination of “deep”, “learning”, “neural”, and “network”.

It is worth noting that, in addition to accepted papers from the aforementioned venues, we also
consider some recent publications from the e-Print archive, as they reflect the most current research
outputs. We choose publications from arXiv based on three criteria: paper quality, author reputation,
and technique innovation, which can be indicated by the number of citations. Having obtained this
collection of papers, we then filter out the irrelevant papers by manual checking. We only consider
full papers, while short papers are excluded. Finally, we obtained a collection of 257 papers. The
complete list of studied papers can be found at https://github.com/CGCL-codes/awesome-code-
intelligence.

2.3 Publication Trends of Code Intelligence
Figure 2 provides statistics of the surveyed papers to reveal the publication trend and research topic
trend. Figure 2a shows the collected papers on deep learning for code intelligence, from January
2014 to December 2022. Although deep learning was first proposed in 2006 [91], it is initially
used for source code modeling in 2014. From Figure 2a, we can see that the number of relevant

1https://dblp.uni-trier.de
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Fig. 2. Statistics of the surveyed papers to reveal the publication trend and research topic trend.

papers for code intelligence has increased significantly since 2018, indicating that deep learning has
significantly advanced code intelligence research since then. This development can be attributed to
the widespread use of deep learning in NLP since 2018, which has sparked a lot of studies on using
NLP methods for tasks involving source code.
Figure 2b shows the distribution of papers across applications, including code classification,

vulnerability detection, type inference, code search, code clone detection, code completion, code
summarization, program translation, program synthesis, and program repair. This figure shows
that the topics of code summarization, program synthesis, program repair, vulnerability detection,
and code search, are hot research topics in recent years.

3 LITERATURE REVIEW
3.1 Taxonomy
Figure 3 illustrates the taxonomy of current studies on deep learning for code intelligence that we
have surveyed in this paper. From our observation, the research in this field can be broken down
into three distinct aspects: i.e., code features, deep learning techniques, and applications. (1) Code
Features. As the foundation of deep-learning-based code intelligence, code representation seeks
to represent source code as distributed vectors. We categorize the current code representation
approaches by the features of input code that they use, such as code tokens, IR, APIs, ASTs and
code graphs (e.g., graphs that illustrate control flow and data flow). (2) As for the deep learning
techniques, we first explore the types of neural networks (i.e., RNNs, CNNs, Transformers, and
GNNs), and then investigate the learning paradigms (i.e., supervised learning, unsupervised learning,
self-supervised learning, and reinforcement learning) that have been used for modeling source code.
(3) We investigate multiple downstream applications that are based on code representation and
deep learning techniques , including code classification, vulnerability detection and bug finding,
type inference, code search, code clone detection, code completion, code summarization, program
translation, program synthesis, and program repair.

3.2 Code Features
To represent source code, we need to first determinewhat to represent. Various work has proposed to
extract code features frommultiple perspectives, including code tokens, intermediate representation
(IR), abstract syntax tree (AST) as well as many kinds of flow graphs. Figure 4 shows a detailed code
snippet written in C, with its corresponding code tokens, IR, AST, control-flow graph, data-flow
graph, code property graph, and IR-based flow graphs.
3.2.1 Code Tokens. Code tokens, shaping the textual appearance of source code, are composed
of function name, keywords, and various variable identifiers. These tokens are simple yet effective
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211, 213, 216, 219, 233, 234, 237, 242, 265, 269, 270, 272,
275]

[182]
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[17, 48, 72, 127, 169, 214]
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224, 243, 272, 277, 278]

[5, 89, 96, 148, 153, 166, 172, 234]

[28, 30, 34, 52, 68, 69, 82, 119, 133, 193, 198, 216, 217, 252,
274]

[24, 57, 72, 95, 150, 158, 207, 212, 225, 233, 237, 240, 242,
265, 269]

[10, 21, 75, 108, 117, 135–137, 145, 181, 194, 203–205, 228]

[2, 8, 9, 13, 46, 61, 63, 64, 66, 76, 83, 84, 93, 94, 98, 105,
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254, 264, 276]

[39, 71, 182, 183]

[12, 15, 16, 29, 38, 55, 58, 88, 99, 120, 132, 134, 146, 147,
159, 164, 170, 176, 177, 195, 201, 202, 246, 256–260, 270]

[18, 19, 35, 41, 56, 62, 67, 77, 78, 80, 85, 87, 103, 122, 125,
151, 177, 185, 208, 209, 211, 213, 236, 253, 275]

Fig. 3. The taxonomy of deep learning for code intelligence.

to represent the semantics of programs. The majority of approaches for processing code involve
breaking the program down into a sequence of tokens based on specific delimiters, such as spaces
or the capitalization patterns in identifiers (for identifiers like SortList and intArray). Cummins
et al. [49] introduced a character-level LSTM network to represent the sequence of code characters
for program synthesis. Since the set of characters to form a program is always in a limited size, the
character-level code representation does not have the problem of out-of-vocabulary. However, this
tokenization process at the character level breaks down the meaning of the original words and also
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(a) Code snippet (b) Code tokens

Word tokenization
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switch i32 %0, label %3 [
    i32 0, label %9
    i32 1, label %2
  ]

%6 = add nsw i32 %0, -2

%7 = call i32 Fib(i32 %6) %5 = call i32 Fib(i32 %4)

define i32 Fib(i32 %0)

%10 = phi i32  [ %8, %3 ], 
    [ 1, %2 ], [ %0, %1 ]

%8 = add nsw i32 %7, %5

%4 = add nsw i32 %0, -1

define i32 Fib(i32 %0) {
switch i32 %0, label %3
[
i32 0, label %9
i32 1, label %2
]

2: br label %9
...
}

int Fib(int number) {
switch(number) {
case 0:
return 0;
case 1:
return 1;
default:
return Fib(number - 1)
+ Fib(number - 2);

}
}

int Fib ( int number ) {
switch ( number ) { 

case 0 :
...

_int _Fib ( int _ num ber ) 
_{ _switch ( num ber ) _{

_case _0 :
...

Case 0 Case 1

ε DefaultFib (int number) Switch number

Return 0 Return 1

Return

Call Fib(int)

-

number 1

Call Fib(int)

sink Arg

+

-

number 1

sink Arg

number

number

root

i32

i32

i32 i32

1

switch

br

add

call

add

call

add

i32

ret

phi

ret

1

1

4 2

FunctionDecl Fib (int number)

Switch number

Case 0

Return 0

Case 1

Return 1

Default

Return

+

Call Fib(int)

number 1

Call Fib(int)

number 2

- -

switch i32 %0, label %3
[
  i32 0, label %9
  i32 1, label %2
]

2: 
  br label %9

9:                        
  %10 = phi i32   [ %8, %3 ], 
       [ 1, %2 ], [ %0, %1 ]
  ret i32 %10

%4 = add nsw i32 %0, -1
%5 = call i32 Fib(i32 %4)
%6 = add nsw i32 %0, -2
%7 = call i32 Fib(i32 %6)
%8 = add nsw i32 %7, %5
br label %9

define i32 Fib(i32 %0) #0 

Fig. 4. A detailed C code snippet with its corresponding tokens, IR, AST, IR-based flow graphs.

increases the length of the code sequence, which can make it challenging to understand the overall
semantics of the program.

More coarsely, many word-level approaches are proposed to tokenize source code into words by
separators. For example, White et al. [238] and Iyer et al. [98] proposed to tokenize the program
into words by whitespace, and designed RNNs to represent them for code summarization and code
completion. Allamanis et al. [8] designed a CNN with an attention mechanism to better represent
the hierarchical structure of code over the subtokens that are simply tokenized by Camel cases, to
predict the function name.

