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1 INTRODUCTION

Recommendation system (RS) as an information filtering tool has been a core in online services, e.g., e-commerce [9, 22].
It helps users discover their preferred items and benefit content providers to profit from item exposures. Despite the
huge benefits, fairness issues refer to unfair allocations (i.e., exposures) of recommended items [28], caused by, e.g.,
gender discrimination, have attracted increasing attention in RS. Fairness-aware recommendation [13] has emerged as
a promising solution to prevent unintended discrimination and unfairness in RS. It aims to find feasible algorithmic
approaches that reduce the fairness disparity of recommendation results. Explaining why fairness disparity appears, i.e.,
what causes unfair recommendation results, would enhance the design of fairness-aware recommendation approaches by
promoting model transparency and tracking unfair factors.

There are a few fairness explanation studies in the literature, which are mainly categorized as feature-based and
aspect-based methods. Feature-based methods estimate the contribution scores of numerical features that impact
model fairness. For instance, Begley et al. [2] explore fairness explanations based on Shapley value estimation for the
classification task. They calculate Shapley values of every input features to reflect their significance and then generate
explanations based on calculated values. However, this method is not applicable for deep recommendation models (e.g.,
neural networks [7, 23]), as the high complexity of Shapley value estimation becomes the major burden when input
features are in high dimension and sparse. Another branch of aspect-based methods mainly perturbs user/item aspect
scores and optimizes an explanation model to find perturbed aspects that affect the model fairness as explanations.
For example, Ge et al. [16] perturb aspect scores within pre-defined user-aspect and item-aspect matrices and feed
the perturbed matrices into a recommendation model. Those perturbed aspects that alter the fairness disparity of the
recommendation model are considered aspect-based explanations. However, the perturbation space grows exponentially
as the number of aspects increases, resulting in a large-scale search space to seek explanations.

The above fairness explanation methods suffer below issues: 1) These feature/aspect-based methods usually incur high
computational costs due to the high dimensionality of search space and ultimately result in sub-optimal explanations.
Besides, these methods are presented with the greedy nature of the explanation search process. They optimize explanation
models using greedy feature/aspect scores as significance criteria and select top features/aspects as explanations,
which might have the risk of introducing pseudo-explanations. 2) These score-based optimizations can only deal
with continuous attributes and thus are not well-suited for handling discrete attributes. For example, assigning a
continuous value, such as gender=0.19, to the discrete gender attribute is impractical in constructing explanations and
provides no valuable clue to improve the explanation. Worse still, discrete attributes are frequently used in real-world
recommendation models, as user and item profiles for training models are often generated through data tagging [20]
on discrete attributes. For instance, movie recommendations [19, 34, 61] usually rely on movies tagged with discrete
attributes such as genre, language, and release location. Consequently, score-based optimizations have limited capability
in handling discrete attributes that are frequently encountered in recommendation scenarios.

Unlike previous works, we resort to counterfactual explanations [43] derived from causal inference to tackle the above
issues. Counterfactual explanations address the fundamental question: what the model fairness would be if a minimal set of
factors (e.g., user/item features) had been different [43]. In other words, they provide “what-if” explanations to determine
the most vital and essential (i.e., minimal) factors that change model fairness. Unlike existing feature/aspect-based
methods with greedy explanations, counterfactual explanations have the advantage of always being minimal w.r.t. the
generated explanations and are faithful to model fairness changes. Moreover, we leverage real-world attributes from

Heterogeneous Information Networks (HINs) [49], for counterfactual reasoning when dealing with discrete attributes. In
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Counterfactual Explanation for Fairness in Recommendation 3

contrast to value-based features and aspects, real-world attributes residing in HINs are presented as discrete nodes, with
edges representing their connections. By utilizing attributes from HINs, we can overcome the limitation of score-based

optimizations to directly measure whether the removal of specific attributes changes the model’s fairness.

o

20.90
B E,

@ Female = 0 i Male =0 i

. ! UK=0 :

0.19 0.19

attributes change?
@ dis;iity l disl:iity 1
-

disparity
Ly i3 iy iq
Uo minimal
i If “Female” attribute is removed, : Counterfactual
Heterogeneous Information Network (HIN) :  model fairness could be improved. i £xpiapnation

Fig. 1. Toy example of inferring the attribute-level counterfactual explanation for fairness.

Following the above intuition, we propose to generate attribute-level counterfactual explanations for fairness from a
given HIN. We posit a novel definition of counterfactual explanation for fairness - a minimal set of attributes from the HIN
that changes model fairness disparity. We use a toy example in Figure 1 to illustrate our idea. Given a recommendation
i for the user u; and an external HIN carrying their attributes, we want to know why i; causes discrimination in
recommendation results. The counterfactual explanation performs “what-if” reasoning by altering the attributes of
u1 and i and checking the fairness of the recommendation results. Both E1 and E3 are valid candidate explanations
since they alter fairness disparities of recommendations (i.e., iz, i3) from 0.90 to 0.19. To determine which attributes are
the primary reason for unfairness, the counterfactual explanation will uncover the minimal attribute changes, i.e., Ez,
instead of utilizing attribute combinations in E;. Thus, we could infer E; is the most vital reason for model unfairness.
Besides, since a counterfactual explanation Ez is minimal, it only reveals the essential attributes (i.e., “Female”) that
effectively explain unfairness, while discarding the irrelevant (i.e., pseudo) explanations, i.e., “U.S” and “Discount” in E;.

We therefore propose a novel Counterfactual Explanation for Fairness (CFairER) within an off-policy reinforcement
learning environment to find optimal attribute-level counterfactual explanations. Particularly, we focus on generating
attribute-level counterfactual explanations for item exposure unfairness to promote the fair allocation of user-preferred
but less exposed items. Note that the proposed approach is general and can be utilized in different recommendation
scenarios that involve different fairness definitions. Specifically, we use a reinforcement learning agent in CFairER to
optimize a fairness explanation policy by uniformly exploring candidate counterfactuals from a given HIN. We also
devise attentive action pruning over the HIN to reduce the search space of reinforcement learning. Finally, our CFairER
optimizes the explanation policy using an unbiased counterfactual risk minimization objective, resulting in accurate

attribute-level counterfactual explanations for fairness. The contributions of this work are:

e We make the first attempt to leverage rich attributes in a Heterogeneous Information Network to offer attribute-
level counterfactual explanations for recommendation fairness.
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4 X. Wang and Q. Li, et al.

e We propose an off-policy learning framework to identify optimal counterfactual explanations, which is guided
by an attentive action pruning to reduce the search space.

e We devise a counterfactual risk minimization for off-policy correction, so as to achieve unbiased policy opti-
mization.

o Comprehensive experiments show the superiority of our method in generating trustworthy explanations for

fairness while preserving satisfactory recommendation performance.

