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Abstract
Social relations are leveraged to tackle the sparsity issue
of user-item interaction data in recommendation under the
assumption of social homophily. However, social recommen-
dation paradigms predominantly focus on homophily based
on user preferences. While social information can enhance
recommendations, its alignment with user preferences is
not guaranteed, thereby posing the risk of introducing in-
formational redundancy. We empirically discover that social
graphs in real recommendation data exhibit low preference-
aware homophily, which limits the effect of social recom-
mendation models. To comprehensively extract preference-
aware homophily information latent in the social graph, we
propose Social Heterophily-alleviating Rewiring (SHaRe), a
data-centric framework for enhancing existing graph-based
social recommendation models. We adopt Graph Rewiring
technique to capture and add highly homophilic social re-
lations, and cut low homophilic (or heterophilic) relations.
To better refine the user representations from reliable so-
cial relations, we integrate a contrastive learning method
into the training of SHaRe, aiming to calibrate the user rep-
resentations for enhancing the result of Graph Rewiring.
Experiments on real-world datasets show that the proposed
framework not only exhibits enhanced performances across
varying homophily ratios but also improves the performance
of existing state-of-the-art (SOTA) social recommendation
models.

Keywords: Social Recommendation, Graph Rewiring, Con-
trastive Learning, Data-centric AI

1 INTRODUCTION
With the proliferation of online media content, recommender
systems have become pivotal for content filtering and im-
proving user experience. Given that user-item interactions
can be formed as bipartite interaction graphs, graph neural
networks (GNNs) are utilized to enhance the effectiveness of
traditional recommender systems [10, 25, 26]. Nevertheless,
such interaction data is often sparse in real-world scenarios
and recommender systems contend with the challenge of
information insufficiency [11, 20]. To alleviate this, social
graphs (or networks) are incorporated into recommender
systems. This premise is rooted in the concept of social
homophily [17], wherein users tend to form connections
with individuals who share similar interests. Consequently,
these connections among like-minded users are harnessed
to compensate for the information scarcity in the interaction
graph. Therefore, recommender systems can better discern

the preferences of users who have limited interactions with
items, thereby delivering more personalized recommenda-
tions [5, 6, 30, 31, 34, 35].
Although social graphs have shown promise in mitigat-

ing sparsity issues within interaction graphs and enhancing
the performance of recommender systems, the relationship
between social homophily and user preferences regarding
items remains an under-investigated area, particularly in
light of the intricate topological structures inherent in graph-
based representations [21, 32, 33]. Since social information
does not explicitly encapsulate user preferences and their
interactions with items, it can serve only as supplementary
data for recommendations. This implies that not all social in-
formation is inherently reliable. Furthermore, the inclusion
of a social graph might introduce redundant information
[16, 36]. To evaluate the user preferences inherent in the
social graph, we calculate the preference-aware homophily
ratios (see definitions in Sec. 2.1) across three real and widely
used social recommendation datasets: LastFM [33], Douban
[35] and Yelp [38], and observe that the user connections
in the social graph are not highly homophilic. As shown in
Fig. 1, all the distributions of edge-wise homophily ratios
in these three datasets approximately follow the power-law
distribution, and the edge-wise homophily ratios of most
user-user edges are close to 0. In addition, we show the graph-
wise homophily ratioH𝑠 of each dataset, the result indicates
that all the social graphs of these three datasets are low ho-
mophilic (ratios around H𝑠 = 0.1 or smaller). Consequently,
these observations suggest that users connected in the social
graph exhibit diverse preferences and the social graph is low
homophilic (or heterophilic).
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Figure 1. Preference-aware homophily ratio distributions
of social graphs on three real-world datasets, where ℎ (𝑖, 𝑗 ) is
the edge-wise homophily ratio of user-user edge (𝑢𝑖 , 𝑢 𝑗 ),H𝑠

is the graph-wise homophily ratio of the social graph (see
definitions in Section 2.1).

While limited preference-aware homophily is presented in
the observation, current graph-based social recommendation
models directly integrate the original social graph into the
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system [14, 22, 30, 31], or construct the hypergraph based on
the original social graph [1, 35]. Without a meticulous dis-
tinction between connections within the social graph, these
approaches run the risk of permitting unreliable social rela-
tions to impact the recommendation process. Consequently,
we contend that these social recommendation models do not
fully harness the potential of the social graph and may not
achieve optimality. To assess the effect of preference-aware
homophily on social recommendation, we conduct exper-
iments using two state-of-the-art models (SOTA), DiffNet
[31] and MHCN [35] on synthetic sub-graphs with different
graph-wise homophily ratios generated from LastFM dataset
(see experiment settings in Sec. 4.1). As shown in Fig. 2, the
performances of DiffNet andMHCN improve with increasing
values ofH𝑠 . This experimental result suggests that a higher
graph-wise homophily ratio can consistently enhance the
recommendation accuracy of social recommendation models.
Given these findings, the key question emerges for social
recommendations: how can we optimize the utilization of re-
liable social relations and alleviate the unreliable relations to
enhance recommendation performance?
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Figure 2. The influence of graph-wise homophily ratio to
different social recommendation models.