Out-of-Vocabulary (OOV) Issue. Since the variables and function names are always defined by
developers without constraints, the size of vocabulary will explosively increase with the increasing
training data, resulting in the out-of-vocabulary issue, which is more severe than that in NLP. To
mitigate this issue, Cvitkovic et al. [50] proposed a graph–structured cache, which introduces
additional nodes for the encountered new words, and connects those nodes with edges based
on where they occur in the code. Recently, Chirkova and Troshin [45] offered a straightforward
yet effective solution to mitigate the OOV issue by using identifier anonymization, and observed
promising performance improvement.
Another effective approach is to tokenize the source code at a sub-word level, such as using

techniques like Byte Pair Encoding (BPE), which aims to construct a set of sub-words that can
be combined to represent the entire code corpus. Figure 4 (b) shows the source tokens obtained
by the strategy of word tokenization and BPE tokenization. For the input variable number, the
word tokenization will maintain the original word and consider it as a rare word, while the BPE
tokenization will split it into two common sub-words, i.e., num and ber. In the recent pre-trained
language models of source code, e.g., CuBERT [106] and CodeBERT [60], BPE has commonly been
adopted for reducing the vocabulary size. Karampatsis et al. [107] conducted an empirical study on
the granularity of word segmentation, and showed that tokenizing code by BPE can significantly
reduce the vocabulary size.
3.2.2 Application Programming Interfaces (API). There have been multiple methods proposed to
analyze the API sequences in programs. One line of work is about mining API usage patterns from
a large code corpus to demonstrate how to use an API. For example, Moreno et al. [154] proposed a
novel approach, named Muse, to demonstrate API usage by mining and ranking the code examples
in usage. Another line of work is API recommendation, which aims to recommend or generate
a sequence of APIs for users. Jiang et al. [101] proposed to discover relevant tutorial fragments
for APIs by calculating the correlation score based on PageRank and topic relevance. Gu et al.
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[70] proposed a language model named DeepAPI, under the framework of sequence-to-sequence
learning, to produce API sequences in response to a given natural language description. Different
from DeepAPI, Nguyen et al. [162] proposed API2Vec to represent the contextual information of
API elements within an API sequence. Likewise, they also developed a tool called API2API based
on API2Vec to migrate the APIs across different programming languages, i.e., from Java to C#, to
validate the learned API embedding. Ling et al. [131] introduced a method that integrated API call
interactions and project structure into a single graph, and used this graph to design a graph-based
collaborative filtering for making API usage recommendations. Bui et al. [26] proposed a cross-
language API mapping approach to map APIs from Java to C# with much less prior knowledge,
through transfer learning across multiple domains. Hu et al. [94] suggested that incorporating
API information as supplementary knowledge could improve code summarization. To improve
the representation of semantics in natural-language queries and API sequences, Wei et al. [235]
proposed a contrastive learning approach for API recommendation, and Hadi et al. [81] investigated
the effectiveness of pre-trained models for generating API sequences from natural language queries.
3.2.3 Abstract Syntax Tree (AST). The AST is a tree-structured intermediate representation of code
that describes the syntactic structure of a program. As shown in Figure 4 (d), in an AST, the leaf
nodes (e.g., number, Fib) typically correspond to the tokens of variables and method names in
the source code, while the non-leaf nodes (e.g., FuncName, SwitchStmt) represent the syntactic
structure of code, like function definition, branch functions. As a result, this representation allows
ASTs to be useful for both capturing the lexical information (e.g., variable number) and the syntactic
structure of the source code. In practice, we can extract ASTs using several open source tools,
e.g., tree-sitter2 parser, and LLVM Clang3. To represent the ASTs, Mou et al. [155] proposed
a tree structure-based CNN, and verified it in a code classification task. In order to handle long-
distance dependencies between nodes in an AST, Liu et al. [138] proposed an improved LSTM by
introducing operations such as PUSH and POP, and verified it in the tasks of code completion, code
classification, and code summarization. To better process an AST, Zhang et al. [265] divided an
AST into sentence-based subtrees and represented them using a two-way loop network. Recently,
Kim et al. [108] proposed using a relative position embedding for code completion to feed the AST
to Transformers. Niu et al. [163] introduced a pre-trained model of source code by incorporating
AST information.

Another line of work [9, 11, 93] is to represent ASTs indirectly by traversing or path sampling.
Hu et al. [93] suggested traversing an AST to transform it into a linear series of nodes, and then
using RNNs to represent the AST sequences for the task of code summarization. Alon et al. [11]
performed path sampling on the ASTs, and then used word2vec to represent the semantics of a
program. Furthermore, Alon et al. [9] also applied a similar idea to the task of code summarization.
Similarly, Alon et al. [10] proposed a structured code language model for code completion, by
sampling paths from an incomplete AST.
In program synthesis, an AST is also incorporated to guide the synthesis of programs. Yin and

Neubig [256] proposed an encoder-decoder framework for code generation, in which the encoder
first encodes the natural language, then the decoder generates an AST of code, and finally, the AST
is converted into source code. Chen et al. [39] proposed a Tree2Tree model for program translation,
which first uses a TreeLSTM to represent the source program, and another TreeLSTM to generate
the target program written in another programming language.
3.2.4 Intermediate Representation (IR). The IR is a well-formed structure that is independent of
programming languages and machine architectures. It is used by compilers to accurately represent

2https://tree-sitter.github.io/tree-sitter
3https://clang.llvm.org
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the source code during the translation process from the source code to low-level machine code. The
IR can express the operations of the target machine. It is natural to enhance the code embeddings
via utilizing IRs [127], with the benefit of limited vocabulary to significantly alleviate the OOV
issue. In this paper, we employ LLVM-IR, which is used in the LLVM infrastructure [110], as shown
in Figure 4 (c). To represent IRs, Ben-Nun et al. [17] proposed inst2vec, which first compiles a
program using LLVM Clang to obtain the LLVM intermediate representation, and then adopts
skip-gram to represent the instructions. VenkataKeerthy et al. [214] proposed IR2Vec, which regards
the intermediate code representation as triples in knowledge graph, and then explores several
knowledge graph representation methods. Cummins et al. [48] introduced ProGraML, a novel
graph-based code representation based on IR. This code graph provides new opportunities to
represent the semantics of source code in a low-level using machine learning techniques (e.g.,
GNNs), for complex downstream tasks such as program optimization and analysis. Peng et al. [169]
proposed to represent the augmented IR of source code based on pre-training and contrastive
learning techniques, guided by compiler optimization. Interestingly, Gui et al. [72] studied a new
problem of matching binary code and source code across languages by transforming both of them
into LLVM-IRs.
3.2.5 Code Graphs. Currently, many approaches have been proposed to convert programs into
graphs to better represent the rich structural information within the programs , including control-
flow graph (CFG), data-flow graph (DFG) and code property graph (CPG). As shown in Figure 4
(e), the CFG represents the computation and control flow of a program. In this representation,
each node represents a basic block and each edge represents the transitions of control flow in the
program. As shown in Figure 4 (f), the DFG is a directed graph that illustrates data relationships
among various functions. Each node in the DFG has input and output data ports, and each edge
links an output port to an input port on another node. To represent multiple structural information
of code using a joint data structure, Yamaguchi et al. [247] proposed an innovative CPG to merge
the structural information of code, including AST, CFG and program dependence graph (PDG),
into a single graph, as shown in Figure 4 (g). In practice, we can build CFGs and DFGs using LLVM
Clang, and build CPGs using Plume4. Recently, Cummins et al. [48] built a unified graph, termed
ProGraML, which includes the CFG, DFG and call-graph, as shown in Figure 4 (h).

To represent these code graphs, Allamanis et al. [7] introduced the data flow on the top of ASTs
and formed a code graph. Then, a Gated Graph Neural Network (GGNN) [121] was developed to
learn the data dependencies among this code graph. Allamanis and Brockschmidt [6] built the
data flow among variables and considered the contextual information of variables for the task of
automated pasting in programming. Brockschmidt et al. [21] expanded the incomplete code into a
graph, and then proposed a graph neural network for code completion. Sui et al. [196] made the
code representation more accurate by using the value-flow graph of a program. Shi et al. [193]
resorted to converting the code graphs (e.g., CFG and DFG) into sequences through traversing for
the task of code search. Chen et al. [40] introduced a general method for transforming a code graph
into a sequence of tokens and pointers.
3.2.6 Other Features of Code. In addition to the aforementioned features of code that have already
been widely explored, there also exist several kinds of features that are used in some specific
scenarios. For example, Henkel et al. [90] introduced a novel feature for code representation
learning based on abstractions of traces collected from the symbolic execution of a program. Hoang
et al. [92] proposed using deep learning to learn distributed representations of code changes/edits
that may be used to generate software patches. In terms of code changes, several related works are
also proposed to represent or predict them. Tufano et al. [210] proposed to automate code editing

4https://plume-oss.github.io/plume-docs/
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through sequence-to-sequence-based neural machine translation. Brody et al. [22] proposed to
represent the code edits first, and then iteratively generate tree edits over the AST.

3.2.7 Hybrid Representation. To leveragemultiple code features, several approaches to representing
source code in a hybrid fashion have been developed. For instance, Gu et al. [69] explored using
three separate RNNs for representing function names, code tokens, as well as API sequences of
code, respectively. It has also been evaluated in the code search task. White et al. [237] considered
both the code tokens and AST node sequences, and used two different RNNs to represent these two
sequences respectively, for the task of code cloning detection. Zhao and Huang [269] proposed to
represent the source code by incorporating the flow graphs of code into a semantic matrix. They also
developed a neural network model to assess the functional similarity between the representations
of two code snippets. Similarly, Wan et al. [219] and Wan et al. [216] developed a hybrid network
consisting of an LSTM representing the code tokens, a GGNN representing the CFG of code, and
a TreeLSTM representing the AST of code, for the task of code summarization and code search.
Chakraborty and Ray [36] suggested leveraging three modalities of information (e.g., edit location,
edit code context, and commit messages) to represent the context of programming and generate
code patches automatically.