2 RELATED WORK
2.1 Fairness Explanation for Recommendation

Recommender systems have long dealt with major concerns of recommendation unfairness, which profoundly harm
user satisfaction [13, 27] and stakeholder benefits [4, 17, 28]. Recent works on fairness-aware recommendation mainly
discuss two primary topics, i.e., user-side fairness [8, 13, 27, 29, 57] and item-side fairness [1, 11, 14, 30]. User-side
fairness concerns whether the recommendation is fair to different users/user groups, e.g., retaining equivalent accuracy
or recommendation explainability. Relevant approaches attribute the causes of user-side unfairness to discrimination
factors, such as sensitive features (e.g., gender [8, 57], race [29]) and user inactiveness [13, 27], etc. They mainly
propose fairness metrics to constraint recommendation models (e.g., collaborative filtering [57]) to produce fair
recommendations. For example, Yao et al. [57] study the unfairness of collaborative filtering (CF)-based recommenders
on gender-imbalanced data. They propose four metrics to assess different types of fairness, then add these metrics as
constraints to the CF model learning objective to produce fair recommendations. Li et al. [27] investigate the unfair
recommendation between active and inactive user groups, and provide a re-ranking approach to mitigate the activity
unfairness by adding constraints over evaluation metrics of ranking. As modern content providers are more concerned
about user privacy, it is generally not easy to access sensitive user features for the recommendation [36]. Meanwhile,
users often prefer not to disclose personal information that raises discrimination [3]. Thus, another topic of item-side
fairness-aware recommendation [1, 11, 14, 30] is interested in examining whether the recommendation treats items
fairly, e.g., similar ranking prediction errors for different items, fair allocations of exposure to each item. For instance,
Abdollahpouri et al. [1] address item exposure unfairness in learning-to-rank (LTR) recommenders. They include a
fairness regularization term in the LTR objective function, which controls the recommendations favored toward popular
items. Ge et al. [14] consider the dynamic fairness of item exposure due to changing group labels of items. They calculate
the item exposure unfairness with a fairness-related cost function. The cost function is merged into a Markov Decision
Process to capture the dynamic item exposure for recommendations. Liu et al. [30] focus on item exposure unfairness
in interactive recommender systems (IRS). They propose a reinforcement learning method to maintain a long-term
balance between accuracy and exposure fairness in IRS.

Despite the great efforts, fairness-aware recommendations mitigate user and item unfairness in a black-box manner
but do not explain why the unfairness appears. Understanding the “why” is desirable for both model transparency [28]
and facilitates data curation to remove unfair factors [50]. Limited pioneering studies are conducted to explain fairness.
Begley et al. [2] estimate Shapley values of input features to search which features contribute more to the model
unfairness. Ge et al. [16] develop an explainable fairness model for recommendation to explain which item aspects
influence item exposure fairness. They perform perturbations on item aspect scores, then apply perturbed aspect scores
on two pre-defined matrices to observe fairness changes. These prior efforts suffer from major limitations: 1) The high

computational burden caused by the large-scale search space and the greedy nature of the explanation search process.
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Counterfactual Explanation for Fairness in Recommendation 5

2) They generate explanations by feature [2] or aspect [16] scores, which do not apply to discrete attributes such as
gender and race. Our work conducts counterfactual reasoning to seek minimal sets of attributes as explanations. We
also reduce the large search space by attentive action pruning in the off-policy learning environment. Meanwhile, we
consider explaining recommendation unfairness based on attributes from a Heterogeneous Information Network, which

is expected to be wildly applicable.

2.2 Heterogeneous Information Network in Recommendation

Heterogeneous Information Network (HIN) is a powerful structure that allows for the heterogeneity of its recorded
data, i.e., various types of attributes, thus providing rich information to empower recommendations [46, 49]. HINs
have been wildly adopted in recommendation models to boost performance; representative works cover context-based
filtering (e.g., SemRec [38], HERec [37]) and knowledge-based systems (e.g., MCrec [24], HAN [45]). For instance,
HERec [37] embeds meta-paths within a HIN as dense vectors, then fuses these HIN embeddings with user and item
embeddings to augment the semantic information for recommendations. MCrec [24] leverages a deep neural network
to model meta-path-based contextual embeddings and propagates the context to user and item representations with a
co-attention mechanism. Those recommendation models observe promising improvements by augmenting contextual
and semantic information given by HINs. Despite the great efforts, prior works do not consider using the HIN to explain
unfair factors in recommendations. Novel to this work, we first attempt to leverage rich attributes in a HIN to provide

counterfactual explanations for item exposure fairness.

2.3 Counterfactual Explanation

Counterfactual explanations have been considered as satisfactory explanations [26, 53] and elicit causal reasoning in
humans [6, 58]. Works on counterfactual explanations have been proposed very recently to improve the explainability
of recommendations. Xiong et al. [54] propose a constrained feature perturbation on item features and consider the
perturbed item features as explanations for ranking results. Ghazimatin et al. [18] perform random walks over a
Heterogeneous Information Network to look for minimal sets of user action edges (e.g., click) that change the PageRank
scores. Tran et al. [41] identify minimal sets of user actions that update the parameters of neural models. Our work differs
from prior works on counterfactual explanations by two key points: 1) In terms of problem definition, they generate
counterfactual explanations to explain user behaviors (e.g., click [18, 41] ) or recommendation (e.g., ranking [54]) results.
Our method generates counterfactual explanations to explain which attributes affect recommendation fairness. 2) In
terms of technique, our method formulates counterfactual reasoning as reinforcement learning, which can deal with

ever-changing item exposure unfairness.

3 PRELIMINARY

We first introduce the Heterogeneous Information Network that offers real-world attributes for fairness explanation
learning. We then give the key terminologies, including fairness disparity evaluation and counterfactual explanation

for fairness.

3.1 Heterogeneous Information Network

Creating fairness explanations requires auxiliary attributes containing possible factors (e.g., user gender) that affect
recommendation fairness (cf. Figure 1). Heterogeneous Information Network (HIN) has shown its power in modeling

various types of attributes, e.g., user social relations, item brand. In particular, suppose we have the logged data that
Manuscript submitted to ACM
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6 X. Wang and Q. Li, et al.

records users’ historical behaviors (e.g., clicks) in the recommendation scenario. Let U € RM, 7 € RN denote the sets
of users and items, respectively. We can define a user-item interaction matrix Y = {y,, | u € U,v € I'} according to
the logged data. We also have additional attributes from external resources that profile users and items, e.g., users’
genders, items’ genres. The connections between all attributes and users/items are absorbed in the relation set &. Those
attributes, with their connections with user-item interactions, are uniformly formulated as a HIN. Formally, a HIN is
defined as G = (V/,&’), where V' = U U T UVy UV, and & = {I(yyp)} U E.1(-) is an edge indicator that denotes
the observed edge between user u and item v when y,, € Y = 1. V7 and V; are attribute sets for users and items,
respectively. Each node n € V'’ and each edge e € & are mapped into specific types through node type mapping
function: ¢ : ¥V’ — K and edge type mapping function:  : & — J. G maintain heterogeneity, i.e., |X| + | J| > 2.