In this paper, we aim to exhaustively explore the preference-
aware homophily within social graphs and design a general
framework for existing graph-based social recommendation
models, enabling them to more adeptly discern user prefer-
ences and enhance their recommendation results. To this end,
we propose a data-centric method to retain reliable social
relations by rewiring the structure of the social graph, which
can seamlessly integrate with any graph-based social recom-
mendationmodel in a plug-and-play manner. Technically, we
evaluate the user similarities based on user representations
learned from the interaction graph. We then leverage these
similarities to cut unreliable edges and add highly homophilic
edges to the original social graph, thereby reconstructing
a new graph for recommendation. However, altering the
social graph structure through rewiring carries the risk of
introducing noise, which can be exacerbated during model
training. To mitigate this potential issue and improve both
the confidence and effectiveness of the results yielded by So-
cial Graph Rewiring, we integrate an innovative Homophilic
Relation Augmentation (HRA) method achieved through the
contrastive learning task. The positive and negative samples

are thoughtfully selected based on the edge-wise homophily
ratios in the original social graph data and HRA refines
the user representation by maximizing the consistency be-
tween the representation of the user and its similar users. As
training progresses, user representations can be gradually
calibrated through the integration of original social graph
information, which then helps to enhance rewiring results.
The main contributions of this paper can be outlined as

follows:

• New Problem and Insights: We delve into a critical
yet relatively unexplored issue: low preference-aware
homophily in social recommendation and to the best
of our knowledge, we are the pioneers in exploring
this challenge in social recommendation, where ex-
isting methods cannot explore the complicated social
connections.

• Innovative Methodology:We propose a data-centric
framework, which emphasizes retaining reliable so-
cial relations through Social Graph Rewiring and Ho-
mophilic Relation Augmentation. The social graph is
rewired by cutting unreliable edges and adding highly
homophilic edges. Besides, we integrate theHomophilic
Relation Augmentation to further improve the out-
comes of Social Graph Rewiring by enhancing the rep-
resentations of users. Particularly, this framework is
adaptable to any graph-based social recommendation
model.

• SOTA Performance: We conduct extensive experi-
ments on three public real-world datasets and SOTA
social recommendation models. Experimental results
verify that our framework can consistently improve
the vanilla versions of SOTA methods, even under dif-
ferent graph-wise homophily ratios.

2 PRELIMINARIES
2.1 Definitions
In this section, we first define the important concepts used
throughout the paper, then mathematically formulate the
preference-aware homophily ratio, and finally define the
research problem.
Definition 1: Interaction Graph and Social Graph.

LetU = {𝑢1, 𝑢2, . . . , 𝑢𝑚} (|U| =𝑚) andV = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
(|V| = 𝑛) denote the user set and item set, respectively,
where | · | is the number of elements in the set. Given the
user-item interaction matrix 𝑹 ∈ R𝑚×𝑛 , we build a bipar-
tite interaction graph G𝑟 = (U ∪ V, 𝑹), where 𝑅𝑢,𝑣 = 1 if
user 𝑢 has interacted with item 𝑣 and 𝑅𝑢,𝑣 = 0 otherwise.
Meanwhile, we denote the user social relations matrix as
𝑺 ∈ R𝑚×𝑚 and form the user social graph G𝑠 = (U, 𝑺).
Definition 2: Preference-aware Homophily Ratio.

Given the subsets of items V𝑢𝑖 and V𝑢 𝑗
that have been in-

teracted with by users 𝑢𝑖 and 𝑢 𝑗 , respectively, we define the
edge-wise homophily ratio based on Jaccard similarity [12]:
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ℎ (𝑖, 𝑗 ) =
|V𝑢𝑖 ∩V𝑢 𝑗

|
|V𝑢𝑖 ∪V𝑢 𝑗

| . (1)

ℎ (𝑖, 𝑗 ) ∈ [0, 1] stands for how similar the preferences of these
two users are. Note that the user-user edge with strong ho-
mophily has a high homophily ratio ℎ (𝑖, 𝑗 ) → 1, which means
they are more similar. In addition, we set ℎ (𝑖, 𝑗 ) = 0 when
only user 𝑢𝑖 or user 𝑢 𝑗 appears in the training set. Based on
ℎ (𝑖, 𝑗 ) , we define the graph-wise homophily ratio:

H𝑠 =
1
𝑁

∑︁
(𝑖, 𝑗 ) ∈{𝑆 (𝑖,𝑗 )=1}

ℎ (𝑖, 𝑗 ) , (2)

where 𝑁 is the number of edges in the social graph. H𝑠

reflects the homophily of the holistic social graph.
Research Problem Formulation:Given the social graph

G𝑠 , bipartite interaction graphG𝑟 , the main research problem
of this paper is how to design a framework that can opti-
mize the use of reliable social relations in the social graph
and mitigate the impact of unreliable relations to improve
recommendation performance.