3.3 Deep Learning Techniques
We investigate the types of neural networks and classify the learning paradigms into four groups:
supervised learning, unsupervised learning, self-supervised learning, and reinforcement learning.

3.3.1 Neural Networks. It is natural to model source code as sequential text, and directly apply
NLP techniques to represent it. Simply, RNN [9, 69, 80, 89, 93, 135, 148, 181, 205, 237, 264] and
CNN [8, 201] neural networks can be easily applied to represent the sequential structure of source
code. In order to capture the syntax structure, especially the AST of source code, many tree-
structured neural networks [39, 155, 219] have also been designed. Furthermore, to represent the
semantic structures (e.g., CFG and DFG) of source code, GNNs [5, 7, 21, 141, 228, 234, 272] have been
introduced to represent the source code. Recently, the Transformer architecture has been utilized
to represent the source code [108, 203]. Chirkova and Troshin [44] conducted a comprehensive
empirical study of how well Transformers can leverage syntactic information in source code for
various tasks. As the fundamental blocks for code representation, the neural networks will also be
surveyed in Section 3.6 with respect to different code intelligence applications. More preliminaries
about the mentioned neural networks are referred to the Supplementary Materials.

3.3.2 Supervised Learning. Supervised learning aims to learn a function that maps an input to
an output based on a set of input-output pairs as training data. It is a widely used learning
paradigm in deep learning. From our investigation, current deep learning approaches for code
intelligence are mainly based on supervised learning. For each specific code intelligence task, such
as code classification [25, 155], vulnerability detection and bug finding [42, 126, 129, 272], code
completion [10, 117, 135, 181, 203, 205], type inference [5, 89, 148, 234], code search [69, 82, 216],
code clone detection [233, 237, 242, 265, 269], code summarization [8, 9, 93, 98, 219], program
translation [39, 71], program synthesis [29, 58, 134, 201, 270], and program repair [35, 56, 80, 122,
211, 213, 275], a set of paired input-output data is collected first. For each task, supervised learning
is guided by a specific loss function. One limitation of this kind of approach is that it relies on lots
of well-labeled input-output pairs, which are always expensive to collect in some scenarios.

3.3.3 Unsupervised Learning. As opposed to supervised learning, unsupervised learning seeks to
identify patterns from a dataset without labels. One representative work is TransCoder [182], in
which a fully unsupervised neural source-to-source translator is trained based on unsupervised
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machine translation. This kind of learning paradigm is challenging for code intelligence and more
research work is still required.
3.3.4 Self-Supervised Learning. Self-supervised learning can be thought of as a blend of supervised
learning and unsupervised learning. Different from supervised learning where data labels are
available for training, self-supervised learning obtains the supervisory signals directly from the data
itself, usually the underlying structure in the data. One common practice used by self-supervised
learning is to predict any unobserved (or masked) part of input from the part that can be observed.
As a representative technique of self-supervised learning, language model pre-training has been
widely studied in source code [60, 74, 106]. Kanade et al. [106] proposed to train a CuBERT on the
Python code corpus, and verified the pre-trained model on multiple downstream tasks such as
variable misuse, operator classification, and function-document matching. CodeBERT [60] is yet
another pre-trained model that deals with the two different modalities of source code and natural
language descriptions. It is based on masked language modeling, and has achieved promising results
in tasks such as code search and code completion. Based on CodeBERT, GraphCodeBERT [74], SPT-
Code [163], and TreeBERT [104] are proposed with the aim of digesting the structural information
from source code. Lachaux et al. [109] presented a pre-training objective based on deobfuscation
as an alternative criterion. Inspired by BART [115] which is a pre-trained deep model especially
designed towards natural language understanding and generation, Ahmad et al. [1] trained a
similar pre-trained model PLBART for tasks that are related to code generation as well as code
understanding. Zhang et al. [263] trained a model named CoditT5 on large amounts of source
code and natural-language comments, for software-related editing tasks, e.g., comment updating,
bug fixing, and automated code review. Wang et al. [226] and Guo et al. [73] proposed to train a
model by unifying the modality of source code and natural language with contrastive learning, to
improve the representation of the semantics of source code. Mastropaolo et al. [149] and Wang et al.
[229] explored building pre-trained models based on the T5 (Text-To-Text Transfer Transformer)
architecture, which has attained state-of-the-art results in NLP tasks. Bui et al. [27] proposed
InferCode, a self-supervised learning method through predicting subtrees that are identified from
the context of ASTs. Jain et al. [100] proposed a contrastive learning approach for task-agnostic
code representation based on program transformations in compiler.

Instead of improving the capability of code embedding, Wan et al. [218] investigated the explain-
ability of pre-trained models for code intelligence, i.e., what kind of information do these models
capture, through structural analysis. Zhang et al. [268] and Shi et al. [191] suggested compressing
pre-trained models of code, as to accelerate their efficiency in practice. Zhou et al. [271] carried out
an empirical study to assess the generalizability of CodeBERT when applied to various datasets
and downstream tasks. Orthogonally, Wang et al. [221] and Wang et al. [220] investigated how to
fine-tune pre-trained code models via curriculum learning and prompt tuning.
3.3.5 Reinforcement Learning. Reinforcement learning aims to learn an agent through interacting
with the environment without input-output pairs. This kind of learning paradigm has been used in
code summarization [219], code search [252], program repair [78], and program synthesis [270].

3.4 Classification-based Applications
3.4.1 Code Classification. Classifying source code into different classes (e.g., different function-
alities and programming languages), is important for many tasks such as code categorization,
programming language identification, code prediction, and vulnerability detection. Various studies
have been conducted to classify code snippets into categories based on their functionalities. To rep-
resent programs in the form of ASTs, Mou et al. [155] developed a tree-based convolutional neural
network (TBCNN), which was then verified on code classification. On the broader topic of software
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categorization, LeClair et al. [112] designed a set of adaptations (including word embedding and
neural architectures) to adapt NLP techniques for text classification to the domain of source code.
Bui et al. [25] presented a bilateral neural network for the cross-language algorithm classification
task, where each sub-network is used to encode the semantics of code in a specific language, and
an additional classification module is designed to model the connection of those bilateral programs.
3.4.2 Vulnerability Detection and Bug Finding. Detecting vulnerabilities or bugs in programs is
essential for assuring the quality of software, as well as saves much effort and time for software
development. Although many tools have been developed for vulnerability detection, e.g., Clang
Static Analyzer5, Coverity6, Fortify7, Flawfinder8, Infer9, and SVF [197], most of them are based
on static analysis. Recently, a growing number of works employ deep learning to discover vul-
nerabilities. Wang et al. [224] made an early attempt at applying deep learning, specifically deep
belief network, to predict the defects of software, which learns the semantic features of programs
based on AST. Dam et al. [51] proposed an LSTM-based method to exploit both the syntactic and
semantic aspects of source code, and apply the embeddings for both within-project and cross-project
vulnerability detection. VulDeePecker [129], 𝜇VulDeePecker [277] and SySeVR [128] are a series of
works that preserve the semantics of program by extracting API function calls and program slices
for vulnerability detection. Le et al. [111] presented a maximal divergence sequential auto-encoder
network to find vulnerabilities in binary files. The network is designed so that the embeddings of
vulnerable code and invulnerable code are encouraged to be maximally divergent. Zhou et al. [272]
proposed Devign for vulnerability detection, which first represents a program by fusing its AST,
CFG and DFG into a unified CPG, and then designs a graph neural network to represent the CPG
of code. Similarly, Wang et al. [222] and Cao et al. [31] proposed a flow-sensitive framework for
vulnerability detection, which leverages a GNN to represent the control, data, and call dependencies
of a program. Cheng et al. [42] introduced DeepWukong, a GNN-based model for vulnerability
detection of C/C++ programs, in which the flow information of program are preserved. Liu et al.
[142] introduced a GNN model with expert knowledge for detecting vulnerabilities in smart con-
tracts, which incorporates the flow information of programs. Inspired by image processing, Wu
et al. [243] proposed a method to enhance the scalability of vulnerability detection by transforming
code into an image with semantics preserved, and implementing a CNN to capture them effectively.
Recently, several works have attempted to explain the results of deep learning models for

vulnerability detection. Li et al. [124] introduced a GNN model for vulnerability detection that
allows for interpretability, by providing users with parts of program dependency graph (PDG)
that may contain the vulnerability. Additionally, Zou et al. [278] proposed an interpretable deep-
learning-based model based on heuristic searching for vulnerability detection.
In contrast to vulnerability detection which only classifies a program as vulnerable or non-

vulnerable, another line of work is bug finding, which aims to pinpoint the buggy location. Deep-
Bugs [173] is an approach for name-based bug detection, which trains a classifier to distinguish
buggy or non-buggy code, based on deep learning. To enhance the accuracy of bug detection, Li et al.
[126] suggested a fusion method by exploiting both the PDG and DFG for better representation.
Larger weights are assigned to the buggy paths using the attention mechanism to identify the pos-
sible vulnerability. Gupta et al. [79] developed a tree-structured CNN to identify the vulnerabilities
or faults in a flawed program with respect to a failed test. Li et al. [123] defined the fault localization

5https://clang-analyzer.llvm.org/scan-build.html
6https://scan.coverity.com
7https://www.hpfod.com/
8https://dwheeler.com/flawfinder
9https://fbinfer.com
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problem as image recognition, and provided a deep-learning-based approach that integrates code
coverage, data dependencies between statements, and source code representations.