3.2 Fairness Disparity

We consider explaining the item exposure (un)fairness in recommendations. We first split items in historical user-item
interactions into head-tailed (i.e., popular) group Gy the long-tailed group G; !. Following previous works [14, 16],
we use demographic parity (DP) and exact-K (EK) defined on item subgroups to measure whether a recommendation
result is fair. In particular, DP requires that each item has the same likelihood of being classified into Gy and G;. EK
regulates the item exposure across each subgroup to remain statistically indistinguishable from a given maximum a.
By evaluating the deviation of recommendation results from the two fairness criteria, we can calculate the fairness
disparity, i.e., to what extent the recommendation model is unfair. Formally, giving a recommendation result H, g, the

fairness disparity A(Hy, k) of Hy, g is:

A(Hyx) = [¥ppl + A [¥Ek ],
¥Ypp = |G1| - Exposure (Go | Hu’K) —|Go| - Exposure (61 | Hu,K)» (1)
¥k = a - Exposure (Go | Hu,K) — Exposure (G1 | Hux)

where A(-) is the fairness disparity metric that quantifies model fairness status. A is the trade-off parameter between

DP and EK. Exposure (G; | Hy, k) is the item exposure number of H, g within G; w.rt. j € {0,1}.

3.3 Counterfactual Explanation for Fairness

This work aims to generate attribute-level counterfactual explanations for item exposure fairness. In particular, we aim
to find the “minimal” changes in attributes that reduce the fairness disparity (cf. Eq. (1)) of item exposure. Formally, given
historical user-item interaction Y = {yy, | u € U,v € I}, and user attribute set V; and item attribute set Vj extracted
from an external Heterogeneous Information Network (HIN) G = (V’, ). Suppose there exists a recommendation
model that produces the recommendation result H,  for user u. Given all user-item pairs (u,v) in Hy, g, our goal
is to find a minimal attributes set V* C {{ey,ex} | (u,en), (v,e5) € E ey € Vy, ey € Vi}. Each attribute in V*
is an attribute entity from HIN G, e.g., user’s gender, item’s genre. With a minimal set of V*, the counterfactual
reasoning pursues to answer: what the fairness disparity would be, if V* is applied to the recommendation model.
V* is recognized as a valid counterfactual explanation for fairness, if after applied V", the fairness disparity of the
intervened recommendation result A(Hy;) reduced compared with original A(H,, k). In addition, V* is minimal such

that there is no smaller set V* € G satisfying |V *| < |'V*| when V* is also valid.
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Fig. 2. The proposed CFairER framework.

4 THE CFAIRER FRAMEWORK

We now introduce the framework of our Counterfactual Explanation for Fairness (CFairER). As shown in Figure 2,
CFairER devises three major components: 1) graph representation module embeds users, items, and attributes among
HIN as embedding vectors; 2) recommendation model learns user and item latent factors to produce recommendation
results and 3) our proposed counterfactual fairness explanation (CFE) model assisted by the graph representation
module and the recommendation model to conduct counterfactual reasoning. This section discusses how the CFE model
collaborates with the other two components, then introduces the graph representation module and the recommendation

model. We will elaborate on our proposed CFE model in the next section.

4.1 Counterfactual Fairness Explanation Model

As shown in Figure 2, our CFE model is crafted within an off-policy learning environment, in which an explanation
policy zg is optimized to produce attribute-level counterfactual explanations for fairness. At each state s;, 7g produces
actions a; absorbing user and item attributes as potential counterfactual explanations. These actions are committed
to the recommendation model and graph representation module to produce the reward r(s;, a;) for optimizing 7g.
Specifically, the graph representation module provides dense vectors hy,, hy, e, and e, as user, item, user attribute and
item attribute embeddings, respectively. Those embeddings are used in the state representation learning (i.e., learn s;)
and attentive action pruning (i.e., select a;) in our CFE model. Moreover, the attribute embeddings are fused with user
or item latent factors learned by the recommendation model to explore the model fairness change. In particular, the

fused embeddings of users and items are used to predict the intervened recommendation result H;fK By comparing

the fairness disparity (cf. Eq. (1)) difference between H;];< and the original recommendation Hy, g, we determine the
reward r (s, a;) to optimize ng, accordingly. The reward r(s;, a;) measures whether the current attribute (i.e., action) is
a feasible fairness explanation responsible for the fairness change. Finally, 7 is optimized with a counterfactual risk

minimization (CRM) objective V@E (7g) to balance the distribution discrepancy from the logging policy 7.

!Following [16], we consider the top 20% items with the most frequent interactions with users as Gy, while the remaining 80% belongs to G .
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8 X. Wang and Q. Li, et al.

4.2 Graph Representation Module

Our graph representation module conducts heterogeneous graph representation learning to produce dense vectors
of users, items, and attributes among the HIN. Compared with homogeneous graph learning such as GraphSage [21],
our graph representation injects both node and edge heterogeneity to preserve the complex structure of the HIN. In
particular, we include two weight matrices to specify varying weights of different node and edge types.

In the following, we present the graph learning for user embedding h,,. The embeddings of h,, e, and e, can be
obtained analogously by replacing nodes and node types while computations. Specifically, we first use Multi-OneHot [59]
to initialize node embeddings at the 0-th layer, in which u’s embedding is denoted by hY. Then, at each layer I, user

embedding hL is given by aggregating node u’s neighbor information w.r.t. different node and edge types:

1
Wye
"INy ey ()]

-1

h!, = o concat W(lj)(u> D, [hu ] D, [hi‘,l] +b! (2)

u’ ENz,//(e) (u)
where o () is LeakyReLU [55] activation function and concat(+) is the concatenation operator. Dy -] is a random dropout
with probability p applied to its argument vector. hffl is u’s embedding at layer [ — 1. Ny () () = {v’ | (w,e,u’) € G}

is a set of nodes connected with user node u through edge type /(e). The additionally dotted two weight matrices, i.e.,
1 1
$(u) y(e)

bl is an optional bias.

node-type matrix W and edge-type matrix W?, |, are defined based on the importance of each type ¢(u) and y(e).

With Eq (2), we obtain u’s embedding h/, at each layer I € {1,---,L}. We then adopt layer-aggregation [56] to
concatenate u’s embeddings at all layers into a single vector, i.e., hy, = h,gl) +oo 4 h,gL). Finally, we have user node u’s
embedding h,, through aggregation. The item embedding h,, user attribute embedding e,, and item attribute embedding

e, can be calculated analogously.