2.2 Graph-based Social Recommendation Model
We utilize graph-based social recommendation models as
the backbone, and we can easily plug our framework into it.
Graph-based social recommendation models typically learn
user latent factors from the social graph and user-item inter-
action graph, the information propagation layer for aggre-
gating user and item representations can be defined as:

𝑷 (𝑙+1) = 𝑫−1
𝑅 𝑹𝑸 (𝑙 ) + 𝑫−1

𝑆 𝑺𝑷 (𝑙 ) ,

𝑸 (𝑙+1) = 𝑫−1
𝑅𝑡 𝑹

T𝑷 (𝑙 ) ,
(3)

where 𝑷 (𝑙 ) ∈ R𝑚×𝑑 and 𝑸 (𝑙 ) ∈ R𝑛×𝑑 are the user embedding
and item embedding in layer 𝑙 , respectively. 𝑫𝑅 , 𝑫𝑅𝑡 and 𝑫𝑆

are the degree matrices of 𝑹, 𝑹T and 𝑺 . Based on the output
user and item embeddings rows 𝒑𝑢 and 𝒒𝑣 from 𝑷 and 𝑸 ,
the predicted score 𝑟𝑢,𝑣 between user 𝑢 and item 𝑣 can be
defined as 𝑟𝑢,𝑣 = 𝒑⊤

𝑢 𝒒𝑣 . The Bayesian Personalized Ranking
(BPR) loss is utilized to optimize the model [19]:

Lrec =
∑︁

𝑣∈V𝑢 ,𝑤∉V𝑢

− log𝜎
(
𝑟𝑢,𝑣 − 𝑟𝑢,𝑤

)
, (4)

where 𝜎 (·) is the sigmoid function, 𝑟𝑢,𝑤 is the score of the
sampled negative item𝑤 without interaction with 𝑢.

3 METHODOLOGY
Wedesign our SocialHeterophily-alleviatingRewiring (SHaRe)
method, which is a data-centric framework that can be eas-
ily plugged in social recommendation models for handling
the low homophily problem in social recommendation. The
overall framework of SHaRe is shown in Fig. 3.

3.1 Social Graph Rewiring
In this part, we first introduce the computation of user simi-
larity based on the learned user embeddings, and show the
detail of the Social Graph Rewiring (SGR) process in SHaRe.
In the training data, the presence of cold-start users and
unseen users poses a challenge in SGR. We cannot calcu-
late the edge-wise homophily ratio between some users as
the similarity for graph rewiring, thus we adopt an encoder
to learn the user embeddings for computing user similari-
ties. Given the initial item embedding 𝒒 (0)

𝑣 , the user domain
convolutional layer of the encoder can be defined as:

𝒛 (𝑙+1)𝑢 =
∑︁
𝑣∈N𝑢

1√︁
|N𝑢 |

√︁
|N𝑣 |

𝒒 (𝑙 )
𝑣 , (5)

where 𝒛𝑢 is the output user embedding, we can concatenate
all the 𝒛𝑢 as 𝒁 . Note that 𝒛𝑢 is used for the computation of
the similarity, but it is not involved in the backbone model
for recommendation. This user embedding only contains
information learned from the interaction graph, and does
not incorporate information from the social graph. We aim
to measure the similarity of preferences between users, ac-
cording to the information of users in the interaction graph.
Therefore, we use the user embeddings to compute the cosine
similarity between users 𝑢𝑖 and 𝑢 𝑗 :

𝑐 (𝑖, 𝑗 ) =𝜙 (𝒛𝑢𝑖 , 𝒛𝑢 𝑗
)

=
𝒛𝑢𝑖 · 𝒛𝑢 𝑗

∥𝒛𝑢𝑖 ∥ · ∥𝒛𝑢 𝑗
∥ ,

(6)

where ∥ · ∥ denotes the vector norms.
Based on the similarity 𝑐 (𝑖, 𝑗 ) for each user-user pair, we

rewire the original social graph by adding highly homophilic
edges and cutting redundant edges.