3.4.3 Type Inference. Programming languages with dynamic typing, like Python and JavaScript,
allow for rapid prototyping for developers and can save the time of software development dramati-
cally. However, without the type information, unexpected run-time errors are prone to occur, which
may introduce bugs and produce low-quality code. Current works on type inference, with the aim
of automatically inferring variable types, mainly fall into two categories: the static-analysis-based
and learning-based. Traditional static-analysis approaches [86, 184] are often imprecise since the
behavior of programs is always over-approximated. In addition, static-analysis-based approaches
typically analyze the dependencies of an entire program, resulting in the relatively low efficiency.

Recently, many deep learning techniques have been introduced for type inference. To the best of
our knowledge, Hellendoorn et al. [89] was the first to employ deep learning for type inference.
They proposed a neural network based on sequence-to-sequence architecture, named DeepTyper,
which uses GRUs to represent the program context and predict the type annotations for TypeScript.
Furthermore, Malik et al. [148] proposed NL2Type to predict type annotations by leveraging the
natural-language information of programs. Based on NL2Type, Pradel et al. [172] further proposed
TypeWriter, which utilizes both the natural-language information and programming context (e.g.,
arguments usage a function). Wei et al. [234] proposed LambdaNet for type inference based on
GNNs, which first represents the code in the form of a type dependency graph, where typed
variables and logical constraints among them are preserved. Then a GNN is proposed to propagate
and aggregate features along related type variables, and eventually, predict the type annotations.
Pandi et al. [166] presented OptTyper, which first extracts relevant logical constraints, and shapes
type inference as an optimization problem. Allamanis et al. [5] proposed Typilus for type inference
in Python, which expands ASTs into a graph structure and predicts type annotations over this
graph using GNNs. To cope with large-scale type vocabulary, Mir et al. [153] presented Type4Py, a
similarity-based deep learning model with type clusters, which can support the inference of rare
types and user-defined classes. Recently, Huang et al. [96] formulated the type inference task as a
cloze-style fill-in-blank problem and then trained a CodeBERT model based on prompt tuning.

3.5 Similarity-based Applications
3.5.1 Code Search. Code search aims to retrieve a code snippet by a natural-language query (nl-to-
code) or code query (code-to-code). The nl-to-code search refers to searching code fragments that
have similar semantics to the natural-language query from a codebase. As the first solution for code
search using deep learning, Gu et al. [69] proposed DeepCS, which simultaneously learns the source
code representation (e.g., function name, parameters and API usage) and the natural-language query
in a shared feature vector space, with triplet criterion as the objective function. On the basis of
DeepCS, Wan et al. [216] and Deng et al. [52] included more structural information of source code,
including the ASTs and CFGs, under a multi-modal neural network equipped with an attention
mechanism for better explainability. Ling et al. [133] first converted code fragments and natural-
language descriptions into two different graphs, and presented a matching technique for better
source code and natural-language description matching. Furthermore, Shi et al. [193] suggested an
improved code search method by converting code graphs (e.g., CFGs and PDGs) into sequences
through traversing. Haldar et al. [82] proposed a multi-perspective matching method to calculate the
similarities among source code and natural-language query frommultiple perspectives. Cambronero
et al. [30] empirically evaluated the architectures and training techniques when applying deep
learning to code search. Bui et al. [28] and Li et al. [119] leveraged contrastive learning with
semantics-preserving code transformations for better code representation in code search.
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Similar but different to the DeepCS framework, several more works have been proposed as
complements for code search. Yao et al. [252] proposed using reinforcement learning to first
generate the summary of code snippet and then use the summary for better code search. Sun et al.
[198] suggested parsing source code to machine instructions, then mapping them into natural-
language descriptions based on several predefined rules, followed by an LSTM-based code search
model like DeepCS. Zhu et al. [274] considered the overlapped substrings between natural-language
query and source code, and developed a neural network component to represent the overlap matrix
for code search.

Recently, Chai et al. [34] suggested a transfer learning method for domain-specific code search,
with the aim of transferring knowledge from Python to SQL. Wan et al. [217] examined the
robustness of different neural code search models, and showed that some of them are vulnerable to
data-poisoning-based backdoor attacks. Gu et al. [68] proposed to optimize code search by deep
hashing techniques.
In contrast to nl-to-code search, the input of code-to-code search is source code, rather than

natural-language description. The objective of the code-to-code search is to find code snippets that
are semantically related to an input code from a codebase. The core technique of code-to-code search
is to measure the similarity index between two code snippets, which is identical to the process of
identifying code clones. More related work will be investigated in the code clone detection section.

3.5.2 Code Clone Detection. Numerous software engineering activities, including code reuse,
vulnerability detection, and code search, rely on detecting similar code snippets (or code clones).
There are basically four main types of code clones: Type-1 code clones are ones that are identical
except for spaces, blanks, and comments. Type-2 code clones denote identical code snippets except
for the variable, type, literal, and function names. Type-3 code clones denote two code snippets
that are almost identical except for a few statements that have been added or removed. Type-4 code
clones denote heterogeneous code snippets with similar functionality but differing code structures
or syntax. To handle different types of code clones, various works have been proposed.

Recently, several deep-learning-based approaches have been designed for semantics representa-
tion of a pair of code snippets for the task of clone detection. The core of these approaches lies
in representing the source code as distributed vectors, in which the semantics are preserved. As
an example, White et al. [237] proposed DLC, which comprehends semantics of source code by
considering its lexical and syntactic information, and then designs RNNs for representation. To
improve the representation of syntactic structure of code, Wei and Li [233] applied TreeLSTM to
incorporate AST information of source code. Zhao and Huang [269] proposed encoding the CFG
and DFG of code into a semantic matrix, and introduced a deep learning model to match the similar
code representations. Zhang et al. [265] and Büch and Andrzejak [24] designed approaches to better
represent the ASTs of the program, and applied them for code clone detection task. Furthermore,
Wang et al. [225], Nair et al. [158] and Mehrotra et al. [150] proposed to convert source code into
graphs (e.g., CFG), represent the code graphs via GNN, and then measure the similarities between
them. Instead of using GNN, Wu et al. [242]and Hu et al. [95] introduced a centrality analysis
approach on the flow graph (e.g., CFG) of code for clone detection, inspired by social network
analysis. Wu et al. [240] considered the nodes of an AST as distinct states and constructed a model
based on Markov chain to convert the tree structure into Markov state transitions. Then, for code
clone detection, a classifier model is trained on the state transitions. Tufano et al. [212] empirically
evaluated the effectiveness of learning representation from diverse perspectives for code clone
detection, including identifiers, ASTs, CFGs, and bytecode. Recently, Ding et al. [57] and Tao et al.
[207] utilized program transformation techniques to augment the training data, and then applied
pre-training and contrastive learning techniques for clone detection. Gui et al. [72] studied a new
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problem of cross-language binary-source code matching by transforming both source and binary
into LLVM-IRs.