4.3 Recommendation Model

The recommendation model fR is initialized using user-item interaction matrix Y to produce the Top-K recommendation
result Hy, g for all users. Here, we employ a linear and simple matrix factorization (MF) [35] as the recommendation
model fg. Particularly, MF initializes IDs of users and items as latent factors, and uses the inner product of user and
item latent factors as the predictive function:
fr(u,0) =U;Vy ®)
where Uy, and V, denote d-dimensional latent factors for user u and item v, respectively. We use the cross-entropy [60]
loss to define the objective function of the recommendation model:
Lr== ). Yuolog fi(u,0)+ (1 -yuo)log (1 - fr(w0)) @
U,0,Yy €Y
After optimizing the loss function L, we can use the trained user and item latent factors (i.e., U, V) to produce the

original Top-K recommendation lists Hy, g for all users u € U.

5 REINFORCEMENT LEARNING FOR COUNTERFACTUAL FAIRNESS EXPLANATION

We put forward our counterfactual fairness explanation (CFE) model (cf. Figure 3), assisted by graph representation
module and recommendation model, to generate explanation policy xg for item exposure fairness. The explanation
policy 7g is optimized within off-policy learning to adaptively learn attributes responsible for fairness changes. In the
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Fig. 3. Counterfactual Fairness Explanation (CFE) Model.

following, we first introduce off-policy learning for our CFE model. Then we detail each key element in the off-policy

learning and give unbiased policy optimization.

5.1 Explaining as Off-policy Learning

We cast our CFE model in an off-policy learning environment, which is formulated as Markov Decision Process (MDP).
The MDP is provided with a static logged dataset generated by a logging policy 7 2. The logging policy 7o collects
trajectories by uniformly sampling actions from the user and item attribute space. We use the off-policy learning to
optimize an explanation (i.e., target) policy xg by approximating the counterfactual rewards of state-action pairs from
all timestamps, wherein the logging policy mj is employed for exploration while the target policy ng is utilized for
decision-making. In the off-policy setting, the explanation policy 7 does not require following the original pace of the

logging policy . As a result, 7g is able to explore the counterfactual region, i.e., those actions that haven’t been taken

2We adopt the uniform-based logging policy as zo. It samples attributes as actions from the attribute space with the probability of 7o (a; | s;) = W
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10 X. Wang and Q. Li, et al.

by the previous agent using p. Formally, at each timestamp ¢t € {1,---, T} of MDP, the explanation policy 7g(ar|s;)
selects an action (i.e., a candidate attribute) a; € A; conditioning on the user state s; € S, and receives counterfactual
reward r(s;, a;) € R for this particular state-action pair. Then the current state transits to the next state s;+; with

transition probability of P (s¢4+1 | sz, ar) € . The whole MDP has the key elements:

e S is afinite set of states {s; | t € [1,---,T]}. Each state s; is transformed into dense vectors (i.e., embeddings)
by our state representation learning (cf. Section 5.1.1).

o A; is a finite set of actions (i.e., attributes) available at s;. A; is select from attributes V; € G by our attentive
action pruning (cf. Section 5.1.2) to reduce the search space.

e P :S XA — S is the state transition, which absorbs transition probabilities of the current states to the next
states. Given action a; at state sy, the transition to the next state s;41 is determined as P (s;41 | s¢,a:) € P = 1.

e R : S — Risthe counterfactual reward measures whether a deployed action (i.e., an attribute) is a valid
counterfactual explanation for fairness. R is used to guide the explanation policy learning and is defined in
Section 5.1.3.

We now introduce the implementation of each key component.

5.1.1 State Representation Learning. The state S describes target users and their recommendation lists from the
recommendation model. Formally, at step ¢, the state s; for a user u is defined as s; = (u, H(u,K)), where u € U is
a target user and H(u, K) is the recommendation produced by fg. The initial state sg is (4, v) and v is the interacted
item of u, i.e., yyp € Y = 1. Our state representation learning maps user state s; = (u, H(u, K)) into dense vectors
for latter explanation policy learning. Specifically, given s; that absorbs current user u and its recommendation
H(u,K) = {v1,0, ..., vg }. We first acquire the embedding h,, of each item v € H(u, K) from our graph representation
module. The state s; then receives the concatenated item embeddings (i.e., concat [hvk |Vo. € H(u, K)]) to update its
representation. Considering states within S have sequential patterns [48], we resort to Recurrent Neural Networks
(RNN) with a gated recurrent unit (GRU) [10] to capture the sequential state trajectory. We firstly initialize the state

representation so with an initial distribution sy ~ po 3. Then we learn state representation s; through the recurrent cell:

u; = g (W1 concat [hvk|\7’vk € H(u, K)] +Uysi—1 + b1)

r; = 04 (W2 concat [hy, [Vor € H(u,K)| +Uzs;—1 + by)
©)
$; = op, (W3 concat [hz,k|\7’v;C € H(u, K)] +Us (17 - s¢—1) + b3)

S[:(l—ut)'51_1+ut6§t

where u; and r; denote the update gate and reset gate vector generated by GRU and © is the element-wise product

operator. W;, U; are weight matrices and b; is the bias vector. Finally, s; serves as the state representation at time step ¢.

5.1.2  Attentive Action Pruning. Our attentive action pruning is designed to reduce the action search space by specifying
the varying importance of actions for each state. As a result, the sample efficiency can be largely increased by filtering
out irrelevant actions to promote an efficient action search. In our method, actions are defined as candidate attributes
selected from a given HIN that potentially impact the model fairness. In particular, given state s; = (u, H(u, K)), we can
distill a set of attributes “V; of the current user « and items v € H(u, K) from the HIN. Intuitively, we can directly use
V; as candidate actions for state s;. However, the user and item attribute amount of the HIN would be huge, resulting

in a large search space that terribly degrades the learning efficiency [47]. Thus, we propose an attentive action pruning

3In our experiment, we used a fixed initial state distribution, where s) = 0 € R4
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Counterfactual Explanation for Fairness in Recommendation 11

based on attention mechanism [42] to select important candidate actions for each state. Formally, given the embedding

e; for an attribute i € V; from Eq. (2), and the state representation s; from Eq. (5), the attention score ; of attribute i is:
a; = ReLU (Wgsy + Wpe; + b) 6)

where W and Wy, are two weight matrices and b is the bias vector.
We then normalize attentive scores of all attributes in V; and select attributes with n-top attention scores into A;:

exp (a;)

A;={ilieTopn|—" 1
! { P S e, exp (@)

] andi€ Vt} (7)

where n is the candidate size. To the end, our candidate set A; is of high sample efficiency since it filters out irrelevant

attributes while dynamically adapting to the user state shift.