As shown in Fig. 4, given the original edges set S, we cut
the existing edges which contain negative 𝑐 (𝑖, 𝑗 ) and 𝑐 (𝑖, 𝑗 ) = 0:

Scut = {𝑐 (𝑖, 𝑗 ) |𝑐 (𝑖, 𝑗 ) ∈ S, 𝑐 (𝑖, 𝑗 ) <= 0}. (7)
The remaining edges set is:

Sremain = S − Scut. (8)
New edges are added based on the Top-𝑀 similarities:

Sadd = {𝑐 (𝑖, 𝑗 ) | Top-𝑀 (𝑐 (𝑖, 𝑗 ) )}, (9)
where𝑀 is the number of cut edges based on Eq. (7). Note
that the number of edges we add empirically in the social
graph is the same as the number we cut, thereby ensuring the
highest efficiency of SGRwhile maintaining the performance
of SHaRe. Top-𝑀 (𝑐 (𝑖, 𝑗 ) ) is the function that selects top 𝑀
similarities 𝑐 (𝑖, 𝑗 ) .
Based on Sremain and Sadd, the rewired edges set is Ŝ =

Sremain ∪ Sadd, and the adjacency matrix of rewired graph
Ĝ𝑠 can be:
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Figure 3. An overview of the proposed SHaRe framework. A recommendation encoder learns user embeddings 𝑃 from the
interaction graph. These user embeddings 𝑃 are used for rewiring the social relations matrix 𝑺 . The rewired social relations
matrix �̂� and the interaction matrix 𝑹 are inputted to the backbone social recommendation models. Their output user and item
representations are used for calculating the recommendation loss Lrec.
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Figure 4. User embedding similarity and Social Graph
Rewiring (SGR).

�̂� (𝑖, 𝑗 ) =

{
𝑐 (𝑖, 𝑗 ) , if 𝑐 (𝑖, 𝑗 ) ∈ Ŝ
0, otherwise,

(10)

where �̂� (𝑖, 𝑗 ) represents the social weight of the edge in the
rewired graph, 𝑐 (𝑖, 𝑗 ) is the normalized cosine similarity.

3.2 Homophilic Relation Augmentation-based Joint
Learning

Although SGR can extract the preference-aware homophily
information in the social graph, simply rewiring the social
graph brings the risk of introducing noise. To alleviate this
issue and enhance the quality of the SGR result, we inno-
vatively integrate the Homophilic Relation Augmentation
(HRA) method to optimize the user embeddings 𝒁 . HRA
uses information from the original social graph to select pos-
itive and negative samples based on edge-wise homophily
ratio, and maximizes the consistency between positive sam-
ple users to further refine and calibrate the user embeddings
𝒁 , improving the SGR result during the training process.
We first construct the self-supervised signals by sam-

pling highly homophilic user pairs to establish augmented
views of users. We select the user pairs with high edge-wise

homophily ratios as the positive pairs and let the low ho-
mophilic pairs be negative pairs. As described in Sec. 3.1,
given the output user embedding 𝒁 learned by the encoder,
we select the positive samples that are greater than a thresh-
old 𝜖 :

P𝑢𝑖+ = {𝒛𝑢𝑘 | 𝑘 ∈ {ℎ (𝑖,𝑘 ) > 𝜖}}
with 𝜖 = (Z − ℎmin) · (ℎmax − ℎmin),

(11)

where ℎmax and ℎmin are the maximal and minimum values
among the homophily ratios. As observed in the edge-wise
homophily ratio distributions in Fig. 1, the distributions are
different in different datasets, which leads to different thresh-
olds to filter high and low homophily ratios for different
datasets. Therefore, we normalize the edge-wise homophily
ratios ℎ (𝑖, 𝑗 ) and set a parameter Z whose range is in [0, 1] to
better control the threshold 𝜖 for sampling.
With the positive samples P𝑢𝑖+, we follow the previous

research to utilize InfoNCE [18] as the contrastive learning
loss, which is effective in estimating mutual information:

Lcl =
∑︁
𝑢𝑖 ∈U

− log
∑

𝑝∈P𝑢𝑖+
Φ(𝑧𝑢𝑖 , 𝑧𝑢𝑝 )∑

𝑝∈P𝑢𝑖+
Φ(𝑧𝑢𝑖 , 𝑧𝑢𝑝 ) +

∑
𝑢 𝑗 ∈𝑈 /P𝑢𝑖+

Φ(𝑧𝑢𝑖 , 𝑧𝑢 𝑗
) ,

(12)
where Φ(𝑧𝑢𝑖 , 𝑧𝑢𝑝 ) = exp

(
𝜙 (𝑧𝑢𝑖 · 𝑧𝑢𝑝 )/𝜏

)
, 𝜙 (·) is the cosine

similarity of two embeddings, 𝜏 is the temperature. We em-
pirically set 𝜏 = 0.1; for any given user 𝑢𝑖 , we aim to encour-
age the coherence between the user embedding 𝑧𝑢𝑖 and the
highly homophilic user embedding 𝑧𝑢𝑝 derived from P𝑢𝑖+,
and diminish the correlation between the user embedding
𝑧𝑢𝑖 and low homophilic user embedding 𝑧𝑢 𝑗

. This objective
can be accomplished by contrastive learning.
In SHaRe, we adopt a joint learning strategy to optimize

the model, including two tasks: Top-N item recommendation
and HRA, while the recommendation is the primary task and
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the contrastive learning is an auxiliary task. The joint loss
of SHaRe is defined as:

L = Lrec + _Lcl, (13)
where _ is a parameter used for constraining the magnitude
of contrastive learning. The sensitivity of _ is analyzed in
Sec. 4.6.