3.6 Generation-based Applications
3.6.1 Code Completion. Code completion is a core feature of most modern IDEs. It offers the
developers a list of possible code hints based on available information. Raychev et al. [181] made
the first attempt to combine the program analysis with neural language models for better code
completion. It first extracts the abstract histories of programs through program analysis, and then
learns the probabilities of histories via an RNN-based neural language model. Similarly, various
works [117, 135, 205] resort to inferring the next code token over the partial AST, by first traversing
the AST in a depth-first order, and then introducing an RNN-based neural language model. To better
represent the structure of code, Kim et al. [108] suggested predicting the missing partial code by
feeding the ASTs to Transformers. Alon et al. [10] presented a structural model for code completion,
which represents code by sampling paths from an incomplete AST. Furthermore, Wang and Li
[228] suggested a GNN-based approach for code completion, which parses the flattened sequence
of an AST into a graph, and represents it using Gated Graph Neural Networks (GGNNs) [121].
Guo et al. [75] modeled the problem of code completion as filling in a hole, and developed a
Transformer model guided by the grammar file of a specified programming language. Brockschmidt
et al. [21] expanded incomplete code into a graph representation, and then proposed a GNN for code
completion. Svyatkovskiy et al. [203] proposed IntelliCode Compose, a pre-trained language model
of code based on GPT-2, providing instant code completion across different programming languages.
Liu et al. [136, 137] proposed a multi-task learning framework that unifies the code completion and
type inference tasks into one overall framework. Lu et al. [145] suggested a retrieval-augmented
code completion method that retrieves similar code snippets from a code corpus and then uses
them as external context.
Since instant code completion is desired, several studies aim to improve the efficiency and

flexibility of code completion. Svyatkovskiy et al. [204] suggested improving the efficiency of
neural network model for code completion by reshaping the problem from generation to ranking
the candidates from static analysis. Additionally, Shrivastava et al. [194] proposed a code completion
approach that supports fast adaption to an unseen file based on meta-learning.
3.6.2 Code Summarization. Inspired by the text generation work in NLP, many approaches have
been put forward to systematically generate a description or function name to summarize the
semantics of source code. To the best of our knowledge, Allamanis et al. [8] were the first to use
deep learning for code summarization. They designed a CNN to represent the code and applied
a hybrid breath-first search and beam search to predict the tokens of function name. Concur-
rently, Iyer et al. [98] proposed an LSTM-based sequence-to-sequence network with an attention
mechanism for generating descriptions for source code. The sequence-to-sequence network [98]
inspired a line of works for code summarization, distinguished in code representation learning. To
represent the AST information, Hu et al. [93], Alon et al. [9], and LeClair et al. [114] proposed to
linearize the ASTs via traversing or path sampling, and used RNNs to represent the sequential AST
traversals/paths for code summarization. Likewise, Fernandes et al. [61], LeClair et al. [113] and
Jin et al. [105] investigated representing the structure of source code via a GNN, and verified it in
code summarization. Guo et al. [76] designed the triplet position to model hierarchies in syntax
structure of source code for better code summarization. Recently, several works [2, 66, 206, 239]
proposed to improve code summarization by designing enhanced Transformers to better capture
the structural information of code (i.e., ASTs). Wan et al. [219], Shi et al. [190], Yang et al. [250],
Gao and Lyu [63], and Wang et al. [227] proposed a hybrid representation approach by combining
the embeddings of sequential code tokens and structured ASTs, and feeding them into a decoder
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network to generate summaries. As a complement, Haque et al. [84] and Bansal et al. [13] advanced
the performance of code summarization by integrating the context of summarized code, which
contains important hints for comprehending subroutines of code. Shahbazi et al. [188] leveraged the
API documentation as a knowledge resource for better code summarization. Instead of generating a
sequence of summary tokens at once, Ciurumelea et al. [46] resorted to suggesting code comment
completions based on neural language modeling. Lin et al. [130] proposed to improve the code
summarization by splitting the AST under the guidance of CFG, which can decrease the AST size
and make model training easier.
Another line of work aims to utilize code search to enhance the quality of code summaries

generated by deep learning models. For example, Zhang et al. [264], Wei et al. [232], Liu et al. [141]
and Li et al. [116] suggested augmenting the provided code snippet by searching similar source
code snippets together with their comments, for better code summarization. Instead of acquiring
the retrieved samples in advance, Zhu et al. [276] suggested a simple retrieval-based method for
the task of code summarization, which estimates a probability distribution for generating each
token given the current translation context.
Apart from the above approaches, several works [94, 231, 244, 248, 254] are also worthy to be

mentioned. Hu et al. [94] transferred the code API information as additional knowledge to code
summarization task. Xie et al. [244] studied a new task of project-specific code summarization with
limited historical code summaries via meta-transfer learning. Wei et al. [231] and Yang et al. [248]
viewed the code generation task as a dual of code summarization, and incorporated dual learning
for a better summary generation. Similarly, Ye et al. [254] leveraged code generation for code search
and code summarization through dual learning as well. Mu et al. [156] introduced a multi-pass
deliberation framework for code summarization, inspired by human cognitive processes. Xie et al.
[245] proposed a multi-task learning framework by leveraging method name suggestion as an
auxiliary task to improve code summarization. Haque et al. [83] emphasized that predicting the
action word (always first word) is an important intermediate problem in order to generate improved
code summaries. Recently, the consistency between source code and comments has also attracted
much attention, which is critical to ensure the quality of software. Liu et al. [139], Panthaplackel
et al. [167], and Nguyen et al. [161] trained a deep-learning-based classifier to determine whether
or not the function body and function name are consistent. Panthaplackel et al. [168] and Liu et al.
[143] proposed automatically updating an existing comment when the related code is modified,
as revealed in the commit histories. Gao et al. [64] proposed to automate the removal of obsolete
TODO comments by representing the semantic features of TODO comments, code changes, and
commit messages using neural networks. Li et al. [118] proposed to generate review comments
automatically based on pre-trained code models.

3.6.3 Program Translation. Translating programs from a deprecated programming language to
a modern one is important for software maintenance. Many neural machine translation-based
methods have been proposed for program translation. In order to utilize AST structure of code,
Chen et al. [39] proposed Tree2Tree, a neural network with structural information preserved. It
first converts ASTs into binary trees following the left-child right-sibling rule, and then feeds
them into an encoder-decoder model equipped with TreeLSTM. Gu et al. [71] presented DeepAM,
which can extract API mappings among programming languages without the need of bilingual
projects. Recently, Rozière et al. [182] proposed TransCoder, a neural program translator based on
unsupervised machine translation. Furthermore, Rozière et al. [183] leveraged the automated unit
tests to filter out invalid translations for unsupervised program translation.

3.6.4 Program Synthesis. Program synthesis is a task for generating source code using high-level
specifications (e.g., program descriptions or input-output samples). Given the natural-language
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inputs, current approaches resort to generating programs throughmachine translation. For semantic
parsing, Dong and Lapata [58] proposed an attention-based encoder-decoder model, which first
encodes input natural language into a vector representation using an RNN, and then incorporates
another tree-based RNN to generate programs. Liu et al. [134] proposed latent attention for the
If-Then program synthesis, which can effectively learn the importance of words in natural-language
descriptions. Beltagy and Quirk [16] modeled the generation of If-Then programs from natural-
language descriptions as a structure prediction problem, and investigated both neural network and
logistic regression models for this problem.

Unlike synthesizing simple If-Then programs, Yin and Neubig [256] proposed a syntax-preserving
model for general-purpose programming languages, which generates Python code from pseudo
code, powered by a grammar model that explicitly captures the compilation rules. Maddison and
Tarlow [147] proposed a probabilistic model based on probabilistic context-free grammars (PCFGs)
for capturing the structure of code for code generation. Ling et al. [132] collected two datasets (i.e.,
Hearthstone and Magic the Gathering) for code generation in trading card games, and proposed
a probabilistic neural network with multiple predictors. On the basis of [132], Rabinovich et al.
[176] proposed to incorporate the structural constraints on outputs into a decoder network for
executable code generation. Similarly, Sun et al. [201] and Sun et al. [202] designed a tree-based
CNN and Transformer, respectively, for code generation and semantic parsing tasks based on the
sequence-to-sequence framework. Hayati et al. [88] suggested using a neural code generation
model to retrieve action subtrees at test time.
Instead of synthesizing programs from natural-language descriptions, several works resort

to generating programs from the (pseudo) program in another format or language. Iyer et al.
[99] proposed to synthesize the AST derivation of source code given descriptions as well as the
programmatic contexts. The above approaches are driven by well-labeled training examples, while
Nan et al. [159] proposed a novel approach to program synthesis without using any training
example, inspired by how humans learn to program.

Recently, various pre-trained code models also achieved significant progress in code generation.
CodeGPT [146] is a Transformer-based model which is trained using corpus for program synthesis,
following the same architecture of GPT-2. CodeT5 is a pre-trained code model in eight programming
languages based on T5 [177], which includes an identifier-aware objective in pre-training. Xu et al.
[246] aimed to incorporate external knowledge during the pre-training process for code generation
from natural-language input. Codex [38] is a GPT model trained using a code corpus collected from
GitHub. It has served as the foundation of Copilot10. Remarkably, Li et al. [120] recently released
AlphaCode, a code generation system that may generate unique solutions to these challenging
problems requiring deeper thinking. Poesia et al. [170] introduced a constrained semantic decoding
mechanism into a pre-trained model, as to constrain outputs of the model in a set of valid programs.