5.1.3  Counterfactual Reward Definition. The counterfactual reward r(s;, a;) € R measures whether a deployed action
ar € A; is a valid counterfactual explanation for fairness at the current state s;. In particular, the reward is defined
based on two criteria: 1) Rationality [43]: deploying action (i.e., attribute) a; should cause the reduction of fairness
disparity regarding the item exposure fairness. The fairness disparity change is measured by the fairness disparity

difference between the recommendation result before (i.e., A(H, x)) and after (i.e., A(H; k) fusing the action a; to the

recommendation model fg, i.e., A(H, k) — A(Hﬁf;() 2) Proximity [12]: a counterfactual explanation is a minimal set of
attributes that changes the fairness disparity.

For the Rationality, we fuse the embedding of a; with user or item latent factors from the recommendation model
to learn updated user and item latent vectors, so as to get the A(H;j;(). Specifically, for a state s; = (u, H(u, K)), the
embedding e; of action a; is fused to user latent factor Uy, for user u and item latent factors V, for all items v; € H(u, K)

by a element-wise product fusion. As a result, we can get the updated latent factors sz and Vf,f :

U U, ofe Ve[l TI},ifa; € Vy
of _ ®
Vo < Vo, 0{er|Vte(l,---,T]},ifar €Vy

where O represents the element-wise product (a.k.a. Hadamard product). T is the total training iteration. At the initial
state of t = 0, user and item latent factors U, and V, are learned form Eq (3). Through Eq. (8), the updated user and
item latent vectors are then used to generate the intervened recommendation result H;J;(

For the Proximity, we compute whether a; returns a minimal set of attributes that changes the recommendation
model fairness. This is equal to regulating user and item latent factors before (i.e., Uy, V;) and after (i.e., sz , Vf,f )
fusing a; be as similar as possible.

Based on the two criteria, the counterfactual reward can be defined as the following form:

1+ dist(Uy, U/ ) +dist(Vo, Vi), if A(Hux) - A(HZ ) > e

)
dist(Uy,, U;f) + dist(Vy, sz), otherwise

r(se,ar) = {

where dist(+) is the distance metric defined as cosine similarity [31], i.e., dist(a, b) = %. A(+) is the fairness disparity

evaluation metric defined in Eq.(1). € is the disparity change threshold that controls the model flexibility.

5.2 Unbiased Policy Optimization

Using state s; € S from Eq. (5), candidate action a; € A; from Eq. (7), and counterfactual reward r(s;, a;) in Eq. (9) for
each timestamp t, the policy optimization seeks the explanation policy 7g that maximizes the expected cumulative
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12 X. Wang and Q. Li, et al.

reward R(g) over total iteration T. Intuitively, we can directly use the policy gradient calculated on R(ng) to guide
the optimization of zg. However, our policy optimization is conducted in the off-policy learning setting, in which
7 holds different distribution from the logging policy mp. Directly optimizing R(7g) would result in a biased policy
optimization [47] due to the policy distribution discrepancy. To this end, we additionally apply Counterfactual Risk
Minimization (CRM) [40] to correct the discrepancy between ng and . In particular, CRM employs an Inverse
Propensity Scoring (IPS) [52] to explicitly estimate the distribution shift between ng and . After applying the CRM,

we can alleviate the policy distribution bias by calculating the CRM-based expected cumulative reward R(rg):

T
=~ t TE (at | st)
= = 1
R(rg) = By ;y e o) " (ra) (10)
where % is called the propensity score for balancing the empirical risk estimated from the 7.

Finally, the policy gradient of the explanation policy learning w.r.t. model parameter © is achieved by the REIN-
FORCE [51]:
= 1 4 ¢+ 7k (ar | sp) )
VeR (ng) = T ; V(e s (st.ar) Vo log mg(as | st) (11)
where T is the total training iteration. By optimizing the Eq. (11), the learned explanation policy 7r generates minimal
sets of attributes responsible for item exposure fairness changes, so as to find the true reasons leading to unfair

recommendations.

6 EXPERIMENTS

We conduct extensive experiments to evaluate the proposed CFairER for explaining item exposure fairness in recom-

mendations. We aim to particularly answer the following research questions:

o RQ1. Whether CFairER produces attribute-level explanations that are faithful to explaining recommendation
model fairness compared with existing approaches?

o RQ2. Whether explanations provided by CFairER achieve better fairness-accuracy trade-off than other methods?

e RQ3. Do different components (i.e., attentive action pruning, counterfactual risk minimization-based optimiza-
tion) help CFairER to achieve better sample efficiency and bias alleviation? How do hyper-parameters impact
CFairER?

6.1 Experimental Setup

6.1.1 Datasets. We use logged user behavior data from three datasets Yelp 4, Douban Movie ® and Last-FM © for
evaluations. Each dataset is considered as an independent benchmark for different tasks, i.e., business, movie and music
recommendation tasks. The Yelp dataset records user ratings on local businesses and business compliment, category
and city profiles. The Douban Movie is a movie recommendation dataset that contains user group information and
movie actor, director and type details. The Last-FM contains music listening records of users and artist tags. The details
of both datasets are given in Table 1, which depicts statistics of user-item interactions, user-attribute and item-attribute
relations. All datasets constitute complex user-item interactions and diverse attributes, thus providing rich contextual
information for fairness explanation learning. Following previous works [25, 47, 49], we adopt a 10-core setting, i.e.,

retaining users and items with at least ten interactions for both datasets to ensure the dataset quality. Meanwhile, we

4https://www.yelp.com/dataset/
Shttps://movie.douban.com/
Shttps://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding
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Counterfactual Explanation for Fairness in Recommendation 13
binarize the explicit rating data by interpreting ratings of 4 or higher as positive feedback, otherwise negative. Then,
we sort the interacted items for each user based on the timestamp and split the chronological interaction list into

train/test/valid sets with a proportion of 60%/20%/20%.

Table 1. Statistics of the datasets.

Dataset Yelp | Douban Movie | Last-FM
User-Ttem #Users 16,239 13,367 1,892
Interaction #Items 14,284 12,677 17,632
#Interactions 198,397 1,068,278 92,834
#Density 0.086% 0.63% 0.28%
#User Attributes 16,250 16,120 1,892
User Item | ;- side Relati 2354 4,132 25,434
Attributes #User-side Relations 35,465 574,13 5,43
#Item Attributes 558 8,798 29,577
#Item-side Relations | 54,276 72,531 338,340

We also study the long-tail distribution of user-item interactions in the three datasets. We present the visualization
results of the distribution of historical user-item interactions in the three datasets in Figure 4. Analyzing Figure 4, we
find that user-item interactions of both datasets are presented with a skewed distribution: the head-tailed distribution
in the blue plot area and the long-tailed distribution in the yellow plot area. Besides, a small fraction of popular items
account for most of the user interactions in both datasets, The skewed distribution would result in serious item exposure

unfairness issues in recommendations, such as the well-known filter-bubble problem [32] and Matthew effect [33].