3.3 Overall Process of SHaRe Framework
The overall process of the SHaRe framework is shown in
Algorithm 1. Line 3 is the computation of a recommendation
encoder; Lines 4 to 22 are for the processes of SGR and
the computation of the backbone social recommendation
models (see detail in Sec. 2.2); Lines 23 to 26 are for the
process of objective losses computations and joint learning.
Particularly, to achieve the best performance and improve
efficiency for our framework, we adopt a warm-up strategy
and only execute SGR once at the start of each epoch (Lines
4 to 5). As shown in the Algorithm 1, we start executing
SGR from the 10th epoch as a warm-up, and only execute it
during the first training iteration of the epoch. The analysis
of effectiveness and efficiency indicates that these strategies
make SHaRe more efficient and effective (see details in Sec.
4.4). Once we execute SGR, the new rewired social relations
matrix �̂�new is updated and is inputted to train the backbone
social recommendation models for computing user and item
embeddings (Lines 17 to 18). If SGR has not started execution
yet, we then input the original social relations matrix 𝑺 to
the backbone (Line 22).

4 EXPERIMENTS
In this section, we design the experiments to evaluate our
SHaRe framework and answer the following research ques-
tions: RQ1 How do the social recommendation models en-
hanced by SHaRe perform compared to the vanilla version?
RQ2 How does the SHaRe perform under different graph-
wise homophily ratios? RQ3 What is the benefit of different
SGR strategies in SHaRe? RQ4 How do the components and
the different operations of SGR affect the performance of
SHaRe? RQ5 How do the parameters affect SHaRe?

4.1 Experimental Settings
4.1.1 Datasets. Weutilize three real-world datasets: LastFM1,
Douban2 and Yelp3 in our experiments to evaluate the effec-
tiveness of SHaRe. Table 1 shows the detailed statistics of the
datasets. The user ratings of the Douban and Yelp datasets
scale from 1 to 5. Following [35] and [33], we remove inter-
actions with ratings less than 4, aiming to better improve
Top-N recommendation. We split the datasets into a training
set, validation set, and test set with a ratio of 8:1:1.
1http://files.grouplens.org/datasets/hetrec2011/
2https://pan.baidu.com/s/1hrJP6rq
3https://github.com/Sherry-XLL/Social-Datasets/tree/main/yelp2

Algorithm 1: The overall process of SHaRe.
Input: Social graph G𝑠 (U, 𝑺); interaction graph

G𝑟 = (U ∪V, 𝑹); sampling parameter Z ;
contrastive learning coefficient _; backbone
social recommendation model: backbone(·)
(see definition in Sec.2.2).

Output: Optimal user and item embeddings; optimal
model parameters.

1 for 𝑘 = 1, . . . , 𝐾 do
2 for 𝑛 = 1, . . . , 𝑁 do
3 𝒁 = encoder(𝑹);
4 if 𝑘 >= 10 then
5 if 𝑛 = 1 then
6 𝑀 = 0;
7 for 𝑧𝑢𝑖 ∈ 𝒁 do
8 for 𝑧𝑢 𝑗

∈ 𝒁 ( 𝑗 ≠ 𝑖) do
9 𝑐 (𝑖, 𝑗 ) = 𝜙 (𝑧𝑢 𝑗

, 𝑧𝑢 𝑗
);

10 if 𝑐 (𝑖, 𝑗 ) <= 0 then
11 Cut the edge (𝑢𝑖 , 𝑢 𝑗 ) from

G𝑠 with Eq. (7);
12 Remain edges with Eq. (8);
13 𝑀 + 1;
14 Add new edges with Eq. (9);
15 𝑐 (𝑖, 𝑗 ) = (𝑐 (𝑖, 𝑗 ) − 𝑐min) · (𝑐max − 𝑐min);
16 Build �̂� with Eq. (10);
17 �̂�new := �̂�;
18 𝑷 ,𝑸 = backbone(�̂�new, 𝑹);
19 else
20 𝑷 ,𝑸 = backbone(�̂�new, 𝑹);
21 else if 𝑘 < 10 then
22 𝑷 ,𝑸 = backbone(𝑺, 𝑹);
23 Calculate Lrec = BPR(𝑷 ,𝑸);
24 Select positive samples P𝑢𝑖+ with Eq. (11) in

terms of Z ;
25 Calculate Lcl = InfoNCE(P𝑢𝑖+,𝒁 );
26 Jointly optimize overall objectives with Eq.