Programming by example is another flourishing direction for program synthesis. Shu and Zhang
[195] proposed a Neural Programming By Example (NPBE) model, which learns to solve string
manipulation problems through inducting from input-output strings. Balog et al. [12] proposed
DeepCoder, which trains a model to predict possible functions useful in the program space, as to
guide the conventional search-based synthesizer. Devlin et al. [55] proposed RobustFill, which is
an end-to-end neural network for synthesising programs from input-output examples. Nye et al.
[164] developed a neuro-symbolic program synthesis system called SketchAdapt, which can build
programs from input-output samples and code descriptions by intermediate sketch. Bavishi et al.
[15] proposed a program candidate generator, backed by GNNs, for program synthesis in large
real-world API.

10https://github.com/features/copilot
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It is worth mentioning that there are many works on generating code from natural language for
specific domain-specific programming languages, e.g., Bash and SQL. WikiSQL [270], Spider [259],
SparC [260], and CoSQL [258] are four datasets with human annotations for the task of text-
to-SQL. Based on these datasets, many works [257, 258, 260] have been proposed. For example,
Seq2SQL [270] is a neural machine translation model to generate SQL queries from natural-language
descriptions with reinforcement learning. Cai et al. [29] further proposed an encoder-decoder
framework to translate natural language into SQL queries, which integrates the grammar structure
of SQL for better generation. Yu et al. [257] proposed a neural network SyntaxSQLNet, with syntax
tree preserved, for the task of text-to-SQL translation across different domains, which takes the
syntax tree of SQL into account during generation.

3.6.5 Program Repair. Automatically localizing and repairing bugs in programs can save much
manual effort in software development [102]. One line of work is to learn the patterns of how
programmers edit the source code, which can be used to check syntax errors while compiling.
Bhatia and Singh [19] and Santos et al. [185] proposed RNN-based language models for correcting
syntax errors in programs. DeepFix [80] and SequenceR [41] are two sequence-to-sequence models
for syntax error correction, by translating the erroneous programs into fixed ones. Furthermore,
Gupta et al. [78] improved program repair by reinforcement learning. Vasic et al. [213] proposed
multi-headed pointer networks (one head each for localization and repair) for jointly localizing and
repairing misused variables in code. Dinella et al. [56] presented Hoppity to jointly detect and fix
bugs based on neural Turing machine [67], where a GNN-based memory unit is designed for buggy
program representation, and an LSTM-based central controller is designed to predict the operations
of bug fixing, e.g., patch generation and type prediction. Tarlow et al. [208] proposed Graph2Diff,
which designs a GNN for representing the graph structure of programs, and a pointer network to
localize the initial AST to be edited. Mesbah et al. [151] and Chakraborty et al. [35] proposed to
model the modifications of ASTs, and designed a neural machine translation model to generate
correct patches. Zhu et al. [275] presented a syntax-directed decoder network with placeholder
generation for program repair, which aims to generate program modifications rather than the target
code. Yasunaga and Liang [253] proposed DrRepair, which first builds a program-feedback graph
to align the corresponding symbols and diagnostic feedback, and then designs a GNN to generate
repaired code. Li et al. [125] introduced a novel deep learning-based method for fixing general bugs,
which combines spectrum-based fault localization with deep learning and flow analysis.

Benefiting from the pre-training techniques in NLP, TFix [18] and VulRepair [62] directly posed
program repair as a text-to-text problem and utilized a model named T5 [177]. Specifically, it digests
the error message and directly outputs the correct code. Jiang et al. [103] proposed CURE for
program repair, which is composed of a pre-trained language model, a code-aware search method,
and a sub-word tokenization technique.

Another line of work is focusing on repairing programs by generating patches. Tufano et al. [211]
carried out an empirical study to evaluate the viability of applying machine translation to generate
patches for program repair in real-world scenarios. Different from [211] which targets at function-
level small code snippets, Hata et al. [87] trained a neural machine translation model, targeting at
statements, by learning from the corresponding pre- and post-correction code in previous commits.
Harer et al. [85] proposed to generate the input buggy code via generative adversarial networks so
that the correction model can be trained without labeled pairs. Gupta et al. [77] embedded execution
traces in order to predict a sequence of edits for repairing Karel programs. Li et al. [122] treated the
program repair as code transformation and introduced two neural networks, a tree-based RNN for
learning the context of a bug patch, and another one designed to learn the code transformation of
fixing bugs. White et al. [236] introduced a novel approach for selecting and transforming program
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Table 1. Performance of our model and baseline methods for code summarization over Python-Doc dataset.

BLEU METEOR ROUGE-L Time Cost
Seq2Seq+Attn 25.57 14.40 39.41 0.09s/Batch
Tree2Seq+Attn 23.35 12.59 36.49 0.48s/Batch
Transformer 30.64 17.65 44.59 0.26s/Batch
PLBART 32.71 18.13 46.05 0.26s/Batch

repair patches using deep-learning-based code similarities. Empirically, Tian et al. [209] studied
the practicality of patch generation through representation learning of code changes.

4 BENCHMARK
Even though significant progress has been made in code intelligence with deep learning, two limita-
tions remain obstacles to the development of this field. (1) Lack of standardized implementation for
reproducing the results. It has become a common issue that deep-learning-based models are difficult
to reproduce due to the sensitivity to data and hyperparameter tuning. From our investigation, most
of them are implemented independently using different toolkits (i.e., PyTorch, and TensorFlow).
There is a need for a unified framework that enables developers to easily evaluate their models
by utilizing some shared components. Actually, in the artificial intelligence area (e.g. NLP and
computer vision), many toolkits such as Fairseq [165], AllenNLP [65], Detectron2 [241] have been
developed, which significantly advance the progress of their corresponding research areas. (2) Lack
of benchmarks for fair comparisons. Currently, many approaches have been proposed and each
of them claims that the proposed approach has outperformed other ones. To identify where the
performance improvements come from, it is essential to create a benchmark for fair comparisons.
Based on these motivations, we propose NaturalCC (standards for Natural Code Comprehen-

sion), a thorough platform for evaluating source code models using deep learning techniques. Under
this platform, we also benchmark four specific application tasks, including code summarization,
code search, code completion, and type inference. The implementation and usage of NaturalCC
will be introduced in Section 5.

4.1 Code Summarization
4.1.1 Approaches. Currently, most deep-learning-based code summarization methods use the
encoder-decoder architecture. An encoder network is used to convert the input source code into an
embedding vector, and the decoder network is used to generate output summaries from the encoded
vector. In this paper, we benchmark the following representative methods for code summarization,
including three different encoders (i.e., LSTM, TreeLSTM, and Transformer) as well as a pre-training-
based model.
• Seq2Seq+Attn [98, 219] is a vanilla model following sequence-to-sequence architecture with
attention mechanism. It is a famous method for neural machine translation. Unlike works that
only represent the source code as token embedding [98], we represent the source code via an
LSTM network and generate the summary via another LSTM network.

• Tree2Seq+Attn [219] also follows the structure of Seq2Seq. The difference is that it uses TreeL-
STM as the encoder network for syntax-aware modeling of code. Moreover, an attention module
is also designed to attend over different nodes of the syntax tree of code.

• Transformer [2] is currently considered the leading approach for code summarization, which
has also achieved significant improvement in neural machine translation. In Transformer, a
relative position embedding, rather than absolute position embedding, is introduced for modeling
the positions of code tokens.

• PLBART [1] is built on the top of BART [115], which is originally designed for text understanding
and generation. PLBART can be seen as a specific BART model pre-trained on code corpus.
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Table 2. MRR of our model and baseline methods for code search over CodeSearchNet dataset.

Go Java JavaScript PHP Python Ruby Time Cost
NBOW 66.59 59.92 47.15 54.75 63.33 42.86 0.16s/Batch
1D-CNN 70.87 60.49 38.81 61.92 67.29 36.53 0.30s/Batch
biRNN 65.80 48.60 23.23 51.36 48.28 19.35 0.74s/Batch
SelfAtt 78.45 66.55 50.38 65.78 79.09 47.96 0.25s/Batch

4.1.2 Results. We evaluate the performance of each model on the Python-Doc [14, 219] dataset
using the BLEU, METEOR, and ROUGE metrics as in [219]. The overall performance is summarized
in Table 1. This table shows that PLBART, which utilizes the Transformer architecture and pre-
training techniques, achieves the highest performance. It is interesting to see that the simple
Seq2Seq+Attn outperforms the Tree2Seq+Attn that considers the AST of code. For Transformer,
we find that the relative position embedding can indeed represent the relative relationships among
code tokens.

4.2 Code Search
4.2.1 Approaches. CodeSearchNet Challenge [97] is an open challenge designed to assess the
current state of code search. In [97], the authors have benchmarked four code search methods.
The fundamental idea of [97] is to learn a joint embedding of code and natural-language query
in a shared vector space. That is, two encoders are used for representing the source code and
query, respectively. A loss function is then designed to maximize the weighted sum for paired
embeddings of source code and natural-language query. Based on different encoder networks, we
have implemented the following four variant models.
• Neural Bag of Words (NBOW) [97] is a naive approach by representing the input sequences by

a bag of words. For a given code snippet or some specified query written in natural language, it
represents tokens into a collection of word embeddings before feeding them into a max pooling
layer for creating a sentence-level representation.