6.1.2 Baselines. We adopt three heuristic approaches and two existing fairness-aware explainable recommendation

methods as baselines. In particular,

e RDExp: We randomly select attributes from the attribute space for each user-item interaction and generate
explanations based on the selected attributes. Note that the selected attributes can be both user and item
attributes.

e PopUser and PopItem: We separately calculate the exposure number of attributes for each user-item interaction,
then sort each attribute chronologically based on the exposure number. We devise a baseline PopUser, in which
the top user attributes are selected as explanations. Analogously, we build PopItem that produces the top item
attributes for the explanation.

o FairKGAT: uses FairKG4Rec [13] to mitigate the unfairness of explanations for a knowledge graph-enhanced
recommender KGAT [44]. FairKG4Rec [13] is a generalized fairness-aware algorithm that controls the unfairness
of explanation diversity in the recommendation model. KGAT [44] is a state-of-the-art knowledge graph-
enhanced recommendation model that gives the best fairness performance in the original FairKG4Rec paper.

o CEF [16]: is the first work that explains fairness in recommendation. It generates feature-based explanations
for item exposure unfairness by perturbing user and item features and searches for features that change the

fairness disparity.

Note that to the best of our knowledge, FairKGAT [13] and CEF [16] are the only two existing methods designed for
explainable fairness recommendation tasks.
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Figure/long_tail_distribution_YP.png

(a) Interaction distribution in Yelp.

Figure/long_tail_distribution_DM.png

to ACM

(b) Interaction distribution in Douban Movie.
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Counterfactual Explanation for Fairness in Recommendation 15

6.1.3 Explanation Faithfulness Evaluation. We adopt the widely used erasure-based evaluation criterion [15] in Ex-
plainable AI to evaluate the explanation faithfulness. The erasure-based evaluation identifies the contributions of
explanations by measuring model performance changes after these explanations are removed. As a result, one can tell
whether the model actually relied on these particular explanations to make a prediction, i.e., faithful to the model. In
our experiments, we use the erasure-based evaluation to test (I) the recommendation performance change and (II) the
recommendation fairness change after a set of attributes from the generated explanation is removed. By doing so, we
can identify whether our explanations are faithful to recommendation performance and fairness disparity.

Following [15], we remove certain attributes from the generated explanations and evaluate the resulting recommen-
dation performance. Therefore, in the starting evaluation point, we consider all attributes and add them to the user
and item embeddings. We then remove certain attributes from the generated explanations to observe recommendation
and fairness changes at later evaluation points. In particular, we first use historical user-item interactions to train a
recommendation model through Eq. (4) to generate user and item embeddings. Then, we fuse all attribute embeddings
from Eq. (2) with the trained user and item embeddings. The user and item embeddings after fusion are used to generate
recommendation results at the starting evaluation point. Thereafter, we conduct counterfactual reasoning using our
CFairER to generate attribute-level counterfactual explanations for model fairness. Those generated explanations are
defined as the erasure set of attributes for each user/item. Finally, we exclude the erasure set from attribute space,
and fuse the embeddings of attributes after erasure with the trained user and item embeddings to generate new
recommendation results.

Given the recommendation results at each evaluation point, we use Normalized Discounted Cumulative Gain
(NDCG)@K and Hit Ratio (HR)@K to measure the recommendation performance As this work focuses on item exposure
fairness in recommendations, we use two wildly-adopted item-side evaluation metrics, i.e., Head-tailed Rate (HT)@K
and Gini@K, for fairness evaluation. HT@K refers to the ratio of the head-tailed item number to the list length K.
Later HT@K indicates that the model suffers from a more severe item exposure disparity by favoring items from the
head-tailed (i.e., popular) group. Gini@K measures inequality within subgroups among the Top-K recommendation
list. Larger Gini@K indicates the recommendation results are of higher inequality between the head-tailed and the

long-tailed group.

6.1.4 Implementation Details. To demonstrate our CFairER, we employ a simple matrix factorization (MF) as our
recommendation model. We train the MF using train/test/validate sets split from user-item interactions in datasets with
60%/20%/20%. We optimize the MF using stochastic gradient descent (SGD) [5]. The same data splitting and gradient
descent methods are applied in all baselines when required. Our graph representation module employs two graph
convolutional layers with {64, 128} output dimensions. FairKGAT baseline also keep 2 layers. The graph representation
module outputs embeddings for all user and item attributes with the embedding size d = 128. The embedding size for
FairKGAT and CEF is also fixed as d = 128. The number of latent factors (as in Eq. (3)) of MF is set equal to the embedding
size of our graph representation module. To generate the starting evaluation point of erasure-based evaluation, we fuse
attribute embeddings with the trained user and item latent factors based on element-wise product fusion. The fused
user and item embeddings are then used to produce Top-K recommendation lists.

We train our counterfactual fairness explanation model with SGD based on the REINFORCE [39] policy gradient. For
baseline model compatibility, as CEF [16] requires pre-defined user-feature attention matrix and item-feature quality

matrix, we follow previous work [? ] to regulate user/item attributes as user/item aspects and resort to analysis toolkit
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“Sentires” ’ to build the two matrices. The hyper-parameters of our CFairER and all baselines are chosen by the grid
search, including learning rate, Ly norm regularization, discount factor y, etc. The disparity change threshold € in Eq. (9)
of our CFairER is determined by performing a grid search on the validation set. This enables us to choose the optimal
value for a variety of recommendation tasks, including but not limited to business (Yelp dataset), movie (Douban
Movie dataset), and music (Last-FM dataset) recommendations. After all models have been trained, we freeze the
model parameters and generate explanations accordingly. We report the erasure-based evaluation results by recursively
erasing top E attributes from the generated explanations. The erasure length E is chosen from E = [5, 10, 15, 20]. The

recommendation and fairness performance of our CFairER and baselines under different E is reported in Table 2.

6.2 Explanation Faithfulness (RQ1, RQ2)

Table 2. Recommendation and fairness performance after erasing top E = [5, 10, 20] attributes from explanations. T represents larger
values are desired for better performance, while | indicates smaller values are better. Bold and underlined numbers are the best results
and the second-best results, respectively.