(13);
27 return Optimal user and item embeddings.

Table 1. Statistics of datasets.

Dataset User Item Feedback Relation Density H𝑠

LastFM 1,892 17,632 92,834 25,434 0.28% 0.1026
Douban 2,848 39,586 894,887 35,770 0.79% 0.0425
Yelp 16,239 14,284 198,397 158,590 0.08% 0.0154

To conduct the experiment that validates the influence
of homophily ratios, we first generate synthetic social sub-
graphs with different graph-wise homophily ratiosH𝑠 using
the method similar to [40]. Moreover, we control the number
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of users in the range [590, 600] for the consistency of experi-
mental settings. Corresponding to the social sub-graph, we
set the same number of users in the sub-interaction graph.

4.1.2 Baselines. We compare four vanilla state-of-the-art
social recommendation models with the version enhanced
by our framework:

• DiffNet [31]: It utilizes an effective fusion layer to
refine the user embeddings by incorporating a social
influence diffusion process.

• DiffNet++ [30]: It is the improved model of DiffNet
that aggregates the social diffusion in both the user
and item domains.

• LightGCN+social: It is implemented by adding so-
cial diffusion components into the user embedding
aggregation layer of LightGCN [10] for social recom-
mendation.

• MHCN [35]: It uses multi-channel triangular motifs
to construct social hypergraph for modeling social rec-
ommender system, which models the complex social
relations of users to improve effectiveness.

To validate the effectiveness of SHaRe, the enhanced base-
lines are compared with all their vanilla versions. Besides,
since MHCN is the latest and most efficient SOTA method
in social recommendation, it is used as the backbone of the
SHaRe framework in the ablation study and parameter sen-
sitivities analysis of our experiment.

4.1.3 Evaluation Metrics. As the proposed SHaRe frame-
work focuses on recommending Top-N items, we use two
relevancy-based metrics: Recall@10 and Precision@10, and
one ranking-based metric: Normalized Discounted Cumula-
tive Gain (NDCG@10). In the training process, we randomly
pick one item that a user never interacted with as the neg-
ative sample. In the evaluation processes, we rank items
among all the candidates rather than sampling items. For
fair comparison and unbiased validation, we repeat all the
experiments 5 times and report average results.

4.1.4 Parameter Settings. In our experiments, we tune
hyperparameters of baselines to the best by grid search for
fair comparison. The learning rate of all methods is 0.001. For
the general parameters, we empirically set the 𝐿2 regulariza-
tion coefficient to 1e − 4, the dimension of embeddings to 64,
and the batch size to 2048. We optimize all the methods with
Adam optimizer. In addition, we perform an early stopping
strategy to stop training if all the metrics on the validation
data do not improve after 50 epochs. The hyperparameter
sensitivities of SHaRe are investigated in Sec. 4.6.

4.2 Overall Performance Comparison (RQ1)
To answerRQ1, we compare the vanilla version of social rec-
ommendation models with the version enhanced by SHaRe.
The overall comparison result is shown in Table 2. The im-
provement marked by ↑ is computed by using the difference

of performances to divide the subtrahend. From the experi-
mental result, we can draw the following conclusions:
In comparison to their vanilla versions, all social recom-

mendation models enhanced by our SHaRe framework ex-
hibit notable improvements across three datasets. Particu-
larly, our SHaRe framework manifests a significant average
improvement on the Yelp dataset, with each metric showing
an improvement surpassing 4%. Among the three datasets,
the LastFM dataset records the most modest improvement
from SHaRe. When examining the vanilla models, SHaRe
distinctly bolsters the performance of both DiffNet and Light-
GCN+social on the LastFM dataset. It also enhances Light-
GCN+social and MHCN on the Douban and Yelp datasets,
with the enhancement of LightGCN+social reaching a re-
markable 14.147%. The minimal enhancement attributed to
the SHaRe framework is DiffNet on both Douban and Yelp
datasets. We believe the possible reason is due to the sim-
plistic structure of DiffNet and the neglect of item latent
factors during the learning of user embeddings, whereas
other models aggregate the item latent factors.

4.3 Influence of Homophily Ratios (RQ2)
To answer RQ2, we conduct the experiment to investigate
the influence of different graph-wise homophily ratios on
the enhanced SHaRe-DiffNet and SHaRe-MHCN under the
same settings on synthetic sub-graphs. As shown in Fig. 5
and 6, the results indicate that: (1) SHaRe-DiffNet and SHaRe-
MHCN demonstrate better trends than vanilla DiffNet and
MHCN as the graph-wise homophily ratio increases, which
means SHaRe can maintain comparable performance on dif-
ferent graph-wise homophily ratios. (2) Meanwhile, the per-
formances of SHaRe-DiffNet and SHaRe-MHCN outperform
vanilla DiffNet and MHCN across various graph-wise ho-
mophily ratios.
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Figure 5. SHaRe-DiffNet results under different graph-wise
homophily ratios.
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Figure 6. SHaRe-MHCN results under different graph-wise
homophily ratios.
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Table 2. Overall performance comparison of SHaRe on three datasets.