• Bidirectional RNN models (biRNN) [97] proposes to represent the semantics of source code
and query via RNN models. Specially, we adopt the two-layer bidirectional LSTM network.

• 1D Convolutional Neural Network (1D-CNN) [97] employs convolutional neural layers for
code and query representation, and builds a residual connection at each layer.

• Self-Attention (SelfAtt) [97] adopts self-attention layers to capture the semantic information
of sequential source code and query.

4.2.2 Implementation Details. For these methods, we tokenize the code snippets and natural-
language descriptions by word-level BPE, and build a shared vocabulary of size 50, 000, according
to the sorted token frequency. All the models are trained on a single Nvidia RTX V100 GPU with a
learning rate of 5𝑒-4, and the gradient norm is set to 1.0. A batch size of 1, 000 is set for training
acceleration. The Adam optimizer is used to optimize all the models.
4.2.3 Results. We evaluate the performance of each model on the CodeSearchNet corpus using the
MRR metric, as described in [97]. The overall performance of each model is summarized in Table 2.
As shown in the table, it is clear that the NBOW model with the simplest architecture achieves a
comparable performance, at the lowest cost. Moreover, we can also observe that the performance
of biRNN is poor, in both effectiveness and efficiency. The recurrent characteristic of RNN makes it
time-consuming. The SelfAttn model obtains the best results, which may be attributed to its use of
the self-attention mechanism.

4.3 Code Completion
4.3.1 Approaches. The code completion task aims to generate the completion text based on the
given partial code. In this paper, we investigate three representative approaches.
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Table 3. MRR of our model and baseline methods for code completion over Py150 dataset.

Attribute Number Identifier Parameter All Tokens Time Cost
LSTM 51.67 47.45 46.52 66.06 73.73 0.31s/Batch
GPT-2 70.37 62.20 63.84 73.54 82.17 0.43s/Batch
TravTrans 72.08 68.55 76.33 71.08 83.17 0.43s/Batch

Table 4. Accuracy of our model and baseline methods for type inference over Py150 dataset.

Accuracy@1 Accuracy@5 Accuracy@1 Accuracy@5 Time CostAll types Any types
DeepTyper 0.52 0.67 0.43 0.67 0.42s/Batch
Transformer 0.34 0.64 0.37 0.75 0.85s/Batch

• LSTM [108] denotes the model that represents the partial code by LSTM, and then predicts the
missing token via a softmax layer.

• GPT-2 [108] is a pre-trained language model based on Transformer. It refers to the Transformer
model that is trained by iteratively predicting the next code token.

• TravTrans [108] is designed to preserve the syntax structure of source code while predicting
the missing token. It first linearizes the code ASTs into a sequence of tokens using depth-first
traversing, and afterward feeds the traversal into Transformer for representation. It also uses a
softmax layer to predict the missing token.

4.3.2 Implementation Details. To obtain code tokens with high quality, we preprocess the code
snippets by parsing them into ASTs, and collect their leaf nodes as code tokens. We build a shared
vocabulary of size 50, 000, according to the sorted token frequency. All models are trained with
four Nvidia RTX V100 GPUs, with the learning rate set to 1𝑒-3, and batch size to 32. The Adam
optimizer is used to optimize all the models.
4.3.3 Results. We evaluate each model on the Py150 [180] dataset using the MRR metric as used
in [108]. We divide the prediction tokens into five categories, namely attributes, numeric constants,
identifier names, function parameters and all tokens. We summarize the performance of each model
in Table 3. From this table, when comparing GPT-2 with LSTM, we can observe that the Transformer
architecture outperforms other models in representing the semantics of code, thus, resulting in
better performance for code completion. Furthermore, when comparing TravTrans with GPT-2,
we can see that the TravTrans that incorporates the syntax structure information achieve better
performance, showing that the syntax information is useful for code completion.

4.4 Type Inference
4.4.1 Approaches. Similar to code completion, the type inference task aims to predict the types of
variables based on contextual information. It first represents the contextual code into a vector, and
then predicts the missing types by a softmax layer. In our work, we employ two state-of-the-art
methods for this task.
• DeepTyper [89] proposes to represent the contextual code by a two-layer biGRU, and then
predicts the missing variable types via a softmax layer.

• Transformer [2] proposes to represent the contextual code by a Transformer encoder network,
and then predicts the missing variable types via a softmax layer.

4.4.2 Implementation Details. For these methods, we first tokenize the code snippets and natural-
language descriptions, and then construct a shared vocabulary of size 40, 000, according to the
sorted token frequency. The hardware for training and the optimizer is the same as above. We use
a batch size of 16 and a learning rate of 1𝑒-4.
4.4.3 Results. We evaluate each model on the Py150 [180], by using the Accuracy metric as
in [100]. In particular, we measure the performance under the settings of all types and any types.
The performance of different models is summarized in Table 4. From this table, it is interesting to see
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# </>

Fig. 5. The source code hierarchy and pipeline of NaturalCC.

that the simple LSTM-based DeepTyper outperforms the Transformer-based approach, especially
under the all types setting, at a lower time cost.

5 TOOLKIT AND DEMONSTRATION
This section introduces the design of NaturalCC and its user interface. Figure 5 (left) shows the
code structure of NaturalCC. The dataset folder contains data preprocessing code. The ncc
folder is the core module. The third_party folder holds model evaluation packages. The gui folder
contains graphical user interface files and assets. As shown in Figure 5 (right), NaturalCC is
composed of four components, i.e., data preprocessing, code representation, downstream tasks, and
their corresponding evaluations. At the stage of data preprocessing, we process the source code
with a series of steps, including word tokenization, building vocabulary, and feature extraction.
Additionally, a data loader is used to iteratively yield batches of code samples with their features.
The resulting batches are then sent into the code representation models, which facilitate a variety of
downstream tasks, including code summarization, code search, code completion, and type inference.
To evaluate the performance of each task, we also implement several corresponding metrics that
have been widely adopted previously.

5.1 Data Preprocessing Module
In NaturalCC, we have collected and processed four datasets including CodeSearchNet [97],
Python-Doc [219], Py150 [180], and DeepTyper [89]. First, we tokenize the input source code,
and then build a vocabulary to map the code tokens into indexes. Currently, we support two
types of tokenizations: space tokenizer and BPE tokenizer [107]. Along with code tokens, we also
explore different features of code, such as AST, IR, CFGs, and DFGs. All the related scripts for data
preprocessing have been put in the data and dataset folders.

5.2 Code Representation Module
As the core component of NaturalCC, we have implemented several encoders that are widely
used in state-of-the-art approaches for source code representation, including RNN, GNN, and
Transformer. For example, we have implemented LSTM, TreeLSTM and Transformer networks
for sequential tokens and (linearized) ASTs. We have also implemented a GNN, i.e., GGNN, to
represent the control-flow graph of source code. It is worth mentioning that in NaturalCC, we
have also incorporated the pre-training approaches for source code. We have implemented several
state-of-the-art pre-trained code models, including CodeBERT [60], PLBART [1], and GPT-2 [146].
The models and modules folders contain all the implemented networks for code representation.
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(a) Demonstration (b) Leaderboard

Fig. 6. Screenshots of GUI and leaderboard of NaturalCC.

5.3 Tool Implementation
NaturalCC is mainly implemented by PyTorch, and many designs are borrowed from other
successful open-source toolkits in NLP, such as Fairseq, and AllenNLP.

Registry Mechanism. To be flexible, NaturalCC is expected to be easily extended to different
tasks and model implementations, with minimum modification. Similar to Fairseq, we design a
register decorator on instantiating a new task or model, the implementation of which is in the
corresponding __init__.py in each folder. The registry mechanism is to create a global variable to
store all the available tasks, models, and objects at the initialization stage, so that users can easily
access them throughout the whole project.
Efficient Training. NaturalCC supports efficient training of models in a distributed way

through torch.distributed. It can utilize multiple GPUs across different servers. Furthermore,
NaturalCC can support calculation in mixed precision to further increase the training speed,
including both FP32 and FP16 training. Typically, the gradients are updated in FP16 while the
parameters are saved in FP32.
Flexible Configuration. Instead of using argparse for command-line options in Fairseq, we

propose creating a yaml configuration file for each model for configuration. We believe that
modifying the yaml configuration files is more flexible for model exploration.

5.4 Graphical User Interface
We also design a Web system as a graphical user interface to help users explore the results of
trained models. The design is based on the open-source demonstration of AllenNLP [65]. Figure 6a
shows the screenshot of our demonstration system. Currently, we have implemented four tasks
that are related to code intelligence, i.e., code summarization, code search, and code completion.
We leave the integration of other related tasks to our future work.