NDCG@40 T Hit Ratio (HR)@40 T Head-tailed Rate (HT)@40 | Gini@40 |
E=5 E=10 E=20 E=5 E=10 E=20 E=5 E=10 E=20 E=5 E=10 E=20

Method

Yelp

RDExp 0.0139  0.0125 0.0118 0.1153  0.1036  0.1029  0.1994 0.1976 0.1872 0.3870  0.3894  0.3701
PopUser 0.0141 0.0136 0.0128 0.1183 0.1072  0.1067 0.1776  0.1767 0.1718 0.3671  0.3642  0.3495
Popltem  0.0147 0.0139 0.0131 0.1182 0.1093  0.1084  0.1793  0.1846 0.1848 0.3384  0.3370  0.3359

FairKGAT 0.0153 0.0141 0.0138 0.1384 0.1290  0.1277  0.1802  0.1838 0.1823 0.3671  0.3508  0.3542
CEF 0.0254  0.0247 0.0231  0.1572 0.1608  0.1501  0.1496  0.1455 0.1420 0.3207  0.3159  0.3088
CFairER  0.0316 0.0293 0.0291 0.1987 0.1872 0.1868 0.1345 0.1322 0.1301 0.2366 0.2068 0.1974

Douban Movie

RDExp 0.0390  0.0346  0.0351  0.1278 0.1170  0.1172  0.1932  0.1701 0.1693 0.3964 0.3862  0.3741
PopUser 0.0451  0.0352  0.0348 0.1482 0.1183  0.1174  0.1790  0.1674 0.1658 0.3684  0.3591  0.3562
PoplItem 0.0458  0.0387  0.0379  0.1523  0.1219  0.1208  0.1831  0.1458 0.1383 0.3664 0.3768  0.3692

FairKGAT 0.0534 0.0477 0.0421 0.1602 0.1377  0.1308  0.1654 0.1573 0.1436 0.3590  0.3472  0.3483
CEF 0.0831 0.0795 0.0809  0.1949 0.1973  0.1901  0.1043 0.0998  0.0945 0.3079  0.2908  0.3001
CFairER  0.1290 0.0921 0.0901 0.2706 0.2441 0.2238 0.0841 0.1183 0.1101 0.2878 0.2648 0.2593

Last-FM

RDExp 0.0857  0.0568  0.0592  0.8436  0.7915  0.7831  0.7884  0.7732 0.7691 0.3707  0.3531  0.3540
PopUser  0.0786 0.0432  0.0431 0.7787 0.7697  0.7604  0.7979  0.8064 0.7942 0.3862  0.3729  0.3761
PopItem  0.0792 0.0479 0.0435 0.7803 0.7961  0.7914  0.7689  0.7638 0.7573 0.3673  0.3602  0.3618

FairKGAT 0.0832 0.0594 0.0621 0.8063 0.7938  0.8165 0.7451  0.7342 0.7408 0.3580  0.3458  0.3433
CEF 0.0962  0.1037 0.1001 0.8592 0.8408 0.8509  0.6873  0.6092 0.5601 0.3308  0.3298  0.3375
CFairER  0.1333 0.1193 0.1187 0.9176 0.8867 0.8921 0.6142 0.5865 0.5737 0.2408 0.2371 0.2385

We plot fairness and recommendation performance changes of our CFairER and baselines while erasing attributes
from explanations in Figure 5. Each data point in Figure 5 is generated by cumulatively erasing a batch of attributes.
Those erased attributes are selected from the top 10 (i.e., E = 10) attribute sets of the explanation lists provided by
each method.® As PopUser and Popltem baselines enjoy very similar data trends, we choose not to present them

simultaneously in Figure 5. Table 2 presents recommendation and fairness performance after erasing E = [5, 10, 20]

"https://github.com/evison/Sentires
8For example, given n explanation lists, the number of erasure attributes is n x 10. We cumulatively erase m attributes in one batch within in total
(n X 10)/m iterations.
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Counterfactual Explanation for Fairness in Recommendation 17

attributes in explanations. Larger NDCG@XK and Hit Ratio @K values indicate better recommendation performance
while smaller Head-tailed Rate@K and Gini@K values represent better fairness. Analyzing Figure 5 and Table 2, we
have the following findings.

Amongst all methods, our CFairER achieves the best recommendation and fairness performance after erasing
attributes from our explanations on all datasets. For instance, CFairER beats the strongest baseline CEF by 25.9%,
24.4%, 8.3% and 36.0% for NDCG@40, Hit Ratio@40, Head-tailed Rate@40 and Gini@40 with erasure length E = 20
on Yelp. This indicates that explanations generated by CFairER are faithful to explaining unfair factors while not
harming recommendation accuracy. Unlike CEF and FairKGAT, which generate explanations based on perturbing
input features and adding fair-related constraints, CFairER generates counterfactual explanations by inferring minimal
attributes contributing to fairness changes. As a counterfactual explanation is minimal, it only discovers attributes
that well-explain the model fairness while filtering out tedious ones that affect the recommendation accuracy. Another
interesting finding is that PopUser and PopItem perform even worse than RDExp (i.e., randomly selecting attributes) on
Last-FM. This is because recommending items with popular attributes would deprive the exposure of less-noticeable
items, causing serious model unfairness and degraded recommendation performance.

In general, the fairness of all models consistently improves while erasing attributes from explanations, shown by
the decreasing trend of Head-tailed Rate@K values in Figure 5. This is because erasing attributes will alleviate the
discrimination against users and items from disadvantaged groups (e.g., gender group, brand group), making more
under-represented items to be recommended. Unfortunately, we can also observe the downgraded recommendation
performance of all models in both Figure 5 and Table 2. For example, in Figure 5, the NDCG@5 of CEF drops from
approximately 1.17 to 0.60 on Last-FM at erasure iteration 0 and 50. This is due to the well-known fairness-accuracy
trade-off issue, in which the fairness constraint could be achieved with a sacrifice of recommendation performance.
Facing this issue, both baselines suffer from huge declines in recommendation performance, as in Table 2. On the
contrary, our CFairER still enjoys favorable recommendation performance and outperforms all baselines. Besides, the
decline rates of our CFairER are much slower than baselines on both datasets in Figure 5. We hence conclude that
the attribute-level explanations provided by our CFairER can achieve a much better fairness-accuracy trade-off than
other methods. This is because our CFairER uses counterfactual reasoning to generate minimal but vital attributes as
explanations for model fairness. Those attributes produced by CFairER are true reasons for unfairness but not the ones

that affect the recommendation accuracy.

6.3 Ablation and Parameter Analysis (RQ3)

We first conduct an in-depth ablation study on the ability of our CFairER to achieve sample efficiency and bias alleviation.
Our CFairER includes two contributing components, namely, attentive action pruning (cf. Section 5.1) and counterfactual
risk minimization-based optimization (cf. Section 5.2). We evaluate our CFairER with different variant combinations

and show our main findings below.