Method
LastFM Douban Yelp

R@10 P@10 NDCG@10 R@10 P@10 NDCG@10 R@10 P@10 NDCG@10

DiffNet
vanilla 0.1829 0.0826 0.1586 0.042 0.0728 0.0845 0.0462 0.0113 0.0296

SHaRe
0.1904 0.0859 0.1646 0.0438 0.0742 0.0873 0.0472 0.0115 0.0303

↑ 4.101% ↑ 3.995% ↑ 3.783% ↑ 4.286% ↑ 1.923% ↑ 3.314% ↑ 2.165% ↑ 1.770% ↑ 2.365%

DiffNet++
vanilla 0.1864 0.0841 0.1584 0.0502 0.0832 0.0974 0.0490 0.0115 0.0308

SHaRe
0.1906 0.0863 0.1613 0.0543 0.0852 0.0980 0.0501 0.0117 0.0319

↑ 2.253% ↑ 2.616% ↑ 1.831% ↑ 8.167% ↑ 2.404% ↑ 0.616% ↑ 2.245% ↑ 1.739% ↑ 3.571%

LightGCN+social
vanilla 0.2019 0.0918 0.1756 0.0516 0.0877 0.1017 0.0582 0.0139 0.0375

SHaRe
0.2102 0.0948 0.1816 0.0589 0.0945 0.1107 0.0642 0.0151 0.0422

↑ 4.111% ↑ 3.268% ↑ 3.417% ↑ 14.147% ↑ 7.754% ↑ 8.850% ↑ 10.309% ↑ 8.633% ↑ 12.533%

MHCN
vanilla 0.2154 0.0974 0.1855 0.0606 0.0904 0.1080 0.0620 0.0146 0.0394

SHaRe
0.2199 0.0987 0.1894 0.0637 0.0933 0.1110 0.0646 0.0153 0.0410

↑ 2.089% ↑ 1.335% ↑ 2.102% ↑ 5.116% ↑ 3.208% ↑ 2.778% ↑ 4.194% ↑ 4.795% ↑ 4.061%

Average Improvement ↑ 3.138% ↑ 2.804% ↑ 2.783% ↑ 7.929% ↑ 3.822% ↑ 3.890% ↑ 4.728% ↑ 4.234% ↑ 5.632%

4.4 Analysis of Social Graph Rewiring Strategies
(RQ3)

To answer RQ3, we analyze the benefits of three different
strategies of SGR: multi-SGR, w/o Warm-up and SHaRe-
MHCN. Note thatmulti-SGR rewires the social graph in
all training iterations of each epoch; w/o Warm-up starts
to rewire the graph at the first epoch; SHaRe-MHCN starts
to rewire the graph from the 10th epoch, and only rewires
the social graph once at the start of each epoch. The analysis
results are shown in Table 3, which are collected on an AMD
Ryzen 3990X 64-Core CPU and an NVIDIA GeForce RTX
4090 GPU.

In Table 3, we show an inference of time analysis (seconds
per epoch) and the performance of different SGR strategies.
The results indicate that SHaRe-MHCN outperforms both
w/o Warm-up and multi-SGR with faster running time.
Since multi-SGR executes SGR in the training of each iter-
ation, the computational overhead will increase. The time
per epoch in the LastFM dataset is about 2 times higher than
that of SHaRe-MHCN, while it is more than five times in the
Yelp dataset. In addition, we investigate how the number of
rewired edges changes with epochs under different strategies.
In Fig.7, we find that w/o Warm-up causes a large num-
ber of edges to be added and cut in the social graph, which
indirectly leads to affecting the performance of SHaRe.

4.5 Ablation Study (RQ4)
To answer RQ4, we conduct the ablation study in two parts
of experiments to investigate the effects of different com-
ponents in SHaRe and to investigate different operations of
Graph Rewiring.
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Figure 7. The number of rewired edges of different Social
Graph Rewiring strategies.

4.5.1 Investigation of the Effect of SHaRe Compo-
nents. In this part, we investigate the effect of the compo-
nent in SHaRe by removing it and retaining others to observe
the differences in performance, we show the result in Fig.
8. Note that w/o SGR removes the Social Graph Rewiring
component; w/o HRA removes the Homophilic Relation
Augmentation; w/o SW replaces all the social weights 𝑆 (𝑖, 𝑗 )
in the rewired social graph with 1. From Fig. 8, we find that
all these components are important for contributing to the
effect of SHaRe. In the LastFM dataset, HRA is the most sig-
nificant component for the improvement of SHaRe, social
weight is the most significant component in the Douban
dataset, and SGR is the most significant component in the
Yelp dataset.