5.5 Leaderboard
We also develop a leaderboard so that researchers can report the results of their own models and
compete with others, as shown in Figure 6b. Currently, we only support researchers and developers
who use NaturalCC to implement their approach and update the experimental results via pull
requests in GitHub. In our future work, we will build a web-based service, which allows users
to upload their predicted results and evaluate the model performance automatically using the
ground-truth labels as a reference.
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6 CHALLENGES AND OPPORTUNITIES
Although much effort has been made into deep learning for code intelligence, this area of research
is still in its infancy with many open challenges and opportunities. To inspire future research, this
section suggests several potential directions that are worth pursuing.

Comprehensive Code Representation. Designing a representation approach to effectively and
efficiently preserve the semantics of programs has always been a fundamental problem in code
intelligence. Despite much effort on code representation, as mentioned in this paper, there are
still three main obstacles to be overcome. (a) Open Vocabulary. Building a vocabulary to index the
textual tokens of code is the first step toward applying deep learning models for code intelligence.
Since the unambiguous characteristic of code, the vocabulary in code is much more open and
complicated than the vocabulary in natural languages. The vocabulary of programming languages
often consists of keywords, identifiers, customized method names, and variable names. The large-
size vocabulary contains much “noise”, making it difficult to comprehend the code. Although
many attempts [45, 50, 107] have been made towards mitigating the OOV issue, it still remains
a challenge to design a simple yet effective approach to map the source code into indexes while
preserving the semantics. (b) Complex Structure of Program. Unlike natural language, code is written
with strict grammar. The computations described by code can be executed in an order that is
different from the order in which the code was written. This is often seen in operations such as
loops, recursions, and pointer manipulation. Although many attempts to capture the structure
of code from different modalities, as we surveyed in this paper, we believe that the structures of
code are not sufficiently preserved, and more effort is needed here. Inspired by the GNNs, there is
potential to design specific GNNs to better represent the structure of programs. For example, from
our analysis, ASTs, CFGs, DFGs and CPGs all have high heterogeneity. It is desirable to design
some heterogeneous-information-network-based approaches [199] to represent the heterogeneous
code graph. (c) Big Models of Code. Despite the significant progress made by pre-trained code
models in code intelligence, pre-training on a large-scale code corpus is still computationally
expensive and very costly. Recently, Zhang et al. [268] and Shi et al. [191] proposed to improve the
efficiency of training process by model compressing. It is a promising research direction to reduce
the computational resource of pre-trained code models.
Data Hungry and Data Quality. Despite much progress achieved in deep-learning-based

approaches for code intelligence, we argue that existing approaches still suffer from the data-
hungry issue. In other words, the effectiveness of cutting-edge techniques significantly depends
on the availability of vast quantities of expensive and labor-intensive well-labeled training data.
Training the model on a small qualified dataset will result in far less imprecise results, especially
for new programming languages or languages with an inadequate number of labeled samples.
Therefore, it is important to design approaches to reduce the reliance on a large quantity of labeled
data. A similar problem exists in the field of machine learning. One promising solution for this
dilemma is transfer learning, which has achieved great success in transferring knowledge to alleviate
the data-hungry issue in computer vision and NLP. Similarly, to model an emerging programming
language with limited data, it is desirable to mitigate the data-hungry issue by leveraging models
trained in programming languages with sufficient labeled training data [34, 37, 47]. Data quality is
also a crucial issue for code intelligence, which may exacerbate the data-hungry problem. From
our analysis, the collected datasets from online resources, like GitHub and StackOverflow, are not
quality ensured. Sun et al. [200] and Shi et al. [192] investigated the importance of data quality and
verify it on the tasks of code search and code summarization, respectively.

Multi-Lingual and Cross-Language. The codebase written in multiple programming languages
is can be considered a multi-lingual corpus, as in NLP. However, the multi-lingual problem in
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programming languages has not been well investigated. Different from the multi-lingual problems
studied in NLP, the corpus of multiple programming languages will bring more opportunities and
challenges to future research. Recently, several attempts have been made to learn the common
knowledge shared among multiple programming languages, and transfer the knowledge across
different programming languages. For example, Zhang et al. [262] proposed obtaining better
interpretability and generalizability by disentangling the semantics of source code from multiple
programming languages based on variational autoencoders. Zügner et al. [279] introduced a
language-agnostic code representation based on the features directly extracted from the AST.
Ahmed and Devanbu [3] conducted an exploratory study and reveal the evidence that multilingual
property indeed exists in the source code corpora. For example, it is more likely that programs that
solve the same problem in different languages make use of the same or similar identifier names.
They also investigate the effect of multilingual (pre-)training for code summarization and code
search. Nafi et al. [157] proposed CLCDSA, a cross-language clone detector with syntactical features
and API documentation. Bui et al. [25] proposed a bilateral neural network for the task of cross-
language algorithm classification. Bui et al. [26] proposed SAR, which can learn cross-language API
mappings with minimal knowledge. Recently, Chai et al. [34] proposed a novel approach termed
CDCS for domain-specific code search through transfer learning across programming languages.
Gui et al. [72] proposed an approach that matches source code and binary code across different
languages based on intermediate representation.

Model Interpretability. Lack of interpretability is a common challenge for most deep learning-
based techniques for code intelligence, as deep learning is a black-box method. New methods and
studies on interpreting the working mechanisms of deep neural networks should be a potential
research direction. Recently, several efforts have been made toward increasing the interpretability
of deep-learning-based models. As an example, Li et al. [124] presented a novel approach to explain
predicted results for GNN-based vulnerability detection by extracting sub-graphs in the program
dependency graph. In addition, Zou et al. [278] proposed interpreting a deep-learning-based model
for vulnerability detection by identifying a limited number of tokens that play a significant role in
the final prediction of the detectors. Zhang et al. [266] proposed interpretable program synthesis
that allows users to see the synthesis process and have control over the synthesizer. Pornprasit et al.
[171] proposed a local rule-based model-agnostic approach, termed PyExplainer, to explain the
predictions of just-in-time defect models. Rabin et al. [175] proposed a model-agnostic explainer
based on program simplification, inspired by the delta debugging algorithms. Wan et al. [218], López
et al. [144], and Sharma et al. [189] investigated the explainability of pre-trained code models
through probing the code attention and hidden representations. We believe that it is essential to
enhance the interpretability of current deep-learning-based approaches for code intelligence.
Robustness and Security. Despite significant progress being made in the training of accurate

models for code intelligence, the robustness and security of these models have rarely been explored.
As seen in the fields of NLP and CV, deep neural networks are frequently not robust [33]. Specifically,
current deep learning models can be easily deceived by adversarial examples, which are created
by making small changes to the inputs of the model that it would consider as benign. There are
many different ways to produce adversarial samples in the computer vision and NLP communities,
particularly for image classification [32, 33, 59] and sentiment classification [267]. Similarly, for
source code models, the adversarial attack also exists. Recently, there have been several efforts to
investigate the robustness and security of deep-learning-based models for code intelligence. For
example, Ramakrishnan et al. [179] and Yefet et al. [255] investigated how to improve the robustness
of source code models through adversarial training. Nguyen et al. [160] empirically investigated the
use of adversarial learning techniques for API recommendation. Bielik and Vechev [20] introduced
a novel method that incorporates adversarial training and representation refinement to create
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precise and robust models of source code. Zhou et al. [273], Yang et al. [251] and Zhang et al. [261]
proposed a black-box attack for neural code models by generating adversarial examples while
preserving the semantics of source code. Based on semantics-preserving code transformations,
Quiring et al. [174] and Liu et al. [140] developed a novel attack against authorship attribution
of source code. Ramakrishnan and Albarghouthi [178] investigated the possibility of injecting
a number of common backdoors into deep-learning-based models, and developed a protection
approach based on spectral signatures. Schuster et al. [186] and Wan et al. [217] proposed attacking
the neural code models through data poisoning, and verified it in code completion and code search,
respectively. Severi et al. [187] suggested an explanation-guided backdoor approach to attack the
malware classifiers. Overall, exploring the robustness and security of code intelligence models is
an interesting and important research direction.
7 CONCLUSION
In this paper, we study deep learning for code intelligence by conducting a comprehensive survey,
establishing a benchmark, as well as developing an open-source toolkit. We begin by providing a
thorough literature review on deep learning for code intelligence, from the perspectives of code
representations, deep learning techniques, application tasks, and public datasets. We then present
an open-source toolkit for code intelligence, termed NaturalCC. On top of NaturalCC, we have
benchmarked four popular application tasks about code intelligence, i.e., code summarization,
code search, code completion, and type inference. We hope that our study contributes to a better
understanding of the current status of code intelligence.We also hope that our toolkit and benchmark
will contribute to the development of better code intelligence models.
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