6.3.1 Sample Efficiency of Attentive Action Pruning. Our attentive action pruning reduces the action search space by
specifying varying importance of attributes for each state. As a result, the sample efficiency can be increased by filtering
out irrelevant attributes to promote an efficient action search. To demonstrate our attentive action pruning, we test
CFairER without (—) the attentive action pruning (i.e., CFairER — Attentive Action Pruning), in which the candidate
actions set absorbs all attributes connected with the current user and items. Through Table 3, we observed that removing
the attentive action pruning downgrades CFairER performance, which validates the superiority of our attentive action

Manuscript submitted to ACM



885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936

18 X. Wang and Q. Li, et al.

Table 3. Ablation Study on CFairER. Erasure length E is fixed as E = 20. - represents the corresponding module is removed. A — B
represents A is replaced by B. + indicates the increase or decrease percentage of the variant compared with CFairER.

Variants NDCG@207 HR@20 T HT@20] Gini@20]
Yelp

CFairER 0.0238 0.1871 0.1684 0.1990
CFairER - Attentive Action Pruning 0.0164(-31.1%) 0.1682(—10.1%) 0.1903(+13.0%)  0.2159(+8.5%)
CRM loss — Cross-entropy [60] loss  0.0197(-17.2%)  0.1704(-8.9%)  0.1841(+9.3%)  0.2101(+5.6%)
Douban Movie

CFairER 0.0583 0.2043 0.1149 0.2871
CFairER - Attentive Action Pruning  0.0374(=35.9%) 0.1537(-24.8%) 0.1592(+38.6%) 0.3574(+24.5%)
CRM loss — Cross-entropy [60] loss  0.0473(—18.9%) 0.1582(—22.6%) 0.1297(+12.9%)  0.3042(+6.0%)
Last-FM

CFairER 0.1142 0.7801 0.6914 0.2670
CFairER - Attentive Action Pruning 0.0987(-13.6%) 0.7451(-4.5%) 0.7833(+13.3%) 0.2942(+10.2%)
CRM loss — Cross-entropy [60] loss  0.0996(—12.8%)  0.7483(-4.1%) 0.7701(+11.4%)  0.2831(+6.0%)

pruning in improving fair recommendations. This is because attentive action pruning filters out irrelevant items based
on their contributions to the current state, resulting in enhanced sample efficiency. Moreover, the performance of
CFairER after removing the attentive action pruning downgrades severely on Douban Movie. This is because Douban
Movie has the largest number of attributes compared with the other two datasets (cf. Table 1), which challenges our
CFairER to find suitable attributes as fairness explanations. These findings suggest the superiority of applying attentive

action pruning in fairness explanation learning, especially when the attribute size is large.

6.3.2 Bias Alleviation with Counterfactual Risk Minimization. Our CFairER is optimized with a counterfactual risk
minimization (CRM) loss to achieve unbiased policy optimization. The CRM loss (cf. Eq. (10)) corrects the discrepancy
between the explanation policy and logging policy, thus alleviating the policy distribution bias in the off-policy learning
setting. To demonstrate the CRM loss, we apply our CFairER with cross-entropy (CE) [60] loss (i.e., CRM loss —
Cross-entropy loss) to show how it performs compared with CFairER on the CRM loss. We observe our CFairER with
CRM loss consistently outperforms the counterpart with CE loss on both fairness and recommendation performance.
The sub-optimal performance of our CFairER with CE loss indicates that the bias issue in the off-policy learning can
lead to downgraded performance for the learning agent. On the contrary, our CFairER takes advantage of CRM to learn
a high-quality explanation policy. We hence conclude that performing unbiased optimization with CRM is critical to

achieving favorable fairness explanation learning.

6.3.3  Parameter Analysis. We also conduct a parameter analysis on how erasure length E (cf. Section 6.1.3) and candidate
size n (as in Eq. (7)) impact CFairER. Figure 6 (a) and Figure 6 (b) report CFairER performance w.r.t. E = [5, 10, 15, 20].
Apparently, the performance of CFairER demonstrates decreasing trends from E = 5, then becomes stable after E = 10.
The decreased performance is due to the increasing erasure of attributes found by our generated explanations. This
indicates that our CFairER can find valid attribute-level explanations that impact fair recommendations. The performance
of CFairER degrades slightly after the bottom, then becomes stable. This is reasonable since the attributes number
provided in datasets are limited, while increasing the erasure length would allow more overlapping attributes with
previous erasures to be found.
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By varying candidate size n from n = [10, 20, 30, 40, 50, 60] in Figure 6 (c) (d), we observe that CFairER performance
first improves drastically as candidate size increases on both datasets. The performance of our CFairER reaches peaks at
n =40 and n = 30 on Yelp and Last-FM, respectively. After the peaks, we can witness a downgraded model performance
by increasing the candidate size further. We consider the poorer performance of CFairER before reaching peaks is due
to the limited candidate pool, i.e., insufficient attributes limit the exploration ability of CFairER to find appropriate
candidates as fairness explanations. Meanwhile, a too-large candidate pool (e.g., n = 60) would offer more chances
for the agent to select inadequate attributes as explanations. Based on the two findings, we believe it is necessary for
our CFairER to carry the attentive action search, such as to select high-quality attributes as candidates based on their

contributions to the current state.

6.3.4 Time Complexity and Computation Costs. For time complexity, our recommendation model (cf. Section 4.3)
performs matrix factorization with a complexity of O(|O|). For the graph representation module (cf. Section 4.2),
establishing node representations has complexity O(Zf‘zl (|G| + |0*|)d;d;_1). For the off-policy learning process (cf.
Section 5.1), the complexity is mainly determined by the attention score calculation, which has a time complexity
of O(2T|O*||N,|d?). The total time complexity is O(|O| + ZIL:1(|§| +|0*|)d;d;_q + 2T|0*|n2d?). We evaluated the
running time of FairKGAT and CEF baselines on the large-scale Yelp dataset. The corresponding results are 232s and
379s per epoch, respectively. CFairER has a comparable cost of 284s per epoch to these baselines. Considering that our
CFairER achieves superior explainability improvements compared to the baselines, we believe that the increased cost of,

at most, 52s per epoch is a reasonable trade-off.

7 CONCLUSION

We propose CFairER, a reinforcement learning-based fairness explanation learning framework over a HIN. Our CFairER
generates counterfactual explanations as minimal sets of real-world attributes to explain item exposure fairness. We
design a counterfactual fairness explanation model to discover high-quality counterfactual explanations, driven by an
attentive action pruning to reduce the search space and a counterfactual reward to enable counterfactual reasoning.
Extensive evaluations on three benchmark datasets demonstrate CFairER’s ability to find faithful explanations for

fairness and balance the fairness-accuracy trade-off.
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Fig. 5. Erasure-based evaluation on Top-5 and Top-20 recommendations. NDCG@K values reveal the recommendation performance
of models, while Head-tailed Rate@K values reflect model fairness. NDCG@K values are multiplied with 10 for better presentation.
Each data point is generated while cumulatively erasing the top 10 (i.e., E = 10) attributes in explanations.
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(a) Impact of E on Yelp.
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Fig. 6. Impacts of parameters E and n on CFairER.
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