4.5.2 Investigation of the Effect of Social GraphRewiring.
To investigate the effect of SGR, we analyze the impacts
of edge adding and cutting operations. Cut-only variant
only executes the cutting operation when performing SGR;
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Table 3. Performances of SHaRe-MHCN with different rewiring strategies.

Method
LastFM Yelp

R@10 P@10 NDCG@10 Time R@10 P@10 NDCG@10 Time
multi-SGR 0.2193 0.0991 0.1892 4.67s 0.0635 0.0149 0.0398 63.10s

w/o Warm-up 0.2176 0.0984 0.1882 2.22s 0.0631 0.0147 0.0397 11.79s
SHaRe-MHCN 0.2199 0.0987 0.1894 2.20s 0.0646 0.0153 0.0410 11.69s
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Figure 8. Investigation of the components in SHaRe.

Add-only variant only executes the adding operation when
performing SGR. As shown in Fig. 9, both edge adding and
cutting operations significantly contribute to the effective-
ness of SHaRe. The contribution from edge cutting is greater
than that of edge adding in the LastFM dataset, while in the
Douban and Yelp datasets, edge cutting plays a more crucial
role.
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Figure 9. Comparison on different Social Graph Rewiring
operations.

4.6 Parameter Sensitivity Analysis (RQ5)
To answer RQ5, we conduct the experiments to investigate
the influences of two parameters in SHaRe: Z for controlling
the selection of positive samples in Homophily Relation Aug-
mentation; _ is for controlling the magnitude of contrastive
learning loss. The results of sensitivity analysis are shown
in Fig. 10 and 11. The range of Z is [0, 1], we conduct the sen-
sitivity analysis of this parameter and set the values starting
from 0.2 to 0.8, with a step size of 0.1. For _, we report four
representative values {1, 0.5, 0.1, 0.01, 1𝑒 − 3, 1𝑒 − 4}.

In Fig. 10, we observe that the performance of SHaRe is the
best when Z = 0.5, Z = 0.7 and Z = 0.3 in LastFM, Douban

and Yelp, respectively. For _, we find that SHaRe reaches the
best performances when _ = 0.01, _ = 0.5 and _ = 1𝑒 − 3 in
LastFM, Douban and Yelp, respectively.
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Figure 10. Influence of the sampling threshold Z .
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Figure 11. Influence of the contrastive learning coefficient
_.

5 CONCLUSION
In this paper, we explore the problem of low homophily in
social recommendation and propose a general framework
SHaRe that can be applied to any graph-based social recom-
mendation backbone. The key enhancements to the back-
bone are the newly introduced Social Graph Rewiring and
Homophilic Relation Augmentation. Social Graph Rewiring
retains critical social relations while adding potential so-
cial relations which are beneficial for recommendations.
Meanwhile, Homophilic Relation Augmentation refines ho-
mophilic social relations, enhancing the results of Social
Graph Rewiring. We conduct extensive experiments on three
real-world datasets, demonstrating the superiority of SHaRe.
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A RELATEDWORK
A.1 Contrastive Learning in Recommendation
Contrastive Learning (CL) has been prominently employed
as an auxiliary task to address the data sparsity challenge
inherent to recommender systems [27–29, 35, 39]. Wu et al.
[29] apply CL to recommendation approaches by augment-
ing user-item bipartite graphs through the strategic removal
of edges and nodes at a designated ratio. The subsequent
objective is to maximize the consistency of representations

learned from distinct views. Wei et al. [27] revisit the rep-
resentation learning for cold-start items from an informa-
tion theoretic perspective, aiming to maximize the interde-
pendence between item content and collaborative signals,
thereby mitigating the effects of data sparsity. Zhou et al.
[39] adopt a methodology where attributes and items are
randomly masked, facilitating sequence augmentation for
sequence models pre-trained to maximize mutual informa-
tion. Furthermore, based on the assumption of homophily
in social graphs, Yu et al. [33] and Wu et al. [28] adopt dif-
ferent strategies, leveraging user social relations for data
augmentation to capture homophily for CL.

A.2 Graph Rewiring
Recent studies use Graph Structure Learning (GSL) methods
such as Graph Rewiring (GR) to reduce bottlenecks in graph
representation tasks, aiming to learn graph structures from
original graphs or noisy data points that reflect data rela-
tionships [7, 15, 23, 37]. GSL methods aim to jointly learn an
optimized graph structure and its corresponding node repre-
sentations. Methods that change the structure of graphs to
enhance performance for downstream tasks are often gener-
ically referred to as graph rewiring [2, 4, 8, 24]. For instance,
in the extensive applications of GR, Bi et al. and Li et al.
[3, 13] adopt GR methods to approach the low homophily
problems in the classification of heterophily graph, Guo et
al. design a GR method to handle low homophily problem
of heterogeneous graphs [9].
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